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1. Integer Arithmetic

We begin with the integers, i.e. the numbers

. . . ,−2,−1, 0, 1, 2, . . .

that you get by starting with zero and proceeding forward or backward in increments of one.
We use the boldface letter Z to denote the set of all integers. Arithmetic with integers is
something you’ve been familiar with for years. It’s as likely as not that you can’t remember
not knowing how to add or multiply two integers together. Nevertheless, since you learned
these things at an early age, you might never have given them much further thought. We
do this now. Many of the facts about multiplication and division of integers proceed from
eight basic rules, which in higher math-speak are known as the (brace yourself) axioms for
a commutative ring with unit. We’ll just call them the axioms for arithmetic.
Concerning addition we have four axioms.

A1: (Commutative law for addition) for all x, y ∈ Z, x+ y = y + x.
A2: (Associative law for addition) for all x, y, z ∈ Z, (x+ y) + z = x+ (y + z).
A3: (Existence of an additive identity) there is an element 0 ∈ Z such that for all

x ∈ Z, x+ 0 = x.
A4: (Existence of additive inverses) for each x ∈ Z there is an element −x ∈ Z such

that x+ (−x) = 0.

And for multiplication we have three axioms, analogous to the first three for addition.

M1: (Commutative law for multiplication) for all x, y ∈ Z, x · y = y · x.
M2: (Associative law for multiplication) for all x, y, z ∈ Z, (x · y) · z = x · (y · z).
M3: (Existence of a multiplicative identity) there exists an element 1 ∈ Z different
from 0 and such that for all x ∈ Z, x · 1 = x.

There is a single axiom that relates multiplication and addition.

D: (Distributive Law) For all x, y, z ∈ Z, x · (y + z) = x · y + x · z.
I’ll throw in a ninth somewhat ad hoc axiom to ensure that the integers consist of more than
just the number 0.

N: (Non-triviality) 0 ̸= 1.

Of course, there are lots of familiar facts about arithmetic that didn’t make it into the list
above. We’ll get to those shortly. Before proceeding, though, we comment about another
omission you might have noticed: subtraction and division are absent from the above list.
Subtraction isn’t mentioned because it’s not really an independent operation. When we
write ‘a − b’, it’s really just shorthand for ‘a + (−b)’ (see A4 above). Hence from a logical
point of view, there’s no need for a separate discussion of subtraction. Division is a more
complicated thing, since properly speaking division isn’t an operation at all when it comes
to integers. Nevertheless, we’ll spend much time discussing division later. For now, we skip
this thorny issue.

Other facts about arithmetic needn’t be stated as axioms. Rather, they can be deduced
logically from the axioms given above. Here, we present two examples of this, leaving several
others to you as exercises.

Proposition 1.1. For every x ∈ Z, we have 0 · x = x · 0 = 0.
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Proof. Let x ∈ Z be given. Then

x · 0 + x · 0 = x · (0 + 0) (by D)
= x · 0 (by A3).

By axiom A4 there is an additive inverse −(x · 0) for x · 0. Using this inverse, we resume
where we left off.

x · 0 + x · 0 = x · 0
⇒ (x · 0 + x · 0) +−(x · 0) = x · 0 +−(x · 0) (because addition is well-defined)
⇒ x · 0 + (x · 0 +−(x · 0)) = x · 0 +−(x · 0) (by A2)
⇒ x · 0 + 0 = 0 (by A4)
⇒ x · 0 = 0 (by A3)
⇒ 0 · x = 0 (by A1).

So x · 0 = 0 · x = 0, as claimed. □

The next proposition requires a definition.

Definition 1.2. We say that y ∈ Z is an additive identity if for all integers x ∈ Z, we have
x+ y = x.

Observe that by axiom A3, the integer 0 is an additive identity. However, the axiom
doesn’t preclude the possibility that there might be some other additive identity in Z. After
all, if a number can have two square roots, or a person can have three children...

Proposition 1.3. The additive identity in Z is unique.

Proof. Suppose that y, z ∈ Z are both additive identities. Then on the one hand

y + z = y,

because that’s what it means for z to be an additive identity. On the other hand,

y + z = z + y (A1).
= z (because y is an additive identity).

Comparing the results of our two computations, we conclude that y = z. Thus there is only
one additive identity in Z. □

Here are some other facts that can be deduced from the ring axioms. Note that once you
prove a fact it can then be used to help prove other facts.

Proposition 1.4. The following statements are true (for any integers x, y, z ∈ Z).

(1) If x+ z = y + z then x = y.
(2) The additive inverse of x is unique.
(3) The multiplicative identity is unique.
(4) −(−x) = x.
(5) (−1)x = −x.
(6) (−x)y = −(xy).
(7) (−x)(−y) = xy.

Note that proving the second and third items requires you to have definitions for additive
inverse and multiplicative identity
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2. Order in the Integers

Besides adding and multiplying integers, one can also compare them with each other,
saying which is larger and which is smaller. In particular, we call those integers x ∈ Z that
are larger than 0 positive, writing 0 < x. We let Z>0 denote the set of all positive integers.
Of course, we’ll honor convention and say that an integer x is negative if −x is positive,
writing x < 0.
We take as axioms the following key features of positivity.

O1 - (Trichotomy) For each x ∈ Z, exactly one of the following is true: x = 0, x is positive,
or x is negative.

O2 - (Additive closure) If x, y ∈ Z are positive, then so is x+ y.
O3 - (Multiplicative closure) If x, y ∈ Z are positive, then so is xy.

From these three axioms and the (consequences of the) axioms for arithmetic from the
previous section, we may deduce the following further familiar facts.

Proposition 2.1. Let x, y ∈ Z be integers

(1) If x is negative and y is positive (or vice versa) then xy is negative.
(2) If x and y are negative, then xy is positive.
(3) If xy = 0, then x = 0 or y = 0 (or both).

As written, the last conclusion doesn’t appear to have anything to do with positivity.
Nevertheless, it’s actually a consequence of the first two conclusions and axioms O1 and O3.

Proof. We justify only the first of the three conclusions, thereby reserving some of the joy for
you the reader. The assumption that x is negative means, by definiton, that −x is positive.
Hence axiom O3 tells us that (−x)y is positive. But (−x)y = −(xy) by conclusion (6) in
Proposition 1.4. So −(xy) is positive, and therefore xy is negative. □

Corollary 2.2. The integer 1 is positive.

Proof. The non-triviality axiom N from the previous section tells us that 1 ̸= 0. So from
the trichotomy axiom O1, we infer that 1 is either positive or negative.

Suppose for the sake of argument that 1 is negative. Then the second conclusion of
Proposition 2.1 tells us that 1 · 1 is positive. But 1 · 1 = 1 by M3, so we conclude that 1 is
actually positive, contradicting our assumption that 1 is negative. This impossible, so our
assumption must have been wrong.

