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Abstract

This paper considers state estimation for multiple plants over a shared communication network.

Each linear time-invariant plant transmits information through the common network according to either

a time-triggered or an event-triggered rule. For an event-triggered algorithm with CSMA (carrier sense

multiple access), each plant is assumed to access the network based on a priority mechanism. For a

time-triggered algorithm combined with TDMA (time division multiple access), each plant uses the

network according to an off-line scheduling. Performance in terms of the communication frequency and

the estimation error covariance is analytically characterized for some special cases. The main result

is that event-triggered schemes may perform worse than time-triggered schemes when considering the

effect of communication network.

I. INTRODUCTION

Event triggered sampling and transmission have emerged as exciting alternatives to more

traditional periodic, or time-triggered, sampling and transmission. For the control and estimation

of a scalar Weiner process, works such as [1], [2] showed that the average number of transmis-

sions could be reduced significantly with event triggered schemes for the same state variance.

Such reductions were noted experimentally in works such as [3]. Motivated by these results,

event triggered schemes to ensure stability or passivity for arbitrary non-linear systems were

designed in works such as [4], [5], [6]. However, performance analysis for such general cases
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(i.e., estimation/control performance metric as a function of the communication rate) remains

open. A stream of work to bypass this problem has been to design event triggered schemes for

control and estimation for a guaranteed level of control performance [7] and error covariance

[8], [9] while satisfying constraints on the communication rate through a communication cost.

However, an analytic trade-off between the covariance and communication rate by imposing

a hard constraint on the number of communications typically leads to complicated triggering

events that are computationally difficult to compute and implement [10], [11]. To facilitate the

analysis, approximations for some truncated Gaussian random variables are used in [12], [13].

Another direction in which the idea of event trigger is being extended is by moving beyond

the assumption that a single process needs to be estimated or controlled. If multiple processes

are present, then events for various processes can trigger transmissions for more than one process

at the same time. If the communication medium is shared, this can lead to congestion, and in

turn, delays and packet losses. Realizing this fact, recent work has considered the interaction of

control architecture and communication strategies in the setting of event triggered control.

Of particular interest to this paper is the work in [14] that considers a communication network

being shared by a number of independent control loops and uses numerical methods to compute

the control performance under various multiple access schemes such as TDMA (time division

multiple access), FDMA (frequency division multiple access) and CSMA (carrier sense multiple

access). The work in [15] considers scaler noisy integrator models and provides the stationary

state distribution of such models. Packet loss due to contention of different loops using event

triggered control and sharing a common medium is analyzed in [16]; however, the analysis is

based on an assumption that the losses for different loops are independent, which does not hold

in general [17]. Moreover, the analysis is limited to processes described by a single integrator

driven by white noise. A simple ALOHA protocol is used for modeling the communication

networks in [18]. Similar to [16], each loop is modeled by noisy integrator dynamics. The

correlation among different loops is removed through a particular triggering rule and performance

characterization is obtained. A more sophisticated strategy for conflict resolution when two plants

wish to transmit simultaneously was considered in [17]. A Markov chain based model was

introduced to characterize the probability of successful transmission for each plant in steady state.

The key assumption (originating from [19]) was that the conditional probability of a busy channel

for the attempting node to transmit is independent for each node. The correlations between
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various loops and the need for joint analysis between event trigger and CRM (collision resolution

mechanism) were addressed; however, no performance analysis of the NCS was provided.

In this paper, we consider multiple plants transmitting information through a common network

according to either a time triggered rule or an event triggered rule. To avoid collisions when

multiple plants wish to transmit in the event triggered setting, we use CSMA based on a priority

mechnism as in [14]. For the case when the plants transmit according to a time triggered rule, no

collisions are possible and we use a TDMA (round-robin) transmission schedule. Performance in

terms of the communication rate and the estimation error covariance is analytically characterized

under various medium access schemes. Our results demonstrate that simple time triggered scheme

can outperform event triggered scheme when multiple loops share access to the network. This

result may be of interest to designers while moving from implementing event triggered schemes

for a single plant to a wider array of applications.

The rest of the paper is organized as follows. Section II presents an illustrative example to show

that time trigger may perform better than event trigger with associated medium access schemes.

Section III presents the problem formulation. The analysis for event triggered estimation of a

single plant over a dedicated network is provided in Section IV and extended to NCS with

multiple plants sharing the communication network in Section V. Analytical results for multiple

plants case are provided in Section VI when triggering level is small. Numerical illustration is

provided in Section VII. This paper concludes with some avenues for future work in Section VIII.

Notation: The n-dimensional real space is denoted by Rn. Denote the vector of all zeros by 0

and the vector of all ones by 1. The infinity norm of a vector x is denoted by |x|. For a matrix M ,

the (i, j)-th element is denoted by M(i, j). The variable y is less than but close to a real number

b is denoted by y . b. For a m-dimensional multivariate Gaussian random variable X with mean

vector µ and covariance R, we denote the generalization of the cumulative distribution function

F function as Pr(|X| ≤ x) , F (m,µ,R, x), where the inequality is interpreted element-wise.

For the truncated multivariate Gaussian random variable obtained by truncating X between the

vectors t1 and t2, define the variance by Σ(X, t1, t2). As with the standard F functions and

truncated Gaussian distributions, evaluation of these generalizations is done through Gaussian

integrals (see, e.g., [20, Equation (16)] for formulas for the variance of truncated Gaussian

distributions) and is a standard feature in most statistics packages.
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II. ONE ILLUSTRATIVE EXAMPLE

In this section, we present an example to show that time trigger may outperform event trigger

with associated medium access schemes described as follows1 when multiple plants share the

communication network.

1) In a time triggered setting, TDMA can be used to multiplex the data where a cyclic access

schedule is decided in advance. When the number of plants is finite, an optimal schedule

can be found by evaluating the cost for every possible schedule [14].

2) In an event triggered setting, we use a priority based mechanism as in [14], for which

priority orders of the plants can be decided according to one of the following CRM.

• Static priority: The priority orders are decided in advance and remain fixed during

system operation. This scheme is typically implemented by polling or token ring.

• Random priority: In wireless networks, random back off strategies are normally used

and a random plant is allowed to access the network maybe after some delay.

• Dynamic priority: The priority orders are adapt to dynamically changing progress

during the system operation. The objective is to use the the network more efficiently.

Now, consider the following example where two plants share a communication medium.

Example 1: Suppose the plant Si (i = 1, 2) is described by the following dynamics,

Si : xi(k + 1) = Aixi(k) + wi(k),

yi(k) = xi(k),

where A1 = 1, A2 = 0.9, the process noise {wi(k)} is white, zero mean, Gaussian with

covariance unity and the initial condition xi(0) is a normal Gaussian random variable. The process

noise {wi(k)} and initial condition xi(0) are assumed to be mutually independent. Denote the

estimate for state xi(k) by x̂deci (k). At the ith estimator, we have

x̂deci (k) =

xi(k), if xi(k) received at k,

Aix̂
dec
i (k − 1), otherwise.

