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Abstract In this paper, we consider the problem of robust state-feedback stabiliza-
tion for a multi-channel system in a game-theoretic framework. Specifically, we pro-
vide a sufficient condition for the existence of a robust feedback Nash equilibrium
when each agent aims to optimize different type of objective function which is linked-
up with a certain dissipativity property of the multi-channel system. Furthermore, we
assume that the agents may be unaware of all the aspects or the structure of the game.
In such a scenario, we characterize the robust feedback Nash equilibria via a set of
extended linear matrix inequalities and set-valued mappings.
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1 Introduction

We consider the problem of robust state-feedback stabilization for multi-channel sys-
tems in a game-theoretic framework. Specifically, we assume that each agent aims
to optimize different type of objective function and when some of the agents may be
unaware of all the aspects/structure of the game. In such a scenario, as is well known,
Nash strategy (aka Nash equilibrium) provides a framework to study an inherent ro-
bustness property of the agents’ strategies under a family of information structures,
since no agent can improve his payoff by deviating unilaterally from the Nash strat-
egy once the equilibrium is attained (e.g., see [16], [17], [19], [2], [5]).
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In the past decades, several theoretical results that arise from control related problem
have been characterized in the context of Nash strategy using a game-theoretic inter-
pretation (e.g., see [21], [15], [18], [22], [1] and [23] and the references therein). For
example, the existence of open-loop Nash strategies for linear-quadratic games over a
finite time-horizon, assuming that all strategies lie in compact subsets of an admissi-
ble strategy space, has been addressed in [24]; while the existence of Nash strategies
for linear-quadratic differential games over an infinite-horizon has been studied in
detail in [18], [1] and [5]. Some of these works have also discussed the uniqueness of
the optimal strategies for linear-quadratic games with structured uncertainties, where
the bound on the objective function is based on the existence of a set of solutions for
appropriately parameterized Riccati equations. In the area of multiobjectiveH2/H∞
control theory, the concept of differential games has been applied by interpreting un-
certainty (or neglected dynamics) as a fictitious agent which is typically introduced in
the cost criteria through weighting matrices (e.g., see [14], [4], [8] and [22]).

On the other hand, the use of different simplified models of the same system has also
been employed for capturing certain information structures or objective functions that
individual agents may hold about the overall system. Thus, the resulting problem can
be best described by nonzero-sum differential games where the individual agents are
allowed to minimize different types of objective functions (e.g., see [21], [9], [13]
and [20]). An extensive survey on the area of noncooperative dynamic games is also
provided in [5].

In this paper, we follow this approach by assuming that individual agents may have
different types of objective functions that are linked-up with the dissipativity property
of the multi-channel system (e.g., see [26], [25] and references therein for a review
of systems with dissipative properties) – and where the optimality concept is that
of robust feedback Nash equilibrium. In particular, in this paper, we consider two
fundamental problems: (i) we first provide a condition guaranteeing that the agents’
strategy space is sufficiently decentralized to make the game-theoretic interpretation
meaningful (i.e., a strategy space that is independently accessible by each agent), and
(ii) then, we provide a sufficient condition for the existence of robust feedback Nash
equilibrium. Furthermore, we show that the existence of a weak-optimal solution to
a suitably defined dissipativity constrained problem is a sufficient condition for the
existence of the feedback Nash equilibrium for the multi-channel system.

This paper is organized as follows. In Section 2, we state the problem of robust state-
feedback stabilization for a multi-channel system using a game-theoretic framework.
Section 3 provides a sufficient condition for the existence of a robust feedback Nash
equilibrium using a concept from set-valued mappings. In Section 4, we present the
main results of the paper, i.e., we characterize the robust feedback Nash equilibria
via a set of solutions that corresponds to a set of extended linear matrix inequalities
(LMIs) and dissipativity properties of the system. Finally, Section 5 provides some
concluding remarks.