We are left with only one remaining possibility: 1 is positive. □

The argument in the middle paragraph is what’s commonly known as a proof by contra-
diction (or reductio ad absurdem if you know more Latin than me). It’s a way of framing
mathematical arguments that we will use very often. The idea is that we take an assertion
we want to prove, assume the opposite is true, and then reason ourselves into a logical pickle,
all for the sake of ‘reluctantly’ concluding that the assertion we were charged with proving
must be true after all. It’s a favorite tactic of passive aggressives everywhere, like following
your friend’s driving directions and getting hopelessly lost just to make clear that the di-
rections are wrong. Needless to say, in ordinary social situations outside of math, proofs by
contradiction should be employed with a certain tact and sensitivity.
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One can compare non-zero integers with each other by considering their difference.

Definition 2.3. Given x, y ∈ Z, we say that x is less than y, writing x < y or y > x, if
y − x is positive.

Some further properties of < are as follows. We leave it to you to justify them. Note that
in the next section and those that follow we will freely use all the facts describe in these first
two sections, but we will rarely refer to them explicitly again.

Proposition 2.4. Let x, y and z be integers.

(1) (Trichotomy again) For any x, y ∈ Z, exactly one of the following is true: x < y,
y < x, or y = x.

(2) (Transitivity) If x < y and y < z then x < z.
(3) (Additive invariance) If x < y then x+ z < y + z.
(4) (Multiplicative cancellation property) If z is positive, then x < y if and only if xz <

yz; and x = y if and only if xz = yz.

Proof. Left for you! □
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3. The Well-Ordering Principle

Up until now, we have done nothing with integers that we couldn’t also have done with
rational numbers or real numbers. Indeed, if you think about it, you could go back through
the previous sections, substituting ‘real number’ for ‘integer’, and all the arguments would
be as true as they were before. This is because real numbers also satisfy the axioms given for
arithmetic and order. Hence any fact deduced solely from those axioms will be a fact about
real numbers just as surely as it is a fact about integers. What we need now is a new axiom,
one that will separate the integers from all other kinds of numbers. To state this axiom, we
need to single out an important subset of the integers.

Definition 3.1. A natural number is any integer larger than or equal to zero. The set of all
natural numbers is denoted N.

Note specifically, that we count 0 among the natural numbers. If we want to refer to the
set of all positive integers, we will write ‘Z+’. The axiom that distinguishes integers from
other sorts of numbers is

The Well-Ordering Principle. Any non-empty subset of the natural numbers has a small-
est element.

One can perhaps see more clearly how the well-ordering principle distinguishes integers
from rational and real numbers from one of its consequences.

Proposition 3.2. There is no n ∈ Z such that 0 < n < 1.

Equivalently, one can say that 1 is the smallest positive integer.

Proof. Assume, in order to obtain a contradiction, that such an integer exists. Then the set
S := {n ∈ Z : 0 < n < 1} is a non-empty set of natural numbers. Hence there is a smallest
element of S, which we denote m. But since m > 0, we can multiplying the inequalities
0 < m and m < 1 by m to obtain 0 < m2 and m2 < m. From the transitivity axiom 02, we
infer m2 < 1 and thus see that m2 is an element of S smaller than m. This contradicts our
initial assumption that m is the smallest element of S. Hence there is no integer between 0
and 1. □

By contrast there are many rational and real numbers between 0 and 1, and in fact, if
one changes the definition of S in the previous proof to include, say, all rational numbers
between 0 and 1, then S is very far from non-empty (e.g. 1/2 ∈ S) and the argument of
the proof shows that S has no smallest element. Hence subsets of the non-negative rational
(and similarly real) numbers need not have smallest elements.
In order to give further applications of the well-ordering principle, we make a couple of

further definitions.

Definition 3.3. Given a, b ∈ Z, we say that b divides a if there is a third integer c such that
a = bc. Alternatively, we say that b is a factor of a or a is a multiple of b. In any case, we
will write ‘b|a’ to indicate that b divides a.

So for instance 4|12 but 4 ̸ |15. Observe that for any integer n, we have that both 1 and
n divide n simply because n = 1 · n. We will say that a factor of n is non-trivial if it is not
equal to 1 or n.
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Proposition 3.4. If b ≥ 0, a ≥ 1 are integers and b is a non-trivial factor of a, then
1 < b < a.

Proof. By assumption, we have a = bc for some c ∈ Z. Neither b nor c is 0, since this would
imply a = 0. Thus b > 0, and since a > 0, it follows that c > 0, too. Indeed from Proposition
3.2, we infer

1 ≤ b = b · 1 ≤ bc = a.

Since b is a non-trivial factor of a, i.e. b ̸= 1, a, we conclude that 1 < b < a. □

Definition 3.5. A factorization of a non-zero integer a ∈ Z is a collection b1, . . . , bk ∈ Z
such that a = b1 . . . bk.

So for instance 4 · 4 · 2 is a factorization of 32; as is 2 · 2 · 2 · 4, or for that matter 32 · 1.

Definition 3.6. An integer p > 1 is called prime if p and 1 are the only natural numbers
that divide p.

Note that we will call a factorization of a positive integer n prime if all factors included
are prime numbers. Our next direct use of the well-ordering principle will be

Theorem 3.7. Let n > 1 be an integer. Then n admits a prime factorization, and in
particular n has at least one prime factor.

Proof. Assume the theorem fails. Then the set S of integers larger than 1 that do not admit
prime factorizations is non-empty. By the well-ordering principle, it has a smallest element
n. Note that n is not prime, since then n admits the prime factorization n = n. Hence
n has a non-trivial factor m. That is, n = mk for some other non-trivial factor k ∈ N.
From Proposition 3.4, we infer 1 < m, k < n. In particular, since n is the smallest beyond 1
without a prime factorization, we infer that there are prime numbers p1 . . . pi and q1, . . . qj
such that m = p1 . . . pi and k = q1 . . . qj. It follows that n admits the prime factorization
n = p1 . . . piq1 . . . qj, which contradicts the fact that no such factorization exists. It follows
that the set S is non-empty and the theorem is true. □

In order to take things further, it will be helpful to have a more flexible version of the
well-ordering principle. In order to state it, we introduce the following terminology.

Definition 3.8. A number m ∈ Z is said to be a lower bound for a set S ⊂ Z if m ≤ x for
all x ∈ S. If such an m exists, then S is said to be bounded below. Likewise, M ∈ Z is an
upper bound for S if M ≥ x for every x ∈ S, and if such an M exists, then S is said to be
bounded above.

Proposition 3.9. If S ⊂ Z is non-empty and bounded below then it has a smallest element.
If S is non-empty and bounded above, then it has a largest element.

The well-ordering principle is a special case of this statement because any set of natural
numbers is bounded below by 0.