1These medium access schemes are used in many applications. For instance, TDMA is used in mobile communications and

WirelessHART [21]. Static and dynamic schedulers are used in Control Area Network (CAN) and random schedulers are used

in Ethernet or wireless local area network (WLAN), see e.g. [22], [23].
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The estimation error is given by edeci (k) = xi(k) − x̂deci (k) and the quality of estimate for the

NCS is measured by J =
∑2

i=1 limt→∞
1
t

∑t
k=0 E

[
edeci (k)

]2.

1) Event trigger: The event for plant Si that triggers information transmission is given by

| xi(k)− Aix̂deci (k − 1) |> εi,

where εi is a given constant. We assume the network allows each plant to transmit at least once

for every Te time steps.2 The simulation results are given in Fig. 1 by conducting 10, 000 Monte

Carlo experiments and by setting Te = 10, ε1 = ε2. Fig. 1 shows that the communication rate

is close for various CRM (in the top plot), but the system performance (in the bottom plot) is

quite different when the triggering level εi is small, say when εi ≤ 1.

2) Time trigger: Each plant uses the network periodically. To avoid collision, we assume the

two plants use the network asynchronously. Since there is no cost associated with using the

network, we consider the case when the communication rate P . 1, e.g. P = 0.98.3

The comparison between time triggered scheme and event triggered scheme are summarized

in Table I. From Table I, we can conclude that

1) Under the same communication rate P = 0.98, event trigger with static and random sched-

ulers have larger estimation error covariance than time trigger with TDMA. In other words,

time trigger with TDMA outperform event trigger with static and random schedulers.

2) For event trigger with dynamic scheduler, when the triggering level ε ≥ 1, the estimation

error covariance can be larger than time triggered scheme with cost J = 1, as shown in

the bottom plot of Figure 1. Thus, if we choose the triggering level ε randomly on the

interval [0, 4], there is a probability of 75% that time triggered scheme performs better

than event triggered scheme based on a dynamic scheduling policy.

III. PROBLEM FORMULATION

Consider the problem setup as shown in Fig. 2 where N plants transmit information over a

shared network with the following associated assumptions.

2This is to guarantee fairness and guard against the practical concern of maximum delay that each plant can tolerate.
3The communication rate P = 0.98 can be obtained by e.g. transmitting S1 at odd time steps in every 50 time steps and

transmitting S2 at even time steps except for the multiples of 50.
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Fig. 1. The communication frequency and the error covariance for Example 1 using event trigger with various CRM. The

communication rate converges to 0.2 since for large triggering level ε (no local events are generated), the network transmits

information for each plant every Te = 10 time steps.

TABLE I

PERFORMANCE COMPARISON OF TIME TRIGGER AND EVENT TRIGGER UNDER THE SAME COMMUNICATION RATE

Scheme Scheduler Performance Threshold Comm Rate

Time-trigger TDMA J = 1.036 - 98%

Static J = 2.618 0.215 98%

Event-trigger Random J = 1.348 0.221 98%

Dynamic J = 0.427 0.176 98%

Plant and Sensor: The ith plant denoted by Si is described by the following discrete linear

time-invariant evolution:

xi(k + 1) = Aixi(k) + wi(k),

yi(k) = Cixi(k) + vi(k), (1)

where xi(k) ∈ Rn denotes the state vector, yi(k) ∈ Rm is the output vector, wi(k) is the process

noise assumed to be white Gaussian with zero mean and covariance Rwi > 0, and vi(k) is the

measurement noise assumed to be white Gaussian with zero mean and covariance Rvi > 0. For

the analytical results in the paper, we will consider n = m = 1, although the arguments can

be easily generalized at the expense of more notation. The initial condition of the process xi(0)
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Fig. 2. Problem setup considered in this paper.

is assumed to be a Gaussian random vector with zero mean and covariance Ri(0). The process

noise {wi(k)}, the measurement noise {vi(k)}, and the initial condition xi(0) are assumed to

be mutually independent. Ai and Ci are real matrices and the pair (Ai, Ci) is assumed to be

observable.

Estimator: At every time k, the ith estimator generates a minimum mean squared error

(MMSE) estimate for the state xi(k) based on whatever information is available to it. In a time-

triggered architecture, this information is the set of measurements {y0, · · · , yk} that received

from the network in a periodic manner. In an event-triggered architecture, this information is any

information transmitted by the comparator, and the time steps at which information transmission

occurs. Denote the estimate for state xi(k) held by the ith estimator as x̂deci (k).

Comparator: The event-triggered algorithm is implemented at the comparator. We consider

a level based scheme. Specifically, we consider two cases. In the first simpler case, we assume

that the measurement noise vi(k) is identically zero, and the matrix Ci is identity. Thus, the ith

sensor observes the state xi(k) at every time k. The local event is defined as

| ecompi (k) |> εi, (2)

where ecompi (k),xi(k)−Aix̂deci (k − 1), the threshold εi is a given constant, Aix̂deci (k − 1) is the

optimal estimate at the estimator if the estimator did not receive any information at time k. The

second case we consider is when the measurement noise is not zero. In this case, we assume
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that the comparator calculates a local estimate x̂enck of the state xk based on all measurements

{y0, · · · , yk}. However, in this case, ecompi (k),x̂enci (k) − Aix̂deci (k − 1). Calculation of x̂enci (k)

admittedly requires more computational resources at the comparator; however, this scheme can

transmit much more information than simply transmitting the latest measurement y(k), see

e.g. [24].

Communication Network: The communication network is modeled by satisfying the follow-

ing assumptions.

• A1: The network does not permit simultaneous transmissions and the transmission time of

the scheduled packet is less than one time step [17], [18].

• A2: The plant sends information according to an off-line scheduling (for time-triggered

schemes) or whenever an event is generated (for event-triggered schemes).

• A3: When two or more plants send information simultaneously, the network transmits the

packet received from the plant with highest priority [14] and the rest packets are discarded.

• A4: The network allows each plant to transmit at least once for every T time steps to guard

against the practical concern of maximum tolerable delay.

We are interested in the the following two metrics for state estimation of the NCS:

1) The communication rate P , which is defined as the average probability for the network to

transmit information at each time step.

2) The quality of estimate for the NCS, which is measured by the aggregate error covariance,

J =
N∑
i=1

lim
t→∞

1

t

t∑
k=0

E
{
edeci (k)[edeci (k)]T

}
,

with edeci (k),xi(k)− x̂deci (k) as the estimation error for Si.

