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On a notion of passivity for discrete systems

Shravan Sajja1∗, Vijay Gupta2 and Panos J. Antsaklis2

Abstract— Cyber Physical Systems (CPS) often have contin-
uous components interconnected with systems described by
discrete state space. Examples of such discrete components
may be supervisory controllers or components implemented in
software. To design large scale CPS in a compositional manner
it would be useful to define a notion of passivity for these
discrete components as well. As a first step towards this goal
we assign notions of passivity and passivity indices for a finite
state model that is abstracted from an infinite state continuous
system. We also characterize the degradation of passivity under
this abstraction and analyze the stability properties of such
passive discrete systems.

I. INTRODUCTION

There is a resurgence of interest in the classical concepts
of passivity and dissipativity for the design of large
scale cyber physical systems owing to the property of
compositionality that these concepts offer. The reader
is referred to texts such as [1], [2] and articles such as
[3], [4] for a survey of the research landscape in this
direction. Somewhat surprisingly, however, there is limited
understanding of passivity for discrete (state) systems,
such as those obtained when systems are implemented in
software or from higher order controllers such as supervisory
controllers or trajectory planners.

Interaction between continuous plants and discrete
controllers is an important feature of modern day embedded
systems and cyber physical systems. The problem is
not trivial since it is known that several conventional
discretization methods (where discretization is of the
time variable and the state is deemed continuous) and
quantization procedures (quantization of input and output)
degrade passivity, and more generally, dissipativity
properties of a continuous-time system [5]. Hence careful
design of sampling time, input and output signals, or
quantization methods is needed to ensure passivity [6],
[7], [8]. The problem is even more difficult when the
state is discretized (as in a finite state model) or when a
discrete supervisor is interconnected with a continuous plant.

A relevant line of research is passivity of hybrid systems
where both continuous and discrete dynamics are considered
in the same framework [9], [10]. Recently, new passivity
conditions have also been proposed for switched systems
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[11], linear complimentarity systems [12] and piecewise
affine systems [13]. Although the hybrid systems framework
is well established, systematic compositional methods to
analyze the interconnection between discrete controllers and
continuous plants are not yet available.

Instead, we follow an alternate approach based on
abstracting finite state models from infinite state models
(continuous-time systems) which may further interact with
other finite state systems. There is now significant work
available on abstracting finite state models from continuous
systems while maintaining equivalence in a certain sense
between the two [14], [15] , [16], [17]. The common
approach between most of these works is to design discrete
controllers for the finite state discrete abstractions of a
plant in order to satisfy given discrete specifications. The
abstractions are such that the same discrete controller works
for the continuous system. This requirement imposes certain
requirements on the abstraction methodology in order to
maintain a certain equivalence between the continuous
systems and the finite state systems. In works such as [17],
[18], notions of input output stability and Lyapunov stability
have been proposed for systems in the discrete domain;
however, they do not allow a natural description of system’s
passive behavior. Passivity property for continuous plants
is described using a notion of inner product over a real
space, thus motivating abstractions which allow a notion of
inner product to defined for the input-output vectors of the
finite state abstraction. To this end, we follow the approach
of abstracting a finite state model using the concepts of
simulations and bisimulations. In particular, we follow
the notions of approximate simulation and approximate
bisimulation [19], and in particular their extensions for
continuous nonlinear systems that are incrementally forward
complete [20].

Specifically, we note that [20] incorporates notions of a
metric and a vector space, as well as provides us conditions
on sampling time and quantization parameters that guarantee
approximately similar models. The notions of approximate
similarity are based on bounding the distance between the
output trajectories of the continuous-time system and its
abstraction. However, in order to preserve properties like
passivity, which are described using both inputs and outputs,
we need to extend the notions of approximate simulation
further. In Section II we introduce new notions of ap-
proximate input output simulation and approximate input
output alternating simulation. Similar notions of input output
simulations were also proposed by [23] and [24]. In Section



III, we show how to obtain such finite abstractions based
on certain modifications to the methods proposed by [20].
Then we use these approximate relations to quantify the
degradation of passivity (in terms of passivity indices) under
abstraction. In Section IV, we generalize notions of passivity
and dissipativity for a class of finite state transition systems.
Then we analyze such finite abstractions to find conditions
under which they attain stable behavior in a practical sense.
A companion paper [29] considers the interaction of these
finite state models with higher order supervisory controllers
to ensure that the entire interconnection is passive. We
would also like to mention the paper [30] that considers
the related but complementary problem of discretizing a
controller designed in the continuous space so that passivity
indices of the closed loop system are maintained despite
discretization. Note that while [30] requires a bisimulation
of the controller, we require a simulation of the plant for our
purpose.

II. PRELIMINARIES

A. Notation

The identity map on a set A is denoted by 1A. If A is a
subset of B we denote by ıA : A ↪→ B or simply by ı the
natural inclusion map taking any a ∈ A to ı(a) = a ∈ B. The
symbols N, R, R+ and R+

0 denote the set of natural, real,
positive, and nonnegative real numbers, respectively. The
transpose of a general matrix M is denoted by MT . A matrix
P is symmetric if PT = P. A symmetric matrix P is positive
(negative) definite if xT Px > 0 (xT Px < 0) for all non-zero x
and we denote this by P > 0 (P < 0). A symmetric matrix
P is positive (negative) semi-definite if xT Px≥ 0 (xT Px≤ 0)
for all x and we denote this by P ≥ 0 (P ≤ 0). The inner
product of signals u(t), y(t) is denoted by 〈u,y〉 defined as
〈u,y〉 =

∫ t
0 uT (τ)y(τ)dτ . Given a vector x ∈ Rn, xi is the i-

th element of x and we denote infinity norm and euclidean
norms of x by ‖x‖ and ‖x‖2. Given a measurable function
f : R+ : 0← Rn the (essential) supremum (sup norm) of f
is denoted by ‖‖∞. If A⊆ Rn and η ∈ R+, [A]η denotes the
subset [A]η ⊆ A defined by:

[A]η =
{

z ∈ A | zi = kiη for some ki ∈ A and i = 1,2, . . . ,n
}
.

The set [A]η will be used as an approximation of the set A
with precision η . If we define Bε(x) = {y ∈ Rn| ‖x− y‖ ≤
ε}. For set A ⊆ Rn of the form A =

⋃M
j=1 A j for some

M ∈ N, where A j = Πn
i=1[c

j
i ,d

j
i ] ⊆ Rn with c j

i < d j
i and

positive constant η ≤ η̂ , where η̂ = min j=1,...,M ηA j and
ηA j = min{|d j

1− c j
1|, · · · , |d

j
n− c j

n|}. Note that [A]η 6= ∅ for
any η ≤ η̂ . Geometrically, for any η ∈ R+ and λ ≥ η

the collection of sets {Bλ (p)}p∈[A]η is a covering of A,
i.e. A⊆

⋃
p∈[A]η Bλ (p). A continuous function γ : R+

0 → R+
0

belongs to class K if it is strictly increasing and γ(0) = 0;
γ belongs to class K∞ if γ ∈K and γ(r)→ ∞ as r→ ∞.
A continuous function γ : R+

0 ×R+
0 → R+

0 belongs to class
K L if, for each fixed s, the map β (r,s) belongs to class
K∞ with respect to r and, for each fixed r, the map β (r,s)
is decreasing with respect to s and β (r,s)→ 0 as s→ ∞. A

relation R⊆A×B is defined by a map of the form R : A→ 2B

where b ∈ R(a) if and only if (a,b) ∈ R. For a set S ∈ A the
set R(S) is defined as R(S) = {b ∈ B : ∃ a ∈ S,(a,b) ∈ R}.
We also denote by d : X×X →R+

0 a metric in the space X .

B. Incremental forwardness and stability

In this paper we restrict ourselves to control systems of the
form Σ = (Rn,U,U , f ) where
• Rn is the state space;
• U⊆ Rm is the input space;
• U :R→U is a subset of the set of all locally essentially

bounded functions of time from intervals of the form
]a,b[⊆ R to U with a < 0 and b > 0;

• f : Rn×U→ Rn is a Lipschitz continuous map.
If ξ :]a,b[−−→ Rn is a trajectory of Σ (or equivalently a
solution of the differential equation ẋ = f (x,u)), then we
will use ξ (τ,x,v) to denote a unique point reached at time
τ under the input v from an initial condition x. System Σ is
said to be forward-complete if such a solution is defined for
all t ∈]0,∞[. In this paper we use an incremental version of
this property, defined as:

Definition 1 (Incremental forward-completeness): A
control system Σ is δ -FC if there exist continuous functions
β : R+

0 ×R+
0 → R+

0 and γ : R+
0 ×R+

0 → R+
0 such that for

every s∈R+, the functions β (·,s) and γ(·,s) belong to class
K∞, and for any x,x′ ∈ Rn, any τ ∈ R+, and any v,v′ ∈U ,
where v,v′ : [0,τ)→ U, the following condition is satisfied
for all t ∈ [0,τ]:

‖ξ (t,x,v)−ξ (t,x′,v′)‖ ≤ β (‖x− x′‖, t)+ γ(‖v− v′‖∞, t).
(1)

Definition 2 (Asymptotic Stability): The origin of Σ with
ẋ = f (x,0) is asymptotically stable if and only if there exists
a β (·, ·) ∈K L such that when ‖x(0)‖ ≤ δ we have

‖ξ (t,x(0),0)‖ ≤ β (‖x(0)‖, t) ∀t ≥ 0. (2)

C. Dissipativity

Consider the system Σ and an output function y = h(x,u) ∈
Rp. Further, assume that f (0,0) = 0 and h(0,0) = 0. Σ is
dissipative w.r.t. y = h(x,u) if there exists a C 1 storage
function V (x) : Rn→R+

0 and a supply rate ω : U×Rp→R+
0

such that V (0) = 0 and the following inequality is satisfied:

V (x(t))−V (x(t0))≤
∫ t

t0
ω(u,y)dt (3)

for any t ≥ t0 and u ∈U . A special case of dissipativity is
(ρ,ν)-input output strict passivity (IOSP) when ω(u,y) =
uT y−νuT u−ρyT y with ρ,ν ≥ 0. In this definition, parame-
ters ν and ρ are known as passivity indices. The next Lemma
presents an important implication of passivity on stability
properties of Σ.

Lemma 1: [25](Zero-input asymptotic stability) The
origin of Σ with ẋ = f (x,0) is asymptotically stable if
Σ is (ρ,ν) - IOSP with ρ > 0 and ν ≥ 0 and ρyT y > 0.
Furthermore, if the storage function is radially unbounded,
the origin will be globally asymptotically stable.



One of our main goals in this paper is to understand
the implications of finite state abstraction on such stability
properties of a passive system.

D. Transition systems and system relations

Definition 3: [21] A system T is a quintuple T =
(X ,U,−−→,Y,H) consisting of:

• A set of states X ;
• A set of inputs U ;
• A transition relation −−→⊆ X×U×X ;
• An output set Y ;
• An output function H : X → Y .

T is said to be metric, if the output set Y is equipped with
a metric; d : Y ×Y → R+

0 . To define notions of stability for
transition systems we assume that the finite sets X ,U , and Y
are equipped with the metric given by d(x,y)= ‖x−y‖ where
x,y are elements of X ,U , or Y . If for any state x ∈ X and
u∈U there exists at most one state x′ ∈ X such that x u−−−→
x′. If the system is nondeterministic, then for a transition
x u−−−→ x′ the state x′ may not unique, x′ is also known as
the u-successor of x. In such a case x′ belongs to a set of
all possible u-successors given by Postu(x) and we will use
U(x) to denote the set of inputs u ∈U for which Postu(x)
is nonempty. We will further use Postu(Q) to denote the set⋃

x∈Q Postu(x).

