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Abstract

In this paper, we investigate when passivity for a nonlinear system can be inferred from its linearization.
The nonlinear system considered here are affine in control and with feedthrough terms, in both continuous-time
domain and discrete-time domain. Our main results demonstrate when the linearized system is simultaneously
strict passive and strict input passive (SSIP), the nonlinear system will be SSIP as well within a neighborhood
of the equilibrium point. We establish algebraic conditions under which a linear system is SSIP based on the
positive real lemma. The results are extended to dissipative systems and in particular, passivity indices can be
derived for a nonlinear system from the linearized system within a neighborhood of the equilibrium.

Index Terms

Passivity, Dissipativity, Linearization, Nonlinear Systems, Passivity Indices.

I. INTRODUCTION

Energy dissipation is a fundamental concept in the study of the behavior of a dynamical system [1].
Passivity, and its generalization dissipativity, characterizes the energy consumption of a system and is
used in a variety of applications, e.g. electrical, mechanical, chemical and communication systems [2],
[3]. The compositional property (for instance, negative feedback connection of two passive systems
remains passive) makes passivity a powerful tool to analyze complicated, coupled systems, such as
Cyber-physical systems [4].

In this paper, we pursue passivity and dissipativity properties of a nonlinear system from its first-
order approximation. Nonlinear behaviors (including saturation, backlash and dead zone) abound in most
physical systems [5], [6]. Although nonlinear models are more accurate to characterize the dynamical
systems, analysis and control design methods are more available for linear systems. Therefore, using its
first-order approximation is one effective approach to provide a local description of the nonlinear system
[5], [6]. The approach of linearization has been used in nonlinear optimal control, model matching and
input-output decoupling and so on [7], [1]. A well-known result regarding stability is that a nonlinear
system will be stable in a neighborhood of the equilibrium point if its linearization is asymptotically
stable. Passivity is closely related to stability [7], [3] and this paper is to pursue this line of research
by exploring passivity for a nonlinear system from its linearized system. Passivity theory for linear
systems (e.g. [8]) is well established, for instance, the well known KYP lemma relates passivity with
the algebraic structure of the system. It is also of practical importance to analyze the linearized system
in order to further control the nonlinear system [1], [9].

A similar problem has been investigated in e.g. [1] for a continuous-time nonlinear system that affine
in control and without feedthrough term, i.e. of the form

ẋ = f(x) + g(x)u, (1)
y = h(x).

In [1], strict passivity for the linearized system is required to ensure passivity for the nonlinear system
(1) under some rank and integrability conditions. In discrete-time domain, however, this is not the case.
For Σd of the form

Σd : x(k + 1) = f(x(k)) + g(x(k))u(k), (2)
y(k) = h(x(k)) + J(x(k))u(k),

it does not make sense to study passivity when J(x) = 0 even in the corresponding linear case [10].
This is one difference from the continuous-time domain. In this paper, we consider a nonlinear system
with feedthrough term in both continuous-time domain, i.e.

Σc : ẋ = f(x) + g(x)u, (3)
y = h(x) + J(x)u,
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and discrete-time domain given by (2). For Σc and Σd, strict passivity alone for the linearized system
may not be sufficient to show local passivity as for (1).

The problem we are interested in is stated as follows: in order to investigate passivity or dissipa-
tivity for the nonlinear system Σc (or Σd) around the equilibrium, what passivity properties (or other
conditions) of the linearized model are required? Our main results show that if the linearized system
is simultaneously strict passive and strict input passive (SSIP), the nonlinear system Σc or Σd will be
SSIP in a neighborhood of the equilibrium. Conditions are established under which the linearization of
Σc or Σd is SSIP. In continuous-time domain, the condition is nothing but strongly positive real [11]
or extended strictly positive real [12]. The results can be extended to systems that may not be affine in
control as well if the linearized system is shown to be SSIP.

Dissipativity (a generalization of passivity) of a nonlinear system and its linearization is studied in
[7], [13]. The results demonstrate that if a nonlinear system Σc or Σd is QSR dissipative [14], then
its linearization is QSR dissipative as well. [7] also studies when dissipativity of a continuous-time
nonlinear system can be inferred from its linearization based on a Hamiltonian matrix. In this paper, we
investigate the problem based on a series of algebraic conditions inspired from the essentiality of SSIP,
in both continuous-time and discrete-time domain. As a particular case of QSR dissipativity, we relate
passivity indices for a nonlinear system and its linearized system. The passivity indices (characterize
how passive the system is) for linear system can be easily calculated from the transfer function and can
be further used to control the nonlinear system [15], [4].

The rest of the paper is organized as follows. Section II provides some background material on
passivity theory and dissipativity. Section III presents preliminary results relating passivity and QSR
dissipativity for a nonlinear system and its linearization about an equilibrium. The main results are given
in Section IV to show local passivity and local QSR dissipativity for a nonlinear system from its strict
passive and strict input passive linearized system. Section VI provides some concluding remarks.

Notation: Rm denotes the Euclidean space of dimension m. I denotes the identity matrix of appropri-
ate dimensions. For a dynamical system, its states, control input and output are denoted by x ∈ X ⊆ Rn,
u ∈ U ⊆ Rm, and y ∈ Y ⊆ Rm, respectively. For state-space models (3) and (2), f, g, h, J are smooth
mappings of appropriate dimensions and we assume f(0) = 0, h(0) = 0 without loss of generality. A
linear version of Σc is given by

Gc : ẋ = Ax+Bu, (4)
y = Cx+Du,

and Gd as a linear version of Σd is given by

Gd : x(k + 1) = Ax(k) +Bu(k), (5)
y(k) = Cx(k) +Du(k).

In the following analysis, we assume for linear systems (4) and (5), {A,B} is controllable and {A,C}
is observable.

