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Passivity Analysis and Passivation of

Event-Triggered Interconnected Systems Using

Passivity Indices

Abstract

We consider the passivity analysis and passivation problems for event-triggered feedback interconnected systems.

Based on the location of the event-triggered samplers, we consider two event-triggered control schemes respectively:

event-triggered sampler of plant output and event-triggered sampler of controller output. For both schemes, we first

derive the conditions to characterize the level of passivity for the interconnected system using passivity indices. The

event-triggering condition is proposed to guarantee that these indices can be achieved. Then the passivation problem

is considered and the passivation conditions are provided. Considering that the passivation condition depends on the

passivity indices of the plant and controller and also the event-triggering condition, the trade off between performance

(passivity level) and communication resource utilization is discussed.

I. INTRODUCTION

The notion of dissipativity, and its special case of passivity, are characterizations of system input and output

behavior based on a generalized notion of energy. The ideas of passivity first emerged from the phenomenon of

dissipation of energy across passive components in the circuit theory field [1], [2]. Passive systems can viewed as

systems that do not generate energy, but only store or release the energy which was provided. Dissipativity was

introduced and formalized in [3], and it is a generalized notion of passivity. Dissipativity and passivity can be applied

to the analysis of chemical, mechanical, electromechanical and electrical systems where the definition of energy

has both clear physical meaning and concrete mathematical representation. Over the past decades, dissipativity and

passivity have received constantly high attention by the systems and control community with plenty of applications

in theory and practice [4], [5], [6]. Recent summaries of dissipativity and passivity theory can be found in [7]. The

significant benefit of passivity is that when two passive systems are interconnected in parallel or in feedback,

the overall system is still passive. Thus passivity is preserved when large-scales systems are combined from

components of passive subsystems. Such compositional property is often used in large-scale network design of

nonlinear interconnected systems and related topics [8]. The advantage of using this property is that one can always

guarantee passivity of the interconnected passive systems and thus stability of the whole system is guaranteed.

Recent results [9], [10], [11] also showed its power in compositional design of cyber-physical systems.

Although passivity theory has been applied successfully, this property is vulnerable to discretization, quantization

and other factors introduced by digital controllers or communication channels in modern control systems. Results in
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the literature mainly considered passivity analysis and passivation for an individual dynamical system under different

network effects. [12] pointed out that passivity is not preserved under discretization and then quantified how much

passivity is lost under standard discretization. For quantization effects, passivity analysis and passivation of LTI

systems with quantization was treated as an uncertainty described by integral quadratic constraints [13]. Recent work

[14] derived the conditions under which the passive structure of an output strictly passive (OSP) nonlinear system can

be preserved under quantization. On the other hand, it is also important to study passivity analysis and passivation

for interconnected systems, considering its advantage in analysis and design of large-scale interconnected systems.

As the extension to the well-known compositional property of passivity, [15] considered the passivity analysis

and passivation problems for feedback interconnection of two input feed-forward output-feedback (IF-OF) passive

systems. [16] considered passivity analysis for discrete-time periodically controlled nonlinear systems, where the

system switches between open and closed loop periodically. A maximum allowable transmission ratio (MATR) was

found to guarantee passivity for the entire system in each switching period.

Motivated by [17] and [15], in this paper we consider the passivity analysis and passivation problems for

event-triggered feedback interconnected systems. Instead of stability [17], we focus on passivity property of the

interconnected system. Based on the location of event-triggered sampler implemented, we have two event-triggered

control schemes to consider respectively: event-triggered sampler of plant output (Fig. 3) and event-triggered sampler

of controller output (Fig. 4). For each control scheme, the condition to characterize the level of passivity for the

interconnected system using passivity indices is derived. The event-triggering condition is proposed to guarantee

that these indices can be achieved. For the passivation problem, the condition to render the interconnected system

passive is given. The condition depends on the passivity indices of the plant and controller and the event-triggering

condition. Moreover, we discuss the trade off between performance (passivity level) and resource utilization by

choosing appropriate passive controllers and event-triggering conditions. The results presented in this paper are

extensions of the corresponding results in [15], by considering, in addition, the effect of event-triggered samplers.

The paper is organized as follows. In Section II, we introduce some background on dissipativity/passivity theory

and passivity indices. The passivity analysis and passivation problems are stated in Section III. Section IV considers

the two problems for feedback interconnected systems with event-triggered samplers. Based on the location of event-

triggered sampler implemented, two event-triggered control schemes are considered, namely event-triggered sampler

of plant output and event-triggered sampler of controller output. Two examples are discussed in Section V The

conclusion is provided in Section VI.

II. PRELIMINARIES AND BACKGROUND

We first introduce some basic concepts in passive and dissipative system theory. Consider the following nonlinear

system G, which is driven by an input u(t) and has an output y(t)

G :

 ẋ(t) = f (x(t), u(t))

y (t) = h (x(t), u(t))
(1)
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where x (t) ∈ X ⊂ Rn, u (t) ∈ U ⊂ Rm and y (t) ∈ Y ⊂ Rp are the state, input and output of the system

respectively and X , U and Y are the state, input and output spaces, respectively.

The definition of a dissipative system is based on a storage function (energy stored in the system) and a supply

function (externally supplied energy). The basic idea behind dissipativity is that the increase of the stored energy

is bounded by the supplied energy.

Definition 1. [7] System G is said to be dissipative with respect to the supply rate ω(x, u, y), if there exists a

positive semi-definite storage function V (x) such that the (integral) dissipation inequality

V (x(t1))− V (x(t0)) ≤
ˆ t1

t0

ω(x(t), u(t), y(t))dt (2)

is satisfied for all t0, t1 with t0 ≤ t1 and all solutions x = x(t), u = u(t), y = y(t), t ∈ [t0, t1]. If the storage

function is differentiable, then the integral dissipation inequality (2) can be rewritten as

V̇ (x(t)) ≤ ω(x(t), u(t), y(t)),∀t (3)

As a special case of dissipativity, QSR-dissipativity was proposed in [18] and developed in [19], [20], [21], [22].