E. System relations

Now we present certain system relations, that are essential
in obtaining faithful finite abstractions for control systems.
Approximate simulation relations used in [19] and [22]
are primarily based on bounding the distance between the
outputs or states of the continuous-time and its abstraction.
However, in order to account for behaviors like passivity
(which are defined using both inputs and outputs), we in-
troduce new notions of approximate input output simulation
and approximate input output alternating simulation.

Definition 4 (Approximate input output simulation):
Let T1 := (X1,U1,−−−−→

1
,Y1,H1), T2 := (X2,U2,−−−−→

2
,Y2,H2) be metric transition systems with the same sets of
inputs U = U1 = U2 and outputs Y = Y1 = Y2 and equipped
with the metric d. Let εu,εy ∈ R+

0 be given precision
requirements then a relation R ⊆ X1×X2 is said to be an
(εu,εy) - approximate input output simulation (IOS) relation
between T1 and T2 if the following two conditions are
satisfied:
(i) for every (x1,x2) ∈ R we have d(H1(x1),H2(x2))≤ εy;

(ii) for every (x1,x2) ∈ R and for every u1 ∈U1 there exists
u2 ∈U2 such that d(u1,u2)≤ εu and x1

u1−−−−→
1

x′1 in T1

implies the existence of x2
u2−−−−→
2

x′2 in T2 such that

(x′1,x
′
2) ∈ R.

Definition 5: (Approximate input output alternating
simulation): Let T1 := (X1,U1,−−−−→

1
,Y1,H1), T2 :=

(X2,U2,−−−−→
2

,Y2,H2) be metric transition systems with the
same sets of inputs U = U1 = U2 and outputs Y = Y1 = Y2

and equipped with the metric d. Let εu,εy ∈ R+
0 be a given

precision requirements, a relation R ⊆ X1×X2 is said to be
an (εu,εy) - approximate input output alternating simulation
(IOAS) relation from T1 to T2 if condition (i) of Definition
4 and the following condition are satisfied:
(iii) for every (x1,x2) ∈ R and for every u1 ∈U1(x1) there

exists u2 ∈U2(x2) such that d(u1,u2)≤ εu and for every
x′2 ∈ Postu2(x2) there exists x′1 ∈ Postu1(x1) satisfying
(x′2,x

′
1) ∈ R.

The two notions of alternating approximate simulation and
approximate simulation coincide in the special case of de-
terministic systems. If T1 is (εu,εy)- approximately input
output simulated (or approximately input output alternatingly
simulated) by T2, then we denote this fact by T1 �

(εu,εy)
IOS T2

(T1 �
(εu,εy)
IOAS T2).

F. Finitely abstracted transition systems

In this paper, we make a modification to the procedure
described in [20], to obtain finite state transition systems.
Method described in [20] is based on selection of appropriate
sampling time and quantization parameters which guarantee
approximate simulation and alternating simulation relations
between the original system and its abstraction. Initially
we consider a discrete time sub-transition system Tτ(Σ)
corresponding to Σ = (Rn,U,U , f ) with a sampling time
period τ ∈ R+. We further assume that control inputs are
piecewise-constant over the sampling time period τ , the class
of inputs considered are:

Uτ := {u ∈U | u(t) = u(0), t ∈ [0,τ]}.

For Tτ(Σ) we use identity map as the output function,
however, for stability and passivity analysis, we use an
alternate output corresponding to y = h(x,u).

Definition 6: [21] Let Σ be a control system and T (Σ) its
associated transition system. For any τ > 0, the sub transition
system Tτ(Σ) := (Xτ ,Uτ ,

uτ−−−−→
τ

,Yτ ,Hτ) is defined by:

• Xτ = Rn;
• Uτ = Uτ ;
• xτ

uτ−−−−→
τ

x′τ , if there exists a trajectory ξ : [0,τ]−−−→
ξ (τ,xτ ,uτ) = x′τ ;

• Yτ = Rn;
• Hτ = 1Rn .

Now we restrict the input set and the state set to a hyper-
rectanlges U⊆Rm and X ⊆Rn such that {0} ∈U and {0} ∈
X . Then we choose input and state quantization factors such
that µ ≤ µ̂ and η ≤ η̂ (see Section II.A on how to calculate
µ̂ , η̂).

Definition 7: For any δ -FC control system Σ and parame-
ters τ > 0, η > 0, µ > 0 and a design parameters θ1,θ2 ∈R+,
a countable transition system can be defined as:

Tτ,µ,η(Σ) := (Xq,Uq,
uq−−−−→
τ

,Yq,Hq) (4)

where:
• Xq = [X ]η ;
• Uq = [U]µ ;



• xq
uq−−−−→
τ

x′q, if ‖ξ (τ,xq,uq) − x′q‖ ≤ β (θ1,τ) +

γ(θ2,τ)+η ;
• Yq = [X ]η
• Hq = ı : Xq ↪→ Yq

where β and γ are functions from Definition 1.
Finite transition system Tτ,µ,η(Σ) is different from the tran-
sition systems abstracted in [20], because of an extra design
parameter θ2. This extra design parameter is necessary to
obtain finite abstractions which are approximately input
output (alternatingly) similar to the original system. In the
next section we provide sufficient conditions to guarantee the
existence of such approximate abstractions. We also quantify
the degradation of passivity condition for a continuous-
time IOSP system under such abstractions. We illustrate this
degradation through a new dissipation inequality satisfied
by the finitely abstracted transition system. Based on this
new inequality, we define a new notion of practical passivity
for transition systems. Further, we show that this notion of
practical passivity guarantees a notion of zero-input practical
asymptotic stability transition system akin to continuous-time
passive systems.

III. DEGRADATION OF PASSIVITY

Initially we provide sufficient conditions for Tτ,η ,µ(Σ) to be
(εu,εy) - approximately input output (alternatingly) similar
Tτ(Σ).

Proposition 1: Consider a control system Σ and any de-
sired precision parameters εy > 0, εu > 0. If Σ is δ -FC then
for any τ > 0, θ1 > 0, θ2 > 0, η > 0 and µ > 0 satisfying
the following inequality:

β (θ1,τ)+ γ(θ2,τ)+η ≤ εy, (5)

such that η ≤ εy ≤ θ1 and µ ≤ εu ≤ θ2, we have:

Tτ,η ,µ(Σ)�
(εu,εy)
IOAS Tτ(Σ)�

(εu,εy)
IOS Tτ,η ,µ(Σ). (6)

PROOF: Initially we show that Tτ(Σ)�
(εu,εy)
IOS Tτ,η ,µ(Σ). Con-

sider any xτ ∈ Xτ and uτ ∈Uτ , then there exists xq ∈ Xq =
[X ]η and uq ∈Uq = [U]µ such that

‖xτ − xq‖ ≤ η ≤ εy (7)

and
‖uτ −uq‖ ≤ µ ≤ εu (8)

This is possible because of the nature of quantization which
allows Xτ ⊆

⋃
p∈[X ]η Bλ (p) and Uτ ⊆

⋃
p∈[U]µ Bλ (p). From

the definitions of output functions Hτ = 1Rn and Hq = ı :
Xq ↪→ Yq, we have ‖Hτ(xτ)− Hq(xq)‖ = ‖xτ − xq‖ ≤ εu,
hence condition (i) of Definition 4 is satisfied.

Now if we consider the transition xτ

uτ−−−−→
τ

x′τ in the
transition system Tτ(Σ) , then the distance between x′τ and
ξ (τ,xq,uq) can estimated based on the δ - FC property of
Σ and inequalities (7) and (8) i.e.,

‖x′τ −ξ (τ,xq,uq)‖ ≤ β (εy,τ)+ γ(εu,τ) (9)

Since Xτ ⊆
⋃

p∈[X ]η Bλ (p), there exists x′q ∈ Xq such that

‖x′τ − x′q‖ ≤ η (10)

From the triangular inequality we have

‖ξ (τ,xq,uq)− x′q‖ ≤ ‖ξ (τ,xq,uq)− x′τ‖+‖x′τ − x′q‖

From inequalities (9) and (10) we have

‖ξ (τ,xq,uq)− x′q‖ ≤ β (εy,τ)+ γ(εu,τ)+η

Finally we use η ≤ εy ≤ θ1 and µ ≤ εu ≤ θ2 to show that

‖ξ (τ,xq,uq)− x′q‖ ≤ β (θ1,τ)+ γ(θ2,τ)+η

which, by the definition of Tτ,µ,η(Σ) implies the existence
of xq

uq−−−→ x′q in Tτ,µ,η(Σ). Therefore, from inequality
(10) and since η ≤ εy we conclude that (x′τ ,x

′
q) ∈ R and

condition (ii) in Definition 4 holds.

Now we show that Tτ,η ,µ(Σ)�
(εu,εy)
IOAS Tτ(Σ). For R⊆ Xτ ×Xq

we consider an xτ = xq ∈ Xq. This is possible because
Xq ⊆ Xτ and it satisfies condition (i) of Definition 4 (i.e.,
‖xτ − xq‖= 0 < εy). Now we choose an input uτ = uq ∈Uq
(satisfying ‖uτ−uq‖= 0 < εu) and consider the unique tran-
sition xτ

uτ−−−−→
τ

x′τ = ξ (τ,xτ ,uτ) ∈ Postuτ
(xτ). The distance

between x′τ and ξ (τ,xq,uq) can be bounded using the δ -
FC properties of Σ, i.e.,

‖x′τ −ξ (τ,xq,uq)‖ ≤ β (0,τ)+ γ(0,τ) (11)

Since Xτ ⊆
⋃

p∈[X ]η Bλ (p), we can always find x′q ∈ Xq such
that

‖x′q− x′τ‖ ≤ η (12)

From the triangular inequality and inequalities (11) and (12)
we have

‖ξ (τ,xq,uq)− x′q‖ ≤ ‖ξ (τ,xq,uq)− x′τ‖+‖x′τ − x′q‖
≤ β (0,τ)+ γ(0,τ)+η

Finally we use 0 < θ1 and 0 < θ2 to show that

‖ξ (τ,xq,uq)− x′q‖ ≤ β (θ1,τ)+ γ(θ2,τ)+η

which, by the definition of Tτ,µ,η(Σ) implies the existence
of xq

uq−−−→ x′q in Tτ,µ,η(Σ). Therefore, from inequality
(12) and since η ≤ εy we conclude that (x′τ ,x

′
q) ∈ R and

condition (iii) in Definition 5 holds.

�

Now we analyze degradation of passivity of Σ under ap-
proximate input output similarity. For this purpose, we use
an assumption from [27]. If the control system Σ is passive
w.r.t. the passive output function y = h(x,u), this assumption
bounds the rate at which y can change w.r.t. time.