For a matrix P ∈ Rm×n, its transpose it denoted by P T . For a symmetric matrix where P = P T ,
P > 0 denotes it is positive-definite. The maximum eigenvalue of P is denoted by λ(P ) and its minimum
eigenvalue is denoted by λ(P ). The norm of a vector or a matrix is given by ‖P‖.

II. BACKGROUND MATERIAL

Definition 1 (CT-Dissipative [7], [14]). A state-space system Σc given by (3) is said to be dissipative
with respect to supply rate w(u(t), y(t)), if there exists a nonnegative function V (x) satisfying V (0) = 0
such that for all x0 ∈ X , all t1 ≥ t0, and all u ∈ Rm,

V (x(t1)) ≤ V (x(t0)) +

∫ t1

t0

w(u(t), y(t))dt, (6)
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where x(t0) = x0, and x(t1) is the state at time t1 resulting from initial condition x0 and input u. If (6)
holds with strict inequality, Σc is called strict dissipative (SD). If (6) holds with equality, Σc is called
conservative.

Definition 2 (DT-Dissipative [10], [13]). A state-space system Σd given by (2) is said to be dissipative
with respect to W (u(k), y(k)), if there exists a nonnegative function V (x) satisfying V (0) = 0 such
that for all x0 ∈ X , all k ≥ k0, and all u ∈ Rm,

V (x(k))− V (x(k0)) ≤
k−1∑
i=k0

W (y(i), u(i)). (7)

If (7) holds with strict inequality, Σd is called strict dissipative. If (7) holds with equality, Σd is called
conservative.

The nonnegative function V (x) in the above definitions are called storage function. In this paper, we
assume the storage function V (x) is analytic and thus the Taylor series expansion about x = 0 yields
[1], [13]

V (x) = xTPx+ Vh(x), (8)

where P = P T > 0 and Vh(x) contains the higher order terms of V (x). In this case, (6) is equivalent
to

V̇ (x) ,
∂V

∂x
(f(x) + g(x)u) ≤ w(u, y). (9)

It has also been shown in [10] that (7) is equivalent to

V (x(k + 1))− V (x(k)) ≤ W (u(k), y(k)) (10)

The two inequalities (9) and (10) are sometimes used to define dissipative systems in the literature.
A quadratic supply rate for dynamical systems Σc and Σd is of particular interest and given as

r(u, y) = uTRu+ 2yTSu+ yTQy, (11)

where Q,S,R are matrices and Q,R are symmetric. If Σc or Σd is dissipative with respect to supply
rate (11), it is called QSR-dissipative, see e.g. [16], [14]. Some special cases of QSR-dissipative systems
are given as follows.

Definition 3 ([11], [3]). Suppose Σc given by (3) or Σd given by (2) is QSR-dissipative. It is called:
1) passive if Q = R = 0, S = 1

2
I; In particular, if (6) or (7) holds with strict inequality for

r(u, y) = uTy, the system is called strict passive (SP). If equality holds, the system is called
lossless.

2) strict input passive (SIP) if Q = 0, R = −νI, S = 1
2
I for some ν > 0;

3) strict output passive (SOP) if Q = −µI,R = 0, S = 1
2
I for some µ > 0.

Note that SP and SIP do not imply each other in general. For instance, a continuous-time (CT)
system whose transfer function given by G(s) = 1

s+1
is SP but not SIP. Also, a discrete-time (DT)

system whose transfer function given by H(z) = z+1
z

is SIP but not SP. A stronger property than SP
or SIP alone is called SSIP defined as simultaneously strict passive and strict input passive. Consider
a linear system

ẋ = −x+ 0.5u,

y = x+ 0.5u.

With a storage function V (x) = 1
2
x2, we obtain

V̇ − uTy = x(−x+ 0.5u)− u(x+ 0.5u)

= −1

4
u2 − 3

4
x2 − 1

4
(u+ x)2 ≤ −1

4
u2 − 3

4
x2.
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Thus, the linear system is SSIP.
Definition 4 ([17]). If any of the property for Σc or Σd defined above holds in a neighborhood of

(x̂ = 0, û = 0) ∈ X × U , it is called a local property for Σc or Σd.
Remark 1: In [1], local passivity is defined in a ball around x̂ = 0 and all control u that “does not

drive the state to far from the equilibrium point”. Sobolev space is used in [18] to define local passivity,
where the magnitudes of control u and the derivative of u are bounded. In this paper, we consider local
passivity or dissipativity in a neighborhood of (x̂ = 0, û = 0) ∈ X × U as in [17]. Note that all the
definitions are essentially equivalent such that local is “both in terms of small-gain inputs and local
internal stability regions” (see [19] for local dissipativity).

We need the following results to justify (strict) passivity and (strict) QSR-dissipativity for linear
systems Gc given by (4) or Gd given by (5).

Lemma 1 ([5]): Gc is SP if and only if there exist matrices P = P T > 0, L,W and ε > 0, such that

PA+ ATP = −LTL− εP,
PB = CT − LTW,

W TW = D +DT .
Lemma 2 ([13]): Gd is SP if and only if there exist matrices P = P T > 0, L,W and ρ > 0, such

that

−P + ATPA = −LTL− ρP,
ATPB = CT − LTW,
W TW = D +DT −BTPB.

Lemma 3 ([20]): Gc is SD if and only if there exist matrices P = P T > 0, L,W and ε > 0 such that

0 = PA+ ATP + εP − CTQC + LTL,

0 = PB − CT (QD + S) + LTW,

0 = R + STD +DTS +DTQD −W TW.
Lemma 4 ([13]): Gd is SD if and only if there exist matrices P = P T > 0, L,W and ρ > 0 such

that

0 = ATPA− P + ρP − CTQC + LTL,

0 = ATPB − CT (QD + S) + LTW,

0 = R + STD +DTS +DTQD −BTPB −W TW.
Remark 2: 1). If ε = 0 in Lemma 1 (or resp. ρ = 0 in Lemma 2), the system is passive. For a linear

system, (strict) passivity is equivalent to (strict) positive realness [21].
2). If ε = 0 in Lemma 3 (or resp. ρ = 0 in Lemma 4), the system is QSR-dissipative. Strict dissipative

linear system is referred to exponentially dissipative in CT domain and geometrically dissipative in DT
domain [13].