In this case the supply rate is defined as

ω(u, y) = yTQy + 2yTSu+ uTRu (4)

where Q, S and R are matrices with proper dimensions. The relation between QSR-dissipativity and L2 stability

has been shown in [18].

Theorem 2. [18] If System G is QSR-dissipative with Q < 0, then it is L2 stable.

Definition 3. [4] System G with m = p is passive if there exists a positive semi-definite storage function V (x)

such that the following inequality holds for all t1, t2 ∈ [0,∞) such that

V (x(t2))− V (x(t1)) ≤
ˆ t2

t1

uT ydt (5)

If the storage function is smooth, then the integral dissipation inequality (5) can be rewritten as V̇ (x (t)) ≤ uT y.

Note that passivity is also a special case of dissipativity, with supply rate ω = uT y. One useful property of passive

systems in systems theory is the fact that the parallel interconnection and the negative feedback interconnection of

two passive systems is again a passive system. Consider the parallel interconnection (Fig. 1) and negative feedback

interconnection (Fig. 2) of two passive systems. The following theorems show that passivity is preserved under

parallel and negative feedback interconnections.

Theorem 4. [4] The parallel interconnection of two passive systems (Fig. 1) is passive, with respect to the input

u and the output y.
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Figure 1. The parallel interconnection of two systems

Figure 2. The negative feedback interconnection of two systems

Theorem 5. [4] The negative feedback interconnection of two passive systems (Fig. 2) is passive, with respect to

the input

 r1

r2

 and the output

 y1

y2

.

The advantage of using this property is that one can always guarantee passivity of the interconnected passive

systems and thus stability of the whole system.

In order to measure the excess and shortage of passivity, passivity indices (or passivity levels) [5], [4], [6], [23]

are introduced. The indices can be used to render the system passive with feedback and feed-forward, and describe

the performance of passive systems.

Definition 6. [5] [6] A system is input feed-forward output feedback passive (IF-OFP) if it is dissipative with

respect to the supply rate

ω(u, y) = uT y − νuTu− ρyT y, ∀t ≥ 0, (6)

for some ρ, ν ∈ R.

Based on Definition 6, we can denoted an IF-OFP system by IF-OFP(ν, ρ). Definition 6 is often used in passivity

analysis, passivation and passivity-based control [23], [24], [17], [14], [25]. It can be seen that when ρ = ν = 0

an IF-OFP system is simply a passive system. one can further have the definitions of input feed-forward (strictly)

passive, output feedback (strictly) passive and very strictly passive.
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1) When ρ = 0 and ν 6= 0, the system is said to be input feed-forward passive (IFP), denoted as IFP(ν). when

in addition ν > 0, the system is input feed-forward strictly passive (ISP).

2) When ρ 6= 0 and ν = 0, the system is said to be output feedback passive (OFP), denoted as OFP(ρ). When

in addition ρ > 0, the system is output feedback strictly passive (OSP).

3) When ρ > 0 and ν > 0, the system is said to be very strictly passive (VSP).

Note that positive ρ or ν means that the system has an excess of passivity, such as ISP, OSP and VSP. If either ρ

or ν is negative, the system has a shortage of passivity and thus is non-passive. When one of indices is zero and

the other is non-zero (i.e. IFO and OFP), ρ or ν is called “passivity index”, defined as the largest value such that

(6) holds for ∀u and ∀t ≥ 0 [4]. When both of indices are non-zero, the values of ρ and ν may not be unique and

are sometimes referred as “passivity levels” [23]. In this paper, we do not distinguish between these two notions

as long as there exist ρ and ν such that (6) holds.

The valid domain of ρ and ν has been proposed in [26], [27].

Lemma 7. [27] The domain of ρ and ν in IF-OFP system is Ω = Ω1 ∪ Ω2 with Ω1 =
{
ρ, ν ∈ R|ρν < 1

4

}
and

Ω2 =
{
ρ, ν ∈ R|ρν = 1

4 ; ρ > 0
}

.

In this paper, we adopt Definition 6 and assume that ρ and ν are in the domain unless otherwise noted.

III. PROBLEM FORMULATION

Figure 3. Feedback connection of two IF-OFP systems with event-triggered sampler of plant output

We first consider feedback connection of two systems with an event-triggered sampler of plant output, given

in Fig. 3. We assume Gp is IF-OFP(νp, ρp) and Gc is IF-OFP(νc, ρc) with known passivity indices. Instead of

assuming continuous communication in the feedback loop [15], an event-triggered feedback scheme is introduced.
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Event-triggered control has been introduced for the possibility of reducing resources usage (i.e., sampling rate,

CPU time, network access frequency) [28], [29], [30], [31], [32], [33], [34], [17]. The triggering mechanisms are

referring to the situation in which the control signals are kept constant until the violation of a condition on certain

signals triggers the re-computation of the control signals. As in Fig. 3, the new output information of Gp is sent

to the controller Gc only when the output novelty error ep = yp − yp(tk) in the event-triggered sampler satisfies

a triggering condition. yp(tk) denotes the last output information sent to the controller Gc at the event time tk.

Note that [17] considered the same control scheme but focused on deriving the triggering condition to guarantee

stability of the closed-loop system. In the present paper, we focus on characterizing dissipativity/passivity properties

of the closed-loop system, which can be viewed as extensions of the results in [17] and [15]. The main problems

investigated in the present paper are summarized as follows.

1) Given the passivity indices of Gc and Gp, how can we determine the passivity indices for the closed-loop

systems and accordingly, what is the event-triggering condition to guarantee that these indices can be achieved?