Notation. For a matrix A ∈ Rn×n, He (A) denotes a hermitian matrix defined by
He (A)

def
= (A + AT ), where AT is the transpose of A. For a matrix B ∈ Rn×p with

r = rankB, B⊥ ∈ R(n−r)×n denotes the orthogonal complement of B, which is
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a matrix that satisfies B⊥B = 0 and B⊥B⊥T � 0. Sn+ denotes the set of strictly
positive definite n × n real matrices and C− denotes the set of complex numbers
with negative real parts, that is C− def

= {s ∈ C |Re{s} < 0}. Sp(A) denotes the
spectrum of a matrix A ∈ Rn×n, i.e., Sp(A)

def
= {λ ∈ C | rank(A − λI) < n}, Uρ

denotes a compact uncertainty set in Rn×n and GLn(R) denotes the general linear
group consisting of all n× n real nonsingular matrices.

2 Preliminaries and problem formulation

Consider the following finite-dimensional generalized multi-channel system

ẋ(t) = Ax(t) +
∑
j∈N

Bjuj(t), x(0) = x0, (1)

where x(t) ∈ Rn is the state of the system, uj(t) ∈ Rrj is the control input to the jth-
channel of the system, A ∈ Rn×n, Bj ∈ Rn×rj and N def

= {1, 2, . . . , N} represents
the set of controllers (or agents).

Let Kj be the jth-agent’s strategy selected from a well defined strategy space Kj ⊂
Rrj×n. Also, let us introduce some additional notation that will be useful in the se-
quel

r
def
=
∑
i∈N

ri, K
def
= (Kj)j∈N ∈ K, K def

=
∏
j∈N
Kj ⊆

∏
j∈N

Rrj×n,

r¬j
def
=
∑
i∈N¬j

ri, K¬j
def
= (Ki)i∈N¬j ∈ K¬j , K¬j

def
=
∏
i∈N¬j

Ki ⊆
∏
i∈N¬j

Rr¬i×n,

where the sets N¬j are defined by N¬j
def
= N \{j} for j = 1, 2, . . . , N .

For the above multi-channel system, we restrict the set K to be the set of all linear,
time-invariant stabilizing state-feedback controllers that satisfies

K⊆
{

(K1,K2, . . . ,KN ) ∈
∏
j∈N
Kj
∣∣∣ Sp

(
A+

∑
j∈N

BjKj

)
⊂ C−

}
. (2)

Let us introduce the following matrices that will be used later.

E=
[
In×n In×n · · · In×n︸ ︷︷ ︸

(N+1) times

]
, 〈X, X̃〉 = block diag{X,

=X̃︷ ︸︸ ︷
X,X, . . . ,X︸ ︷︷ ︸
(N+1) times

},

[A,B]U,L̃=[AU B1L1B2L2 ... BNLN︸ ︷︷ ︸
(N+1) times

], 〈U, W̃ 〉=block diag{U,
=W̃︷ ︸︸ ︷

W1,W2, ...,WN︸ ︷︷ ︸
(N+1) times

}.

whereX ∈ Sn+,U ∈ GLn(R),Wi ∈ GLn(R) andLi ∈ Rri×n for i = 1, 2, . . . , N .
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The following lemma (whose proof is given in [6]) characterizes the set of all stabi-
lizing feedback gains K. Note that we will later use the result of this lemma together
with dissipativity properties of the multi-channel system for describing the strategy
space for each agent.

Lemma 1 Suppose the pair
(
A, [B1 B2 · · · BN ]

)
is stabilizable. Then, there exist

X ∈ Sn+, ε > 0, U ∈ GLn(R), Wj ∈ GLn(R) and Lj ∈ Rrj×n for j = 1, 2, . . . , N
such that[

0n×n E〈X, X̃〉
〈X, X̃〉ET 0(N+1)n×(N+1)n

]
+ He

([
[A,B]U,L̃
−〈U, W̃ 〉

] [
ET εI(N+1)n×(N+1)n

])
≺ 0, (3)

For any family ofN -tuples (L1, L2, . . . , LN ) and (W1, W2, . . . , WN ) as above, if
we set Kj = LjW

−1
j for each j = 1, 2, . . . , N , then the matrix

(
A+

∑
j∈N BjKj

)
is a Hurwitz, i.e., Sp

(
A+

∑
j∈N BjKj

)
∈ C−.