IV. PRELIMINARY RESULTS: SINGLE PLANT ACROSS A DEDICATED NETWORK

We begin with preliminary results for event triggered estimation of a single plant (and thus

the subscript i is dropped in this section), see Fig. 3. We assume that the measurement noise vk

is identically 0 and C is the identity matrix.4

The information can be successfully transmitted through the network whenever

|ecomp(k)|,|x(k)− Ax̂dec(k − 1)| > ε

4When the process state is not observed by the sensor, the development is similar by using, e.g. a Kalman filter, see Appendix.
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Fig. 3. System Model for a Single Plant across a Dedicated Network. If the state is observed, then x̂enc(k) = x(k).
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Fig. 4. Transition graph of the Markov Chain defined for a single plant.

since there is no contention to access the network. As shown in Fig. 4, we can define a discrete-

time discrete-state Markov chain M with T + 1 modes, the state {X(k)}k≥0 and the transition

probabilities

pij = Pr(X(k + 1) = j
∣∣X(k) = i),

such that X(k) = j implies that at time k, the last transmission occurred at time k − j.

The communication frequency and the estimation error covariance are characterized by this

Markov chain. To this end, define the random variables

Zi(k) =
i∑

j=0

Ajw(k + i− j), 0 ≤ i ≤ T. (3)

Since the noise w(k) is white, the probability density function of the variables Zi(k) is inde-

pendent of k. In the sequel, we will simply write Zi to denote the random variables. Clearly,

for any i, the vector random variable Mi =
[
ZT

0 , Z
T
1 , · · · , ZT

i

]T
has a multi-variate normal
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distribution with mean 0 and covariance matrix Ri as
Rw RwA

T · · · Rw(AT )i

ARw ARwA
T +Rw ARw(AT )2 +RwA

T · · ·
... . . .

AiRw · · ·

 .
Now for 1 ≤ i ≤ T , define the events

Ni = (| Z0 |< ε) ∩ (| Z1 |< ε) ∩ · · · ∩ (| Zi−1 |< ε) , (4)

with the convention that N0 is the sure event. We have Pr(N0) = 1 and for 1 ≤ i ≤ T ,

Pr(Ni) = F (ni, 0, Ri, ε1), (5)

The following results is immediate.

Lemma 1: Consider the Markov chain M as defined above. The transition probabilities pij

are given by

pij =



1− F (n(i+1),0,Ri+1,ε1)

F (ni,0,Ri,ε1)
0 ≤ i ≤ T − 1, j = 0

1 i = T, j = 0

1− pi0 0 ≤ i ≤ T − 1, j = i+ 1

0 otherwise

(6)

Proof: We concentrate on the case when 0 ≤ i ≤ T − 1, j = 0 since the other expressions

are obvious from the structure of the Markov chain shown in Fig. 4. Consider the transition

probability p00. Since X(k) = 0 is equivalent to edec(k) = 0, we have

p00 = Pr(X(k + 1) = 0
∣∣X(k) = 0)

= Pr(|w(k)| > ε
∣∣edec(k) = 0)

(a)
= Pr(|w(k)| > ε) = Pr(| Z0 |> ε),

where (a) holds because edec(k) is independent of the process noise at time step k. Similarly,
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for any i such that 0 ≤ i ≤ T − 1, the probability

pi0 =Pr(X(k + 1) = 0
∣∣X(k) = i)

(b)
=Pr

(
| Zi |> ε

∣∣Ni, e
dec(k − i) = 0

)
(c)
=Pr

(
| Zi |> ε

∣∣ | Zi−1 |< ε, · · · , | Z0 |< ε
)

=
Pr(| Zi |> ε,Ni)

Pr(Ni)
= 1− Pr(Ni+1)

Pr(Ni)
,

where (b) follows the Markovian property and the definiations in (3), and (c) holds because

edec(k − i) is independent of the process noise after time step k − i and in particular, Zi. Now

the result follows from (5), which can be evaluated using Gaussian integrals and the fact that

pT0 = 1.

Theorem 2: The average communication rate for the event triggered algorithm described above

is given by 1

1+
∑T
j=1

∏j−1
i=0 (1−pi0)

, which can be calculated using (6).

Proof: The average communication rate for the system is given by limk→∞ Pr(X(k) = 0).

From the fact that pi0’s are time-invariant and using the structure of the Markov chain from

Fig. 4, the probability for each mode j (j ≥ 1) can be computed as

Pr(X(k) = j) = (1− pj−1,0)Pr(X(k) = j − 1)

=

j−1∏
i=0

(1− pi0)Pr(X(k) = 0). (7)

Thus, the balance equation for the Markov chain yields

1 =
T∑
j=0

Pr(X(k) = j)

= Pr(X(k) = 0) +
T∑
j=1

j−1∏
i=0

(1− pi0)Pr(X(k) = 0)

= (1 +
T∑
j=1

j−1∏
i=0

(1− pi0))Pr(X(k) = 0).

The required probability Pr(X(k) = 0) can now be calculated as

Pr(X(k) = 0) =
1

1 +
∑T

j=1

∏j−1
i=0 (1− pi0)

.
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The other performance metric is the covariance of estimation error Π(k) = E[edec(k)(edec(k))T ]

which is given by the following relation.

Theorem 3: The steady state average error covariance Π = limk→∞Π(k) for the event trig-

gered algorithm described above is given by

Π =
T∑
j=1

j−1∏
t=0

(1− pt0)Pr(X(k) = 0)ΣM,j(j, j), (8)

where ΣM,j = Σ(Mj,−ε1, ε1).

Proof: We use the relation Π(k) =
∑T

j=0 Pr(X(k) = j)E[edec(k)(edec(k))T | X(k) = j].

For j = 0, since the estimation error edec(k) = 0, we obtain E[edec(k)(edec(k))T | X(k) = j] = 0.

For j > 0, we use the fact that the error covariance edec(k) under the event X(k) = j is

simply
∑j

i=0A
iw(k − i). However, since the process noise w(j) is white and has a time-invariant

probability distribution function, we can alternatively write

E[edec(k)(edec(k))T | X(k) = j] = var[Zj−1 | Nj],

where var(X) is the variance of the random variable X and Ni was defined in (4). The variance

of Zj−1 is given by the (j, j)-th element of the variance matrix of Mj; however, as calculated

under the truncation imposed by Nj , i.e., all the elements Z0, · · · , Zj−1 being bounded between

−ε1 and ε1. This variance is given by ΣM,j(j, j). Together with (7), this yields the desired

expression.

Together, these two results provide analytic expressions for the communication frequency and

average error covariance given any level ε. For the case when there exists process noise, the

development is similar but notationally more involved (see Appendix).

V. MAIN RESULTS: MULTIPLE PLANTS SHARING THE NETWORK

In this section, we present the main results of this paper.