III. PRELIMINARY RESULTS

A. Linearization about an Equilibrium
We assume the pair (x̂ = 0, û = 0) is an equilibrium for nonlinear systems Σc given by (3) or Σd

given by (2), without loss of generality. The linearization of Σc (resp. Σd) about the equilibrium (0, 0)
is given by Gc (resp. Gd) with

A =
∂f

∂x
|x=0, B = g(0), C =

∂h

∂x
|x=0, D = J(0). (12)
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The linearized model is accurate up to first order and called first-order approximation [6]. Taylor series
expansion for f, g, h, J about x = 0 are given as

f(x) = Ax+ F (x), h(x) = Cx+H(x), (13)
g(x) = B +G(x), J(x) = D +M(x),

where F (x), H(x), G(x),M(x) contains higher-order terms of f(x), h(x), g(x), J(x), respectively. We
say (12) is the linearzation of Σc or Σd if there is no confusion (in CT or DT domain) in the context.

Remark 3: In this paper, we focus on linearization about an equilibrium by (12). Another situation is
linearization about a trajectory (usually prescribed) which often results in a linear time-varying (LTV)
system [6]. Passivity theory for LTV systems has been studied in e.g. [22], [23], [24].

The following result is given in [13] that relates dissipativity of a nonlinear system and its linearization.
Theorem 1 ([13]): Assume system (3) (resp. (2)) is QSR dissipative, then its linearized system (4)

(resp. (5)) together with (12) is QSR dissipative with the same supply rate.
A few remarks about this result.
1) The assumption of complete reachability of the nonlinear system (3) or (2) in [13] is not used

here since the existence of a storage function is implied from Definition 1 or Definition 2.
2) If the nonlinear system (3) or (2) is QSR dissipative with storage function V (x) in (8), then xTPx,

the quadratic terms in V (x), is a storage function for the linearized system (12) w.r.t the same
supply rate.

3) As a particular case of QSR dissipativity, passivity of a nonlinear system implies passivity of its
linearized system as well, but this is not true for SP.

B. An example: from Linearity to Nonlinearity
To this end, we know passivity (resp. QSR dissipativity) of a nonlinear system implies passivity

(resp. QSR dissipativity) of its linearized system. However, does passivity (resp. QSR dissipativity) of
its linearization imply passivity (resp. QSR dissipativity) of the nonlinear system? In general, this is not
true. To see this, let us consider an example from [7].

Example 1 ([7]): Consider a nonlinear system

ẋ1 = x2,

ẋ2 = − sin(x1) + u,

y = cos(x1)x2.

Its linearized system is given through the following matrices

A =

[
0 1
−1 0

]
, B =

[
0
1

]
, C =

[
0 1

]
, D = 0.

This linearized system is lossless with storage function V = 1
2
(x21 + x22). To show the nonlinear system

is passive (or lossless) in a neighborhood of origin, we need to find a storage function V2, such that for
x close enough to origin,

∂V2
∂x1

x2 +
∂V2
∂x2

(− sinx1) ≤ 0,
∂V2
∂x2

= cos(x1)x2.

It has been shown in [7], however, such storage function does not exist and therefore the nonlinear
system is not passive (or lossless) even for x close enough to the origin.

This example demonstrates in order to show local passivity for a nonlinear system, a stronger condition
than passivity (losslessness in this example) for the linearized system, such as SP and/or SIP may be
required. In the following sections, we will see that SSIP for the linearized system is required to show
Σc or Σd is locally passive. This is analogous to asymptotic stability of the linearization that required
to show Lyaponuv stability of a nonlinear system.
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C. Strict Passive Linearized System
In this section, we consider when the linearized system of (3) and (2) is strict passive (SP). It turns

out additional conditions may be needed besides strict passivity.
Theorem 2 (CT-SP): Consider a nonlinear system Σc given by (3) and its linearized system Gc given

by (12). Suppose Gc is controllable and observable. If Gc is SP and there exist a constant l ≥ 0 such
that

lim
‖x‖2→0

‖J(x)−D‖
‖x‖2

≤ l, (14)

then Σc is locally strict passive (LSP).
Proof: From Lemma 1, there exists V (x) = 1

2
xTPx as a storage function for Gc such that [5]

uTy − ∂V

∂x
(Ax+Bu) = uT (Cx+Du)− xTP (Ax+Bu)

≥ 1

2
εxTPx.

Apply V (x) = 1
2
xTPx as a locally defined storage function for the nonlinear system Σc, we have from

(13),

uT (h(x) + J(x)u)− ∂V

∂x
(f(x) + g(x)u)

=uT (Cx+Du) + uT (H(x) +M(x)u)

− xTP (Ax+Bu)− xTP (F (x) +G(x)u)

≥1

2
εxTPx+ uT (H(x) +M(x)u)− xTP (F (x) +G(x)u)

,Υ(x, u).

To make the proof work, we would like to make sure Υ(x, u) ≥ 0 for a neighborhood of x = 0, u = 0.
To achieve this, we use the following relation

Υ(x, u) ≥1

2
εxTPx− ‖xTPF (x)‖

− ‖u‖‖(H(x)−GT (x)Px)‖ − ‖uTM(x)u‖.