In the following, it will be convenient to identify each objective function Jj : Rn ×
Kj ×K¬j → R+ using the following related function

Rn×Kj ×K¬j → R+ : (x0,Kj ,K¬j) 7→ Jj(x0,Kj ,K¬j), (4)

for all j = 1, 2, . . . , N .1

For a complete information game, the jth-agent decides his own strategy by solving
the following optimization problem

sup
Kj∈Kj

Jj(Kj ,K¬j), (5)

for some initial conditions x0 ∈ Rn; while the opponents’ strategy K¬j ∈ K¬j are
held fixed. Hence, for every agent j ∈ N , the N -tuple (K∗1 , K

∗
2 , . . . K

∗
N ) ∈ K that

satisfies

K∗j ∈ arg sup
Kj∈Kj

Jj(Kj ,K
∗
¬j), (6)

is called a feedback Nash equilibrium. That is, if every agent j ∈ N chooses a strategy
K∗j , then no agent has an incentive to change his own strategy from the feedback Nash
equilibrium. Note that the feedback Nash equilibrium is well defined only when every
agent can estimate his opponents’ strategies and evaluate his own objective function
exactly (e.g., [16], [17], [19]).

However, a more realistic model must include the possibility that any information
may contain uncertainty corresponding to, for example, observation or estimation
errors. In the following, we focus on a game with uncertainty (i.e., a game with
an incomplete information). In this context, we introduce the following uncertainty
sets:

1 In Section 4, we provide the exact formulation of the objective function (cf. Equations (8)) and (15).
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• Uρ where (A+uρA
δ) ∈ Uρ ⊂ Rn×n with uρ ∈ [−ρ, ρ], ρ ∈ R+ is an uncertainty

level and Aδ ∈ Rn×n is a perturbation term that is associated with the nominal
system matrix A, and

• K̂¬j ⊂ K¬j where K̂¬j = (K¬j+Kδ
¬j) withKδ

¬j ∈ Kδ¬j ⊆ Rr¬j×n is an uncer-
tainty term which is associated with jth-agent’s observation about his opponents
strategies.

Assumption 1 We assume the following statements about each agent j ∈ N :

(A1) The objective function for the jth-agent involves an unknown parameter uρj ∈
[−ρj , ρj ] and can be expressed as

Rn × [−ρj , ρj ]×Kj ×K¬j → R+,

such that

(x0, uρj ,Kj ,K¬j) 7→ J̄j(x0, uρj ,Kj ,K¬j)
def
= J

uρj
j (Kj ,K¬j).

Here the jth-agent does not know the exact value of uρj ; however, this agent
can estimate that uρ̂j from a nonempty set [−ρ̂j , ρ̂j ].

(A2) The jth-agent may not know exactly his opponents’ strategies K¬j; however,
he can estimate his opponents’ strategies from a nonempty compact strategy
space K̂¬j ⊆ K¬j .

Thus, in this case, every agent is required to address a family of problems involving
uncertainty terms uρ̂j and K̂¬j (or Kδ¬j)

sup
Kj∈Kj

J
uρ̂j
j (Kj , K̂¬j), (7)

where uρ̂j ∈ [−ρ̂j , ρ̂j ] and K̂¬j ∈ K̂¬j ⊆ K¬j .

To solve this family of problems, we assume that each agent chooses a strategy ac-
cording to a worst-case criterion. Thus, the jth-agent tries to maximize his worst-case
objective function under Assumptions (A1) and (A2), i.e., each agent considers the
worst-case objective function J̃j : Kj ×K¬j → R+ defined by

J̃j(Kj ,K¬j)
def
= inf

{
J
uρj
j (Kj , K̂¬j)

∣∣∣∣ uρj ∈ [−ρj , ρj ] and K̂¬j ∈ K̂¬j
}
, (8)

and solves the worst-case optimization problem (e.g., see [11], [7])

sup
Kj∈Kj

J̃j(Kj ,K¬j). (9)

Remark 1 Notice that the above problem formulation can be interpreted as a com-
plete information game with objective functions J̃j(Kj ,K¬j) for all j ∈ N .

Now we can define the robust feedback Nash equilibrium for the multi-channel sys-
tem as follows:
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Definition 1 Let J̃j(Kj ,K¬j) for all j ∈ N be defined by (8). Then the N -tuple
(K∗1 , K

∗
2 , . . . K

∗
N ) ∈ K is called a robust feedback Nash equilibrium for the game

in (7), ifK∗j ∈ arg supKj∈Kj J̃j(Kj ,K
∗
¬j) for all j ∈ N (i.e., if it is a feedback Nash

equilibrium for the game in (9)).