Proof. Suppose that S ⊂ Z is non-empty and bounded below by an integer b. Consider the
related set

T := {y ∈ Z : y +m ∈ S}
6



Since S is non-empty, so is T . Moreover, if y ∈ T , then by definition y + b ∈ S. That
is, y + b ≥ b. Hence y ≥ 0. So T contains only natural numbers, and the Well-Ordering
Principle implies therefore that T has a smallest element mT .

I claim that mS := mT + b is the smallest element of S. To see that this is true note
that since mT ∈ T , we have at least that mS belongs to S. Furthermore, if x ∈ S, then
y = x − b ∈ T by definition of T and y ≥ mT because mT is the minimal element of T . It
follows that

x = y + b ≥ mT + b = mS.

So mS is the smallest element of S.
The case when S ⊂ Z is non-empty and bounded above is similar, and we leave it to the

reader to prove that S has a largest element. □

We pointed out earlier that there is no operation of ‘division’ for integers, since x/y need
not be an integer even if x and y are. However, as the next result indicates, there is a
substitute for division: ‘division with remainder’. It is the first result we have encountered
that really deserves the title ‘theorem’, and we will use it frequently.

Theorem 3.10 (The Division Algorithm). Given a, b ∈ Z such that b ̸= 0, there exist unique
q, r ∈ N satisfying

(1) a = bq + r, and
(2) 0 ≤ r < b.

For example, taking a = 15 and b = 4, as above, we have 15 = 3 ·4+3. The name ‘Division
Algorithm’ is a little misleading, since it does not actually tell one how to find the quotient
q and remainder r in the conclusion. However, the name is pretty well entrenched in the
mathematical literature, so we will continue to use it. Of course, the Division Algorithm
remains true if a and b are allowed to be negative, but then the quotient q can be negative
too.

Proof. We first prove that natural numbers r and q with the desired properties exist and
then worry about uniqueness. We also suppose for now that b is positive, dealing with the
case when b is negative later. Consider the set

S := {x ∈ N : bx ≤ a}.
Note that if a ≥ 0, then b · 0 ≤ a and x ≤ bx ≤ a for all x ∈ S. That is, 0 ∈ S and S is
bounded above by a. On the other hand, if a < 0, then ba ≤ a and x ≤ 0 for all x ∈ S. In
either case, S is non-empty and bounded above.

It follows then from Proposition 3.9 that S has a largest element q. Let r = a− bq. Then
a = bq + r, i.e. conclusion (1) holds for our choice of q and r. To see that q, r ∈ N, recall
from above that 0 ∈ S, so q ≥ 0 because q is the maximal element of S. Moreover, q ∈ S
means that bq ≤ a by definition. So r = a− bq ≥ 0.
Since q is the largest element of S, we know that q + 1 /∈ S. Hence it must be that

a < b(q + 1). Thus
r = a− bq < b(q + 1)− bq = b.

So conclusion (2) holds for our choice of q and r. So the desired integers q and r exist when
b is positive.

7



If instead b is negative, then −b is positive and we can therefore apply the above with −b
in place of b. That is, there exist q′, r ∈ Z such that 0 ≤ r < −b and a = (−b)q′ + r. If we
set q = −q′, then we again have a = bq + r and 0 ≤ r < |b|. So the desired q and r exist
when b < 0, too.

To see that q and r are unique, suppose that q′, r′ ∈ N also satisfy (1) and (2). From (1)
we have bq + r = a = bq′ + r′. Thus

0 ≤ r′ − r = b(q − q′).

In particular, b divides r′ − r. On the other hand, since 0 ≤ r, r′ < b, we know that
−b < r′ − r < b. But the only integer multiple of b that satisfies this double inequality is 0.
So r′− r = b(q− q′) = 0. Thus r = r′ and, since b ≥ 1, also q = q′. So q and r are unique. □

The following result is the first ‘non-obvious’ statement we prove in these notes, and it’s a
classic. The proof we give was known to the ancient Greeks and appears in Euclid’s elements
It’s an amazing instance of the power of ‘proof by contradiction’.

Theorem 3.11. There are infinitely many prime numbers

Proof. Suppose to the contrary that there are finitely many prime numbers p1, . . . , pk. Con-
sider the number

n := 1 + p1 · p2 · · · · · pk.
Since n > 1, there exists a prime number p which divides n. By our initial assumption p = pj
for some j. Thus n = pjq + 0 for some q ∈ Z. However, from the previous equation, it’s
clear that

n = pj · q′ + 1,

where q′ is the product of all the prime numbers besides pj. That is, there are two distinct
quotient/remainder expressions for n divided by qj, contradicting the uniqueness part of the
Theorem 3.10. We conclude that there are infinitely many prime numbers. □

The final result of the section is the basis for a proof strategy called ‘proof by induction’.
Given the axioms for arithmetic and order in Sections 1 and 2, it’s logically equivalent to
the well-ordering principle.

Theorem 3.12 (Induction Principle). Suppose m ∈ Z and S ⊂ Z satisfy

• m ∈ S;
• for all n ∈ S, we also have n+ 1 ∈ S.

Then S contains all integers n ≥ m.

This is a good moment to remind you that the symbols ∈ (’is an element of’) and ⊂ (’is a
subset of’) mean different things. Writing m ∈ Z is shorthand for ‘m is an integer’. Writing
S ⊂ Z is shorthand for S is a set of integers. So 3 ∈ Z and {2, 3} ⊂ Z are both true
statements, but 3 ⊂ Z and {2, 3} ∈ Z don’t make any sense.

Proof. Suppose to get a contradiction that there are integers n ≥ m not contained in S. In
other words

S ′ = {x ∈ Z : x ≥ m but x /∈ S}
is not empty. It’s also bounded below by m, so there exists a smallest element m′ ∈ S ′. In
particular m′ ≥ m. In fact since m ∈ S, we have m′ > m so that m′ − 1 ≥ m too. But
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since m is the smallest element of S ′, we know that m′ − 1 /∈ S ′. The only alternative is
therefore that m′ − 1 ∈ S. But the second hypothesis of the theorem then tells us that
(m′ − 1) + 1 = m′ ∈ S. This contradicts m′ ∈ S ′. We conclude then that S actually does
contain all integers n ≥ m. □
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4. Representing integers in different bases

Definition 4.1. Let b ≥ 2 and a be natural numbers. A base b expansion (or b-ary expansion
for a is a an expression

(dkdk−1 . . . d1d0)b

where the digits dj, j = 0, . . . , k, are integers satisfying

• 0 ≤ dj ≤ b− 1;

• a =
∑k

j=0 djb
j;

Typically, one requires that the leading digit dk in a base b expansion is non-zero (e.g. in
base ten, who writes x = 000203 instead of just x = 203?), but it’s convenient here not to
disallow that entirely. Among other things, we do want to let 0 be its own expansion in any
base.