From the fact that xTPx ≥ λ(P )‖x‖2, where λ(P ) > 0 denotes the minimum eigenvalue of P , we
obtain

1

2
εxTPx ≥ (1− θ)δ‖x‖2 + θδ‖x‖2,

for some θ ∈ (0, 1) and δ , 1
2
ελ(P ) > 0. From Taylor’s theorem and assumption (14), there exist a

ball around x = 0 and a ball around u = 0 for which

θδ‖x‖2 − ‖xTPF (x)‖
− ‖u‖‖(H(x)−GT (x)Px)‖ − ‖uTM(x)u‖
≥‖x‖2(θδ − ξ1‖x‖ − ξ2‖u‖ − l‖u‖2) ≥ 0,

where ξ1 > 0 and ξ2 > 0 are constants. Therefore we have the following inequality

Υ(x, u) ≥ (1− θ)δ‖x‖2,

for θ ∈ (0, 1) and a neighborhood of x = 0, u = 0. This implies LSP of the nonlinear system Σc.
Note that if J(x) ≡ 0, the system Σc is reduced to (1). It is obvious D ≡ 0 in its linearization (12)

and thus J(x)−D = 0. Therefore, (14) is necessarily satisfied with l = 0.
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Corollary 1: Consider a nonlinear system (1) and its linearized system (12) where D = 0. Suppose
the linearized system is controllable and observable. If its linearization is SP, then system (1) is LSP.

Remark 4: A similar result for system (1) is present in [1] under some rank and integrability
conditions.

Next, we present a simple example.
Example 2: A nonlinear system is given by

ẋ = −x+ x3 + (−x+ 1)u,

y = x− x2 + (ax2 + 1)u,

where |a| ≤ 1. Its linearized system is characterized by A = −1, B = 1, C = 1, D = 1. It is simple to
verify that the linearized system is SP with storage function V (x) = 1

2
x2. For the nonlinear system, we

can derive

V̇ − uy = x(−x+ x3 + (−x+ 1)u)

− u(x− x2 + (ax2 + 1)u)

= −x2(1− x2)− (ax2 + 1)u2

≤ −(x2 + u2)(1− x2).

Thus, V̇ − uy ≤ 0 if x ∈ [−1, 1], i.e. the nonlinear system is LP for u ∈ R such that x ∈ [−1, 1].
Furthermore, for u ∈ R such that x ∈ [−0.5, 0.5], the nonlinear system is LSP.

Analogously, in the discrete-time domain, we can derive the following result for system (2) when its
liniearization is strict passive.

Theorem 3 (DT-SP): Consider a nonlinear system Σd given by (2) and its linearized system Gd given
by (12). Suppose Gd is controllable and observable. If Gd is SP and there exist l1 ≥ 0, l2 ≥ 0 such that

lim
‖x‖2→0

‖J(x)−D‖
‖x‖2

≤ l1, lim
‖x‖2→0

‖g(x)−B‖
‖x‖2

≤ l2, (15)

then the nonlinear system Σd is LSP.
Proof: From Lemma 2, we know V (x) = xTPx is a storage function for Gd such that ∀k,

V (x(k + 1))− V (x(k))− uT (k)y(k)

=
1

2
(Ax(k) +Bu(k))TP (Ax(k) +Bu(k))

− 1

2
x(k)TPx(k)− u(k)T (Cx(k) +Du(k))

≤ −1

2
ρxT (k)Px(k).

For notational convenience, we omit the time index k in the following proof. Apply V (x) as a locally
defined storage function for the nonlinear system Σd. From (13), we have

Ψ(x, u) ,
1

2
[f(x) + g(x)u]T P [f(x) + g(x)u]− 1

2
xTPx

− uT [h(x) + J(x)u]

≤ −1

2
ρxTPx+ φ(x, u),

and φ(x, u) is given by

φ(x, u) = −uT (H(x) +M(x)u) (16)

+ (F (x) +G(x)u)TP (Ax+Bu)

+
1

2
(F (x) +G(x)u)TP (F (x) +G(x)u).
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To make the proof work, we would like to make sure −1
2
ρxTPx+ φ(x, u) ≤ 0 for a neighborhood of

x = 0, u = 0. To achieve this, we use the following relation

−1

2
ρxTPx ≤ −(1− θ)δ‖x‖2 − θδ‖x‖2,

for some θ ∈ (0, 1), where δ , 1
2
ρλ(P ) > 0 and λ(P ) > 0 denotes the minimum eigenvalue of P .

From Taylor’s theorem and (15), there exist a ball around x = 0 and a ball around u = 0 for which

− θδ‖x‖2 + φ(x, u) ≤ −θδ‖x‖2 + ‖φ(x, u)‖ ≤ 0,

and the following inequality holds

Ψ(x, u) ≤ −1

2
ρxTPx+ φ(x, u) ≤ −(1− θ)δ‖x‖2,

for some θ ∈ (0, 1), i.e. the nonlinear system Σd is LSP.
Again, we consider a simple example as follows.
Example 3: A discrete-time nonlinear system is given by

x(k + 1) = 0.5x(k)− (2x2(k)− 1)u(k),

y(k) = x(k)− x3(k) + (x2(k) + 1)u(k).

Its linearized system is characterized by A = 0.5, B = 1, C = 1, D = 1. This linearized system is SP
with storage function V (x) = 1

2
x2. For the nonlinear system, we have

V (x(k + 1))− V (x(k))− u(k)y(k)

=
1

2

[
0.5x(k)− (2x2(k)− 1)u(k)

]2 − 1

2
x2(k)

− u(k)
[
x(k)− x3(k) + (x2(k) + 1)u(k)

]
=

1

2
(0.5x(k) + u(k))2 − 1

2
x2(k)− u(k) (x(k) + u(k))

+ χ(x(k), u(k))

≤− 1

4
x2(k) + χ(x(k), u(k)),

where χ(x, u) = −u2x2(3− 2x2) ≤ 0 for |x|2 ≤ 3
2
. Thus, the nonlinear system is LSP for u ∈ R such

that x ∈ [−
√

1.5,
√

1.5].
Remark 5: The conditions (14) and (15) are sufficient but not necessary. The two theorems only

captures a sub-class of nonlinear systems that we are interested in. Next, we will show (14) and (15)
are not required if SP for the linearized system is replaced by a stronger condition SSIP.