2) For a non-passive plant Gp and a passive controller Gc, what condition on the passivity indices of both

systems should be satisfied to render the closed-loop system passive and accordingly, what is the event-

triggering condition to guarantee that the condition can be satisfied?

In addition to feedback connection with an event-triggered sampler of plant output, another similar scheme can be

considered as in Fig. (4), where the event-triggered sampler is implemented in the output path of the controller Gc.

The new output information of Gc is sent to the plant Gp only when the output novelty error ec = yc − yc(tk)

in the event-triggered sampler satisfies a triggering condition. yc(tk) denotes the last output information sent to

the controller Gc at the event time tk. Analogously, same questions listed above also need to be considered and

answered.

Figure 4. Feedback connection of two IF-OFP systems with event-triggered sampler of controller output
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IV. MAIN RESULTS

In this section, we consider the passivity analysis and passivation problems (two problems proposed in Section III)

for event-triggered feedback interconnected systems using passivity indices. Based on the location of event-triggered

sampler implemented, we have two event-triggered control schemes to consider respectively: event-triggered sampler

of plant output and event-triggered sampler of controller output. For both schemes, we first derive the conditions to

characterize the level of passivity for the closed-loop system using passivity indices. Then the passivation problem

is considered and the passivation conditions are provided.

A. Passivity Analysis and Passivation for Event-Trigerred Sampler of Plant Output

We first consider the passivity analysis problem for the feedback system with an event-triggered sampler of the

plant output (Fig. 3). Lemma 8 relates the interconnected system to QSR-dissipative systems.

Lemma 8. Consider the feedback interconnection of two IF-OF systems with the passivity indices νp, ρp and νc,

ρc respectively (Fig. 3). If the event time tk is explicitly determined by the following triggering condition

‖ep(t)‖2 =
βp√

ν2c +mpβp + |νc|
‖yp(t)‖2 (7)

where mp = 1
4αp

+ |νc| − νc, αp > 0 and βp > 0, the interconnection system is QSR-dissipative (with respect to

the input w(t) =

 w1(t)

w2(t)

and output y(t) =

 yp(t)

yc(t)

), which satisfies the inequality

V̇ (t) ≤ y(t)TQy(t) + 2w(t)TSy(t) + w(t)TRw(t) (8)

where

Q =

 − (ρp + νc − βp) I 0I

0I − (νp + ρc − αp) I

 ,
S =

 1
2I νpI

−νcI 1
2I

 ,
and

R =

 −νpI 0I

0I − (νc − |νc|) I

 .
.

Proof: Since Gp and Gc are IF-OF systems with the passivity indices νp, ρp, νc and ρc, there exist Vp(t) and

Vc(t) such that

V̇p(t) ≤ uTp (t)yp(t)− νpuTp (t)up(t)− ρpyTp (t)yp(t)

and

V̇c(t) ≤ uTc (t)yc(t)− νcuTc (t)uc(t)− ρcyTc (t)yc(t).
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Consider a storage function for the interconnected system given by V (t) = Vp(t) + Vc(t), we have

V̇ (t) = V̇p(t)+V̇c(t) ≤ uTp (t)yp(t)−νpuTp (t)u(t)p−ρpyTp (t)yp(t)+uTc (t)yc(t)−νcuTc (t)uc(t)−ρcyTc (t)yc(t). (9)

Consider that up(t) = w1(t)− yc(t), uc(t) = yp(tk) +w2(t) and yp(tk) = yp(t)− ep(t). For any t ∈ [tk, tk+1),

(9) can be rewritten as

V̇ (t) ≤
(
wT1 (t)− yc(t)

)
yp(t)− ρpyTp (t)yp(t)− νp (w1(t)− yc(t))T (w1(t)− yc(t)) +

(w2(t) + yp(tk))
T
yc − ρcyTc (t)yc(t)− νc (w2(t) + yp(tk))

T
(w2(t) + yp(tk))

= wT1 (t)yp(t) + wT2 (t)yc(t) + 2νpw
T
1 (t)yc(t)− 2νcw

T
2 (t)yp(t)− νpwT1 (t)w1(t)− νcwT2 (t)w2(t)

−(νp + ρc)y
T
c (t)yc(t)− (ρp + νc)y

T
p (t)yp(t)

+2νcw
T
2 (t)ep(t) + 2νcy

T
p (t)ep(t)− νceTp (t)ep(t)− yTc (t)ep(t).

Since 2νcw
T
2 (t)ep(t) ≤ |νc|wT2 (t)w2(t) + |νc| eTp (t)ep(t), we can obtain that

V̇ (t) ≤
[
wT1 (t) wT2 (t)

] 1 2νp

−2νc 1

 yp(t)

yc(t)


+
[
wT1 (t) wT2 (t)

] −νp 0

0 −νc + |νc|

 w1(t)

w2(t)


+
[
yTp (t) yTc (t)

] −(ρp + νc) 0

0 −(νp + ρc)

 yp(t)

yc(t)


+2νcy

T
p (t)ep(t) + (|νc| − νc)eTp (t)ep(t)− yTc (t)ep(t).