Assumption 1: [27] Assume that the operator from u(t) to
ẏ(t) has the finite L2 gain, γ , that is∫

τ

0
‖ẏ(t)‖2

2dt ≤ γ
2
∫

τ

0
‖u(t)‖2

2dt

for any τ ≥ 0 and admissible u(t).
Theorem 1: Suppose that the original continuous-time

system Σ is δ - FC and (ν , ρ) - IOSP w.r.t. the passive output
function y= h(x,u) and a storage function V with a Lipschitz
constant K. We also assume that such that Assumption 1 is
satisfied. Let Tτ(Σ) be the transition system corresponding to
Σ with a sampling time τ . If the state and input quantization
parameters η and µ are chosen such that Tτ,µ,η(Σ) is (εu,εy)
- approximately input output similar (or alternatingly similar)
to Tτ(Σ), then Tτ,µ,η(Σ) satisfies

1
τ

(
V (x′q)−V (xq)

)
≤ (uT

q ,yq)−ρF(yT
q yq)

−νF(uT
q uq)+

Kεy

τ
(13)

for all transitions of the form xq
uq−−−−→
τ

x′q with yq =

h(xq,uq) and

νF = ν− γτ− ργτ

1+ τ
and ρF =

ρ

(1+ τ)τ
. (14)

PROOF: Since Σ is (ρ,ν) - IOSP w.r.t. the passive output
y(t) = h(x(t),u(t)) we have

V (x(τ + t0))−V (x(t0)) ≤
∫

τ+t0

t0
(uT y−νuT u−ρyT y)dt

= 〈u,y〉τ −ν〈u,u〉τ −ρ〈y,y〉τ
for any t0,τ ≥ 0 and u ∈U . The passivity inequality can be
interpreted as

〈u,y〉τ −ν〈u,u〉τ −ρ〈y,y〉τ +V (x(t0))−V (x(τ + t0))≥ 0
∀x(t0) ∈ Rn, u ∈U and τ ≥ 0

Without loss of any generality we let t0 = 0. For the
sub transition system Tτ(Σ), if we consider any transition
xτ

uτ−−−−→
τ

x′τ = ξ (τ,xτ ,uτ), where uτ is a piecewise constant
input and y(t) = h(x(t),uτ) is the passive output function
with x(0) = xτ , then we have

〈uτ ,h(x(t),uτ)〉τ −ρ〈h(x(t),uτ),h(x(t),uτ)〉τ −ν〈uτ ,uτ〉τ
+V (xτ)−V (ξ (τ,xτ ,uτ))≥ 0
∀ uτ ∈Uτ ,xτ ∈ Xτ and 0≤ t ≤ τ. (15)

The finite transition system Tτ,µ,η(Σ) := (Xq,Uq,
uq−−−−→
τ

,Yq,Hq) is (εu,εy) - approximately input output similar to
Tτ(Σ). Hence we can always find a transition xq

uq−−−−→
τ

x′q
in Tτ,µ,η(Σ) such that ‖xτ − xq‖ ≤ εy, ‖uτ − uq‖ ≤ εu and
‖x′τ −x′q‖ ≤ εy. Since inequality (15) is valid for all uτ ∈Uτ

and xτ ∈ Xτ , it will be valid if we substitute uτ = uq and
xτ = xq and it is always possible to find such uτ and xτ ,
because Uq ⊆Uτ and Xq ⊆ Xτ . Thus, we have

〈uq,h(x(t),uq)〉τ −ρ〈h(x(t),uq),h(x(t),uq)〉τ −ν〈uq,uq〉τ
+V (xq)−V (ξ (τ,xq,uq))≥ 0

∀ 0≤ t ≤ τ. (16)

For clarity of exposition we define y(t) = h(x(t),uq) hence
y(0) = h(xq,uq). Now inequality (16) can be written as

〈uq,y(t)〉τ −ρ〈y(t),y(t)〉τ −ν〈uq,uq〉τ
+V (xq)−V (ξ (τ,xq,uq))≥ 0 ∀ 0≤ t ≤ τ. (17)

Form inequality (17) we will obtain the corresponding
inequality for the transition system Tτ,µ,η(Σ) in terms of its
inputs, states and outputs. To do that we bound each term
from inequality (17).

Bounds for 〈uq,y(t)〉τ : Here we compare 〈uq,y(t)〉τ and
τ(uT

q ,y(0)) and their difference can be bounded as

|〈uq,y(t)〉τ − τ(uT
q ,y(0))| = |uT

q

∫
τ

0
(y(t)−y(0))dt|

= |uT
q

∫
τ

0

∫ t

0
ẏ(s)dsdt|

≤ ‖uq‖2

∫
τ

0

∫ t

0
‖ẏ(s)‖2dsdt

Further, we can bound the integral w.r.t. s as∫ t

0
‖ẏ(s)‖2ds≤

∫
τ

0
‖ẏ(s)‖2ds≤

√
τ

√∫
τ

0
‖ẏ(s)‖2

2ds

hence

|〈uq,y(t)〉τ − τ(uT
q ,y(0))| ≤ τ

√
τ‖uq‖2

√∫
τ

0
‖ẏ(s)‖2

2ds

Since Assumption 1 is valid for all admissible inputs, it is
also valid for inputs uq and the corresponding passive output
y(t), hence we have

|〈uq,y(t)〉τ − τ(uT
q ,y(0))| ≤ τ

√
τ‖uq‖2

√∫
τ

0
‖uq‖2

2ds

= τ
2
γ(uT

q uq)

and

〈uq,y(t)〉τ ≤ τ
2
γ(uT

q uq)+ τ(uT
q ,y(0)) (18)

Bounds for −ρ〈y(t),y(t)〉τ : Here we compare 〈y(t),y(t)〉τ
and y(0)T y(0) and their difference can be bounded as

|〈y(t),y(t)〉τ −y(0)T y(0)| (19)

≤
∫

τ

0
(y(t)T y(t))dt− τ(y(0)T y(0))

≤
∫

τ

0

(∫ s

0

d
ds

(‖y(s)‖2
2)ds

)
dt

≤ τ

∫
τ

0

d
ds

(‖y(s)‖2
2)ds (20)

we can further bound this integral in s as

τ

∫
τ

0

d
ds

(‖y(s)‖2
2)ds = 2τ

∫
τ

0
y(s)T ẏ(s)ds

≤ 2τ

∫
τ

0
‖y(s)‖2‖ẏ(s)‖2ds

≤ τ

∫
τ

0
(‖y(s)‖2

2 +‖ẏ(s)‖2
2)ds

≤ τ〈y(t),y(t)〉τ + τ
2
γ(uT

q uq)



Hence inequality (19) results in

|〈y(t),y(t)〉τ −y(0)T y(0)| ≤ τ〈y(t),y(t)〉τ + τ
2
γ(uT

q uq)

thus −τ〈y(t),y(t)〉τ − τ2γ(uT
q uq)+y(0)T y(0)≤ 〈y(t),y(t)〉τ

and

ρτ2γ

1+ τ
(uT

q uq)−
ρ

1+ τ
y(0)T y(0)≥−ρ〈y(t),y(t)〉τ (21)

Bounds for −ν〈uq,uq〉τ : Since 〈uq,uq〉τ = τ(uT
q uq) we have

−ν〈uq,uq〉τ =−ντ(uT
q uq) (22)

Bounds for −V (ξ (τ,xq,uq)): Now we consider a transition
xq

uq−−−−→
τ

x′q in Tτ,µ,η(Σ) and by Definition of Tτ,µ,η(Σ)

we have ‖ξ (τ,xq,uq)− x′q‖ ≤ β (θ1,τ) + γ(θ2,τ) + η . For
Lipschitz continuous storage functions

V (x′q)≤V (ξ (τ,xq,uq))+K(‖x′q−ξ (τ,xq,uq)‖) (23)

Since Tτ(Σ) is (εy,εu) - approximately input output (alternat-
ingly) similar to Tτ,µ,η(Σ), we have ‖ξ (τ,xq,uq)−x′q‖ ≤ εy.
Hence inequality (23) results in

−V (x′q)+Kεy ≥ −V (ξ (τ,xq,uq)) (24)

From (18), (21), (22) and (24) we obtain

τ(uT
q ,y(0))−ρF τy(0)T y(0)−νF τ(uT

q uq)

+V (xq)−V (x′q)+Kεy ≥ 0.

Thus Tτ,µ,η(Σ) satisfies (13) with y(0) = h(xq,uq) and ρF ,
νF given by (14).

�

In the next section, the terms ρF and νF will be interpreted as
the passivity indices for Tτ,µ,η(Σ). Apart from degradation
of passivity indices from (ρ,ν) to (ρF ,νF), the presence
of Kεy

τ
> 0 on the right hand side of (13) indicates further

deterioration of passivity under abstraction.

IV. PASSIVITY OF TRANSITION SYSTEMS

Finitely abstracted transition system (4) is a quantized ver-
sion of the sampled-data system Tτ(Σ). The finite state
transition system (4) can be thought of as a discrete time
system with a finite state run

xq0

uq0−−−−→
τ

xq1

uq1−−−−→
τ

xq2

uq2−−−−→
τ
· · ·

uq(n−2)−−−−→ xqn−1

uq(n−1)−−−−→
τ

xqn

where xq0 ∈ Xq is the initial state and xqi
uqi−−−−→
τ

xq(i+1) for
all 0 ≤ i ≤ n. The subscript i corresponds to the sampling
time instants t = 0,1τ,2τ, . . . ,nτ and xqi corresponds to the
state of (4) at the time instant iτ . In some cases, a finite state
run can be extended to an infinite state run with i∈N. Based
on inequality (13) and discrete time nature of these transition
systems we define notions of dissipativity and passivity for
the transition system (4).

Definition 8 (Practical dissipativity): Let C 1 function V :
Xq → R+

0 be a storage function with V (0) = 0 and let ω :

Uq×Xq→R be a supply rate, then the transition system (4)
is practically dissipative with respect to ω if

1
τ

(
V (xq(i+1))−V (xqi)

)
≤ω(uqi,xqi)+δ ∀i∈N and δ > 0

(25)
for all the transitions xqi

uqi−−−−→
τ

xq(i+1).

In the above definition V (xq(i+1))−V (xqi) represents the

increase in stored energy during the transition xqi

uqi−−−−→
τ

xq(i+1) and ω(uqi,xqi) is the energy supplied before the
transition. Presence of δ > 0 on the right hand side of (25)
indicates indicates the energy generated due to the error
introduced by the abstraction process (see Theorem 1 and
[5]). A special case of dissipativity can be obtained when
the supply rate

ω(uqi,xqi) = (uT
qih(xqi,uqi))−ρF(hT (xqi,uqi)h(xqi,uqi))

−νF(uT
qiuqi) (26)

where ρF ≥ 0 and νF ≥ 0 are passivity indices for the
finite transition system. For a supply rate given by (26) we
define (4) to be (ρF ,νF ,δ )-practically input output strictly
passive w.r.t. an output function h(xqi,uqi). The function
yi = h(xqi,uqi) is an output function for the finite transition
system at a time instant iτ and it is analogous to y = h(x,u)
for the continuous-time system (see Subsection II-C). Note
that this output function is different from the output function
Hq = ı : Xq ↪→ Yq. The output function yi = h(xqi,uqi) will
be used only to study passivity and the stability behavior of
the transition system. In order to avoid confusion between
the output functions Hq and yi = h(xqi,uqi), we will refer
to yi = h(xqi,uqi) as the passive output function, i.e., the
output with respect to which the system is passive. The
passive output function for a transition system can be
obtained using Hq = ı : Xq ↪→ Yq, whenever Hq = 1Xq , i.e.,
y = h(Hq(xq),uq) = h(xq,uq).

Two important properties of continuous-time IOSP systems
are zero-input asymptotic stability (see Lemma 1) and
compositionalilty. Compositionalilty refers to the fact that
negative feedback interconnection of two passive systems
is also passive. In a companion paper [29], we discuss the
compositionality of practically IOSP transition systems. In
this paper we show that practically IOSP transition sys-
tems are also zero-input asymptotically stable, however, in
a practical sense. For this purpose we define notions of
practical asymptotic stability and we also derive Lyapunov
like sufficient conditions that guarantee practical asymptotic
stability. These Lyapunov like conditions allow us to recover
practical asymptotic stability from practically IOSP transition
systems.

Definition 9 (Practical asymptotic stability): The transi-
tion system (4) is practically asymptotically stable for zero
input uq≡ 0, if for any strictly positive real numbers ∆> δ >
0 there exists a class K L function β such that for all initial
states with ‖xq0‖ ≤ ∆, all the transitions xqi

0−−−−→
τ

xq(i+1)



(for all i ∈ N) satisfy

‖xqi‖ ≤ β (‖xq0‖, i)+δ , i ∈ N. (27)
This notion of stability for a transition system can be
described in terms of Lyapunov-like functions which provide
sufficient conditions for a transition system to be practically
asymptotically stable.