IV. MAIN RESULTS

In this section, we establish conditions under which a linear system is SSIP and demonstrate a
SSIP linearized system implies SSIP of the nonlinear system (3) and (2) within a neighborhood of
(x̂ = 0, û = 0).
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A. SSIP Linear Systems
Algebraic conditions are established as follows based on Lemma 1 (resp. Lemma 2) for a linear

system (4) (resp. (5)) to be simultaneously SP and SIP (SSIP).
Lemma 5: If (4) is strict passive and D +DT > 0, then the system is SSIP.

Proof: From Lemma 1, we know there exists a storage function V (x) = 1
2
xTPx for (4) such that

for ε > 0 [5],

V̇ − uTy = −1

2
(Lx+Wu)T (Lx+Wu)− 1

2
εxTPx.

The following relation holds for b such that 0 < b2 < 1,

V̇ − uTy

=− 1

2
(
1

b
Lx+ bWu)T (

1

b
Lx+ bWu)

− 1

2
xT
(
εP − (

1

b2
− 1)LTL

)
x− 1

2
(1− b2)uTW TWu

≤− 1

2
(1− b2)uTW TWu− 1

2
xT
(
εP − (

1

b2
− 1)LTL

)
x

,− 1

2
uTQ1u−

1

2
xTQ2x,

where Q1 = (1− b2)W TW,Q2 = εP −
(

1
b2
− 1
)
LTL.

From W TW = D + DT > 0 and 0 < b2 < 1, we obtain Q1 > 0. Next, we prove Q2 > 0 or
equivalently

λ(P )ε−
(

1

b2
− 1

)
λ(LTL) > 0.

If λ(LTL) > 0, choose b to satisfy

0 <
λ(LTL)

ελ(P ) + λ(LTL)
< b2 < 1, (17)

then we have Q2 > 0. It is obvious that Q2 > 0 if λ(LTL) = 0. As a result, Q2 > 0 for appropriate
choice of b. Thus, Q1 > 0, Q2 > 0 and there exist constants ε1 > 0, ε2 > 0 (in fact λ(Q1), λ(Q2)
respectively), such that

V̇ − uTy ≤ −ε1uTu− ε2xTx.

Therefore, the linear system (4) is SSIP.
Remark 6: To ensure SSIP, it is required that the linear system (4) is SP and D + DT > 0, this is

nothing but the definition for strongly positive real system [11], [20] or extended strictly positive real
system [12], [3].

The concept of strongly positive realness does not apply to (5) in the discrete-time domain [11]. In
fact, SP for (5) implies SIP. To show SSIP, we need the following result.

Lemma 6: If (5) is SP with a storage function V (x) = 1
2
xTPx and D + DT − BTPB > 0, then it

is SSIP.
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Proof: From Lemma 2, there exists a storage function V (x) = 1
2
xTPx such that for ∀k and some

η2 > 1,

Ξ(x, u) , V (x(k + 1))− V (x(k))− u(k)y(k)

= −1

2
(ηLx+

1

η
Wu)T (ηLx+

1

η
Wu)

− 1

2
(1− 1

η2
)uTW TWu− 1

2
xT
[
ρP − (η2 − 1)LTL

]
x

≤ −1

2
(1− 1

η2
)uTW TWu− 1

2
xT
[
ρP −

(
η2 − 1

)
LTL

]
x.

Define Q3 = (1− 1
η2

)W TW,Q4 = ρP − (η2 − 1)LTL. In the following, we prove Q3 > 0, Q4 > 0.
First, Q3 > 0 because W TW = D +DT −BTPB > 0 and η2 > 1. Next, Q4 > 0 is equivalent to

ρλ(P )− (η2 − 1)λ(LTL) > 0.

It is obvious that Q4 > 0 if λ(LTL) = 0. If λ(LTL) > 0, choose η such that

1 < η2 <
λ(LTL) + ρλ(P )

λ(LTL)
, (18)

then Q4 > 0 for η that satisfies (18). As a result, Q3 > 0, Q4 > 0 for appropriate choice of η. Thus
there exist ε3 > 0, ε4 > 0 (in fact λ(Q3), λ(Q4) respectively), such that

Ξ(x, u) ≤ −ε3uTu− ε4xTx.

Therefore, the system (5) is SSIP.
Remark 7: Note that D + DT − BTPB > 0 for some P > 0 is only sufficient to show SSIP. If

D +DT −BTPB = 0 for some P , what we can do is to use another P .

B. SSIP: from Linearity to Nonlinearity
Next, we are going to show SSIP of a linearized system implies local SSIP for the nonlinear system,

in both continuous-time domain and discrete-time domain.
Theorem 4 (CT-SSIP): Consider a nonlinear system Σc given by (3) and its linearized system Gc

given by (12). If Gc is SP and D +DT > 0, then Σc is locally SSIP.
Proof: From Lemma 5, there exists a storage function V = 1

2
xTPx for (4), such that for ε1 >

0, ε2 > 0,

uTy − V̇ ≥ ε1x
Tx+ ε2u

Tu.