Hence, the problem of finding a sufficient condition for the existence of a feedback
Nash equilibrium solution for the game in (9) is called the problem of robust feedback
Nash equilibrium for the multi-channel system in (1).

3 Existence of robust feedback Nash equilibrium

In this section, we provide a sufficient condition for the existence of a robust feedback
Nash equilibrium for the multi-channel system in (1). Note that the set K̂¬j ⊆ K¬j
(as defined in Assumption (A2)) can be considered as a set-valued mapping K̂¬j :

K¬j 3 K¬j → K̂¬j (e.g., see [3] and references therein for the review of set-valued
mappings).

Further, we make the following assumptions.

Assumption 2 The following statements hold true for each agent j ∈ N :

(A3) The function J
uρ̂j
j : Kj × K̂¬j → R+ is a continuous objective function.

(A4) The set K̂¬j is a non-empty and compact set for any K¬j ∈ K¬j .

(A5) The set Uρ is non-empty and compact.

(A6) The function J̃j(.,K¬j) : Kj → R+ is concave on Kj for any fixed K¬j and
ûρj .

Remark 2 Assumptions (A3)–(A6) above imply that the function J̃j(., .) in (8) has
the following properties:

(P1) J̃j is continuous and finite at any (Kj ,K¬j) ∈ K.

(P2) For any fixed K¬j ∈ K¬j , the objective function J̃j(.,K¬j) : Kj → R+ is
concave on Kj .

The following lemma is a well-known result for N -person noncooperative games
(e.g., see [2]).

Lemma 2 Suppose that the following statements hold for every agent j ∈ N : (i)
the strategy set Kj is a non-empty and compact set, (ii) the objective function J̃j :

Kj × K¬j → R+ is continuous, and (iii) J̃j(.,K¬j) is a concave function for any
K¬j ∈ K¬j . Then, the game in (9) has at least one feedback Nash equilibrium.

Based on this lemma, we can obtain the following theorem for the existence of a
robust feedback Nash equilibrium in (7).
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Theorem 1 Let Assumptions (A3)–(A6) hold true. Then the game in (7) has at least
one robust feedback Nash equilibrium.

Proof From Assumptions (A3)–(A6), for any j ∈ N , the worst-case objective func-
tion J̃j(Kj ,K¬j) is continuous and finite at any (Kj ,K¬j) ∈ Kj ×K¬j . Moreover,
the function J̃j(.,K¬j) is convex on Kj for any K¬j ∈ K¬j for j ∈ N . Therefore,
from Lemma 2, the game in (9) has a feedback Nash equilibrium, that by definition
implies that the game in (7) has a robust feedback Nash equilibrium. 2

4 Main results

In this section, we consider the following closed-loop system, where we link the
different types of the objective functions with a certain dissipativity property of the
multi-channel system

ẋ(t) =

((
A + uρ̂jA

δ
j

)
+ BjKj +

∑
i∈N¬j

BiKi

)
x(t) + 0n×1ũ(t),

ỹ(t) = x(t) + 0n×1ũ(t), x(0) = x0, (10)

where uρ̂j ∈ [−ρ̂j , ρ̂j ], ρ̂j ∈ R+ andAδj are an uncertainty level, an upper uncertainty
bound and a base-perturbation term, respectively, that are associated with the jth-
agent.

In the following, the above closed-loop system is assumed to be stable for some initial
conditions x0 ∈ Rn.

Introduce the following set of supply rate functions

W =

{ N∏
j=1

w[αj ,Zj ]

(
ỹ(t), ũ(t)

) }
, (11)

where, for j = 1, 2, . . . , N , the supply rate functions w[αj ,Zj ](ỹ(t), ũ(t)) are given
by

(
ỹ(t), ũ(t)

)
7→ w[αj ,Zj ]

(
ỹ(t), ũ(t)

) def
=

[
ỹ(t)
ũ(t)

]T [−αjZj 0
0 I

] [
ỹ(t)
ũ(t)

]
, (12)

and a matrix interval set I[βj ,Zj ] ∈ Sn+

I[βj ,Zj ] =

{
Yj

∣∣∣ β−1j Zj � Yj � Zj
}
, (13)

where αj > 0, βj ≥ 1 and Zj ∈ Sn+ for j = 1, 2, . . . , N .