A. Markov Model for Multiple Plants

When N ≥ 2 plants transmit information over a common network, similar to the single plant

case, we can define a discrete-time discrete-state Markov chainM with Ns = (T +1)T · · · (T −

N + 2) states {X(k)}k≥0 ∈ RN and the transition probabilities

Pr[X(k + 1) = m
∣∣X(k) = n],p(m1, · · · ,mN

∣∣n1, · · · , nN),
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Fig. 5. Illustrating example for the Markov model with T = 2.

such that X(k) = m implies that at time k, the last transmission for the ith plant occurred at

time k −mi. Note that mi 6= mj for all i 6= j since the network does not permit simultaneous

transmissions. Performance of event triggered algorithms can be characterized by this Markov

chain. In the following analysis, we concentrate on the case when N = 2 (and the arguments

can be easily generalized to N > 2).

In this case, at every time step, there are 3 possibilities of information transmission:

• The network transmits information from S1.

• The network transmits information from S2.

• The network does not transmit any information.

This corresponds to the structure of the Markov chain. In particular, for any mode {i1, i2} when

i1, i2 < T , it can go to the following modes correspondingly, 0

i2 + 1

 ,
 i1 + 1

0

 ,
 i1 + 1

i2 + 1

 ,
whose transition probabilities are determined by the scheduling policies. For the modes with

i1 = Te or i2 = Te, the network transits information for S1 or S2, respectively. Thus, for any

scheduling policy, we have the following transitions T

i2

→
 0

i2 + 1

 ,
 i1

T

→
 i1 + 1

0


occurring with probability 1. To clarify this, consider the following example.

Example 4: Consider a NCS with N = 2 plants over a shared medium. Assume the maximum

delay that each plant can tolerate is T = 2. We can define a Markov chain with the following

Ns = 6 modes as shown in Fig. 5. The communication rate for S1 and S2 are given as
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P1 = Pr(

 0

1

) + Pr(

 0

2

),

P2 = Pr(

 1

0

) + Pr(

 2

0

),

respectively. The communication rate for the network is then given by P0 = P1 + P2. From the

mode {1, 0} and {0, 1}, there are three possible transitions and the following transitions are with

probability 1.  0

2

→
 1

0

 ,
 1

2

→
 2

0

 ,
 2

0

→
 0

1

 ,
 2

1

→
 0

2

 .
To characterize the system performance, we need to calculate the probability of each Markov

mode. To this end, define P ∈ RNs as the vector for probability of each mode and define

b = [1, 0, · · · ] ∈ RNs . The relations of the modes are given through the following equation

∆P = b, (9)

where ∆ ∈ RNs×Ns with the first row [1, 1, · · · , 1] given by the balance equation and the rest

elements can be determined from the structure of the Markov model. We can verify that the

matrix ∆ always has full rank. This guarantees that the above equation (9) has a unique solution.

Remark 1: The matrix ∆ may not be unique since the relations between the Markov modes

can be expressed in various manners, however, all these choices will give the same probability

of each mode in the end.

We next characterize the matrix ∆ and evaluate the performance of event triggered algorithms

with static, random and dynamic schedulers through the Markov model defined above.

B. Event Trigger with Static Scheduler

We begin our analysis with the case when every plant has been given a fixed priority to access

the network. We assume that the ith plant has the ith priority without loss of generality. Thus,

we assume S1 wins the arbitration to access the network whenever it contends with S2.
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Lemma 2: By using static scheduler, for any 0 ≤ i < T ,

p(0, i+ 1
∣∣T,i) = 1; p(i+ 1, 0

∣∣i, T ) = 1. (10)

Furthermore, for 0 < i < T , we have

p(0, i+ 1
∣∣0, i) = p

(1)
0,0, (11)

where p(1)
0,0 can be calculated through (6) using {A1, w1}.

Proof: The equality (10) holds since the network transmits information for each plant at

least once every T time steps. (11) holds because S1 has higher priority and thus information

transmission is delayed for S2 when local event for S1 is generated and i < T , i.e.

p(0, i+ 1
∣∣0, i) = Pr

 0

i+ 1

 |
 0

i


= Pr(X1(k + 1) = 0 | X1(k) = 0)

= Pr(|w1(k)| > ε) , p
(1)
0,0.

To illustrate the application of this result, let us consider Example 4 again. We have the

following relation

Pr

 1

0

 = Pr

 0

1

 p
(1)
01 p̄

(2)
10 + Pr

 0

2

 , (12)

where p(1)
01 = 1− p(1)

00 and p̄(2)
10 given by

p̄
(2)
10 = Pr(|A2w2(k − 1) + w2(k)| > ε).

One step later, we have the following transition, 0

1

→
 1

0

→
 2

1

 ,
 0

2

→
 1

0

→
 2

1

 ,
and from these transitions we have

Pr

 2

1

 = Pr

 0

1

 p
(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
01 (13)

+ Pr

 0

2

 p̄
(1)
12 p

(2)
01 ,
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where p(2)
01 = 1− p(2)

00 and

p
(1)
12 = Pr(|A1w1(k − 1) + w1(k)| < ε

∣∣|w1(k − 1)| < ε)

can be calculated through (6) by using {A2, w2} and respectively {A1, w1}. The probability p̄(1)
12

is given by

p̄
(1)
12 = Pr(|A1w1(k − 1) + w1(k)| < ε).

We can obtain the following relations in a similar manner,

Pr

 1

2

 = Pr

 0

1

 p
(1)
01 p̄

(2)
12 , (14)

Pr

 2

0

 = Pr

 0

1

 p
(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
00 (15)

+ Pr

 0

1

 p
(1)
01 p̄

(2)
12 + Pr

 0

2

 p̄
(1)
12 p

(2)
00 ,

P r

 0

2

 = Pr

 0

1

 p
(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
01 (16)

+ Pr

 0

1

 p
(1)
00 + Pr

 0

2

 p̄
(1)
12 p

(2)
01 ,

where p̄(2)
12 = 1− p̄(2)

10 .

In this way, we represent the probabilities of all modes through the relations with mode {0, 1}

and {0, 2} as in (12)-(16). Then from the balance equation that the sum of all probabilities equal

to 1, we can solve for probability of each mode. More compactly, define

a = p
(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
00 + p

(1)
01 p̄

(2)
12 , b = p

(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
01 ,

and we obtain the probability for every individual mode from equation (9) with ∆ given as

1 1 1 1 1 1

p
(1)
01 p̄

(2)
10 1 −1 0 0 0

p
(1)
01 p̄

(2)
12 0 0 −1 0 0

a p̄
(1)
12 p

(2)
00 0 0 −1 0

b p̄
(1)
12 p

(2)
01 0 0 0 −1

p
(1)
00 + c −1 + p̄

(1)
12 p

(2)
01 0 0 0 0


. (17)
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Remark 2: Notice p̄(1)
12 6= p

(1)
12 , since in transitions such as 0

2

→
 1

0

→
 2

1

 ,
X1(k) = 1 is caused by t2 = T independent of the error |w1(k−1)| which yields p̄(1)

12 . However,

in transitions such as  0

1

→
 1

0

→
 2

1

 ,
X1(k) = 1 is caused by |w1(k − 1)| < ε and this yields p(1)

12 . Similarly, we have p̄(2)
10 6= p

(2)
10 .