With yTc (t)ep(t) =
∥∥∥√αpyc(t) + 1

2
√
αp
ep(t)

∥∥∥2
2
−αpyTc (t)yc(t)− 1

4αp
eTp (t)ep(t) where α > 0, we can further get

V̇ (t) ≤ 2wT (t)Sy(t) + wT (t)Rw(t) + yT (t)Qy(t)−
∥∥∥∥√αpyc(t) +

1

2
√
αp
ep(t)

∥∥∥∥2
2

+mp ‖ep(t)‖22 + 2νcy
T
p (t)ep(t) +

ν2c
mp
‖yp(t)‖22 −

(
ν2c
mp

+ βp

)
‖yp(t)‖22 (10)

where

Q =

 − (ρp + νc − βp) I 0I

0I − (νp + ρc − αp) I

 ,
S =

 1
2I νpI

−νcI 1
2I

 ,
R =

 −νpI 0I

0I − (νc − |νc|) I

 ,
β > 0 and mp = 1

4αp
+ |νc| − νc.
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Note that 2νcy
T
p (t)ep(t) ≤ 2 |νc| ‖yp(t)‖2 ‖ep(t)‖2. Then we can show

V̇ (t) ≤ 2wT (t)Sy(t) + wT (t)Rw(t) + yT (t)Qy(t)

+

(
√
mp ‖ep(t)‖2 +

|νc|√
mp
‖yp(t)‖2

)2

−
(
ν2c
mp

+ βp

)
‖yp(t)‖22

= 2wT (t)Sy(t) + wT (t)Rw(t) + yT (t)Qy(t)

+

(
√
mp ‖ep(t)‖2 +

|νc|√
mp
‖yp(t)‖2 +

√
ν2c
mp

+ βp ‖yp(t)‖2

)
×(

√
mp ‖ep(t)‖2 +

|νc|√
mp
‖yp(t)‖2 −

√
ν2c
mp

+ βp ‖yp(t)‖2

)
From (7), one can verify that

V̇ (t) ≤ 2wT (t)Sy(t) + wT (t)Rw(t) + yT (t)Qy(t)

which completes the proof.

Remark 9. Although Lemma 8 does not explicitly characterize passivity indices for the closed-loop system, it

determines an event-triggering condition (7) which guarantees that the closed-loop system is QSR-dissipative. After

preserving QSR-dissipativity of the closed-loop system, same proof techniques used in [15] can be applied to further

explore passivity properties of the system.

Remark 10. As pointed out in Theorem 2, the closed-loop system (Fig. (3)) is L2 stable if Q < 0. It can be seen

that a sufficient condition for Q < 0 is νp + ρc > αp and νc + ρp > βp, which is similar to the condition derived

in [35], [17]. Also note that the triggering condition here is different from the condition in [35], [17].

Remark 11. (7) shows that the parameters αp, βp and νc determine the behavior of the trigger. It can be seen that

larger αp and βp result in a larger triggering threshold. A large triggering threshold implies less sampling rate and

thus less resources usage. Later we will show how these parameters affect passivity of the system.

Next, Theorem 12 shows how to determine the passivity indices for the feedback system with event-triggered

sampler of plant output.

Theorem 12. Consider the feedback interconnected system in Fig. 3. Suppose the passivity indices νp, ρp, νc and

ρc are known and the triggering condition is determined by (7). If we choose ε and δ such that ε < min {νp, νc − |νc|}

δ ≤ min
{
ρc − αp − ενp

νp−ε , ρp − βp −
(|νc|+ε)νc
νc−|νc|−ε

} , (11)

the interconnected system has passivity indices ε and δ satisfying

V̇ ≤ wT (t)y(t)− εwT (t)w(t)− δyT (t)y(t) (12)

where w(t) =

 w1(t)

w2(t)

 and y =

 yp(t)

yc(t)

.
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Proof: From (8) , we have

V̇ (t) ≤ wT (t)y(t)−
[
wT1 (t) yTc (t)

] νp −νp
−νp νp + ρc − αp

 w1(t)

yc(t)


−
[
wT2 (t) yTp (t)

] νc − |νc| νc

νc ρp + νc − βp

 w2(t)

yp(t)

 . (13)

Since ε and δ are chosen such that (11) is satisfied, (14) holds for the chosen ε and δ.

ε ≤ νp
ε ≤ νc − |νc|

(νp − ε) (νp + ρc − αp − δ) ≥ ν2p
(νc − |νc| − ε) (ρp + νc − βp − δ) ≥ ν2c

νp + ρc − αp − δ ≥ 0

ρp + νc − βp − δ ≥ 0

. (14)

(14) further implies that the matrices

M =

 νp − ε −νp
−νp νp + ρc − αp − δ


and

N =

 νc − |νc| − ε νc

νc ρp + νc − βp − δ


are positive semi-definite. Therefore, we have[

wT1 (t) yTc (t)
]
M

 w1(t)

yc(t)

+
[
wT2 (t) yTp (t)

]
N

 w2(t)

yp(t)

 ≥ 0 (15)

for ∀w1(t), w2(t), yc(t) and yp(t). After re-arranging the terms in (15), one can obtain

−
[
wT1 (t) wT2 (t)

]
E

 w1(t)

w2(t)

− [ yTp (t) yTc (t)
]

∆

 yp(t)

yc(t)

 ≥

−
[
wT1 (t) yTc (t)

]
O

 w1(t)

yc(t)

− [ wT2 (t) yTp (t)
]
P

 w2(t)

yp(t)

 (16)

where E =

 ε 0

0 ε

, ∆ =

 δ 0

0 δ

, O =

 νp −νp
−νp νp + ρc − αp

 and P =

 νc − |νc| νc

νc ρp + νc − βp

.

From (16) and (13), we can finally show that

V̇ (t) ≤ wT (t)y(t)−
[
wT1 (t) yTc (t)

] νp −νp
−νp νp + ρc − αp

 w1(t)

yc(t)


−
[
wT2 (t) yTp (t)

] νc − |νc| νc

νc ρp + νc − βp

 w2(t)

yp(t)


≤ wT (t)y(t)− εwT (t)w(t)− δyT (t)y(t) (17)
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Remark 13. (11) can be used to obtain an estimate of the passivity indices for the closed-loop system, with respect

to the input w =

 w1

w2

 and output y =

 yp

yc

. The condition is similar to its counterpart in [15]. Additionally,

(11) quantifies the impact of triggering condition on the passivity indices of the closed-loop system using the

parameters αp and βp.