Apply V (x) as a locally defined storage function for (3) and we obtain from (13) that

uT (h(x) + J(x)u)− ∂V

∂x
(f(x) + g(x)u)

=uT (Cx+Du) + uT (H(x) +M(x)u)

− xTP (Ax+Bu)− xTP (F (x) +G(x)u)

≥
(
ε1x

Tx− ‖uTH(x)‖ − ‖xTPF (x)‖ − ‖xTPG(x)u‖
)

+
(
ε2u

Tu− ‖uTM(x)u‖
)
.
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From Taylor’s theorem, we obtain for (x, u) close enough to (0, 0) and some constants α1, α2, α3 > 0,

1

2
ε1x

Tx− ‖uTH(x)‖ − ‖xTPF (x)‖ − ‖xTPG(x)u‖

≥xTx(
1

2
ε1 − α1‖u‖ − α2‖x‖) ≥ 0,

1

2
ε2u

Tu− ‖uTM(x)u‖ ≥ uTu(
1

2
ε2 − α3‖x‖) ≥ 0,

and therefore for the nonlinear system (3)

uTy − V̇ ≥ 1

2
ε1x

Tx+
1

2
ε2u

Tu,

which implies local SSIP for (3).
Theorem 5 (DT-SSIP): Consider a nonlinear system Σd given by (2) and its linearized system Gd

given by (12). If Gd is SP with a storage function V (x) = 1
2
xTPx and D+DT −BTPB > 0, then Σd

is locally SSIP.
Proof: From Lemma 6, there exists a storage function V (x) = 1

2
xTPx for (5) such that for

ε3 > 0, ε4 > 0,
Ξ(x, u) ≤ −ε3xTx− ε4uTu.

Apply V (x) = 1
2
xTPx for the nonlinear system Σd, we obtain from (13) that for ∀k,

V (k + 1)− V (k)− u(k)Ty(k) = Ξ(x, u) + φ(x, u)

≤ −ε3xTx− ε4uTu+ ‖φ(x, u)‖,

where φ(x, u) is given by (16). Rearrange the terms in φ(x, u), when x and u close to the origin, we
obtain

V (k + 1)− V (k)− u(k)Ty(k)

≤− 1

2
ε3x

Tx− 1

2
ε4u

Tu

− xTx(
1

2
ε3 − β1‖x‖ − β2‖x‖2 − β3‖u‖ − β4‖u‖‖x‖)

− uTu(
1

2
ε4 − β5‖x‖ − β6‖x‖2)

≤− 1

2
ε3x

Tx− 1

2
ε4u

Tu,

where βi > 0, i = 1, 2, . . . 6. Thus, Σd is locally SSIP.
To illustrate these results, let us consider two numerical examples, one in continuous-time domain

and the other in discrete-time domain.
Example 4: Consider the following nonlinear system

ẋ1 = −x21 + x2,

ẋ2 = −x1 − x2 + (ax1 + 1)u,

y = x1 + 2x2 + (bx2 + 1)u,

where a 6= 0, b 6= 0. Its linearized system is given by (4) together with

A =

[
0 1
−1 −1

]
, B =

[
0
1

]
, C =

[
1 2

]
, D = 1.
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This linear system is SSIP with storage function V (x) = x21 + x1x2 + x22, because

V̇ − uTy = −(x21 + x1x2 + x22)− u2

≤ −1

2
(x21 + x22)− u2.

Apply V (x) as a locally defined storage function for the nonlinear system and we obtain

V̇ − uTy = −(x21 + x1x2 + x22)− u2

− 2x31 − x21x2 + ax21u+ 2ax1x2u− bx2u2

≤ −1

2
(x21 + x22)− u2(1− |bx2|)

− x21(2x1 + x2 − au+ |au|) + |au|x22

≤ −x21(
1

2
− |2x1| − |x2|)− u2(1− |bx2|)

− x22(
1

2
− |au|).

In a neighborhood of x = 0 and u = 0, where |u| < 1
3|a| , |x1| <

1
8
, |x2| < min{ 1

12
, 1
2|b|}, we have

V̇ − uTy ≤ −1

6
(x21 + x22)−

1

2
u2,

thus the nonlinear system is locally SSIP.
Example 5: Consider a discrete time nonlinear system

x1(k + 1) =
αx2(k)

1 + x21(k)
+ (1 + x2(k))u(k),

x2(k + 1) =
βx1(k)

1 + x22(k)
,

y(k) = αx2(k) + (sin(x1) + 1)u(k),

where for α2 + β2 < 1 and α, β 6= 0, its linearized system is given by (5) together with

A =

[
0 α
β 0

]
, B =

[
1
0

]
, C =

[
0 α

]
, D = 1.

This linear system is SSIP with a storage function V (x) = 1
2
x21 + 1

2
x22 because

V (k + 1)− V (k)− uT (k)y(k)

=
1

2
(α2 − 1)x22(k) +

1

2
(β2 − 1)x21(k)− 1

2
u2(k)

≤− ζ(x21(k) + x22(k))− 1

2
u2(k),

where ζ , 1
2

min{1− β2, 1− α2} > 0.
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Apply V as a locally defined storage function for the nonlinear system and we obtain

V (k + 1)− V (k)− uT (k)y(k)

≤− ζ(x21(k) + x22(k))− 1

2
u2(k)

+

(
1

2
x22(k) + x2(k)− sin(x1(k))

)
u2(k)

+ x22(k)|αu(k)|+ 1

2
(x41(k) + x42(k))

≤−
(
ζ − 1

2
x21(k)

)
x21(k)− (ζ − |αu(k)|)x22(k)

−
(

1

2
− 1

2
x22(k)− |x2(k)| − | sin(x1(k)|

)
u2(k)

≤− c1(x21(k) + x22(k))− c2u2(k),

for (x, u) close enough to (0, 0) and some c1, c2 > 0. Therefore the nonlinear system is locally SSIP.