Theorem 4.2. Let b ≥ 2 be an integer. Then every natural number has a b-ary expansion
for a, and this expansion is unique except for leading zeroes.

Proof. First we address the existence of a b-ary expansion. Suppose, to get a contradiction,
that the set

S = {n ∈ N : n does not have a b-ary expansion}.
is not empty. Then by the well-ordering principle S has a smallest element a. Note that
a ≥ b since 0, 1, . . . , b − 1 are all equal to their own b-ary expansions. Using the division
algorithm, we are able to write

a = bq + r

where q, r ∈ N are as in the conclusion of Theorem 3.10. Since a ≥ b ≥ 2, it follows that
q ≥ 1. Hence

a ≥ bq ≥ 2q > q.

Hence q, being smaller than a, does not belong to S and must therefore have a b-ary expan-
sion:

(dkdk−1 . . . d0)b.

Thus

a = b
k∑

j=0

djb
j + r = dkb

k+1 + dk−1b
k + · · ·+ d0b+ r.

But since 0 ≤ r ≤ b − 1, this means that (dkdk−1 . . . d0r)b is a b-ary expansion for a,
contradicting the assumption that a ∈ S. It follows that S is empty. I.e. every positive
integer has a b-ary expansion.
Now we address the issue of uniqueness. Suppose, in order to obtain another contradiction,

that there is a number a ∈ N with two different b-ary expansions. That is 1,

(1) dkb
k + . . . d1b+ d0 = a = d′kb

k + · · ·+ d′1b+ d′0,

1Actually, the two expansions might have different numbers of digits, but if this is the case we add leading
zeroes to the shorter expansion so that both have the same number of digits.
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where dj ̸= d′j for at least one j. Let j = ℓ be the smallest index where the digits differ.
Then dj = d′j for j < ℓ, so the last ℓ terms on the left side of (1) cancel the last ℓ terms on
the right, giving us

dkb
k + · · ·+ dℓb

ℓ = d′kb
k + · · ·+ d′ℓb

ℓ

From this, we can isolate the ℓth terms.

(dℓ − d′ℓ)b
ℓ = (d′ℓ+1 − dℓ+1)b

ℓ+1 + · · ·+ (d′k − dk)b
k.

In particular, (dℓ− d′ℓ)b
ℓ is an integer multiple of bℓ+1. However, since 0 ≤ d′ℓ, dℓ < b, we also

have −bℓ+1 < (d′ℓ − dℓ)b
ℓ < bℓ+1. The only multiple of bℓ+1 in this range is 0, so it follows

that d′ℓ = dℓ, contrary to the assumption that these two digits are different. We conclude
that the b-ary expansion of a is unique. □
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5. Divisibility

In § 5, we introduced the notion of divisibility. Now we make a more thorough study of
this notion. First we collect some basic results.

Proposition 5.1. Let a, b, c ∈ Z be given.

(1) If a|b and b|c, then a|c.
(2) If b ̸= 0 and a|b, then |a| ≤ |b|.
(3) If a|b and b|a, then b = ±a.

Proof. We prove only the first item here, leaving proofs of the remaining items as exercises. If
a|b and b|c, then by definition, there are integers k, ℓ such that ak = b and bℓ = c. Therefore
a(kℓ) = c, which means that a|c. □

Definition 5.2. Let a, b ∈ Z be integers, at least one of which is not 0. The greatest common
divisor gcd(a, b) of a and b is the largest natural number n such that n|a and n|b.

The first thing to point out about greatest common divisors is that they exist. The set of
all natural numbers dividing both a and b is non-empty because it contains, for instance, the
number 1. It is also bounded above: if, for instance, a ̸= 0 then conclusion 2 in Proposition
5.1 tells us that a number dividing a cannot be larger than |a|. Hence by Proposition 3.9,
there is a largest natural number dividing both a and b.
The next definition might seem a little mysterious if you’ve never seen it before and not

immediately relevant to understanding divibility, but it’s actually very important.

Definition 5.3. An integer combination of two numbers a, b ∈ Z is an integer of the form
ma+ nb, where m,n are also integers.

For example, 2 is an integer combination of 3 and 5, because 4 · 3+ (−2) · 5 = 2. Here are
a couple of basic but quite useful observations about integer combinations.

Proposition 5.4. For any a, b, c, d ∈ Z, the following are true.

(1) If c|a and c|b, then c divides every integer combination of a and b.
(2) If c and d are integer combinations of a and b, then every integer combination of c

and d is also an integer combination of a and b.

Proof. If c|a and c|b, then a = a′c and b = b′c for some a′, b′ ∈ Z. Therefore, if k = ma+ nb
is an integer combination of a and b, we have

k = m(a′c) + n(b′c) = c(ma′ + nb′).

Thus c divides k, and the first conclusion is proved.
If c = ma+ nb and d = ra+ sb are integer combinations of a and b and k = ic+ jd is an

integer combination of c and d, then

k = i(ma+ nb) + j(ra+ sb) = (im+ jr)a+ (in+ js)b.

Thus k is also an integer combination of a and b, and the second conclusion is proved. □

Later on, we’ll encounter what’s traditionally called the fundamental theorem of arithmetic,
but if tradition hadn’t already spoken for the name, I’d want to apply it to the next result.
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Theorem 5.5. Let a and b be integers not both equal to 0. Then gcd(a, b) is the smallest
positive integer combination of a and b.

Proof. Let

S = {k ∈ Z+ : k is and integer combination of a and b}
Since at least one of the two integers a and b is non-zero, we have a · a+ b · b = a2 + b2 ≥ 1.
Therefore a2 + b2 ∈ S, and our set is non-empty. By the well-ordering principle, S has a
smallest element g ≥ 1. By definition of S, g = ma + nb for some m,n ∈ Z. I claim that
g = gcd(a, b).
To see that my claim is true, note that since g is an integer combination of a and b, and

since gcd(a, b) divides both a and b, conclusion 1 of Proposition 5.4 implies that gcd(a, b)
divides g. In particular, conclusion 2 of Proposition 5.1 tells us that gcd(a, b) ≤ g.
It remains to show that g ≤ gcd(a, b). Since gcd(a, b) is the largest common factor of a

and b, it will suffice just to show that g|a and g|b. Taking a, for example, we apply the
division algorithm to write

a = g · q + r

where 0 ≤ r < g. Now r = a · 1+ (−q) · g is an integer combination of a and g, so conclusion
2 of Proposition 5.4 implies that r is an integer combination of a and b. On the other hand,
g is supposed to be the smallest positive integer combination of a and b. It follows that
r = 0. Thus a = g · q and we see that g|a.
The same argument shows that g|b. Thus g ≤ gcd(a, b), as desired. Combining our

inequalities, we conclude that g = gcd(a, b). □

Corollary 5.6. If a, b ∈ Z are not both zero and c ∈ Z divides both a and b, then c| gcd(a, b).