Remark 3: For the single plant case in Section IV, we can easily obtain the relations between

the modes from the structure of the Markov model. Particularly, the matrix ∆ for single plant

is given as 

1 1 · · · 1

p01 −1

p12 −1

p23 −1
. . . . . .

pT−1,T −1


,

and the transition probabilities are given in Lemma 1. For the multiple plant case, the relation

is more complicated because of coupling of the two Markov states in one mode.

By solving (9), we obtain the probability of each Markov mode. The following result is

immediate.

Theorem 5: For T = 2, the average communication rate for S1 under event triggered algorithm

described above is given by P1 = Pr({0, 1}) + Pr({0, 2}), and P2 = Pr({1, 0}) + Pr({2, 0})

for S2 through P = ∆−1b with ∆ given in (17). Furthermore, the average communication rate

for the network is given by P0 = P1 + P2.

The other performance metric is the covariance of the estimation error

Πi(k) = E[edeci (k)(edeci (k))T ],

which is given by the following result.
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Theorem 6: For T = 2, the steady state average error covariance for the rth plant, Πr =

limk→∞Πr(k), under the event triggered algorithm described above is given by

Πr(k) =
Ns∑
j=1

Πr(j)

from (18-24). Furthermore, the average error covariance for the NCS is given by Π = Π1 + Π2.

Proof: To calculate Π1, we use the relation Π1 =
∑Ns

j=0 Π1(j), where Π1(j) corresponds to

the error covariance under the Markov mode j as defined above. We have

Π1(1) = 0,Π1(2) = 0, (18)

since the estimation error edec1 (k) = 0. Under the Markov mode {1, 0}, we have

Π1(3) = Pr({0, 1})∆(1, 3)var{w1(k) | |w1(k)| < ε}

+ Pr({0, 2})var{w1(k)}.

As for single plant case, var{w1(k) | |w1(k)| < ε} is given by Σ
(1)
M,1(1, 1). Thus, we have

Π1(3) = Pr({0, 1})∆(1, 3)Σ
(1)
M,1(1, 1) + Pr({0, 2})Rw1 . (19)

Under the Markov mode {1, 2}, we have

Π1(4) = Pr({0, 1})∆(1, 4)Σ
(1)
M,1(1, 1). (20)

We can also obtain the error covariance under mode {2, 0},

Π1(5) = Pr({0, 2})p̄(1)
12 p

(2)
00 Ξ1 (21)

+ Pr({0, 1})p(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
00 Ξ2

+ Pr({0, 1})p(1)
01 p̄

(2)
12 Ξ3,

where Ξ1 = Σ(A1w1(k − 1) + w1(k),−ε, ε) can be evaluated through Gaussian integrals, Ξ2 =

Σ
(1)
M,2(2, 2), and

Ξ3 = var{A1w1(k − 1) + w1(k) | |w1(k − 1)| < ε}

= A1Σ
(1)
M,1(1, 1)AT1 +Rw1 .

Also, the error covariance under the mode {2, 1} is given by

Π1(6) = Pr({0, 2})p̄(1)
12 p

(2)
01 Ξ1 (22)

+ Pr({0, 1})p(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
01 Ξ2.
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To calculate Π2, similar to calculation of Π1, we use the relation Π2 =
∑Ns

j=0 Π2(j) with

Π2(3) = 0,Π2(5) = 0, (23)

since the estimation error edec2 (k) = 0. We can also have the following relations

Π2(1) = Rw2 , (24)

Π2(2) = Pr({0, 1})p(1)
00 Ξ4 + Pr({2, 1})Ξ5,

Π2(4) = Pr({1, 2})Ξ4,

Π2(6) = Pr({2, 1})Σ(2)
M,1(1, 1),

where Ξ4 = Σ(A2w2(k−1) +w2(k),−ε, ε) and Ξ5 = A2Σ
(2)
M,1(1, 1)AT2 +Rw2 . Together with the

probabilities from the previous theorem, this yields the desired expressions.

Remark 4: For the single plant case, edec(k) = 0 for X(k) = 0 and X(k) = j > 0 implies

the estimation error in previous steps all less than ε. As a result, the error covariance under the

mode X(k) = j > 0 is simply

Π(j) , Pr(X(k) = j)E[edec(k)(edec(k))T | X(k) = j]

= Pr(X(k) = j)ΣM,j(j, j)

and the average estimation error covariance can be calculated as
∑T

j=1 Π(j). For the multiple

plant case, however, we have to identify how the current mode is reached (i.e. whether caused by

local noise or by network constraints), which yields different expressions for the error covariance.

Remark 5: For T > 2, a similar Markov chain can be defined by considering two more

variables for each mode indicating how long each plant has signaled that it wants to transmit.

C. Event Trigger with Random Scheduler

With random scheduler, both plants have the chance to win the arbitration when contention

occurs. Denote Pα as the probability for S1 to win, and 1−Pα for S2. The access probability Pα

is provided by the network [17]. When there is no contention, the plant can transmit information

successfully whenever its local event is generated.

Consider the Markov model shown in Fig. 5. As mentioned earlier, one has to track the past

states to calculate the transition probabilities. As an example, consider the transition from mode

{0, 1} to {1, 0}. The transition probability for X2(k) = 1→ 0 is not given by p̄(2)
10 (as for static
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scheduler). The reason is that X2(k) = 1 in the mode {0, 1} depends on the error w2(k − 1) in

the previous step. Similarly, in transition {0, 1} → {1, 0} → {2, 0}, the transition probability for

X1(k) = 1→ 2 is not given by p̄(1)
12 since X1(k) = 0→ 1 might be caused by |w1(k − 1)| > ε

as well. However, the approximation of ignoring this past and calculating transition probability

only with the current state is quite good. Through such approximations, the matrix ∆ for a

random scheduler is given as

1 1 1 1 1 1

∆21 −1 0 0 0 1

∆31 1 −1 0 0 0

p
(1)
01 (1− p̄(2)

10 ) 0 0 −1 0 0

0 0 ∆53 1 −1 0

0 0 p̄
(1)
12 (1− p(2)

00 ) 0 0 −1


, (25)

where

∆31 = [p
(1)
01 + p

(1)
00 (1− Pα)]p̄

(2)
10 ,

∆53 = p
(2)
00 [p̄

(1)
12 + (1− p̄(1)

12 )(1− Pα)],

∆21 = (1− p(1)
01 )(p̄

(2)
10 Pα + 1− p̄(2)

10 ).