Theorem 2 (Practical stability Lyapunov function): A
C 1 function V : Xq → R+

0 is called a practical stability
Lyapunov function for the finite state transition system (4)
for zero input uqi ≡ 0, if there exists class K∞ functions α ,
α , α such that for any strictly positive real numbers ∆,δ
and xq ∈ Xq such that ‖xq‖ ≤ ∆, the following holds

α(‖xq‖)≤V (xq)≤ α(‖xq‖), (28)
V (xq(i+1))−V (xqi)≤−α(‖xqi‖)+δ (29)

α ◦α
−1 ◦α(∆)> δ . (30)

for all the transitions xqi
0−−−−→
τ

xq(i+1) (for all i ∈ N).

PROOF: From V (xq) ≤ α(‖xq‖), ∀xq ∈ Xq, thus we have
α
−1(V (xq))≤ ‖xq‖, and

−α(‖xqi‖)≤−α ◦α
−1(V (xqi)) =−α3(V (xqi))

where α3 = α ◦α
−1 ∈K∞. Then (29) can be written as

V (xq(i+1))−V (xqi)≤−α3(V (xqi))+δ . (31)

Define D= {ζ : V (ζ )≤ b} where b=α
−1
3 (δ ). We show that

if there is some xq0 ∈ D then xqi ∈ D for all i ∈ N, i.e., D
is an invariant set. Consider xq0 ∈ D (i.e. V (xq0) ≤ b) and
inequality (31) results in

V (xq1) ≤ V (xq0)−α3(V (xq0))+δ (32)

Without loss of generality, we can assume that Id−α3 ∈K ,
where Id is the identity function (see [26]). Hence we
can write (32) as V (xq1) ≤ (Id− α3)(V (xq0)) + δ . Since
Id− α3 ∈ K , we can write V (xq1) ≤ (Id− α3)(b) + δ =
b − (δ ) + δ = b. Using induction we can show that
V (xq(0+i))≤ b for all i ∈ N thus ‖xqi‖ ≤ α−1α

−1
3 (δ ).

Now consider ‖xq0‖ ∈
(
α−1α

−1
3 (δ ),∆

)
and let j0 = min{i ∈

N : xqi ∈D}. For i< j0, we have α3(V (xqi))≥ δ , then we can
always find c ∈ (0,1) such that cα3(V (xqi)) = δ and hence

V (xq(i+1))−V (xqi)≤−(1− c)α3(V (xqi)). (33)

From comparison principle for discrete-time systems [28,
Lemma 4.3], we have

V (xqi)≤ β (V (xq0), i) (34)

where β ∈ K L . Thus ‖xqi‖ ≤ α−1(V (xqi)) ≤
α−1(β (V (xq0), i)) ≤ α−1(β (α(‖xq0‖), i)) = β̃ (‖xq0‖, i)
where β̃ ∈K L .

Hence we can write ‖xqi‖≤max{β̃ (‖xq0‖, i),α−1α
−1
3 (δ )}≤

β̃ (‖xq0‖, i)+α−1α
−1
3 (δ ) ∀i ∈ N.

�

Based on the definitions of practical asymptotic stability and
practical stability Lyapunov functions, we can now show that
practically IOSP are zero-input practically asymptotically
stable.

Corollary 1: The transition system (4) is practically
asymptotically stable for zero input (uqi ≡ 0) if there exists
class K∞ functions α , α , θ such that for any strictly positive
real numbers ∆,δ and for all xq ∈ Xq such that ‖xq‖ ≤ ∆, the
following holds

α(‖xq‖)≤V (xq)≤ α(‖xq‖), (35)
θ(‖xq‖)≥ ρF τhT (xq,0)h(xq,0), (36)

θ(α−1 ◦α(∆))> δ (37)

and (4) is (ρF ,νF ,δ )-practically IOSP with ρF > 0 and νF ≥
0.
PROOF: The proof follows directly from Theorem 2.

V. NUMERICAL EXAMPLE

An LTI system Σ : ẋ = −x + u is (0.25,0.5) - IOSP with
an output function y = x+u and a storage function V (x) =
1
2 xT (0.5154)x = 0.2577x2. Now we construct a approxi-
mately input output similar symbolic model for Σ. It is
readily seen that Σ is incrementally forward complete, thus
we can apply Corollary 1. We work on the subset D =
[−0.2,0.2] of state space and subset U = [−0.1,0.1] of the
input space. To construct the symbolic model of precision
εy = 1, we construct a symbolic model Tτ,η ,µ(Σ) by choosing
θ1 = 1, η = 0.1, θ2 = εu = µ = 0.1 and τ = 0.2 so that
assumptions of Corollary 1 are satisfied. Since µ = 0.1 and
τ = 0.2, the control inputs are piecewise constant of duration
τ such that

{−µ,0,µ}= {u−1,u0,u1}= {−0.1,0,0.1} ∈U.

And the states of the symbolic system are described by

{−2η ,−η ,0,η ,2η}= {−0.2,−0.1,0,0.1,0.2} ∈ D.

The transitions between states upon the action of a
control input can be calculated using the differential
equation describing Σ. The symbolic system in figure
1 represents Tτ,η ,µ(Σ) and it can be observed Tτ,η ,µ(Σ)
is nondeterministic, i.e., Postu(x) may not be a single
element. For example, if we consider the state −2η , the
Postu0(−2η) = {−2η ,−η}, i.e., under the input u0, the
next possible state may be −2η or −η . In Fig. 1, multiple
inputs on the arrows represent all the possible inputs that
can cause that transition.

Now we discuss the effect of symbolic abstraction on the
passivity properties of Σ. It can be verified that the output
y = x+u satisfies Assumption 1 for γ = 1. Hence Theorem 4
states that Tτ,η ,µ(Σ) is

(
ρF ,νF ,

Kεy
τ

)
-practically IOSP where

νF = ν− γτ− ργτ

1+ τ
= 0.2583, ρF =

ρ

(1+ τ)τ
= 1.0417.

and K is the Lipschitz constant for V (x). For the state space
D as the Lipschitz constant K = 0.0773, hence Tτ,η ,µ(Σ) is



0 η 2η−η−2η
u−1,u0,u1

u−1,u0,u1 u−1,u0,u1

u0,u1

u−1,u0,u1

u−1

u1

u−1,u0

u−1,u0,u1

u−1,u0,u1

u−1,u0,u1

Fig. 1: Symbolic model for Σ.

(0.2, 0.24, 0.3865) - practically IOSP.

For the symbolic transition system, Theorem 4 can be
alternatively verified by checking if

V (q)+ τ(`T o)−ρF τ(oT o)−νF τ(`T `)+
Kεy

τ
−V (p)≥ 0

is satisfied for all transitions q `−−−−→
τ

p where p∈ Post`(q),
o =Cq+D` and V (q) = 1

2 qT Pq, i.e.,

qT Fq+`T Gq+qT GT `+`T H`+
Kεy

τ
− 1

2
pT Pp≥ 0

where

F =
1
2

P−ρF τCTC, G =
τ

2
C−ρF τDTC,

H =
τ

2
(D+DT )−ρF τDT D−νF τI.

For the symbolic system, we assume that there are M
quantized inputs denoted by {`1,`2, . . . ,`M} and there are
N quantized states denoted by {q1,q2, . . . ,qN}. All the
transitions in the symbolic system can be represented by

qi
` j−−−−→
τ

p j
i for i = 1, . . .N and j = 1, . . . ,M, where p j

i
represents the next state after time τ with an initial state
qi, under the action input ` j. Hence, passivity verification
would entail verification of the inequality

qT
i Fqi +`T

j Gqi +qT
i GT ` j +`T

j H` j +
Kεy

τ

−1
2
(p j

i )
T P(p j

i )≥ 0 (38)

for i = 1, . . .N and j = 1, . . . ,M. In order to verify the
above inequality for all transitions in a systematic fashion,
we consider each state qi ∈ D and evaluate the next states
corresponding to all possible inputs ` j, j = 1, . . . ,M. We
continue this procedure for all states qi, i = 1, . . . ,N. If
we let q̄ =

[
q1, · · · ,qN

]T and ¯̀ =
[
`1, · · · ,`M

]T then the
vectors p̄1 =

[
p1

1, · · · ,p1
N
]T

, . . . , p̄M =
[
pM

1 , · · · ,pM
N
]T can be

calculated together as ¯̄p =
[
p̄1, · · · , p̄M

]T
=
[
(IM⊗ eAτ)(IM⊗ q̄)+

((∫
τ

0 eA(τ−α)Bdα

)
⊗ IN

)
( ¯̀⊗ IN)

]
η

for a system described by ẋ = Ax + Bu. Verification of
(38) for i = 1, . . .N and j = 1, . . . ,M. would require us to
verify positivity of MN scalars. All these MN scalars will
be arranged along the diagonal of an MN ×MN matrix,
and this diagonal matrix would be checked for its positive
definiteness. This approach allows us to represent all the

inequalities together in a compact fashion. This compact
representation will be achieved using the Kronecker product
as given by

PASSIV E = IM⊗ ((IN ⊗ q̄T )(IN ⊗F)(IN ⊗ q̄))
+ ((IN ⊗ ¯̀T )(IN ⊗G)(IN ⊗ q̄))⊗ IM

+ ((IN ⊗ q̄T )(IN ⊗GT )(IN ⊗ ¯̀))⊗ IM

+ ((IM⊗ ¯̀T )(IM⊗H)(IM⊗ ¯̀))⊗ IN

+ IMN ⊗
Kεy

τ
− ¯̄pT (IMN ⊗P) ¯̄p≥ 0 (39)

For the nondeterministic cases where ¯̄p is not unique, we
verify (39) for all possible values of ¯̄p . Performing this test
for our numerical example, we obtain the diagonal elements
of the PASSIVE matrix for two possible values of ¯̄p and it
can verified that all the diagonal elements are positive,

diag(PASSIV E1) =
[
0.3732,0.3817,0.3833,0.3886,0.3896,

0.3782,0.3844,0.3865,0.3870,0.3859,

0.3819,0.3860,0.3859,0.3817,0.3810
]

diag(PASSIV E2) =
[
0.3279,0.3623,0.3835,0.3839,0.3635,

0.3526,0.3787,0.3865,0.3761,0.3448,

0.3712,0.3865,0.3809,0.3623,0.3202
]

hence confirming practical passivity of the symbolic model.

VI. CONCLUSION

In this paper we introduce approximate input output (al-
ternating) simulation relations which allow us to describe
passivity and dissipativity for finite state abstractions of
continuous-time systems. These relations further allow us
to quantify degradation of passivity under abstraction in
terms of passivity indices. We also analyze the implication
of such relations on zero-input stability of a passive system.
Future work will focus other properties of passive systems
like input-output stability. In a companion paper [29] we
consider the interaction between a continuous-time passive
system with a finite state transition system.
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On passivity of a continuous plant interconnected with a discrete
supervisory controller

Shravan Sajja1∗, Vijay Gupta2 and Panos J. Antsaklis2

Abstract— Consider a continuous plant interconnected with
a discrete supervisory controller. In what sense can the in-
terconnection be termed passive and stable? This question is
useful for application of passivity based control techniques in
cyberphysical systems where controllers may be implemented
in software. Using a notion of passivity for a finite state model
abstracted from an infinite state continuous system that was
proposed in [13], hence we consider the interaction of such
finite state models of a plant with discrete controllers. The
chief result of this paper is to find conditions that ensure that
the entire interconnection is passive and hence stable.