Proof. By Theorem 5.5, gcd(a, b) is an integer combination of a and b. Thus by conclusion
1 of Proposition 5.4, c| gcd(a, b). □

Definition 5.7. Two non-zero integers a and b are relatively prime if gcd(a, b) = 1.

Corollary 5.8. If a, b, and c are integers, such that a and b are relatively prime and a|bc,
then a|c.

Proof. Since a|bc, we have k ∈ Z such that bc = ak. Since gcd(a, b) = 1, we have from
Theorem 5.5 that

1 = ma+ nb

for some m,n ∈ Z. Thus

c = mac+ nbc = mac+ nak = a(mc+ nk).

Hence a|c. □

Corollary 5.9. If a, b ∈ Z are not both zero, then a
gcd(a,b)

and b
gcd(a,b)

are relatively prime
integers.

13



Proof. Since gcd(a, b) divides both a and b, there exist a′, b′ ∈ Z such that a = a′ gcd(a, b)
and b = b′ gcd(a, b). By Theorem 5.5, there also exist m,n ∈ Z such that

gcd(a, b) = ma+ nb.

Cancelling out the common factor of gcd(a, b) from the three terms in this equation, we find

1 = ma′ + nb′.

Hence by conclusion 2 of Proposition 5.4, any common factor of a′ and b′ must also divide 1.
It follows then from conclusion 2 of Proposition 5.1 that the only positive integer dividing
a′ and b′ is 1 itself. That is, a′ = a/ gcd(a, b) and b′ = b/ gcd(a, b) are relatively prime. □

Now let us return to consider prime numbers again. The first result is a relatively straight-
forward consequence of Corollary 5.8.

Corollary 5.10. If a, b, c are integers such that a is prime and a|bc, then a|b or a|c.

Proof. Exercise. □

Remark 5.11. The previous corollary extends to products of more than two integers. That
is,

if a is prime and a|n1 · · · · · nk, then a must divide one of the nj.

To see that this is so, note that by the previous corollary a|n1 or a|(n2 · · · · ·nk). In the latter
case, a|n2 or a|(n3 · · · · · nk. Continuing in this fashion, we eventually find that a|n1 or a|n2

or a|n3 or ... or a|nk.

Theorem 5.12 (Fundamental Theorem of Arithmetic). Every integer n ≥ 2 has a prime
factorization, and this factorization is unique up to order.

The phrase ‘unique up to order’ means, for example, that 2·3 is the only prime factorization
of 6, as long as you count this to be the same as 3 · 2.
Proof. Theorem 3.7 already tells us that n has at least one prime factorization. So here we
need to show that there isn’t a second one. Suppose in order to reach a contradiction that
n has two different prime factorizations

p1 · · · · · pk = n = q1 · · · · · qℓ.
By cancelling out terms that appear on both sides, we can assume that pi ̸= qj for any i, j.
However, the above equation implies that p1|q1 · · · · · qℓ. So from Corollary 5.10, we see that
p1|qj for some j. Since p1 and qj are both prime, it follows that p1 = qj. This contradicts
the fact that p1 is different from all the qj’s. Hence n does not have two different prime
factorizations. We conclude that prime factorizations are unique. □

14



6. Sets and relations

A set, which is nothing more than a collection of objects, is one of the most basic notions
in mathematics. The objects belonging to the set are called its elements. We write ‘x ∈ A’
to indicate that x is an element of A.
The most basic of all sets is the empty set ∅. That is, ∅ is the unique set which contains no

elements. The following definition presents a variety of other basic terminology connected
with sets.

Definition 6.1. Let A and B be sets.

• The union of A and B is the set

A ∪B := {x : x ∈ A or x ∈ B}.

• The intersection of A and B is the set

A ∩B := {x : x ∈ A and x ∈ B}.

• The difference between A and B is the set

A−B := {x ∈ A : x /∈ B}.

• B is a subset of A if every element of B is also an element of A. When B is a subset
of A, we call A−B the complement of B in A, and when the set A can be understood
from context, we write Bc for A−B.

• We say that A is a subset of B if for every x ∈ A, we also have x ∈ B. In this case,
we write A ⊂ B.

• We say that A = B if A ⊂ B and B ⊂ A.
• We say that A and B are disjoint if A ∩B = ∅.

Many assertions in mathematics boil down to statements about the relationship between
two sets. For instance, the assertion the solutions of x2 = 1 are 1 and −1 can be rephrased
as an equality between two sets

{x ∈ R : x2 = 1} = {−1, 1}.

Proving that two sets are equal, or that one is a subset of another is therefore an important
skill. Fortunately, it’s not a difficult one as long as you remember what you’re up to. Let us
give an example here.

Proposition 6.2. For any sets A,B,C, we have

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Before beginning, we point out the basic strategy. By definition, showing two sets are
equal means showing that one is a subset of the other and vice versa. And to show that one
set is a subset of another, we must show that any element in the first is an element of the
second.

Proof. To show that the left set is a subset of the right, let x ∈ A∩ (B ∪C) be given. Then
on the one hand x ∈ A, and on the other hand x ∈ B or x ∈ C. If x ∈ B, then it follows that
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x ∈ A∩B. Likewise, if x ∈ C, then it follows that x ∈ A∩C. Hence x ∈ (A∩B)∪ (A∩C).
This proves

A ∩ (B ∪ C) ⊂ (A ∩B) ∪ (A ∩ C).

To show the right set is a subset of the left set, let x ∈ (A∩B)∪ (A∩C) be given. Then
either x ∈ A∩B or x ∈ A∩C. If x ∈ A∩B, then x ∈ A and x ∈ B, so certainly x ∈ B ∪C,
too. Hence x ∈ A ∩ (B ∪ C). If, on the other hand, x ∈ A ∩ C, then we similarly see that
x ∈ A ∩ (B ∪ C). So in either case, we see that x ∈ A ∩ (B ∪ C). This proves

(A ∩B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C).

Putting the results together, we conclude that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

□

There is one other way to combine two sets. In some sense, it’s the largest possible way
to combine two sets.

Definition 6.3. The cartesion product of two sets A and B is the set

A×B := {(a, b) : a ∈ A, b ∈ B}
comprising all ordered pairs whose first element lies in A and whose second element lies in
B.

So if A is the set of all U.S. presidents and B is the set of all species of trees, then
(Woodrow Wilson,weeping willow) is an example of an element of A × B. Any kind of
‘connection’ between the elements of A set with the elements of B can be described as a
subset of A×B.

Definition 6.4. A subset R ⊂ A × B is called a relation from A to B. If A = B, then we
say simply that R is a relation on A.