Now we introduce the passivation problem for the feedback system with event-triggered sampler of plant output.

For this problem, the goal is to passivate a non-passive plant Gp using a passive controller Gc. Here passivity of

the interconnected system is defined on the input w1 and output yp. We also assume that w2 is zero. One may

observe from Theorem 11 that passivity with respect to the full input and output (i.e. input w and output y) may

not be guaranteed to be reinforced under feedback interconnection and event-triggering scheme. However, since we

have selected different inputs and outputs, the corresponding passivity may change accordingly. Theorem 14 shows

that it is possible to guarantee passivity for the desired input and output although passivity for full input and output

may not hold.

Theorem 14. Assume w2 = 0 and the triggering condition is determined by (7). The interconnected system (Fig.

(3)) is passive with respect to the input w1 and output yp if the passivity indices satisfy the conditions

νp ≥ 0 (18)

ρc ≥ αp (19)

ρp + νc ≥ βp. (20)

Proof: If w2(t) = 0, (9) becomes

V̇ (t) ≤ wT1 (t)yp(t)−
[
wT1 (t) yTc (t)

] νp −νp
−νp νp + ρc − αp

 w1(t)

yc(t)


− (ρp + νc − βp) yTp (t)yp(t)

Since we have νp ≥ 0, ρc ≥ αp and ρp + νc ≥ βp, it can be shown that νp −νp
−νp νp + ρc − αp

 ≥ 0 (21)

ρp + νc ≥ βp. (22)

Therefore, we can conclude that

V̇ (t) ≤ wT1 (t)yp(t)−
[
wT1 (t) yTc (t)

] νp −νp
−νp νp + ρc − αp

 w1(t)

yc(t)

− (ρp + νc − βp) yTp yp

≤ wT1 (t)yp(t). (23)
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Remark 15. When the plant Gp is non-passive (i.e. ρp < 0), the closed-loop system can be rendered passive by

choosing a passive controller Gc with ρc ≥ αp and νc ≥ −ρp + βp. Compared with the passivation conditions in

[15], the conditions (18)-(20) imply that one need a passive controller with higher passivity indices to passivate

a non-passive plant for a triggering condition with fixed αp and βp. On the other hand, the conditions also give

the upper bounds for αp and βp to guarantee closed-loop passivity for a given plant and controller with known

passivity indices. The results provide certain flexibility for designers by trade off between passivity level of the

controller and resource utilization.

Moreover, we can also obtain an estimate of passivity indices for the passivated system, as shown in Theorem

16.

Corollary 16. Assume the triggering condition is determined by (7). Suppose that the conditions (18)-(20) are

satisfied and νp + ρc > αp. If we choose ε and δ such that 0 ≤ ε ≤ νp(ρc−αp)
νp+ρc−αp

0 ≤ δ ≤ νc + ρp − βp
, (24)

the interconnected system (Fig. (3)) has passivity indices ε and δ satisfying

V̇ (t) ≤ wT1 (t)yp(t)− εwT1 (t)w1(t)− δyTp (t)yp(t) (25)

Proof: If the condition (18)-(20), (24) and νp + ρc > α are satisfied, we have νp − ε −νp
−νp νp + ρc − αp

 ≥ 0 (26)

νc + ρp − βp − δ ≥ 0. (27)

Then it implies[
wT1 (t) yTc (t)

] νp − ε −νp
−νp νp + ρc − αp

 w1(t)

yc(t)

+ (ρp + νc − βp − δ) yTp (t)yp(t) ≥ 0,

which can be written as

−
[
wT1 (t) yTc (t)

] νp −νp
−νp νp + ρc − αp

 w1(t)

yc(t)

− (ρp + νc − βp) yTp yp ≤

−εwT1 (t)w1(t)− δyTp (t)yp(t). (28)

Since it is already known that

V̇ (t) ≤ wT1 (t)yp(t)−
[
wT1 (t) yTc (t)

] νp −νp
−νp νp + ρc − αp

 w1(t)

yc(t)

− (ρp + νc − βp) yTp (t)yp(t)

we can conclude that

V̇ (t) ≤ wT1 (t)yp(t)− εwT1 (t)w1(t)− δyTp (t)yp(t) (29)

holds for ∀w1.
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Remark 17. Because of the conditions (18)-(20) and νp+ρc > αp, the passivity indices ε and δ are upper bounded

by positive numbers. (24) provides a way to obtain the desired passivity indices of the closed-loop system by

choosing a passive Gc with proper indices and a triggering condition with proper αp and βp. As we point out

in Remark 15, the trade off between performance (passivity level) and resource utilization can be considered. For

instance, if an OFP index given by δ = νc+ρp−βp is desired, one can either choose a passive controller with high

νc and a triggering condition with low βp to conserve more communication resources, or a triggering condition

with high βp and a passive controller with low νc to impose less restrictions on the controller design.

B. Passivity Analysis and Passivation for Event-Trigerred Sampler of Controller Output

For the feedback system with event-triggered sampler of controller output (Fig. 4), we can follow the same

rationale as for the feedback system with event-triggered sampler of plant output. We first consider the passivity

analysis problem and then move to the passivation problem.

Lemma 18. Consider two IF-OF systems with the passivity indices νp, ρp and νc, ρc respectively. If the event time

tk is explicitly determined by the following triggering condition

‖ec(t)‖2 =
βc√

ν2p +mcβc + |νp|
‖yc(t)‖2 (30)

where mc = 1
4αc

+ |νp| − νp, αc > 0 and βc > 0, the interconnected system with the event-triggered sampler (Fig.