I. INTRODUCTION

Close interaction between dynamic systems and the
computational elements in a cyberphysical system
makes it desirable that these computational elements
are designed while exploiting the properties (for e.g.
passivity, dissipativity, symmetry, invariance, etc.) of a
dynamic system. In this paper, we are primarily interested
in the interaction between computational elements and
passive dynamic systems. Passivity is an important property
used to design stable control systems that also offers
compositionality [1]. Hence, there is much interest in using
passivity as design tool for cyberphysical systems [2].
For a full theory of passivity in cyberphysical systems
we need a better understanding of the interaction between
passive dynamic systems with computational elements that
are discrete state systems. However, this needs a well
defined notion of passivity for discrete state systems. One
broad approach to solve this problem has been through
the hybrid systems framework. Hybrid system consider
both continuous and discrete dynamics are considered in
the same framework and several definitions of passivity
have proposed for certain special classes of hybrid systems
[3], [4], [5], [6], [7]. Although hybrid systems framework
is well established, systematic compositional methods to
analyze the interconnection between discrete controllers
and continuous plants are not yet available. We follow an
alternate approach based on abstracting finite state models
from infinite state models (continuous-time systems) which
further interact with computational elements modeled using
finite state controllers (see figure 1). This approach provides
us with a unified framework to analyze both discrete and
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continuous components of a cyberphysical system. In [13]
we showed that if the finite state transition systems are
abstracted using the concepts of approximate input output
simulation relationships then properties like passivity and
dissipativity can be defined for the finite state abstractions.
Further, we quantified the degradation of passivity under
such abstractions and showed that finite abstractions of a
certain class of continuous-time passive systems are zero
input asymptotically stable in a practical sense.

In this paper we present results on passivity for systems
obtained by composing of such practically passive finite state
abstractions. Specifically, we analyze feedback composition
of computational elements with finite abstractions of
continuous-time passive systems. We adopt a modified
notion of approximate feedback composition of transition
systems proposed by [10], which requires two transition
systems to satisfy certain approximate simulation relations
for feedback composition. We show that once two transition
systems are approximately feedback composable, then
practical passivity of one of those transition systems implies
practical passivity of entire composition, although the
passivity indices may be different. We also show that these
results can be used to develop practically passivating discrete
controllers for the interconnection of a continuous-time
systems and the discrete controller. However, actual design
of such controllers in out of the scope of this paper. A
major assumption in our work is that both continuous and
discrete components of the cyberphyiscal system receive the
same quantized inputs and is the subject of our future work.

This paper is organized as follows. In section II of this paper
we introduce our notation and some preliminary definitions.
In section III, we present some initial results for feedback
composition of finite transition systems. We further interpret
these results for the case when a discrete supervisor is
connected to a continuous-time passive system. We show that
if one of the components in the interconnection is passive
then their approximate feedback composition is also passive
in a practical sense. We would also like to mention the paper
[14] that considers the related but complementary problem
of discretizing a controller designed in the continuous space
so that passivity indices of the closed loop system are main-
tained despite discretization. Note that while [14] requires a
bisimulation of the controller, we require a simulation of the
plant for our purpose.
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Fig. 1: Finite state approximation of a continuous-time plant
interacting with a finite state controllers (software).

II. PRELIMINARIES

A. Notation

The identity map on a set A is denoted by 1A. If A is
a subset of B we denote by ıA : A ↪→ B or simply by
ı the natural inclusion map taking any a ∈ A to ı(a) =
a ∈ B. The symbols N, Z, R, R+ and R+

0 denote the
set of natural, integer, real, positive, and nonnegative real
numbers, respectively. The inner product of signals u(t), y(t)
is denoted by 〈u,y〉 defined as 〈u,y〉=

∫ t
0 uT (τ)y(τ)dτ . Given

a vector x ∈ Rn, xi is the i-th element of x and we denote
infinity norm and euclidean norms of x by ‖x‖ and ‖x‖2.
Given a measurable function f : R+ : 0← Rn the (essential)
supremum (sup norm) of f is denoted by ‖‖∞. If A⊆Rn and
η ∈R+, [A]η denotes the subset [A]η ⊆ A defined by: [A]η ={

z ∈ A | zi = kiη for some ki ∈ A and i = 1,2, . . . ,n
}
. The

set [A]η will be used as an approximation of the set A
with precision η . If we define Bε(x) = {y ∈ Rn| ‖x− y‖ ≤
ε}. For set A ⊆ Rn of the form A =

⋃M
j=1 A j for some

M ∈ N, where A j = Πn
i=1[c

j
i ,d

j
i ] ⊆ Rn with c j

i < d j
i and

positive constant η ≤ η̂ , where η̂ = min j=1,...,M ηA j and
ηA j = min{|d j

1− c j
1|, · · · , |d

j
n− c j

n|}. Note that [A]η 6= ∅ for
any η ≤ η̂ . Geometrically, for any η ∈ R+ and λ ≥ η the
collection of sets {Bλ (p)}p∈[A]η is a covering of A, i.e. A⊆⋃

p∈[A]η Bλ (p). A continuous function γ : R+
0 → R+

0 belongs
to class K if it is strictly increasing and γ(0) = 0; γ belongs
to class K∞ if γ ∈K and γ(r)→∞ as r→∞. A continuous
function γ : R+

0 ×R+
0 → R+

0 belongs to class K L if, for
each fixed s, the map β (r,s) belongs to class K∞ with respect
to r and, for each fixed r, the map β (r,s) is decreasing with
respect to s and β (r,s)→ 0 as s→ ∞. A relation R⊆ A×B
is defined by a map of the form R : A→ 2B where b∈ R(a) if
and only if (a,b) ∈ R. For a set S ∈ A the set R(S) is defined
as R(S) = {b∈ B : ∃ a∈ S,(a,b)∈ R}. Also, R−1 denotes the
inverse relation defined by R−1 = {(b,a)∈B×A : (a,b)∈R}.
We also denote by d : X ×X → R+

0 a metric in the space X
and by πX : X×U→ X the projection sending (x,u)∈ X×U
to x ∈ X .

B. Incremental forwardness and stability

In this work we restrict ourselves to control systems of the
form

Σ = (Rn,U,U , f ) (1)

where
• Rn is the state space;
• U⊆ Rm is the input space;
• U :R→U is a subset of the set of all locally essentially

bounded functions of time from intervals of the form
]a,b[⊆ R to U with a < 0 and b > 0;

• f : Rn×U→ Rn is a Lipschitz continuous map.
If ξ :]a,b[−−→ Rn is a trajectory of Σ (or equivalently a
solution of the differential equation ẋ = f (x,u)), then we
will use ξ (τ,x,v) to denote a unique point reached at time
τ under the input v from an initial condition x. System Σ is
said to be forward-complete if such a solution is defined for
all t ∈]0,∞[. In this paper we use an incremental version of
this property, defined as:

Definition 1 (Incremental forward-completeness): A
control system Σ is δ -FC if there exist continuous functions
β : R+

0 ×R+
0 → R+

0 and γ : R+
0 ×R+

0 → R+
0 such that for

every s∈R+, the functions β (·,s) and γ(·,s) belong to class
K∞, and for any x,x′ ∈ Rn, any τ ∈ R+, and any v,v′ ∈U ,
where v,v′ : [0,τ)→ U, the following condition is satisfied
for all t ∈ [0,τ]:

‖ξ (t,x,v)−ξ (t,x′,v′)‖ ≤ β (‖x− x′‖, t)+ γ(‖v− v′‖∞, t).
(2)

C. Transition systems and system relations

Definition 2: [10] A system Tq is a quintuple Tq =

(Q,L, `−−−−→
τ

,O,H) consisting of:

• a finite set of states q ∈ Q;
• a finite set of inputs ` ∈ L;
• a transition relation −−→⊆ Q×L×{τ}×Q;
• an output set O;
• an output function H : Q→ O.

Tq can be thought of as a discrete time system with a sample
time τ and a finite state run

q0
`0−−−−→
τ

q1
`1−−−−→
τ

q2
`2−−−−→
τ
· · · `n−2−−−→ qn−1

`n−1−−−−→
τ

qn

where q0 ∈ Q is the initial state and qi
`i−−−−→
τ

qi+1 for all
0≤ i≤ n. The subscript i corresponds to the sampling time
instants t = 0,1,2, . . . ,nτ and qi corresponds to the state
of Tq at the time instant iτ . In some cases, a finite state
run can be extended to an infinite state run with i ∈ N. To
define notions of stability for transition systems we assume
that the finite sets Q,L, and O are equipped with the metric
given by d(p,q) = ‖p−q‖ where p,q are elements of Q,L
or O. Tq is deterministic, if for any state q ∈ Q and ` ∈ L
there exists at most one state q′ ∈ Q such that q `−−−→ q′;
if the system is nondeterministic, then for a transition
q `−−−→ q′ the state q′ may not unique, q′ is also known as



the `-successor of q. In such a case q′ belongs to a set of
all possible `-successors given by Post`(q) and we will use
L(q) to denote the set of inputs ` ∈ L for which Post`(q) is
nonempty. We will further use Post`(Q) to denote the set⋃

q∈Q Post`(q). Now we present certain system relations,
that are used in this paper.

Definition 3: [11](ε-Approximate Simulation and Alter-
nating Simulation) Let T1 := (Q1,L1,−−−−→

1
,O1,H1), T2 :=

(Q2,L2,−−−−→
2

,O2,H2) be metric transition systems with the
same sets of inputs L= L1 = L2 and outputs O=O1 =O2 and
equipped with the metric d. Let ε ∈ R+

0 be given precision
requirements then a relation R⊆ Q1×Q2 is said to be an
(a) an ε-approximate Simulation (ε-S) relation between T1

and T2 if the following two conditions are satisfied:
(i) for every (q1,q2)∈R we have d(H1(q1),H2(q2))≤

ε;
(ii) for every (q1,q2) ∈ R we have that q1

`1−−−−→
1

q′1

in T1 implies the existence of q2
`2−−−−→
2

q′2 in T2

satisfying (q′1,q
′
2) ∈ R.

(b) an ε-approximate Alternating Simulation (ε-AS) rela-
tion from T1 to T2 if conditions (i), (ii) and the following
condition are satisfied:
(iii) for every (q1;q2) ∈ R and for every `1 ∈ L1(q1)

there exists `2 ∈ L2(q2) such that for every q′2 ∈
Post`2(q2) there exists q′1 ∈ Post`1(q1) satisfying
(q′2,q

′
1) ∈ R.

If T1 is ε- approximately simulated (or alternatingly simu-
lated) by T2, then we denote this fact by T1�ε

S T2 (T1�ε
AS T2).

Approximate simulation relations used in [11], are primarily
based on bounding the distance between the outputs or states
of the continuous-time and its approximation. However, in
order to account for behaviors like passivity (which are
defined using both inputs and outputs) we introduced notions
of approximate input output simulation and approximate
input output alternating simulation. These notions allow us
to bound the distances between outputs as well as inputs. If
εu and εy are the given precision requirements for inputs and
outputs respectively and if T1 is (εu,εy)- approximately input
output simulated (or approximately input output alternatingly
simulated) by T2, then we denote this fact by T1 �

(εu,εy)
IOS T2(

T1 �
(εu,εy)
IOAS T2

)
.

Definition 4 (Approximate input output simulation):
Let T1 := (X1,U1,−−−−→

1
,Y1,H1), T2 := (X2,U2,−−−−→

2
,Y2,H2) be metric transition systems with the same sets of
inputs U = U1 = U2 and outputs Y = Y1 = Y2 and equipped
with the metric d. Let εu,εy ∈ R+

0 be given precision
requirements then a relation R ⊆ X1×X2 is said to be an
(εu,εy) - approximate input output simulation (IOS) relation
between T1 and T2 if the following two conditions are
satisfied:
(i) for every (x1,x2) ∈ R we have d(H1(x1),H2(x2))≤ εy;

(ii) for every (x1,x2) ∈ R and for every u1 ∈U1 there exists
u2 ∈U2 such that d(u1,u2)≤ εu and x1

u1−−−−→
1

x′1 in T1

implies the existence of x2
u2−−−−→
2

x′2 in T2 such that

(x′1,x
′
2) ∈ R.