So if A is the set of all readers of these notes and B is the set of all flavors of ice cream,
then

R = {(a, b) ∈ A×B : a likes b-flavored ice cream}
is a relation from A to B. One element in R is (Diller, strawberry). This is not the only
element in R, since the author of these notes enjoys several flavors of ice cream. How-
ever, (Diller,Chocolate Chip Cookie Dough) is certainly not in R, even though it is a well-
documented element of A×B.

An example of a relation on Z is the order relation

R = {(a, b) ∈ Z× Z : a < b}.
So a < b means exactly the same thing as (a, b) ∈ R. In fact, one often writes aRb (‘a is
related to b’) instead of (a, b) ∈ R (‘(a, b) belongs to R’), but keep in mind that the two pieces
of notation mean exactly the same thing. Concerning the example in the previous paragraph,
I might equally well have said Diller R strawberry (or better yet, Diller ♡ strawberry !)

Definition 6.5. A relation R on a set A is called

• Reflexive if xRx for every x ∈ A;
16



• Symmetric if xRy implies yRx for every x, y ∈ A;
• Transitive if xRy and yRz imply that xRz for every x, y, z ∈ A.

We call R an equivalence relation if R enjoys all three of these properties.

So the order relation < is transitive but not symmetric or reflexive. In particular, it is not
an equivalence relation. Consider on the other hand the following relation on the set A of
all people

R = {(x, y) ∈ A× A : x and y have the same birthday}.
Then R is certainly reflexive, symmetric, and transitive. Hence R is an equivalence relation.
More generally and speaking loosely, an equivalence relation on a set A is a relation that
ties together elements that have some property in common.

Definition 6.6. Let R be an equivalence relation on a set A and x ∈ A be any element.
The equivalence class of x is the set

[x] = {y ∈ A : xRy}.

In the preceding example, there are 365 different equivalence classes. Most, but not all of
the equivalence classes, have something around twenty million people in them.

Theorem 6.7. Let R be an equivalence relation on a set A. Then each x ∈ A belongs to its
own equivalence class [x], and if y ∈ A is another element, we have either

• xRy, in which case [x] = [y]; or
• R does not relate x and y, in which case [x] ∩ [y] = ∅.

Proof. Let x ∈ A be given. Then xRx because R is reflexive. Hence x ∈ [x].
Now let y ∈ A be another element. Suppose first that xRy. I must show that [x] = [y].

To do this, let z ∈ [y] be any element. Then yRz by definition of equivalence class. Since R
is transitive and we are assuming that xRy, it follows that xRz. Hence z ∈ [x]. This proves
that [y] ⊂ [x]. To prove that [x] ⊂ [y], I note that by symmetry of R, xRy implies that
yRx. So if z ∈ [y], I can repeat the previous argument with the roles of x and y reversed, to
conclude that [x] ⊂ [y]. I conclude that [x] = [y].
It remains to show that if x and y are not related by R, then [x] ∩ [y] = ∅. I prove the

contrapositive instead. If [x]∩ [y] ̸= ∅, then there is an element z ∈ [x]∩ [y]. By definition of
equivalence class xRz and yRz. By symmetry zRy, too. And then by transitivity xRy. □

Theorem 6.7 can be reformulated rather nicely using the notion of a set partition.

Definition 6.8. A partition of a set A is a collection P of non-empty subsets of A with the
following properties.

(1) For any sets S, S ′ ∈ P , we have either S = S ′ or S ∩ S ′ = ∅.
(2) For any x ∈ A, there exists S ∈ P such that x ∈ S.

So informally, a partition is a way of breaking a set A up into non-empty pieces. For exam-
ple, one way to partition the setA = {1, 2, 3, 4, 5, 6} into three subsets is P = {{1, 3}, {4}, {2, 5, 6}}.
And we can partition the set A of days of the year into seven subsets:

P = {Sundays,Mondays,Tuesdays,Wednesdays,Thursdays,Fridays, Saturdays}.
In any case, we can restate Theorem 6.7 as follows.
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Theorem 6.9. If R is an equivalence relation on a set A, then the collection of equivalence
classes of A form a partition of A.

Proof. For any x ∈ A, we have x ∈ [x] by the first conclusion of Theorem 6.7. This tells us
both that no equivalence class is empty and that every element of A is contained in some
equivalence class. If, moreover, [y] ⊂ A is another equivalence class, then the second and
third conclusions of Theorem 6.7 tell us that either [x] = [y] or [x] ∩ [y] = ∅. □

We will preoccupy ourselves for the next several classes with the following relation.

Definition 6.10. Given an integer m ≥ 2, we say that integers x, y ∈ Z are congruent
modulo m, writing

x ≡ y mod m,

if m divides the difference x− y.

Theorem 6.11. Let m ≥ 2 be an integer. Then congruence modulo m is an equivalence
relation on Z, and every integer x ∈ Z is equivalent to exactly one of the integers 0, 1, . . . ,m−
1.

The second assertion amounts to saying that the equivalence classes of congruence modulo
m are [0], [1], . . . , [m− 1].

Proof. Reflexive property: since m divides 0 = x − x, we have x ≡ x mod m. Symmetric
property: if x ≡ y mod m, then x − y = km for some k ∈ Z. Hence y − x = (−k)m, i.e.
m|y − x, too. So y ≡ x mod m. Transitive property: suppose x ≡ y mod m and y ≡ z
mod m, i.e. m|x− y and m|y − z. Then m also divides (x− y) + (y − z) = x− z. So x ≡ y
mod m. I conclude that ≡ mod m is an equivalence relation on Z.
Now given x ∈ Z, I apply the division algorithm to write x = mq + r for some q ∈ Z and

r ∈ {0, . . . ,m− 1}. Equivalently, x− r = mq. So m|x− r, and x ≡ r mod m. The division
algorithm also tells me that q and r are unique. So r is the only integer in {0, . . . ,m − 1}
congruent to x modulo m. □

In closing we note that in proving Theorem 6.11, we employed two equivalent ways of
saying that x ≡ y mod m:

(1) y = x+ km for some k ∈ Z;
(2) x and y have the same remainder when divided by m.

We will use these equivalent formulations of congruence again in what follows.
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7. Linear congruences and the Chinese Remainder Theorem

Let a, c,m ∈ Z be integers with m ≥ 2. Then

(2) ax ≡ c modm

is called a linear congruence, and it is a basic problem in number theory to determine those
integers x ∈ Z which satisfy the congruence. Let us make a couple of initial remarks.

• If x0 ∈ Z solves (2), then so does any integer x ≡ x0 modm. Hence it suffices to find
all solutions x ∈ {0, . . . ,m− 1}.

• Linear congruences can be turned into linear diophantine equations. Indeed x solves
(2) if and only if there exists y ∈ Z such that ax−my = c. From this, one sees that
(2) has a solution if and only if gcd(a,m) divides c.

The congruence (2) is especially nice if the coefficient a is ‘invertible modulo m’.

Definition 7.1. Given a, b,m ∈ Z with m ≥ 2, we call x a multiplicative inverse for a
modulo m if ab ≡ 1 modm.