4) is QSR-dissipative (with respect to the input w(t) =

 w1(t)

w2(t)

and output y(t) =

 yp(t)

yc(t)

), which satisfies

the inequality

V̇ (t) ≤ y(t)TQy(t) + 2w(t)TSy(t) + w(t)TRw(t) (31)

where

Q =

 − (ρp + νc − αc) I 0I

0I − (νp + ρc − βc) I

 ,
S =

 1
2I νpI

−νcI 1
2I

 ,
and

R =

 − (νp − |νp|) I 0I

0I −νcI

 .
.

Proof: Since Gp and Gc are IF-OF systems with the passivity indices νp, ρp, νc and ρc, there exist Vp(t) and

Vc(t) such that

V̇p(t) ≤ uTp (t)yp(t)− νpuTp (t)up(t)− ρpyTp (t)yp(t)

and
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V̇c(t) ≤ uTc (t)yc(t)− νcuTc (t)uc(t)− ρcyTc (t)yc(t).

Consider a storage function for the interconnected system given by V (t) = Vp(t) + Vc(t), we have

V̇ (t) = V̇p(t) + V̇c(t) ≤ uTp (t)yp(t)− νpuTp (t)u(t)p − ρpyTp (t)yp(t)

+uTc (t)yc(t)− νcuTc (t)uc(t)− ρcyTc (t)yc(t). (32)

Consider that up(t) = w1(t)− yc(tk), uc(t) = yp(t) +w2(t) and yc(tk) = yc(t)− ec(t). For any t ∈ [tk, tk+1),

(32) can be rewritten as

V̇ (t) ≤
(
wT1 (t)− yc(tk)

)
yp(t)− ρpyTp (t)yp(t)− νp (w1(t)− yc(tk))

T
(w1(t)− yc(tk)) +

(w2(t) + yp(t))
T
yc − ρcyTc (t)yc(t)− νc (w2(t) + yp(t))

T
(w2(t) + yp(t))

= wT1 (t)yp(t) + wT2 (t)yc(t) + 2νpw
T
1 (t)yc(t)− 2νcw

T
2 (t)yp(t)− νpwT1 (t)w1(t)− νcwT2 (t)w2(t)

−(νp + ρc)y
T
c (t)yc(t)− (ρp + νc)y

T
p (t)yp(t)− 2νpw

T
1 (t)ec(t) +

2νpy
T
c (t)ec(t)− νpeTc (t)ec(t) + yTp (t)ec(t).

Since −2νpw
T
1 (t)ec(t) ≤ |νp|wT1 (t)w1(t) + |νp| eTc (t)ec(t), we can obtain that

V̇ (t) ≤
[
wT1 (t) wT2 (t)

] 1 2νp

−2νc 1

 yp(t)

yc(t)


+
[
wT1 (t) wT2 (t)

] −νp + |νp| 0

0 −νc

 w1(t)

w2(t)


+
[
yTp (t) yTc (t)

] −(ρp + νc) 0

0 −(νp + ρc)

 yp(t)

yc(t)


+2νpy

T
c (t)ec(t) + (|νp| − νp)eTc (t)ec(t) + yTp (t)ec(t).

With yTp (t)ec(t) ≤ αc ‖yp(t)‖22 + 1
4αc
‖ec(t)‖22 where αc > 0, we can further get

V̇ (t) ≤ 2wT (t)Sy(t) + wT (t)Rw(t) + yT (t)Qy(t) + 2νpy
T
c (t)ec(t)

+(
1

4αc
+ |νp| − νp)eTc (t)ec(t)− βyTc (t)yc (33)

where

Q =

 − (ρp + νc − αc) I 0I

0I − (νp + ρc − βc) I

 ,
S =

 1
2I νpI

−νcI 1
2I

 ,
R =

 − (νp − |νp|) I 0I

0I −νcI


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and β > 0.

Note that 2νpy
T
c (t)ec(t) ≤ 2 |νp| ‖yc(t)‖2 ‖ec(t)‖2. Then we can show

V̇ (t) ≤ 2wT (t)Sy(t) + wT (t)Rw(t) + yT (t)Qy(t)

+

(
√
mc ‖ec(t)‖2 +

|νp|√
mc
‖yc(t)‖2

)2

−

(
ν2p
mc

+ βc

)
‖yc(t)‖22

= 2wT (t)Sy(t) + wT (t)Rw(t) + yT (t)Qy(t) +√mc ‖ec(t)‖2 +
|νp|√
mc
‖yc(t)‖2 +

√
ν2p
mc

+ βc ‖yc(t)‖2


×

√mc ‖ec(t)‖2 +
|νp|√
mc
‖yc(t)‖2 −

√
ν2p
mc

+ βc ‖yc(t)‖2


From (30), one can verify that

V̇ (t) ≤ 2wT (t)Sy(t) + wT (t)Rw(t) + yT (t)Qy(t)

which completes the proof.

Theorem 19. Suppose that the passivity indices νp, ρp, νc and ρc are known and the triggering condition is

determined by (30). If we choose ε and δ such that ε < min {νp − |νp| , νc}

δ ≤ min
{
ρp − αc − ενc

νc−ε , ρc − βc −
(|νp|+ε)νp
νp−|νp|−ε

} , (34)

the interconnected system with the event-triggered sampler (Fig. 4) has the passivity indices ε and δ satisfying

V̇ ≤ wT (t)y(t)− εwT (t)w(t)− δyT (t)y(t) (35)

where w(t) =

 w1(t)

w2(t)

 and y =

 yp(t)

yc(t)

.

Proof: From (31) , we have

V̇ (t) ≤ wT (t)y(t)−
[
wT1 (t) yTc (t)

] νp − |νp| −νp
−νp νp + ρc − βc

 w1(t)

yc(t)


−
[
wT2 (t) yTp (t)

] νc νc

νc ρp + νc − αc

 w2(t)

yp(t)

 . (36)

Since ε and δ are chosen such that (34) is satisfied, (37) holds for the chosen ε and δ.