Definition 5: (Approximate input output alternating
simulation): Let T1 := (X1,U1,−−−−→

1
,Y1,H1), T2 :=

(X2,U2,−−−−→
2

,Y2,H2) be metric transition systems with the
same sets of inputs U = U1 = U2 and outputs Y = Y1 = Y2
and equipped with the metric d. Let εu,εy ∈ R+

0 be a given
precision requirements, a relation R ⊆ X1×X2 is said to be
an (εu,εy) - approximate input output alternating simulation
(IOAS) relation from T1 to T2 if condition (i) of Definition
4 and the following condition are satisfied:
(iii) for every (x1,x2) ∈ R and for every u1 ∈U1(x1) there

exists u2 ∈U2(x2) such that d(u1,u2)≤ εu and for every
x′2 ∈ Postu2(x2) there exists x′1 ∈ Postu1(x1) satisfying
(x′2,x

′
1) ∈ R.

The two notions of alternating approximate simulation and
approximate simulation coincide in the special case of de-
terministic systems. If T1 is (εu,εy)- approximately input
output simulated (or approximately input output alternatingly
simulated) by T2, then we denote this fact by T1 �

(εu,εy)
IOS T2

(T1 �
(εu,εy)
IOAS T2). In this paper, we use a special case of

approximate input-output simulation described in [13]. This
special case is obtained when we set εu = 0 and such a case
arises when both transition systems T1 and T2 are connected
to the same input signal.

Definition 6: ((0,εy)-Approximate input output
simulation) Let T1 := (Q1,L1,−−−−→

1
,O1,H1),

T2 := (Q2,L2,−−−−→
2

,O2,H2) be metric transition systems
with the same sets of inputs L = L1 = L2 and outputs
O = O1 = O2 and equipped with the metric d. Let εy ∈ R+

0
be given precision requirement for the outputs, then a
relation R⊆ Q1×Q2 is said to be
(a) an (0,εy) - approximate input output simulation (IOS)

relation between T1 and T2 if the following two condi-
tions are satisfied:
(i) for every (q1,q2)∈R we have d(H1(q1),H2(q2))≤

εy;
(ii) for all ` ∈ L and for every (q1,q2) ∈ R we have

that q1
`−−−−→
1

q′1 in T1 implies the existence of

q2
`−−−−→
2

q′2 in T2 satisfying (q′1,q
′
2) ∈ R.

(b) an (0,εy) - approximate input output alternating simu-
lation (IOAS) relation between T1 and T2 if conditions
(i), (ii) and the following condition is satisfied:
(iii) for every (q1;q2) ∈ R, L1(q1) = L2(q2) = L and

for every ` ∈ L and for every q′2 ∈ Post`(q2) there
exists q′1 ∈ Post`(q1) satisfying (q′2,q

′
1) ∈ R.

Proposition 1: Consider two transitions systems T1 and
T2 such that both transition systems receive the same input
signal. Then (0,εy) - approximate input output (alternating)
simulation and ε-approximate (alternating) simulation (from
definition 3) are equivalent.
PROOF: The proof follows from Definition 3 by setting `1 =
`2.
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D. Finite abstractions

In order to a obtain finite abstraction for Σ = (Rn,U,U , f ),
we begin by considering a discrete time sub-transition system
Tτ(Σ) with a sampling time period τ ∈ R+. We further
assume that control inputs are piecewise-constant over the
sampling time period τ , the class of inputs considered are:

Uτ := {u ∈U | u(t) = u(0), t ∈ [0,τ]}.

For Tτ(Σ) we use identity map as the output function,
however, for stability and passivity analysis, we use an
alternate output corresponding to y = h(x,u).

Definition 7: [10] Let Σ be a control system and T (Σ) its
associated transition system. For any τ > 0, the sub transition
system Tτ(Σ) := (Xτ ,Uτ ,

uτ−−−−→
τ

,Yτ ,Hτ) is defined by:

• Xτ = Rn;
• Uτ = Uτ ;
• xτ

uτ−−−−→
τ

x′τ , if there exists a trajectory ξ : [0,τ]−−−→
ξ (τ,xτ ,uτ) = x′τ ;

• Yτ = Rn;
• Hτ = 1Rn .

Now we restrict the input set to a hyper-rectanlge U ⊆ Rm

such that {0} ∈ U. Then we choose the input quantization
factor such that µ ≤ µ̂ (see A. Notation on how to calculate
µ̂). Now we consider the transition system Tτ(Σ) with a
quantized input space to obtain Tτ,µ(Σ) defined as:

Tτ,µ(Σ) := (Xτ ,Uq,
uq−−−→,Yτ ,Hτ)

where
• Xτ = Rn;
• Uq = [U]µ ;
• xτ

uq−−−−→
τ

x′τ , if there exists a trajectory ξ : [0,τ]−−−→
ξ (τ,xτ ,uq) = x′τ ;

• Yτ = Rn;
• Hτ = 1Rn .

In this final stage, we restrict the state set to a hyper-
rectanlge X ⊆ Rn such that {0} ∈ X . Then we choose the
state quantization factor such that η ≤ η̂ (see A. Notation
on how to calculate η̂). Then for any δ -FC control system Σ

and parameters τ > 0, η > 0, µ > 0 and a design parameters
θ1,θ2 ∈R+, a countable transition system [9] can be defined
as:

Tτ,µ,η(Σ) := (Xq,Uq,
uq−−−−→
τ

,Yq,Hq) (3)

where:
• Xq = [X ]η ;
• Uq = [U]µ ;
• xq

uq−−−−→
τ

x′q, if ‖ξ (τ,xq,uq) − x′q‖ ≤ β (θ1,τ) +

γ(θ2,τ)+η ;
• Yq = [X ]η
• Hq = ı : Xq ↪→ Yq

where β and γ are functions from Definition 1. The
transition system Tτ,µ,η(Σ) is finite and countable [9]. A

slight modification of Theorem 4.1 from [9] can be used
to obtain finite countable abstractions Tτ,η ,µ(Σ) which are
(0,εy) - approximately input output alternatingly similar to
Tτ,µ(Σ) and hence we can state the following result.

Proposition 2: [13] Consider a control system Σ and any
desired precision εu = 0, εy > 0. If Σ is δ -FC then for any τ >
0, θ > 0, η > 0 and µ > 0 satisfying the following inequality:

β (θ1,τ)+ γ(θ2,τ)+η ≤ εy, (4)

such that η ≤ εy ≤ θ1 and µ ≤ θ2, we have:

Tτ,η ,µ(Σ)�
(0,εy)
IOAS Tτ,µ(Σ)�

(0,εy)
IOS Tτ,η ,µ(Σ). (5)

PROOF: To show Tτ,µ(Σ) �
(0,εy)
IOS Tτ,η ,µ(Σ) we consider any

xτ ∈ Xτ and any uq ∈Uq = [U]µ , then there exists xq ∈ Xq =
[X ]η such that

‖xτ − xq‖ ≤ η ≤ εy (6)

hence condition (i) of Definition 6 is satisfied.

Now if we consider the transition xτ

uq−−−−→
τ

x′τ in the
transition system Tτ,µ(Σ) , then the distance between x′τ and
ξ (τ,xq,uq) can estimated based on the δ - FC property of
Σ and inequality (6) i.e.,

‖x′τ −ξ (τ,xq,uq)‖ ≤ β (εy,τ)+ γ(0,τ) (7)

Since Xτ ⊆
⋃

p∈[X ]η Bλ (p), there exists x′q ∈ Xq such that

‖x′τ − x′q‖ ≤ η (8)

From the triangular inequality we have

‖ξ (τ,xq,uq)− x′q‖ ≤ ‖ξ (τ,xq,uq)− x′τ‖+‖x′τ − x′q‖

From inequalities (7) and (8) we have

‖ξ (τ,xq,uq)− x′q‖ ≤ β (εy,τ)+ γ(0,τ)+η

Finally we use η ≤ εy ≤ θ1 and 0 < θ2 to show that

‖ξ (τ,xq,uq)− x′q‖ ≤ β (θ1,τ)+ γ(θ2,τ)+η

which, by the definition of Tτ,µ,η(Σ) implies the existence
of xq

uq−−−→ x′q in Tτ,µ,η(Σ). Therefore, from inequality (8)
and since η ≤ εy we conclude that (x′τ ,x

′
q)∈ R and condition

(ii) in Definition 6 holds.

Now we show that Tτ,η ,µ(Σ) �
(0,εy)
IOAS Tτ,µ(Σ). For R ⊆ Xτ ×

Xq we consider an xτ = xq ∈ Xq. This is possible because
Xq ⊆ Xτ and it satisfies condition (i) of Definition 4 (i.e.,
‖xτ − xq‖ = 0 < εy). Now we choose an input uq ∈Uq and
consider the unique transition xτ

uq−−−−→
τ

x′τ = ξ (τ,xτ ,uq) ∈
Postuq(xτ). The distance between x′τ and ξ (τ,xq,uq) can be
bounded using the δ - FC properties of Σ, i.e.,

‖x′τ −ξ (τ,xq,uq)‖ ≤ β (0,τ)+ γ(0,τ) (9)

Since Xτ ⊆
⋃

p∈[X ]η Bλ (p), we can always find x′q ∈ Xq such
that

‖x′q− x′τ‖ ≤ η (10)



From the triangular inequality and inequalities (9) and (10)
we have

‖ξ (τ,xq,uq)− x′q‖ ≤ ‖ξ (τ,xq,uq)− x′τ‖+‖x′τ − x′q‖
≤ β (0,τ)+ γ(0,τ)+η

Finally we use 0 < θ1 and 0 < θ2 to show that

‖ξ (τ,xq,uq)− x′q‖ ≤ β (θ1,τ)+ γ(θ2,τ)+η

which, by the definition of Tτ,µ,η(Σ) implies the existence
of xq

uq−−−→ x′q in Tτ,µ,η(Σ). Therefore, from inequality
(10) and since η ≤ εy we conclude that (x′τ ,x

′
q) ∈ R and

condition (iii) in Definition 6 holds.

�

Finitely abstracted transition system (3) is a quantized ver-
sion of the sampled-data system Tτ(Σ). The finite state
transition system (3) can be thought of as a discrete time
system with a finite state run

xq0

uq0−−−−→
τ

xq1

uq1−−−−→
τ

xq2

uq2−−−−→
τ
· · ·

uq(n−2)−−−−→ xqn−1

uq(n−1)−−−−→
τ

xqn

where xq0 ∈ Xq is the initial state and xqi
uqi−−−−→
τ

xq(i+1) for
all 0 ≤ i ≤ n. The subscript i corresponds to the sampling
time instants t = 0,1τ,2τ, . . . ,nτ and xqi corresponds to the
state of (3) at the time instant iτ .

E. Dissipativity and passivity

Consider the system Σ and an output function y = h(x,u) ∈
Rp. Further, assume that f (0,0) = 0 and h(0,0) = 0. Σ is
dissipative w.r.t. y = h(x,u) if there exists a C 1 storage
function V (x) : Rn→R+

0 and a supply rate ω : U×Rp→R+
0

such that V (0) = 0 and the following inequality is satisfied:

V (x(t2))−V (x(t1))≤
∫ t2

t1
ω(u,y,x)dt (11)

for any t2 ≥ t1 and u ∈U . A special case of dissipativity is
(ρ,ν) - input output strict passivity (IOSP) when ω(u,y,x)=
uT y−νuT u−ρyT y with ρ,ν ∈R+

0 . In this definition, param-
eters ν and ρ are known as passivity indices. Corresponding
to continuous-time notions of dissipativity and passivity, we
introduced the notions of practical dissipativity and practical
passivity for transition systems in [13].