By solving equation (9) with ∆ given in (25), we can get the probability for each mode.

The approximate results calculated in this way match closely to the Monte Carlo simulations as

demonstrated in Section VII. We can therefore characterize the communication rate and error

covariance from this Markov model along the same lines as for static scheduler.

D. Event Trigger with Dynamic Scheduler

With dynamic scheduler, when two local events are generated simultaneously, the network

grants the one with maximum error |ecompi (k)| to access the network first. As a result, the network

transmits information for S1 if it has a larger error when both local events are generated, i.e.

|ecomp1 (k)| > |ecomp2 (k)|, |ecomp1 (k)| > ε, |ecomp2 (k)| > ε,

or the following events occur

|ecomp1 (k)| > ε, |ecomp2 (k)| < ε.
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Define the conditional probability Pd as follows,

Pd , Pr(|ecomp1 | > |ecomp2 |
∣∣|ecomp1 | > ε, |ecomp2 | > ε),

where the dependence of the errors on time k is omitted for notational convenience. It is

worthwhile to point out that for random scheduler case, when both errors exceed the predefined

threshold, the probability of the network to transmit information for S1 is actually

PαPr(|ecomp1 | > ε, |ecomp2 | > ε).

For the dynamic case, unlike Pα defined above, Pd depends on the magnitudes of the errors

of both plants and hence the interference between the plants and the shared medium becomes

more complicated. Pd can be exactly evaluated through Gaussian integrals because the errors

are Gaussian random variables as defined in (3). However, for simplicity, we can use

λ , Pr(|ecomp1 | > |ecomp2 |)

as an approximation of the conditional probability Pd. In fact, we have λ = 1/2 based on the

following arguments. From the fact that

Pr(|ecomp1 | > |ecomp2 |) = Pr(|ecomp1 |2 > |ecomp2 |2)

= Pr(ecomp1 + ecomp2 > 0, ecomp1 − ecomp2 > 0)

+ Pr(ecomp1 + ecomp2 < 0, ecomp1 − ecomp2 < 0)

(e)
= Pr(ecomp1 + ecomp2 > 0)Pr(ecomp1 − ecomp2 > 0)

+ Pr(ecomp1 + ecomp2 < 0)Pr(ecomp1 − ecomp2 < 0),

and (e) holds because ecomp1 +ecomp2 and ecomp1 −ecomp2 are Gaussian random variables and mutually

independent. Since ecomp1 and ecomp2 are zero mean, we have

Pr(ecomp1 + ecomp2 < 0) = 1/2,

P r(ecomp1 − ecomp2 < 0) = 1/2.

This yields the desired result. Therefore, the communication rate can be calculated as a special

case of random access by setting Pα = λ = 1/2. The results given by this approximation match

the Monte Carlo experiments very closely as demonstrated in Section VII.
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Remark 6: λ 6= 1/2 for N ≥ 2, although λ can be evaluated through Gaussian integrals for

the general case.

Remark 7: The error covariance is different from random scheduler case (with Pα = 1/2)

since for dynamic scheduler there exists additional condition on the magnitudes of ecomp1 and

ecomp2 . However, the error covariance can be evaluated through Gaussian integrals as well.

E. Time Triggered Algorithm

In this section, we evaluate the performance of time triggered scheme with TDMA. Since we

do not consider the cost of using the network, we assume the network transmits information

at every time step. For N = 2, there exist two possible schedules: S1 = {1, 2, 1, 2 · · · } and

S2 = {2, 1, 2, 1 · · · }. If A1 = A2 and Rw1 = Rw2 , it can be verified that the two round robin

schedules S1 and S2 are both optimal. Otherwise, one can find an optimal schedule by evaluating

the cost function for every possible schedule [14]. Therefore, for N = 2, both schedules are

optimal and the system performance can be calculated as

J =
1

2
(Rw2 +Rw1).

VI. DISCUSSION

In this section, we provide analytical results for special cases of event and time triggered

algorithms. When ε = 0, the local event (2) for each plant is generated at every time step. This

implies both plants intend to access the network simultaneously at each time step. The network

is thus utilized at every time step and the decision to transmit packets from which plant is based

on the scheduling policies. It is worthwhile to point out that the following analysis can be used

as an approximation for ε & 0.

A. Static scheduler for ε = 0

The network transmits information for S1 with higher priority until the hard constraint for

maximum tolerable delay of S2 is triggered. The Markov model will be reduced to Te + 1 states

with all transition probabilities 1 as shown in Fig 6. The following result is immediate.

Lemma 3: Consider the event triggered algorithm with static scheduler for ε = 0. The average

communication rate for S1 and S2 are given by

P1 =
Te

Te + 1
, P2 =

1

Te + 1
,
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Fig. 6. Static Scheduler when ε = 0.

respectively. Furthermore, the steady state average error covariance for S1 and S2 are given by

Π1 =
1

Te + 1
Rw1 ,Π2 =

1

Te + 1

Te∑
i=1

i−1∑
j=0

A2
jRw2(A

T
2 )

j
.

Proof: From the structure of the Markov chain shown in Fig 6, the probabilities of all

modes are identical. From the balance equation that the sum of the probabilities of all modes is

equal to 1, the probability for each mode is 1/(Te + 1). Therefore, the communication rate for

Si is given by

P1 =
Te∑
j=1

Pr(X(k) = [0; j]) =
Te

Te + 1
,

P2 = 1− P1 =
1

Te + 1
.

The estimation error for S2 under the mode X(k) = [0, j] for 1 ≤ j ≤ Te is given by Zj. Thus

the error covariance for S2 can be calculated as

Π2 =
Te∑
j=1

Pr(X(k) = [0; j])E{Zj−1Zj−1
T}

=
Te∑
j=1

1

Te + 1

j−1∑
i=0

Ai2Rw2A
T
2

i
.

The error covariance for S1 is simply 1
Te+1

Rw1 .

B. Random scheduler for ε = 0

Since both local events are generated, the network transmits the packets from S1 with prob-

ability Pα and transmits the packets from S2 with probability 1 − Pα. The Markov model is

presented in Fig. 7. The communication rate and error covariance can thus be obtained along

the lines of Lemma 3 through the following result.
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Fig. 7. Random Scheduler when ε = 0.

Lemma 4: Consider the event triggered algorithm with random scheduler for ε = 0. The

average communication rate for S1 and S2 are given by

P1 =
(1− P Te

α )

1− Pα
ρ, P2 =

1− (1− Pα)Te

Pα
ρ,

where ρ = Pα(1−Pα)

1−PTe+1
α −(1−Pα)Te+1

. Furthermore, the steady state average error covariance for S1 and

S2 are given by

Π1 =
ρ

1− Pα

Te∑
i=1

(1− Pα)i
i−1∑
j=0

A1
jRw1(A

T
1 )

j
,

Π2 =
ρ

Pα

Te∑
i=1

P i
α

i−1∑
j=0

A2
jRw2(A

T
2 )

j
.