We next present a more realistic game-theoretic interpretation in terms of the lowest
upper uncertainty bounds ρ̂j ∈ R+ for all j ∈ N (that prescribe the N -tuple un-
certainty set (uρ̂1 , uρ̂2 , . . . , uρ̂N ) ∈

∏
j∈N [−ρ̂j , ρ̂j ]) together with the existence of
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stabilizing state-feedback gains that provide a sufficient condition for obtaining a set
of feedback Nash equilibria.

In light of above discussion and Theorem 1 (as well as Lemma 1), we have the fol-
lowing theorem which provides a sufficient condition for the existence of feedback
Nash equilibrium.

Theorem 2 LetWj ∈ GLn(R) and εj > 0 for j = 1, 2, . . . , N . Assume that αj > 0,
βj ≥ 1 and Zj ∈ Sn+ for j = 1, 2, . . . , N . Then, there exit Xj ∈ Sn+, Uj ∈ GLn(R),
j = 1, 2, . . . , N and an N -tuple (L∗1, L

∗
2, . . . , L

∗
N ) ∈

∏
j∈N Rrj×n such that[

0n×n E〈Xj , X̃j〉
〈Xj , X̃j〉ET 0(N+1)n×(N+1)n

]
+He

([
[A,B]Uj ,L̃∗¬j
−〈Uj , W̃ 〉

][
ET εjI(N+1)n×(N+1)n

])
≺ 0, (14)

where, for some Lj ∈ Rrj×n, j = 1, 2, . . . , N ,

[A,B]Uj ,L̃∗¬j
=
[
AUj B1L

∗
1 · · · Bj−1L∗j−1 BjLj Bj+1L

∗
j+1 · · · BNL∗N

]
,

and

〈Uj , W̃ 〉 = block diag{Uj ,W1, . . . ,Wj−1,Wj ,Wj+1, . . . ,WN}.

Furthermore, there exist Yj ∈ I[βj ,Zj ] and ρ̂j(x0,K∗) for j = 1, 2, . . . , N such that

sup
Kj∈Kj

J̃j(Kj ,K
∗
¬j) ; ρ̂j(x0,K

∗), (15)

for which all perturbed systems in (10) are robustly stable for all instances of pertur-
bation uρ̂j ∈ [−ρ̂j , ρ̂j ] with K∗j ∈ arg sup

Kj∈Kj
J̃j(Kj ,K

∗
¬j) for all j = 1, 2, . . . , N .2

Proof Suppose all the perturbed systems in (10) satisfy the following dissipativity
inequalities

Vj(x(0)) +

∫ t

0

w[αj ,Zj ](ỹ(t), ũ(t))dt ≥ Vj(x(t)), (16)

for all t ≥ 0 with non-negative quadratic storage functions Vj(x(t)) = x(t)TYjx(t)
and Yj ∈ I[βj ,Zj ] that satisfy Vj(0) = 0 for j = 1, 2, . . . , N .

2 Notice here that we write supKj∈Kj J̃j(Kj ,K
∗
¬j) ; ρ̂j(x0,K

∗) to refer to following expression

sup
Kj ∈Kj

{
inf

{
J
uρ̂j
j (Kj ,K

∗
¬j)

∣∣∣∣ uρ̂j ∈[−ρ̂j(x0,Kj ,K∗¬j), ρ̂j(x0,Kj ,K∗¬j)]&K∗¬j ∈ K̂¬j
}}

(cf. Equation (8)).

Moreover, the upper bounds ρ̂j(x0,Kj ,K∗¬j) ∈ R+ continuously depend (in a weak sense) on x0 and
Kj for all j ∈ N . This further guarantees the existence of such upper bounds for which the dissipativity
conditions in (16) will hold for all instances of perturbation in the system.
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Thus, the trajectories of each perturbed closed-loop system (i.e., for j = 1, 2, . . . , N )

ẋ(t) =

(
(A+ uρjA

δ
j) +

∑
i∈N

BiK
∗
i

)
x(t),

satisfy

d

dt

(
xT (t)Yjx(t)

)
=xT (t)He

((
(A+uρjA

δ
j)+BjK

∗
j +

∑
i∈N¬j

BiK
∗
i

)T
Yj

)
x(t),

≤ −αjxT (t)Zjx(t),

≤ −αjxT (t)Yjx(t), (17)

for all instances of perturbation uρ̂j ∈ [−ρ̂j , ρ̂j ] in the system.