Definition 8 (Practical dissipativity): Let C 1 function V :
Xq → R+

0 be a storage function with V (0) = 0 and let ω :
Uq×Xq→R be a supply rate, then the transition system (3)
is practically dissipative with respect to ω if

1
τ

(
V (xq(i+1))−V (xqi)

)
≤ω(uqi,xqi)+δ ∀i∈N and δ > 0

(12)
for all the transitions xqi

uqi−−−−→
τ

xq(i+1).

The transition system (3) is (ρF ,νF ,δ )-practically IOSP
when the supply rate is ω(uqi,xqi) = (uT

qih(xqi,uqi)) −

ρF(hT (xqi,uqi)h(xqi,uqi))− νF(uT
qiuqi). The function yi =

h(xqi,uqi) is an output function for the finite transition system
at a time instant iτ and it is analogous to y = h(x,u) for
the continuous-time system. Note that this output function
is different from the output function Hq = ı : Xq ↪→ Yq. The
output function yi = h(xqi,uqi) will be used only to study
passivity and the stability behavior of the transition system.
In order to avoid confusion between the output functions
Hq and yi = h(xqi,uqi), we will refer to yi = h(xqi,uqi) as
the passive output function, i.e., the output with respect to
which the system is passive. The passive output function
for a transition system can be obtained using Hq = ı : Xq ↪→
Yq, whenever Hq = 1Xq , i.e., y = h(Hq(xq),uq) = h(xq,uq).
An important consequence of practical IOSP is practical
asymptotic stability.

Corollary 1: The transition system (3) is practically
asymptotically stable for zero input (uqi ≡ 0) if there exists
class K∞ functions α , α , θ such that for any strictly positive
real numbers ∆,δ and for all xq ∈ Xq such that ‖xq‖ ≤ ∆, the
following holds

α(‖xq‖)≤V (xq)≤ α(‖xq‖), (13)
θ(‖xq‖)≥ ρF τhT (xq,0)h(xq,0), (14)

θ(α−1 ◦α(∆))> δ (15)

and (3) is (ρF ,νF ,δ )-practically IOSP with ρF > 0 and νF ≥
0.
Now we present a result which quantifies the degradation of
passivity under finite state approximations which are approx-
imately input output similar to continuous-time systems. This
result was presented in [13] and it is based on an assumption
from [12].

Theorem 1: [13] Suppose that the original continuous-
time system Σ is δ - FC and (ν , ρ) - IOSP w.r.t. the passive
output function y = h(x,u) and a storage function V with a
Lipschitz constant K. We also assume that the operator from
u(t) to ẏ(t) has the finite L2 gain, γ , that is∫

τ

0
‖ẏ(t)‖2

2dt ≤ γ
2
∫

τ

0
‖u(t)‖2

2dt

for any τ ≥ 0 and admissible u(t). Let Tτ(Σ) be the transition
system corresponding to Σ with a sampling time τ . If the
state and input quantization parameters η and µ are chosen
such that Tτ,µ,η(Σ) is (εu,εy) - approximately input output
similar (or alternatingly similar) to Tτ(Σ), then Tτ,µ,η(Σ) is(

ρF ,νF ,
Kεy

τ

)
-practically IOSP w.r.t. to the passive output

function yq = h(xq,uq) and

νF = ν− γτ− ργτ

1+ τ
ρF =

ρ

(1+ τ)τ
.

In the next section we consider the problem of feedback
composition of a discrete controller Tq and the finite state
abstraction of continuous-time IOSP system Σ given by
Tτ,µ,η(Σ). Discrete controllers Tq are designed for continuous
plants to satisfy certain discrete and/or continuous specifica-
tions, for example, discrete supervisory controllers are used
for mode selection, trajectory planning etc. In the section,



our main goal is analyze the extra conditions imposed on
Tq and on the nature of feedback composition such that the
interconnection of Tq and Tτ,µ,η(Σ) is also practically IOSP
and hence practically asymptotically stable.

III. COMPOSITION OF TRANSITION SYSTEMS

We begin this section by presenting a modified notion
of approximate feedback composition of transition systems
from [10]. In Sub-section III-B we consider the approxi-
mate feedback composition of two transition systems where
one of them is practically IOSP. We show that once two
transition systems are approximately feedback composable,
then practical passivity of one of those transition systems
implies practical passivity of entire composition, although
with different passivity indices. Thus, guaranteeing practical
stability for the composed transition system. In Sub-section
III-C we show that these results have the potential to develop
passivating discrete controllers for continuous-time systems.

A. Feedback composition

It was shown in [10] that feedback composition of two
transition systems is possible for state feedback if there exists
an approximate alternating simulation relation between the
two systems.

Definition 9: [10] A system T2 is said to be ε-approximate
feedback composable with a system T1 if there exists an ε-
approximate alternating simulation relation R from T2 to T1.
According to Proposition 1, existence of εy-approximate al-
ternating simulation relation between two transition systems
T1 and T2 is equivalent to the existence of (0,εy)-approximate
input output alternating simulation between T1 and T2 . This
equivalence is possible when both T1 and T2 receive the
same input signal. Thus we define approximate feedback
composition between T1 and T2 with the same input signal.

Definition 10 (Approximate feedback composition): Let
T1 := (Q1,L1,−−−−→

τ
,O1,H1), T2 := (Q2,L2,−−−−→

τ
,O2,H2)

be two transition systems with a common time period τ

and common input and output sets equipped with euclidean
norm as the metric. Let R be a (0,εy) - approximate input
output alternating simulation relation from T2 to T1. The
feedback composition of T2 and T1 with interconnection
relation F , denoted by T2×

εy
F T1, is the transition system

(Q12,Q120,L12,−−−−→
τ

,O12,H12) consisting of

• Q12 = πQ(F ) = R⇒ d(H1(q1),H2(q2))≤ εy; or equiv-
alently

Q12 = {(q1,q2) ∈ (Q1×Q2) d(H1(q1),H2(q2))≤ εy}

• Q120 = Q12∩ (Q10×Q20);
• L12 = L1 = L2;
• (q1,q2)

(`,`)−−−−→
τ

(p1,p2) if the following three conditions
hold:

1) q1
`−−−−→
τ

p1 in T1;

2) q2
`−−−−→
τ

p2 in T2;
3) (q1,q2,`,`) ∈F ;

• O12 = O1 = O2;

• H12(q1,q2) =
1
2 (H1(q1)+H2(q2)).

This symmetrical choice of output allows T2 ×
εy
F T1

to be commutative, however, we can also choose an
output for the composition as H12(q1,q2) = H1(q1) or
H12(q1,q2) = H2(q2).

q1

Post (q1)

L2(q2)

l

l

l

q2 l

l

Post (q2)
l

T1

T2

L1(q1)

Controller

Plant

q1 p2 Post (q2)
l

H1+H2

2

Fig. 2: A schematic of the state feedback interconnection
with an alternating simulation relation.

See figure 2 for a schematic of the state feedback in-
terconnection between a transition system representing the
continuous time plant and a finite state controller. Also the
feedback nature of this composition can be observed through
the alternating simulation relation between the plant and
controller. In the figure 2, the current plant state q1 ∈ Q1
will be communicated to the controller and the controller
makes a transition to a state q2 ∈ Q2 such that (q1;q2) ∈ R.
Now if we consider the common input `, then for every
` ∈ L1(q1) = L2(q2) and the next state of the controller
p2 ∈ Post`(q2) will be communicated to the plant. This leads
to a transition in the plant state to p1 ∈ Post`(q1) such that
(p2; p1) ∈ R. These transitions happen simultaneously after
every time period τ .

B. Practical passivity of the feedback composition

Before analyzing passivity of the feedback composition, we
present some preliminary results. Initially we consider the
consequences of (0,εy) - approximate input output similarity
between two transition systems when one of them is a
practically IOSP transition system.

Lemma 1: Let T1 := (Q1,L1,−−−−→
τ

,O1,H1),
T2 := (Q2,L2,−−−−→

τ
,O2,H2) be two transition systems with

a common time period τ and common input and output sets
equipped with euclidean norm as the metric. Assume that
H1 = 1Q1 and H2 = 1Q2 and let T2 be (0,εy) - approximately
input output similar to T1. If T1 is (ρ1,ν1,β1)-practically
IOSP w.r.t. h(q1,`1) where q1 ∈Q1 and `1 ∈ L1. Then T2 is
(ρ2,ν2,β2)-practically IOSP w.r.t. h(q2,`2) where q2 ∈ Q2,



`1 = `2 = ` ∈ L = L1 = L2 and

ρ2 = ρ1 (1−α2)

ν2 =
(

ν1−
α1

2

)
(16)

β2 =
1

2α1
M2

ε
2
y +ρ1

(
1

α2
+1
)

M2
ε

2
y +β1 +

2Kεy

τ

where K and M are Lipschitz constants of the storage
function V and the passive output function h(q,`), i.e., for
any p,q ∈ Q1∪Q2 and an arbitrary ` ∈ L we have |V (p)−
V (q)| ≤ K‖p−q‖ and ‖h(p,`)−h(q,`)‖2 ≤M‖p−q‖ and
α1 and α2 ∈ R+ are such that

ν1−
α1

2
≥ 0 and 1−α2 ≥ 0.

PROOF: Consider (q1,q2)∈ R and an input `∈ L = L1(q1) =
L2(q2), then for every p2 ∈ Post`(q2), we have p1 ∈
Post`(q1) such that ‖p1−p2‖ ≤ εy. Since T1 is (β1,ρ1,ν1)-
IOSP w.r.t. to the passive output function h(q,`), for any
transition q1

`−−−−→
τ

p1 in T1 we have

V (p1)−V (q1) ≤ (`T h(q1,`))τ−ρ1(hT (q1,`)h(q1,`))τ

−ν1(`
T `)τ +β1τ (17)

Also from the Lipschitz continuity of the storage function
and the passive output function, we have

V (p2)−V (p1)≤ K‖p1−p2‖= Kεy (18)

and
‖h(q1,`)−h(q2,`)‖2 ≤Mεy.

From inequalities (17) and (18) we have

V (p2) ≤ V (p1)+Kεy

≤ V (q1)+(`T h(q1,`))τ−ρ1(hT (q1,`)h(q1,`))τ

−ν1(`
T `)τ +β1τ +Kεy

≤ V (q2)+(`T h(q1,`))τ−ρ1(hT (q1,`)h(q1,`))τ

−ν1(`
T `)τ +β1τ +2Kεy (19)

Let ∆h = h(q1,`)− h(q2,`) then ‖∆h‖2 ≤ Mεy. Now we
obtain bounds for different terms in the inequality (19).

Bounds on τ(`T h(q1,`)): Here we compare the terms
`T h(q1,`) and `T h(q2,`) using

|`T h(q1,`)−`T h(q2,`)| = |`T
∆h|.

For any α1 ∈ R+, we have

|`T
∆h| ≤ α1

2
`T `+

1
2α1

∆hT
∆h≤ α1

2
`T `+

1
2α1

M2
ε

2
y

hence

(`T h(q1,`))τ ≤ (`T h(q2,`))τ +
α1

2
(`T `)τ +

1
2α1

M2
ε

2
y τ.