ε ≤ νp − |νp|

ε ≤ νc
(νp − |νp| − ε) (νp + ρc − βc − δ) ≥ ν2p

(νc − ε) (ρp + νc − αc − δ) ≥ ν2c
νp + ρc − βc − δ ≥ 0

ρp + νc − αc − δ ≥ 0

. (37)
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(37) further implies that the matrices

M =

 νp − |νp| − ε −νp
−νp νp + ρc − βc − δ


and

N =

 νc νc

νc ρp + νc − αc − δ


are positive semi-definite. Therefore, we have[

wT1 (t) yTc (t)
]
M

 w1(t)

yc(t)

+
[
wT2 (t) yTp (t)

]
N

 w2(t)

yp(t)

 ≥ 0 (38)

for ∀ w1(t), w2(t), yc(t) and yp(t). After re-arranging the terms in (38), one can obtain

−wT (t)Ew(t)− yT (t)∆y(t) ≥

−
[
wT1 (t) yTc (t)

]
O

 w1(t)

yc(t)

− [ wT2 (t) yTp (t)
]
P

 w2(t)

yp(t)

 . (39)

where E =

 ε 0

0 ε

, ∆ =

 δ 0

0 δ

, O =

 νp − |νp| −νp
−νp νp + ρc − βc

, and P =

 νc νc

νc ρp + νc − αc

 .
From (39) and (36), we can finally show that

V̇ (t) ≤ wT (t)y(t)−
[
wT1 (t) yTc (t)

] νp − |νp| −νp
−νp νp + ρc − βc

 w1(t)

yc(t)


−
[
wT2 (t) yTp (t)

] νc νc

νc ρp + νc − αc

 w2(t)

yp(t)


≤ wT (t)y(t)− εwT (t)w(t)− δyT (t)y(t) (40)

Remark 20. The results in Lemma 18 and Theorem 19 are similar to their counterparts for the feedback system

with event-triggered sampler of plant output. However, note that the triggering condition (30) now depends on αc,

βc and νp. Moreover, the matrices Q, S and R in (31) are different from those in (8).

For the passivation problem, Theorem (21) gives the conditions of rendering the interconnected system passive.

Theorem 21. Assume w2 = 0 and the triggering condition is determined by (30). The interconnected system with

the event-triggered sampler (Fig. 4) is passive with respect to the input w1 and output yp if the passivity indices

satisfy the conditions

νp = 0 (41)

ρc ≥ βc (42)

ρp + νc ≥ αc. (43)
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Proof: If w2(t) = 0 and νp = 0, (36) becomes

V̇ (t) ≤ wT1 (t)yp(t)− (ρc − βc)yTc (t)yc(t)− (ρp + νc − αc)yTp (t)yp(t)

Since we have ρc ≥ βc and ρp + νc ≥ αc, we can conclude that

V̇ (t) ≤ wT1 (t)yp(t)− (ρc − β)yTc (t)yc(t)− (ρp + νc − αc)yTp yp

≤ wT1 (t)yp(t). (44)

Remark 22. The condition (41) requires the plant Gp to be a OFP system. Because of (41), the triggering condition

(30) can be further simplified as ‖ec(t)‖2 = 2
√
αcβc ‖yc(t)‖2 , which shows that the triggering condition is

independent of the passivity indices of the plant Gp and controller Gc. Therefore, one can first design a desired

triggering condition by choosing αc and βc, and then design a passive controller satisfying the conditions (41)-(43),

and vice versa.

Corollary 23. Suppose that the conditions (41)-(43) are satisfied. If we choose ε and δ such that ε = 0

0 ≤ δ ≤ ρp + νc − αc
, (45)

the interconnected system with event-triggering (Fig. 4) has the passivity indices ε and δ satisfying

V̇ (t) ≤ wT1 (t)yp(t)− εwT1 (t)w1(t)− δyTp (t)yp(t) (46)

Proof: If the condition (41)-(43) are satisfied, we have

V̇ (t) ≤ wT1 (t)yp(t)− (ρc − β)yTc (t)yc(t)− (ρp + νc − α) yTp yp ≤ wT1 (t)yp(t)− (ρp + νc − α) yTp yp

If δ is chosen such that 0 ≤ δ ≤ ρp+νc−α, we can show that (ρp + νc − α− δ) yTp (t)yp(t) ≥ 0, which implies

that

V̇ (t) ≤ wT1 (t)yp(t)− (ρp + νc − α) yTp yp ≤ wT1 (t)yp(t)− εwT1 (t)w1(t)− δyTp (t)yp(t)

where ε = 0.

Remark 24. The condition (45) implies that the closed-loop system is actually an OSP system with an OFP index

δ ≤ ρp + νc − αc. The ideas of passivity indices design and passivity-resource trade off discussed in Remark (17)

apply likewise.
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V. EXAMPLES

The examples show how to passivate a nonlinear plant with a linear feedback controller with event-triggered

samplers at the plant output (Fig. 3) and at the controller output (Fig. 4), respectively. For both examples, it is

assumed that w2 = 0.

Example 25. We first consider the case that the event-triggered sampler is implemented at the plant output (as

shown in Fig. 3 ). Assume that the plant Gp is a nonlinear system (an adapted model of H3 used in [24]), given

by

ẋ1 = x2

ẋ2 = −0.5x31 + 0.1x2 + up

yp = x2

Gp admits a storage function given by

V (x) =
1

8
x41 +

1

2
x22,

and

V̇ (x) = upyp + 0.1y2p.

Therefore the OFP level for Gp are ρp = −0.1.