C. QSR Dissipativity: from Linearity to Nonlinearity
The results in the previous sections focus on passivity based on positive-real lemmas. In this section,

we extend to QSR dissipative systems based on Lemma 3 or 4.
Analogously, we can establish conditions under which a strict dissipative linear system is SSIP. In

the continuous-time domain, for (4), the condition is given by

R + STD +DTS +DTQD > 0, (19)

and in the discrete-time domain, for (5), it is required that

R + STD +DTS +DTQD −BTPB > 0. (20)

The proof is quite similar to Lemma 5 or 6 by “completing the square” and manipulating the coefficients
of the quadratic terms in x or u. If the linearized system (4) or (5) is shown to be SSIP, it can be derived
that the nonlinear system (3) or (2) will be locally QSR-dissipative as follows.

Theorem 6 (CT-QSR): Consider a nonlinear system Σc given by (3) and its linearized system Gc given
by (12). Suppose Gc is controllable and observable. If Gc is strict QSR-dissipative and (19) is satisfied,
then Σc is locally strictly QSR-dissipative with the same supply rate.

Proof: The linearized system is strict dissipative w.r.t (11), from Lemma 3, there exists a storage
function V (x) = xTPx for Gc such that for some ε > 0,

V̇ − r(u, y)

=2xTP (Ax+Bu)− (uTRu+ 2yTSu+ yTQy)

=− (Lx+Wu)T (Lx+Wu)− εxTPx
≤− εxTPx.

By assuming R + STD + DTS + DTQD > 0, we obtain W TW > 0. Therefore, Gc is SSIP via the
techniques in the proof of Lemma 5 and thus for some κ1 > 0, κ2 > 0,

V̇ − r(u, y) ≤ −κ1xTx− κ2uTu.

Apply V (x) = xTPx as a locally defined storage function for the nonlinear system Σc. Denote Λ(x, u)
as the function of x and u by substituting (3) into V̇ − r(u, y) and we obtain

Λ(x, u) ≤ −κ1xTx− κ2uTu+ Θ(x, u),
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and Θ(x, u) given as follows contains the higher-order (order≥ 2) terms in either x or u.

Θ(x, u) = 2xTP (F (x) +G(x)u)− 2uTS(H(x) +M(x)u)

− (H(x) +M(x)u)TQ(H(x) +M(x)u)

− 2(H(x) +M(x)u)TQ(Cx+Du).

From Taylor’s theorem, we can derive that for d1 ≥ 0, d2 ≥ 0 (and at least one di > 0), there exist a
ball around x = 0 and a ball around u = 0, for which

‖Θ(x, u)‖ ≤ d1‖x‖2‖u‖+ d2‖u‖2‖x‖.

Thus, when (x, u) close to the origin (0, 0), we obtain

Λ(x, u) ≤ −1

2
κ1x

Tx− 1

2
κ2u

Tu,

Therefore, Σc is locally strict dissipative w.r.t the same supply rate given by matrices Q,S,R.
Remark 8: The problem of studying linearization of a QSR-dissipative systems has been studied in

[7] (p. 211-213). One of the sufficient conditions is the same as (19) for D 6= 0 and R > 0 for D = 0.
The result in [7] relies on solvability of Halmiltonian-Jacobi inequalities, however, our result depends
on the algebraic conditions for strict dissipativity of a linear system given in [13].

The arguments can be developed for Σd in the discrete-time domain as well.
Theorem 7 (DT-QSR): Consider a nonlinear system Σd given by (2) and its linearized system Gd

given by (12). Suppose Gd is controllable and observable. If Gd is strict QSR-dissipative and (20) is
satisfied, then Σd is locally strictly QSR-dissipative with the same supply rate.

A direct application of these two theorems is for a particular quadratic supply rate by setting S =
1
2
(1 + ρσ)I, R = −σI,Q = −ρI . In this case, (11) is reduced to

$(u, y) = (1 + ρσ)uTy − σuTu− ρyTy, (21)

where σ is called the input feed-forward passivity index (denoted by IFP(σ)) and ρ is called the output
feedback passivity index (denoted by OFP(ρ)). If Σc or Σd is dissipative w.r.t $(u, y), it is said to have
IFP(σ) and OFP(ρ). The two passivity indices characterize the level of passivity for a given dynamical
system and can be used in control designs and system stability analysis [25], [15].

The following result is immediate from Theorem 1.
Corollary 2: Suppose Σc given by (3) (resp. Σd given by (2)) has IFP(σ) and OFP(ρ), then its

linearized system (12) has IFP(σ) and OFP(ρ) as well.
To determine the passivity indices for a nonlinear system from its linearized system, we can use

Theorem 6 and 7 by replacing (19) with

−σI +
1

2
(1 + ρσ)(D +DT )− ρDTD > 0,

in continuous-time domain and (20) with

−σI +
1

2
(1 + ρσ)(D +DT )− ρDTD −BTPB > 0,

in discrete-time domain.

V. DISCUSSIONS AND EXTENSIONS

In this section, we first compare passivity analysis and stability analysis based on linearization from
a Lyaponuov approach point of view. Then, we extend the results in Section IV to nonlinear systems
of a more general form.
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A. Passivity & Stability: a Lyapunov Approach
From the analysis in Section IV, it can been seen there is a strong connection between stability and

passivity analysis by using a Lyapunov approach as shown in the following.
1) If a nonlinear system is stable, then its linearized system is stable. This corresponds to a passive

nonlinear system has a passive linearized system.
2) If the linearized system is marginally stable, we cannot say whether the nonlinear system is locally

stable or not. This corresponds to the case that a lossless linearized system does not tell us whether
the nonlinear system is passive or not.

3) If the linearized system is asymptotically stable, then the nonlinear system is locally stable. This
corresponds to the case that a SSIP linearized system implies local passivity of the nonlinear
system.

4) If a linearized system is unstable, then the nonlinear system is unstable from Chetayev’s instability
theorem. If the linearized system is not passive, the nonlinear system is not (globally) passive,
however, for local passivity, we do not have theoretic guarantee in general.