(20)

Bounds on hT (q1,`)h(q1,`): Here we compare the terms
hT (q1,`)h(q1,`) and hT (q2,`)h(q2,`) using

|hT (q1,`)h(q1,`)−hT (q2,`)h(q2,`)|
= |(h(q2,`)+∆h)T (h(q2,`)+∆h)−hT (q2,`)h(q2,`)|
= |2hT (q2,`)∆h+∆hT

∆h|
≤ 2|hT (q2,`)∆h|+∆hT

∆h (21)

For any α2,∈ R+, we have

2|hT (q2,`)∆h| ≤ α2hT (q2,`)h(q2,`)+
1

α2
∆hT

∆h (22)

From inequalities (21) and (22) we have

−ρ1(hT (q1,`)h(q1,`))τ ≤−ρ1 (1−α2)(hT (q2,`)h(q2,`))τ

+ρ1

(
1

α2
+1
)

M2
ε

2
y τ (23)

Finally bounds from (19), (20) can be used for inequality
(23) to obtain

V (p2) ≤ V (q2)+(`T h(q2,`))τ−ρ2(hT (q2,`)h(q2,`))τ

−ν2(`
T `)τ +β2τ

�

Based on the definition of approximate feedback composition
presented in this section, the following results were derived
in [10]. Even though the results in [10] were derived for
approximate (alternating) simulation relationships they also
hold true for approximate input output (alternating) simula-
tion relationships.

Proposition 3: Let T1 and T2 be metric systems with O1 =
O2 and L1 = L2 normed vector spaces with the same norm-
induced metric, and let F be an interconnection relation
between T1 and T2 with a common input and satisfying

(q1,q2) ∈ πQ(F )⇒ d(H1(q1),H2(q2))≤ εy.

If we define the output of the composition as H12(q1,q2) =
1
2 (H1(q1)+H2(q2)) then the following holds:

1) T2×
εy
F T1 �

(0,εy/2)
IOS T2,

2) T2×
εy
F T1 �

(0,εy/2)
IOS T1

if H12(q1,q2) = H1(q1), then

T2×
εy
F T1 �

(0,εy)
IOS T2

and if H12(q1,q2) = H2(q2), then

T2×
εy
F T1 �

(0,εy)
IOS T1.

PROOF: The proof is direct consequence of Proposition 1 and
Proposition 11.8 of [10]. For completeness sake we provide
the following proof. We prove that T2×

εy
F T1 �

(0,εy/2)
IOS T2 for

the case when H12(q1,q2) =
1
2 (H1(q1)+H2(q2)) and other

results follow directly. The desired (0,εy) - approximate
input output similarity relation from T2×

εy
F T1 to T2 can be

written as

Rεy = {((q1,q2),q2) ∈ (Q12×Q2) d(H12(q1,q2),H2(q2))≤ εy/2}



It can be observed that for any ((q1,q2),q2) ∈ (Q12×Q2)
we have

d(H12(q1,q2),H2(q2))) =

∥∥∥∥1
2
(H1(q1)+H2(q2))−H2(q2)

∥∥∥∥
=

∥∥∥∥1
2
(H1(q1)−H2(q2))

∥∥∥∥≤ εy/2

�

�

Based on Proposition 3 and Lemma 1 we obtain the
following corollary. This result states that once two
transition systems are approximately feedback composable,
then practical passivity of one of those transition systems
implies practical passivity of the composed transition system.

Theorem 2: Let T1 := (Q1,L1,−−−−→
τ

,O1,H1), T2 :=
(Q2,L2,−−−−→

τ
,O2,H2) be two transition systems with a

common time period τ and common input and output sets
equipped with euclidean norm as the metric. Assume that
H1 = 1Q1 and H2 = 1Q2 and let T2 be (0,εy) - approximately
input output alternatingly similar to T1. If T1 is (ρ1,ν1,β1)
- practically IOSP w.r.t. a function h(q1,`1) where q1 ∈ Q1
and `1 ∈ L1. Then T2×

εy
F T1 is (ρ12,ν12,β12)-practically IOSP

w.r.t. h
( 1

2 (q1 +q2),`
)

where (q1,q2) ∈ πQ(F ), ` ∈ L12 =
L1 = L2 and

ρ12 = ρ1 (1−α2)

ν12 =
(

ν1−
α1

2

)
(24)

β12 =
1

2α1
M2(εy/2)2 +ρ1

(
1

α2
+1
)

M2(εy/2)2

+β1 +
Kεy

2τ
.

Also, T2 ×
εy
F T1 is (ρ12,ν12,β

′
12)-practically IOSP w.r.t.

h(q2,`) where q2 ∈ Q2 such that (q1,q2) ∈ πQ(F ), ` ∈ L12
and

β
′
12 =

1
2α1

M2(εy)
2 +ρ1

(
1

α2
+1
)

M2(εy)
2 (25)

+β1 +
Kεy

τ

where K and M are Lipschitz constants of the storage
function V and the passive output function h(q,`) i.e., for
any p,q ∈ Q1∪Q2 and an arbitrary ` ∈ L we have |V (p)−
V (q)| ≤ K‖p−q‖ and ‖h(p,`)−h(q,`)‖2 ≤M‖p−q‖ and
α1 and α2 ∈ R+ such that ν1− α1

2 ≥ 0 and 1−α2 ≥ 0.
PROOF: Output of T1 is H1(q1) and we consider two
possible outputs of T12 = T2 ×

εy
F T1. From the definition

of approximate feedback composition and Proposition 3,
possible relations between T12 and T1 are given by

Case 1: H12(q1,q2) =
1
2
(H1(q1)+H2(q2))

=
1
2
(q1 +q2)⇒ T12 �

(0,εy/2)
IOS T1

Case 2 : H12(q1,q2) = H2(q2) = q2⇒ T12 �
(0,εy)
IOS T1.

Now we use Lemma 1 for both cases mentioned above.
(i) Case 1: T12 is (ρ12,ν12,β12)-practically IOSP w.r.t.

h(H12(q1,q2),`) = h
(

1
2
(q1 +q2),`

)
.

(ii) Case 2 : T12 is (ρ12,ν12,β
′
12) - practically IOSP w.r.t.

h(H12(q1,q2),`) = h(q2,`) .

�
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Fig. 3: A schematic of the state feedback interconnection
between a controller (software) and a passive continuous-
time system (or a feedback passive system with appropriate
passivating feedback).

Theorem 2 can be applied to design discrete supervisory
controllers for passive plants, while preserving passive nature
for the interconnection. Figure 3 shows a schematic for
implementing Theorem 2, where a common quantized input
is provided for the discrete controller (software) and the
continuous-time passive system (or a feedback passive sys-
tem with appropriate passivating feedback). The continuous-
time system should be preceded by a sample and hold
element to convert the common quantized input symbol
into a piecewise constant input. Under this framework, the
interconnected system is practically passive w.r.t. passive
outputs
(i) h(H2(q2),`) = h(q2,`), where q2 is a discrete state of

the controller and
(ii) h

(
(H1(q1)+H2(q2))

2 ,`
)
= h
(q1+q2

2 ,`
)

where q1 is the dis-
crete plant state and q2 is the discrete controller state.

Once the interconnection is practically passive, we can guar-
antee practical asymptotic stability of the interconnection, if
the conditions of Theorem 1 are satisfied.

C. Practical passivation

Theorem 2 can be used to design a discrete controller for a
passive system which guaranteeing practical passivity of the
interconnected system. However, one might be interested
in designing a discrete controller to practically passivate



a continuous-time system. For this purpose we use the
general methodology proposed in [10] to design discrete
controllers to satisfy a discrete specification provided in
the form a transition system Tspec. In order to practically
passivate an interconnection of a continuous-time plant and
the discrete controller we choose the discrete specification
to be practically IOSP transition system Tpassive. For this
purpose we present another preliminary result from [10] for
approximate alternating simulations which is also valid for
approximate input and output alternating simulations.

Proposition 4: Let T1, T2 and T3 be be metric systems with
the same input and output sets. If we assume that all three
transition systems receive the same input, then the following
statements hold:
(i) for any ε1 ≤ ε2, T1 �(0,ε1)

IOS T2 implies T1 �(0,ε2)
IOS T2;

(ii) if T1 �(0,ε12)
IOS T2 and T2 �(0,ε23)

IOS T3 then T1 �(0,ε12+ε23)
IOS T3.

PROOF: The proof is direct consequence of Proposition 1
and Proposition 11.10 of [10]. For completeness sake we
provide proofs.
(i) Let Rε1 denote the relation T1 �(0,ε1)

IOS T2, then we have
(q1,q2) ∈ Rε1 if and only if d(H1(q1),H2(q2)) ≤ ε1.
Which further implies that d(H1(q1),H2(q2))≤ ε1≤ ε2,
hence (q1,q2) ∈ Rε2 .

(ii) Now consider (q1,q2) ∈ Rε12 and (q2,q3) ∈ Rε23 ,
then d(H1(q1),H3(q3)) ≤ d(H1(q1),H2(q2)) +
d(H2(q2),H3(q3)) ≤ ε12 + ε23, hence (q1,q3) ∈
Rε12+ε23 .

�

�

Now we present a result that can be used to design a
discrete controller to practically passivate an interconnection
of a continuous-time plant and the discrete controller. For
this purpose we consider controller specifications for the
interconnection in the form of a (ρ,ν ,δ )-practically IOSP
transition system Tpassive.

Proposition 5: Let Σ be a δ - FC control system and let
Tτ,µ,η(Σ) be (0,εy) - approximately input output similar to
Tτ,µ(Σ). If there exists a controller Tcont satisfying

Tcont ×0
F Tτ,µ,η(Σ)�(0,0)

IOS Tpassive

then the controller T ′cont = Tcont ×0
F Tτ,µ,η(Σ) satisfies

T ′cont ×ε

F Tτ,µ(Σ)�(0,ε)
IOS Tpassive.

PROOF: Let us consider the controller T ′cont = Tcont ×0
F

Tτ,µ,η(Σ). From Theorem 3 we have

Tcont ×0
F Tτ,µ,η(Σ)�(0,0)

IOS Tτ,µ,η(Σ).

However, it is given that Tτ,η ,µ(Σ) �
(0,εy)
IOS Tτ,µ(Σ). Hence

from Lemma 4 we have

Tcont ×0
F Tτ,µ,η(Σ)�(0,0+ε)

IOS Tτ,µ(Σ). (26)

Now we consider the ε - approximate feedback composition
of the controller T ′cont and the plant with quantized inputs

given by Tτ,µ(Σ). This feedback composition is possible
because of the (0,ε) - approximate input output similarity
from T ′cont to Tτ,µ(Σ) (from (26)). Then using Theorem 3
again we have

T ′cont ×ε

F Tτ,µ(Σ)�ε
IOS T ′cont = Tcont ×0

F Tτ,µ,η(Σ)�(0,0)
IOS Tspec.

Hence T ′cont ×ε

F Tτ,µ(Σ)�(0,ε)
IOS Tspec.

�

This results implies that we can design a controller to satisfy
a specification Tpassive with an output error bounded by ε .
Designing Tcont is beyond the scope of this paper. Interested
readers may refer to [10]. However, under the assumption
that Tcont is available, we can always practically passivate an
interconnection of Tτ,µ(Σ) and a discrete controller using the
same framework as shown in figure 3. Practical passivation
of Tτ,µ(Σ) instead of Tτ(Σ) implies that a common quantized
input is available for both the continuous-time plant and the
discrete controller.

IV. CONCLUSION

In this paper we consider approximate feedback compo-
sition of discrete controllers and finite state abstractions
of continuous-time systems. We show that if one of the
components in the interconnection is practically passive then
their approximate feedback composition is also practically
passive. We also provide preliminary guidelines to practically
passivate a continuous-time system with quantized inputs.
Future work will focus on the exact methodologies to design
discrete supervisory controllers to passivate continuous-time
systems.
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