C. Time triggered algorithm

In this section, we evaluate the performance by using time trigger with TDMA. Since we

do not consider the cost of using the network, we assume the network transmits information at

every time step.

For N = 2, there exist two possible schedules: S1 = {1, 2, 1, 2 · · · } and S2 = {2, 1, 2, 1 · · · }.

If A1 = A2 and Rw1 = Rw2 , we are going to show that the two round robin schedules S1 and S2

are both optimal. Otherwise, one can find an optimal schedule by evaluating the cost function

for every possible schedule [14]. Assume x̂deci (0) = 0 for i = 1, 2. With schedule S1, at the ith
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estimator, we have for any 0 ≤ j ∈ Z and for any k ≥ 1,

x̂deci (k) =

xi(k), if k = 2j + i,

Aix̂
dec
i (k − 1), otherwise.

It is easy to verify that for any k ≥ 2,

x̂deci (k) =

xi(k), if k = 2j + i,

Aixi(k − 1), otherwise,

and the estimation error evolves as

edeci (k) =

0, if k = 2j + i,

wi(k − 1), otherwise.

Therefore, we can obtain for schedule S1 and k ≥ 2,
2∑
i=1

lim
t→∞

1

t

t∑
k=2

E[edeci (k)(edeci (k))T ] =
1

2
(Rw2 +Rw1).

The system performance can be calculated as

J = lim
t→∞

1

t

(
2∑
i=1

t∑
k=2

E[edeci (k)(edeci (k))T ] + ν3

)

=
1

2
(Rw2 +Rw1),

where ν3 > 0 is finite and depends on the values of A2, R2. For schedule S2, we will obtain

the same system performance along the above lines. Therefore, for N = 2, both schedules are

optimal with the minimum cost given by

ΩT =
1

2
(Rw2 +Rw1).

D. Comparison of special cases

Now, we are ready to state the main result in this section, which compares performance of

time trigger and event trigger with various MA schemes. Note that the system performance

is continuous with respect to the threshold ε and thus the previous results for ε = 0 can be

considered as a good approximation for small positive ε.

Theorem 7: For ε & 0, denote system performance as ΩT ,ΩS,ΩR for time trigger and event

trigger with static scheduler and random scheduler, respectively. We have the following result:

ΩT < ΩS,ΩT < ΩR.
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Proof: When the network is fully utilized, for time trigger with TDMA, the system perfor-

mance is given by

ΩT =
1

2
(Rw1 +Rw2),

which is independent of the system dynamics A1, A2.

For event trigger with static scheduler, a lower bound for system performance ΩS is given by

ΩS >
1

Te + 1
[Rw1 + TeRw2 ] + ν1.

The gap between two sides of the above inequality (ν1 > 0) depends on the dynamic of S2, or

A2. For instance, with Te = 2, the gap is characterized by A2Rw2A
T
2

(Te+1)
. For simplicity, we assume

Rw1 = Rw2 , thus we obtain

ΩS > ΩT + ν1 > ΩT .

For event trigger with random scheduler, a lower bound of system performance ΩR is given

by

ΩR > ρ
Te∑
i=1

[
(1− Pα)i−1Rw1 + P i−1

α Rw2

]
+ ν2,

The gap between two sides of the above inequality (ν2 > 0) depends on the the dynamics of

both plants, or A1, A2. Again, for simplicity, we assume Rw1 = Rw2 , then we have

ΩR >
Te∑
i=1

ρ
[
(1− Pα)i−1 + P i−1

α

]
Rw + ν2,

= ρRw

(
1− (1− Pα)Te

Pα
+

1− P Te
α

1− Pα

)
+ ν2

= Rw + ν2 > ΩT ,

It has been shown that ΩT < ΩS,ΩT < ΩR. In other words, time trigger with TDMA performs

better than event trigger with static and random schedulers.

Remark 8: For dynamic case, we can obtain similar results. However, the system performance

is now evaluated through Gaussian integrals. As an example, for the transition from mode [0; 1]

to [1; 0], we need the following formula,

var{X
∣∣|X| < |Y |} =

∫ ∞
−∞

f(y)dy
∫ |y|
−|y|

x2f(x)dx
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where f(x) = N(0, R1) and f(y) = N(0, R2) are normal distributions with mean 0 and variance

R1 = Rw1 and R2 = (A2
2 + 1)Rw2 , respectively. This integral can be evaluated as

2

∫ ∞
0

∫ y

−y

x2

2π
√
R1R2

exp

[
−1

2
(R−1

1 x2 +R−1
2 y2)

]
dxdy

= 2
R1

2π

∫ π−β

β

cos2 θdθ
∫ ∞

0

exp

(
−1

2
r2

)
r3dr

=
R1

π
[π − 2β − sin(2β)],

and β ∈ [0, π/2] satisfies r cos β
√
R1 = r sin β

√
R2. Together with the fact Pr(|X| < |Y |) =

1/2, this yields

var{X
∣∣|X| < |Y |} = 2

R1

π
[π − 2β − sin(2β)].

VII. SIMULATION RESULTS

In this section, we present numerical examples to illustrate our main results. The system

model is given by (1) with A1 = 0.8 and A2 = 0.5 and we assume wi, xi(0) (i = 1, 2) are

zero-mean Gaussian random variables with unit covariance. We set T = 2 and ε1 = ε2 = ε.

For various values of ε from 0 to 4, we evaluated system performance for static, random and

dynamic schedulers. We compared the analytic results to Monte Carlo simulations of the system.

The comparison of using static scheduler is shown in Fig. 8 for the communication rate in the

top plot and in the bottom one for the error covariance. It can be seen that the analytic results

match the Monte Carlo simulations very closely. From the bottom plot in Fig. 8, we can see that

for ε ∈ [0.2, 1.2], the error covariance for event trigger is less than time trigger; however, for

other values of ε ∈ [0, 4], time triggered algorithm performs better. This implies that there is a

probability of 75% for event-triggered algorithm to perform worse than time-triggered algorithm

if we choose the threshold randomly.

The system performance by using approximate models for random scheduler in terms of the

communication rate and the error covariance is provided in Fig. 9 with Pα = 0.7. The results

for communication rates by using dynamic scheduler in Fig. 10 by setting Pα = 0.5. It can be

seen that the results obtained from approximate models for both cases match the Monte Carlo

simulations very closely.
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Fig. 8. Performance metrics for the NCS obtained from derived analytic expressions and Monte Carlo simulations.
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Fig. 9. Performance metrics for the NCS using random scheduler obtained from approximate expressions and Monte Carlo

simulations.