Invertibility modulo m and linear congruences are related as follows.

Theorem 7.2. The following are equivalent for a,m ∈ Z with m ≥ 2.

(1) a is invertible modulo m.
(2) a and m are relatively prime.
(3) For any c ∈ Z, the linear congruence (2) has a solution x ∈ Z that is unique modulo

m.

That a solution x of ax ≡ c modm is ‘unique modulo m’ means that another integer
x′ ∈ Z solves the same congruence if and only if x ≡ x′ modm. Another way of saying this
is that ax ≡ c modm has a unique solution x ∈ {0, . . . ,m− 1}.

Proof. It will suffice to show that (1) ⇒ (2) ⇒ (3) ⇒ (1).
To see that (1) ⇒ (2), suppose that a is invertible modulo m, and let b denote a mul-

tiplicative inverse of a. Then ab ≡ 1 means that ab = 1 + mk for some k ∈ Z. That is,
1 = ab+m(−k) is an integer combination of a and m. Since gcd(a,m) divides every integer
combination of a and m, it follows that gcd(a,m)|1. But this can only happen if in fact
gcd(a,m) = 1. So a and m are relatively prime.

To see that (2)⇒ (3), suppose that gcd(a,m) = 1. Then for any c ∈ Z we have gcd(a,m)|c.
Hence there exists x, y ∈ Z satisfying

ax+ by = c.

That is, ax−c = by so that ax ≡ c modm. If, moreover, x′ ∈ Z also satisfies ax′ ≡ c modm,
then a(x− x′) ≡ c− c = 0 modm. That is, m|a(x− x0). Since gcd(a,m) = 1 it follows that
m|x− x0. So x ≡ x0 modm. In summary, ax ≡ c modm has a unique solution modulo m.

That (3) ⇒ (1) follows from taking c = 1 in (3) and letting x ∈ Z be a solution of
ax ≡ 1 modm. That is, a is invertible with multiplicative inverse x modulo m. □

Corollary 7.3. If a,m ∈ Z are integers with m ≥ 2 and a is invertible modulo m, then the
multiplicative inverse of a is unique modulo m.
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Proof. Theorem 7.2 tells us that if a is invertible modulo m, then the solution x of the linear
congruence ax ≡ 1 modm is unique modulo m. Since x is a multiplicative inverse of a
precisely when it solves this congruence, the corollary follows. □

Since 0 · b = 0 for all b ∈ Z, an integer congruent to 0 will never be invertible modulo m.
If m is prime, however, this is the only obstacle to invertibility.

Corollary 7.4. If m ∈ Z is a prime number, then any a ∈ Z is either congruent to 0 or
invertible modulo m.

Proof. If m does not divide a, then m and a have no common factors larger than 1 since m
is prime. That is, m and a are relatively prime. So by Theorem 7.2 a is invertible modulo
m. □

Systems of linear congruences can be solved in much the same way as other systems of
equations: solve the first, plug the solution into the second and solve that, etc. Since this is
generally a laborious thing to do, it’s good to have a criterion that tells us in advance that
the procedure will succeed. The following theorem is the best-known result along these lines.

Theorem 7.5 (Chinese Remainder Theorem). Let m1, . . . ,mk ≥ 2 be integers such that
gcd(mi,mj) = 1 whenever i ̸= j. Then for any a1, . . . , ak ∈ Z the system of congruences

x ≡ a1 modm1

x ≡ a2 modm2

...

x ≡ ak modmk

has a unique solution modulo m1 . . .mk.

In other words, the system has a solution x = x0 and any other solution is obtained by
adding an integer multiple of m1 . . .mk to x0.

Lemma 7.6. Let m1, . . . ,mk be as in Theorem 7.5. Then

gcd(mj,m1 . . .mj−1) = 1

for each j ∈ {2, . . . , k}.

Proof. Suppose the assertion is not true for some j: there is an integer n > 1 such that n|mj

and n|m1 . . .mj−1. Replacing n with a prime factor of n if necessary, we may assume that n
is prime. Thus n|m1 . . .mj−1 implies (see Remark 5.11) that n|mi for some i between 1 and
j − 1. But since n|mj, too, we see that gcd(mi,mj) ≥ n > 1, contradicting the hypothesis
in Theorem 7.5 that gcd(mi,mj) = 1. We conclude that gcd(mj,m1 . . .mj−1) = 1 for all
j ∈ {2, . . . , k}. □

Proof of Theorem 7.5. I work by induction on the number k of congruences x ≡
aj modmj in the theorem.
Base case: If k = 1, then x ≡ a1 modm1 if and only if x = a1 +m1ℓ for some ℓ ∈ Z. In

particular, there is a unique solution x modulo m1.
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Induction step: Suppose the theorem holds when k = n; i.e. any system of congruences

x ≡ a1 modm1, . . . , x ≡ an modmn

has a unique solution x = xn modulo m1 · · ·mn. That is, x solves the system if and only if

x = xn +m1 · · ·mn · ℓ
In this case, x also satisfies x ≡ an+1 modmn+1 if and only if

m1 · · ·mn · ℓ ≡ (an+1 − xn) modmn+1.

Lemma 7.6 tells us that mn+1 and m1 . . .mn are relatively prime. Hence by the equivalence
of (2) and (3) in Theorem 7.2 there is a unique integer ℓ0 ∈ {0, . . . ,mn+1 − 1} such that ℓ
solves the last congruence if and only if ℓ = ℓ0 +mn+1ℓ

′ for some ℓ′ ∈ Z. Plugging this back
into the formula for x shows that x satisfies all n+ 1 congruences if and only if

x = xn+1 +m1 · · ·mn+1ℓ
′

where xn+1 := xn +m1 ·mnℓ0. In short, the theorem is true for systems consisting of n+ 1
congruences. This completes the induction step and the proof. □

21



8. Rational numbers

Theorem 8.1. The following is an equivalence relation on Z × Z+: (a, b) ∼ (c, d) if and
only if ad− bc = 0.

Proof. Homework problem. □

While the equivalence relation in this theorem might look a little strange, it’s origin
becomes much clearer with the introduction of some ‘new’ notation.

Definition 8.2. The ∼-equivalence class of (a, b) ∈ Z × Z+, is denoted a
b
and called a

rational number. The set of all rational numbers is denote by Q.

So the equivalence (a, b) ∼ (c, d) is exactly the same as the (more familiar looking) equation
a
b
= c

d
. The idea here is to develop rational numbers from the ground up, using integers as a

starting point and setting aside the things we already ‘know’ about rationals. In particular,
we’ll keep using the (a, b) ∼ (c, d) notation for the next page or so in order to avoid the
trap of inadvertantly assuming things about rationals that we haven’t yet proven. However,
as you read, you should keep in mind what’s ‘really going on’ at each point, not forgetting
that we’re only verifying truths you’ve accepted without question for most of your life. Soon
enough, we’ll revert to writing rational numbers the in familiar form a

b
.