The feedback controller Gc is a 2nd-order system with

A =

 −2 −1

−3 −5

 ,
B =

 1

2

 ,
C =

[
1 1

]
, D = 1.

We can determine the passivity levels of Gc to be νc = 0.3 and ρc = 0.5.

It can be seen that the triggering condition (7) depends on two non-negative scalars αp and βp, in addition to the

passivity levels of Gp and Gc. In order to guarantee passivity of the closed-loop system, αp and βp need to satisfy

the conditions (42)-(43), proposed in Theorem 21. Therefore, we choose αp = 0.3 < ρc and βp = ρp + νc = 0.2

so that the obtained triggering condition is

‖ep(t)‖2 > 0.2497 ‖yp(t)‖2 . (47)

It is noted the closed system is now a passive system with the passivity levels ε = 0 and δ = 0, given by (45).

The simulation results are shown in Fig. 5-7. Fig. 5 verifies that the trajectory of the function
´
w1ypdt is

always above 0 along the time of simulation. Fig. 6 shows the event-triggered sampler only samples the plant
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output at certain time instants determined by the triggering condition. Fig. 7 presents the evolutions of ‖ep‖2 and

0.2497 ‖yp(t)‖2, illustrating the time instants when the triggering condition is satisfied.
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Figure 5. The trajectory of the function
´
w1ypdt over time t for w1(t) = sin(2πt) + 1, under the triggering condition (47)

As discussed in Remark 15 and 17, it is possible to increase the passivity levels of the closed-loop systems at

the cost of a “tighter” bound on the triggering condition. We can choose βp = 0.05 so that the triggering condition

becomes

‖ep(t)‖2 > 0.0754 ‖yp(t)‖2 . (48)

Although the new triggering condition results in more frequent sampling of the plant output, based on Corollary

23 the closed system is an OSP system with OFP level δ = 0.15.

Similarly, the simulation results under the triggering condition (48) are shown Fig. 8-10. Note that Fig. 8 verifies

that the trajectory of the function
´
w1yp − 0.15y2pdt is always above 0 along the time of simulation. Compared

to Fig. 6 and 7, Fig. 9 and 10 show that the sampler is triggered more frequently due to the tighter triggering

condition.

Example 26. We then consider the case that the event-triggered sampler is implemented at the controller output

(as shown in Fig. 4 ). We still use the same plant Gp and controller Gc as defined in Example 25.

In this case, the triggering condition (30) depends on two non-negative scalars αc and βc, other than the passivity

levels of Gp and Gc. We can choose αc = 0.2 and βc = 0.5 so that the conditions (41)-(43) in Theorem (21) are
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Figure 6. The trajectories of the event-triggered sampler output yp(tk) and the plant output yp over time t, under the triggering condition

(47)
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Figure 7. The trajectories of the error ‖ep‖2 and 0.2497 ‖yp(t)‖2 in the triggering condition (47)
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Figure 8. The trajectory of the function
´
w1yp − 0.15y2pdt over time t for w1(t) = sin(2πt) + 1, under the triggering condition (48)
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Figure 9. The trajectories of the event-triggered sampler output yp(tk) and the plant output yp over time t, under the triggering condition

(48)
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Figure 10. The trajectories of the error ‖ep‖2 and 0.0754 ‖yp(t)‖2 in the triggering condition (48)

satisfied. Therefore the obtained triggering condition is

‖ec(t)‖2 > 0.6325 ‖yc(t)‖2 . (49)

Moreover, Corollary (23) shows that the closed system is a passive system with the passivity levels ε = 0 and

δ = 0. The simulation results are shown in Fig. 11-13. Fig. 11 shows the evolution of the function
´
w1ypdt. Fig.

12 shows the evolution of the outputs of the controller and sampler. Fig. 13 shows the evolution of the signals in

the triggering condition (49).

Analogously to the previous example, we can also enhance the passivity levels of the closed-loop system by

choosing an event-triggering condition which leads to more frequent sampling. Therefore we can change αc to 0.05

so that the same OFP index (δ = 0.15) is obtained, as in Example 25. The resulting triggering condition is

‖ec(t)‖2 > 0.3162 ‖yc(t)‖2 . (50)

The simulation results under the triggering condition (50) are shown in Fig. 14-16. It can be seen that the OFP

index has been increased to 0.15 by increasing sampling frequency of the sampler.

VI. CONCLUSION

In this paper, we considered the problems in passivity analysis and passivation using passivity indices for event-

triggered feedback interconnected systems, which extended our previous work in [15] for feedback interconnected
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Figure 11. The trajectory of the function
´
w1ypdt over time t for w1(t) = sin(2πt) + 1, under the triggering condition (49)
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Figure 12. The trajectories of the event-triggered sampler output yc(tk) and the controller output yc over time t, under the triggering condition

(49)
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Figure 13. The trajectories of the error ‖ec‖2 and 0.6325 ‖yc(t)‖2 in the triggering condition (49)
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Figure 14. The trajectory of the function
´
w1yp − 0.15y2pdt over time t for w1(t) = sin(2πt) + 1, under the triggering condition (50)
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Figure 15. The trajectories of the event-triggered sampler output yc(tk) and the controller output yc over time t, under the triggering condition

(50)
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Figure 16. The trajectories of the error ‖ec‖2 and 0.3162 ‖yc(t)‖ in the triggering condition (50)
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systems assuming continuous communication in the feedback loop. We consider two event-triggered control schemes

respectively: event-triggered sampler of the plant output and event-triggered sampler of the controller output.

By knowing passivity indices of the plant and controller, the conditions to determine the passivity indices of

interconnected systems were given, with the proposed event-triggering condition. We also showed the passivation

conditions in terms of the passivity indices of the plant and controller and the triggering condition. The trade off

between passivity and communication resources utilization was also discussed.
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