Then, the rest is to follow the same lines as that of Lemma 1. In fact, replacing the
following

[A,B]U,L̃ → [A,B]Uj ,L̃∗¬j
, 〈U, W̃ 〉 → 〈Uj , W̃ 〉 and 〈X, X̃〉 → 〈Xj , X̃j〉,

in Lemma 1 immediately gives the condition in (14) of Theorem 2. Note that Kj

and K∗i are given by Kj = LjW
−1
j , j ∈ N and K∗i = L∗iW

−1
i , i ∈ N¬j , respec-

tively. Moreover, the N -tuple (Y1, Y2, · · · , YN ) ∈
∏
j∈N I[βj ,Zj ] is a collection of

dissipativity certificates corresponding to a set of supply rates (11) for all instances
of perturbation in (10).

We now make a claim about the supremum of the worst-case objective function
J̃j(Kj ,K¬j) for any j ∈ N as the corresponding value of the lowest upper un-
certainty bound ρ̂j(x0,K∗) (cf. Equation (8)). Note that J̃j(Kj ,K¬j) is continuous
and finite for any (Kj ,K

∗
¬j) ∈ Kj ×K¬j ; and moreover, it is semi-convex on Kj for

K∗¬j ∈ K¬j for all j ∈ N .

Then, we have

sup
Kj∈Kj

J̃j(Kj ,K
∗
¬j) ; ρ̂j(x0,K

∗),

with K∗j ∈ arg sup
Kj∈Kj

J̃j(Kj ,K
∗
¬j) for all j = 1, 2, . . . , N . 2

Remark 3 Here we remark that the existence of a solution for the state trajectories is
well-defined and it is always upper semicontinuous in x0 (see [10]).

We next state the following equivalent statements that characterize the set of feedback
Nash equilibria:

(i). ∃K∗ ∈ K, ∀x0, ∀uρ̂j ∈ [−ρ̂j , ρ̂j ], ∀K ∈ K, ∀j ∈ N such that

J̃j(Kj ,K
∗
¬j) ≤ J̃j(K∗). (18)
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(ii). The extended LMIs condition in (14) and the dissipativity inequalities of (16)
with a set of supply rates W in (11) describes completely the set of robust
stabilizing state-feedback gains.

The equivalence between (i) and (ii) leads to characterization of feedback Nash equi-
libria over an infinite-time horizon in terms of a set of stabilizing solutions of the
extended LMIs.

Furthermore, the exact characterization of the feedback Nash equilibria is given by
the following two theorems.

Theorem 3 Let Wj ∈ GLn(R) and εj > 0 for j = 1, 2, . . . , N . Suppose Xj ∈ Sn+,
Uj ∈ GLn(R), L∗j ∈ Rrj×n and εj > 0 for j = 1, 2, . . . , N satisfy the condition in
(14) of Theorem 2. Then, there exists an N -tuple (K∗1 ,K

∗
2 , . . . ,K

∗
N ) ∈ K feedback

Nash equilibrium with respect to the upper uncertainty bounds ρ̂j ∈ R+ for j =
1, 2 . . . , N of (15).

Proof The first part of this theorem is already provided in Theorem 2, i.e., from the
standard argument of the stabilizability of the pair (A, [B1 B2 · · · BN ]), we can
always find an N -tuple (K∗1 ,K

∗
2 , . . . ,K

∗
N ) ∈ K and for all Kj = L∗jW

−1
j ∈ Rrj×n

and j = 1, 2, . . . , N such that (14) holds. Applying (15) of Theorem 2 together with
the dissipativity certificates Yj ∈ I[βj ,Zj ] of (13) and a set of supply rate functions
W of (11). Then, for a fixed (x0,K

∗) ∈ Rn × K, we will obtain an upper bound
ρ̂j ∈ R+ for all instances of perturbation in (10) and so that

J̃j(Kj ,K
∗
¬j) ≤ J̃j(K∗),

for all Kj ∈ Kj and for all j ∈ N . Hence, we immediately see that the N -tuple
(K∗1 ,K

∗
2 , . . . ,K

∗
N ) ∈ K satisfies the feedback Nash equilibrium.3 2

Note that the class of admissible strategies for all agents are generated through a set
of individual objective functions that are induced from dissipativity inequalities of
(16) with a set of supply rates (11).