B. Passivity: Extension to General Nonlinear Systems
The results in Section IV can be extended to a general nonlinear system which may not be affine

in control input. The results claim that if the linearized system is SSIP, the nonlinear system will be
locally SSIP.

Consider a continuous-time nonlinear system of the form

ẋ = f(x, u), (22)
y = h(x, u),

or a discrete-time nonlinear system of the form

x(k + 1) = f(x(k), u(k)), (23)
y(k) = h(x(k), u(k)),

with f(0, 0) = 0 and h(0, 0) = 0 without loss of generality. The linearization is given through (4) or
(5) with

A =
∂f

∂x
(0, 0), B =

∂f

∂u
(0, 0), C =

∂h

∂x
(0, 0), D =

∂h

∂u
(0, 0). (24)

It follows by using Taylor series expansion that f and h in (22) or (23) can be rewritten as

f(x, u) = Ax+Bu+ F (x, u),

h(x, u) = Cx+Du+H(x, u),

where F (x, u) and H(x, u) contains higher order terms of f(x, u) and h(x, u), respectively. It can be
verified that the terms contained in F (x, u) and H(x, u) are at least linear in either x or u, for instance
x2, xu, u2, x3, x2u, u2x, u3, · · · . The following result is immediate.

Proposition 1: Denote σu (resp. σx) as the smallest order for u (resp. x) contained in a polynomial
of x and u. Either σx ≥ 2 or σu ≥ 2 for xTF (x, u) and uTH(x, u).

Theorem 8: Consider a nonlinear system given by (22) and its linearized system given by (24).
Suppose the linearized system is controllable and observable. If the linearization (24) is strict passive
and D +DT > 0, then the nonlinear system (22) is locally SSIP.



16

Proof: From Lemma 5, we know the linearized model is SSIP with a storage function V (x) =
1
2
xTPx, such that for some υ1 > 0 and υ2 > 0, uTy − V̇ ≥ υ1x

Tx + υ2u
Tu. Apply V (x) as locally

defined storage function for the nonlinear system (22), we obtain

uTh(x, u)− ∂V

∂x
f(x, u)

=uT (Cx+Du) + uTH(x, u)

− xTP (Ax+Bu)− xTPF (x, u)

≥υ1xTx+ υ2u
Tu− uTH(x, u)− xTPF (x, u).

From Proposition 1, xTPF (x, u) + uTH(x, u) contains higher order terms either in x (σx ≥ 2) or in u
(σu ≥ 2). Denote the terms with σx ≥ 2, σu ≤ 1 by Γ1(x, u) and the terms with σu ≥ 2 by Γ2(x, u).
Thus,

uTh(x, u)− ∂V

∂x
f(x, u)

≥υ1xTx− Γ1(x, u) + υ2u
Tu− Γ2(x, u).

According to Taylor’s theorem, there exist a ball around x = 0 and a ball around u = 0 and constants
ci ≥ 0 for i = 1, 2, 3, 4 (and at least one ci > 0), for which

‖Γ1(x, u)‖ ≤ ‖x‖2(c1‖u‖+ c2‖x‖),
‖Γ2(x, u)‖ ≤ ‖u‖2(c3‖u‖+ c4‖x‖).

Thus, the following relation holds when (x, u) close to (0, 0),

uTh(x, u)− ∂V

∂x
f(x, u)

≥‖x‖2(υ1 − c1‖u‖ − c2‖x‖) + ‖u‖2(υ2 − c3‖u‖ − c4‖x‖)

≥1

2
υ1‖x‖2 +

1

2
υ2‖u‖2.

Therefore, the nonlinear system (22) is locally SSIP.
In discrete-time domain, we have the following result based on Lemma 6 and similar arguments for

(22).
Theorem 9: Consider a nonlinear system given by (23) and its linearized system given by (24).

Suppose the linearized system is controllable and observable. If the linearization (24) is strict passive
with a storage function V (x) = 1

2
xTPx and D + DT − BTPB > 0, then the nonlinear system (23) is

locally SSIP.
Remark 9: These results are not surprising since the nonlinear system affine in control Σc (resp. Σd)

contains the lower-order terms for the general nonlinear system (22) (resp. (23)). In this sense, Σc (resp.
Σd) can be viewed as an approximation for a general nonlinear system (22) (resp. (23)) when talking
about local properties for the system. Clearly, the the results for strict dissipative linearizations can also
be extended to general nonlinear systems as well.

VI. FINAL REMARKS

In this paper, we study a class of nonlinear system whose local passivity is implied from its lineariza-
tion. For such systems, the storage function of its linearized system works as a locally defined storage
function of the nonlinear system. This storage function can be used to show passivity of the nonlinear
system within a neighborhood of the equilibrium. Our main results show that for a linearized system
which is simultaneously strict passive and strict input passive (SSIP), the nonlinear system will hold
the same property locally. Algebraic conditions are established based on positive-real lemmas under
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which a linear system is shown to be SSIP. The property of SSIP is analogous to asymptotic stability
in stability analysis using an indirect Lyaponuv approach. We also investigate linearization of QSR-
dissipative systems (more general than passivity) and relate passivity indices for a nonlinear system and
its linearization.

A storage function for a linear system can be obtained by solving algebraic equations and further
used as a locally defined storage function for the nonlinear system. In this way, we can guarantee local
passivity of a complicated nonlinear system for which the storage function may not be easily found. This
is one benefit of this work. On the other hand, the neighborhood for local passivity may be sufficiently
small indicated from the linearized model. Moreover, some intricacies of the nonlinear system may be
neglected by linearization. However, this information may play a dominate role, such as the coupling
in power systems. In this case, other approximation techniques may be useful such as model reduction
for nonlinear systems that preserves passivity [26].
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