VIII. FINAL REMARKS

This paper studies state estimation for a NCS with multiple plants over a shared communication

network. Each plant transmits information through the common network according to a time-

triggered or an event-triggered rule. For a time-triggered algorithm combined with TDMA, each

plant uses the network according to an off-line scheduling. For an event-triggered algorithm with
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Fig. 10. Communication rates for each plant using dynamic scheduler.

CSMA, each plant is assumed to access the network based on one of the following scheduling

strategies: static, random or dynamic schedulers. Performance in terms of the communication rate

and estimation error covariance is analytically characterized for some special cases. Our results

demonstrate that event-triggered schemes may preform worse than time-triggered schemes when

considering the effect of communication strategies.

For future works, we need a more accurate model to analyze general cases (such as for

Te > 2). It is also interesting to find an optimal triggering level for various scheduling policies.

Another extension is to consider a control setting where the control input is updated using an

event triggered rule and consider other performance metrics (such as LQG). From a design point

of view, it is also interesting to design an optimal scheduling strategy for given control tasks.

IX. APPENDIX: EVENT-TRIGGERED ESTIMATION OF A SINGLE PLANT WITH

MEASUREMENT NOISE OVER A DEDICATED NETWORK

We now consider the case when the process state is not observed by the sensor as shown Fig.

3. As stated earlier, in this case, the comparator calculates and transmits the estimate

x̂enck = E[xk|y0, · · · , yk].

Denote the corresponding error by eenck = xk − x̂enck , and the error covariance by

Sk = E[(eenck )2|y0, · · · , yk].
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Both x̂enck and Sk can be computed recursively through a Kalman filer. In particular, we have

x̂enck+1 = Ax̂enck + Lk(yk+1 − CAx̂enck ),

where Lk = SkC
TR−1

v denotes the Kalman filter gain. Thus, the error evolves as

eenck+1 = (I − LkC)Aeenck + (I − LkC)wk − Lkvk+1. (26)

The error eenck is Gaussian with zero mean and covariance Sk, that evolves according to the

standard Riccati recursion [25, Chapter 9]. Since the pair (A,C) is observable, the matrices Sk

and Lk converge exponentially to steady state values. For simplicity, we consider the steady state

regime where Sk and Lk have converged to steady state values S and L respectively.

The development in this case is similar to the case when the state is observed, but notationally

more involved. We indicate the changes that need to made as compared to the analysis presented

in Section IV. The error at the decoder is now calculated as

edeck =

e
enc
k , if | ecompk |> ε,

Aedeck−1 + wk−1, otherwise,
(27)

with ecompk = x̂enck − Ax̂deck−1. We can once again set up the Markov chain as shown in Fig. 4.

Similar to the random variables Zi(k) from (3), define the variables for all i such that 0 ≤ i ≤ T,

Z̄i(k) = x̂enck+1 − Ai+1x̂enck−i

= Ai+1eenck−i +
i∑

j=0

Ajwk−j − eenck+1.

In steady state, the probability density function of the variables Z̄i(k) is once again time-

invariant; hence, we drop the time index for simplicity. Given these variables, define M̄i =[
Z̄T

0 , Z̄
T
1 , · · · , Z̄T

i

]T
. Similar to the variable Mi in Section IV, M̄i is also a multivariate normal

distribution with zero mean. However, the covariance matrix R̄i is notationally too involved to

write succinctly. To outline the argument for calculating a general R̄i, we present the values of

R̄0 and R̄1. The variable Z̄0 is given by

Z̄0 =wk + Aeenck − eenck+1

=LCAeenck + Lvk+1 + LCwk.

Since eenck , wk and vk+1 are mutually independent Gaussian variables with the same mean, Z̄0

is also Gaussian with zero mean and covariance R̄0 = LC(ASAT +Rw)CTLT + LRvL
T .
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The variable Z̄1 is given by Z̄1 = wk + Awk−1 + A2eenck−1 − eenck+1. Thus, we can evaluate

R̄1 =

 E[Z̄2
0 ] E[Z̄0Z̄

T
1 ]

E[Z̄1Z̄
T
0 ] E[Z̄2

1 ]

 ,
where

E[Z̄2
0 ] = LC(ASAT +Rw)CTLT + LRvL

T ,

E[Z̄1Z̄
T
0 ] = L(CRwC

T −Rv)L
T − (I − LC)ASATCTLT

+ A(Rw + ASAT )(I − LC)TATCTLT ,

E[Z̄1Z̄
T
1 ] = Rw + ARwA

T + A2S(AT )2 + S − [Rw(I − LC)T + (I − LC)Rw]

− (Term1 + TermT
1 )− (Term2 + TermT

2 ),

and Term1 and Term2 are given by

Term1 = ARw(I − LC)TAT (I − LC)T ,

Term2 = A2SAT (I − LC)TAT (I − LC)T .

The covariance matrices R̄i for any i can be similarly calculated.

As before, for 1 ≤ i ≤ T , define the events

N̄i =
(
| Z̄0 |< ε

)
∩
(
| Z̄1 |< ε

)
∩ · · · ∩

(
| Z̄i−1 |< ε

)
, (28)

with the convention that N̄0 is the sure event. Then we have with Pr(N̄0) = 1 and for 1 ≤ i ≤ T ,

Pr(N̄i) = F (ni, 0, R̄i, ε1), (29)

In turn, the transition probabilities pij for the Markov chain can be calculated as

pij =



1− F (n(i+1),0,R̄i+1,ε1)

F (ni,0,R̄i,ε1)
0 ≤ i ≤ T − 1, j = 0

1 i = T, j = 0

1− pi0 0 ≤ i ≤ T − 1, j = i+ 1

0 otherwise

(30)

which can be evaluated using Gaussian integrals, and the fact that pT0 = 1. We concentrate on

p00 since the proof for rest of the probabilities follows that of Lemma 1. We have

p00 =Pr(Xk+1 = 0
∣∣Xk = 0)

=Pr(|ecompk+1 | > ε
∣∣x̂deck = x̂enck ),
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where ecompk+1 when Xk = 0 equals Z̄0(k). Since x̂enck is an MMSE estimate, the error eenck

is independent of measurements {y0, · · · , yk}, and in particular, of both x̂enck and x̂deck . Also

because the process and measurement noises are white, vk+1 and wk are independent of x̂enck

and x̂deck as well. Then, we have

p00 =Pr(| LC(Aeenck + wk) + Lvk+1 |> ε
∣∣x̂deck = x̂enck )

=Pr(| LC(Aeenck + wk) + Lvk+1 |> ε)

=1− Pr(N̄1),

which yields the desired result. The estimation quality of the scheme can thus be obtained along

the lines of Theorems 2 and 3. It should be noted that similar arguments can be developed for

the case when multiple plants share the common network in Section V.
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