3 Here we remark that a strong version of fixed-point theorem is required to establish the exis-
tence of feedback Nash equilibria for the game, which is defined on compact topological spaces with
continuous objective functions (e.g., see [12]). To this end, if we introduce the following continuous
map Φ[x0,uρ̂]

: K×K → R defined by

Φ[x0,uρ̂]
(K, K̄) =

∑
j∈N

(
J̄j(x0, uρ̂j ,K)− J̄j(x0, uρ̂j , K̄j ,K¬j)

)
,

where K =
(
K1, K2, . . . , KN

)
∈ K, K̄ =

(
K̄1, K̄2, . . . , K̄N

)
∈ K and uρ̂ ,

(uρ̂1 , uρ̂2 , . . . , uρ̂N ) ∈
∏
j∈N [−ρ̂j , ρ̂j ]. Note that for such a map whose fixed-point is an equilibrium

is called a Nash map for the game (i.e., if the N -tuple
(
K∗1 , K

∗
2 , . . . , K

∗
N

)
is a feedback Nash equilib-

rium), then we have J̄j(x0, uρ̂j ,Kj ,K
∗
¬j) ≤ J̄j(x0, uρ̂j ,K

∗) for all j ∈ N and Kj ∈ Rrj×n. This
shows that the mapΦ satisfiesΦ[x0,uρ̂]

(K∗,K) ≥ 0 for any arbitraryK =
(
K1, K2, . . . , KN

)
∈ K.

Therefore, the feedback Nash equilibrium K∗ is an equilibrium point, i.e., a fixed point, for the map
Φ[x0,uρ̂]

(., .).
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Theorem 4 Suppose the N -tuple (K∗1 ,K
∗
2 , . . . ,K

∗
N ) ∈ K is a feedback Nash equi-

librium with respect to the values of the objective functions of (15). Let also Wj ∈
GLn(R) and εj > 0 for j = 1, 2, . . . , N . Then, there exists a solution set Xj ∈ Sn+,
Uj ∈ GLn(R) and L∗j ∈ Rrj×n for j = 1, 2, . . . , N that satisfies the condition in
(14) of Theorem 2.

Proof Suppose the N -tuple (K∗1 ,K
∗
2 , . . . ,K

∗
N ) ∈ K is a feedback Nash equilibrium

such that

J̃j(Kj ,K
∗
¬j) ≤ J̃j(K∗),

where the value for the continuous objective function J̃j : Kj×K¬j → R+ is claimed
as

sup
Kj∈Kj

J̃j(Kj ,K
∗
¬j) ; ρ̂j(x0,K

∗),

with K∗j ∈ arg sup
Kj∈Kj

J̃j(Kj ,K
∗
¬j) for all j ∈ N .

Then, we can always find a solution set that satisfies the condition in (14) of Theo-
rem 2 for which the closed-loop systems in (10) are robustly stable for all instances
of perturbations (uρ̂1 , uρ̂2 , · · · , uρ̂N ) ∈

∏
j∈N [−ρ̂j , ρ̂j ]. 2

Finally, the feedback Nash equilibrium has a strong time consistency property. This
fact corresponds to the class of admissible strategies for all agents that are gener-
ated through a set of individual objective functions where the latter are induced from
dissipativity inequalities of (16) with a set of supply rates (11). Note that the equiv-
alence between (i) and (ii) (i.e., Theorem 3: (ii) ⇒ (i) and Theorem 4: (i) ⇒ (ii))
leads exactly to characterization of the feedback Nash equilibrium via a set of robust
stabilizing state-feedback solutions of the extended linear matrix inequalities.

5 Concluding remarks

In this paper, we have looked at the problem of robust state-feedback stabilization for
a multi-channel system using a game-theoretic framework. Specifically, we presented
a sufficient condition for the existence of a robust feedback Nash equilibrium where
each agent aims to optimize different type of objective function and when agents
may unaware of all the aspects or the structure of the game. Moreover, we charac-
terized the robust feedback Nash equilibrium solutions for such a game using a set
of extended linear matrix inequalities and set-valued mappings – where the latter is
employed for the game with an incomplete information.
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