Our next result says that any rational number can be uniquely expressed in lowest terms
by cancelling common factors from the ‘numerator’ and ‘denominator’.

Theorem 8.3. For any pair (a, b) ∈ Z × Z+, there is a unique pair (a′, b′) ∈ Z × Z+ such
that gcd(a′, b′) = 1 and (a, b) ∼ (a′, b′). Moreover, (a, b) = (ka′, kb′) for some k ∈ Z+.

Proof. Let k = gcd(a, b). Then a = a′k and b = b′k for some a′ ∈ Z and b′ ∈ Z+. Since
k gcd(a′, b′) = gcd(ka′, kb′) = gcd(a, b) = k, it follows that gcd(a′, b′) = 1. Also, ab′ − ba′ =
ka′b′ − kb′a′ = 0. Hence (a, b) ∼ (a′, b′).

It remains to show that the pair (a′, b′) is unique. Suppose (a′′, b′′) ∈ Z × Z+ is another
pair of relatively prime integers equivalent to (a, b). Then by transitivity (a′′, b′′) ∼ (a′, b′).
In other words,

a′′b′ = b′′a′.

From this, I see in particular that b′|b′′a′. Since b′ and a′ are relatively prime, it follows that
b′|b′′. Therefore b′′ = ℓb′ for some ℓ ∈ Z+. Plugging this into the previous equation, I get

a′′b′ = ℓb′a′.

Since b′ ∈ Z+ is not equal to 0, I can cancel it and get a′′ = ℓb′. Thus ℓ divides both a′′

and b′′. Since gcd(a′′, b′′) = 1, it follows that ℓ = 1. I conclude that b′′ = ℓb′ = b′ and
a′′ = ℓa′ = a′. That is, (a′, b′) ∈ Z×Z+ is the only relatively prime pair equivalent to (a, b).
□

Now we discuss arithmetic for rational numbers, working first with just ordered pairs.
Given two pairs (a, b), (c, d) ∈ Z×Z+ we define operations + and · according to the formulas

(a, b) + (c, d) := (ad+ bc, bd)

(a, b) · (c, d) := (ac, bd).
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The formula for addition might seem a little weird, but it’s really not: just think for a second
about what you get when you compute a

b
+ c

d
the way you were taught to do it in elementary

school.
We will say that (a, b) < (c, d) if and only if ad < bc. Note that we rely on the assumption

that b and d are positive in this definition!
The important thing about the definitions of +, · and ≤ from a logical standpoint is that

they ‘respect’ the equivalence relation ∼. For instance, the sums

4

8
+

−8

12
and

3

6
+

−2

3
.

look quite different, but they should give the same answer if addition of rational numbers is to
be meaningful. To put it another way, the sum of two rational numbers should be independent
of the particular way we choose to represent the numbers. The following theorem addresses
this issue.

Theorem 8.4. Suppose that (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′). Then

(1) (a, b) + (c, d) ∼ (a′, b′) + (c′, d′);
(2) (a, b) · (c, d) ∼ (a′, b′) · (c′, d′);
(3) (a, b) < (c, d) if and only if (a′, b′) < (c′, d′).

Proof. We’ll prove the second and third conclusions, leaving the proof of the first to you.
The assumption that (a, b) ∼ (a′, b′) implies ab′ = a′b, and similarly (c, d) ∼ (c′, d′) implies

cd′ = c′d. Hence,

acb′d′ − bda′c′ = (ab′)(cd′)− (a′b)(c′d) = 0,

from which we conclude that (ac, bd) ∼ (a′c′, b′d′). That is, (a, b) · (c, d) ∼ (a′, b′) · (c′, d′), so
the second conclusion is true.

Now if (a, b) < (c, d), then ad < bc. Multiplying this by b′, d′, we obtain (ab′)(dd′) <
(bb′)(cd′). Using (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) again, we deduce

(a′b)(dd′) < (bb′)(c′d).

Since b and d are positive integers, we may cancel them both, arriving at a′d′ < b′c′. That
is, (a′, b′) < (c′, d′). This proves the third conclusion. □

Corollary 8.5. The following definitions are unambiguous for any rational numbers a
b
, c
d
∈

Q.

• a
b
+ c

d
:= ad+bc

bd
.

• a
b
· c
d
:= ac

bd
.

• a
b
< c

d
if and only if ad < bc.

Theorem 8.6. All the axioms for arithmetic and order from sections 1 and 2 hold for
rational numbers as well as integers. In particular

(1) 0
1
is an additive identity for Q;

(2) 1
1
is a multiplicative identity for Q;

(3) for any a
b
∈ Q, the rational number −a

b
is an additive inverse for a

b
.
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Proof. It would take several pages to verify all the axioms. I’ll make an example of two of
them here, and leave the rest to you.

First I’ll prove that axiom A3 is true: specifically, that 0
1
is an additive identity for Q.

Observe that for any other rational number a
b
, I have

a

b
+

0

1
=

a · 1 + b · 0
b · 1

=
a

b
.

Hence 0
1
is an additive identity.

Next I’ll prove that axiom O2 holds. To this end, note first that a
b
> 0

1
iff a · 1 > b · 0, i.e.

iff the numerator a is positive. Suppose now that a
b
, c
d
∈ Q are both positive, i.e. a, c > 0.

Since the denominators b and d are always positive, we have

ad+ bc > 0.

Thus a
b
+ c

d
= ad+bc

bd
has positive numerator and is therefore also positive. □

Before going further, we note that since all the axioms from Sections 1 and 2 hold for
rational numbers, so do all the things that we proved from the axioms in those sections. We
will use all these results freely in what follows. Concerning notation, we henceforth join the
rest of the known universe by identifying a rational number a

1
with the corresponding integer

a. In particular we write 0 and 1 instead of 0
1
and 1

1
. Moreover, we write −a

b
:= −a

b
for the

additive inverse of a
b
.

Despite the similarity to integers, there are two important ways in which arithmetic and
order are different for rational numbers. First of all, it is almost always possible to divide
one rational number by another.

Proposition 8.7. Every non-zero rational number has a unique multiplicative inverse.

Proof. Suppose that a
b
∈ Q is not equal to 0. That is, a ̸= 0. Assume for the moment that

a > 0. Then b
a
is also a rational number, and

a

b
· b
a
= 1.

Hence b
a
is a multiplicative inverse for a

b
. If a < 0, this won’t quite work because we’re not

allowing denominators of rational numbers to be negative. However, we can get around the
problem by considering −b

−a
instead:

a

b
· −b

−a
:=

a(−b)

(−b)a
= 1.

Finally, toward uniqueness, suppose that x, y ∈ Q are both multiplicative inverses for a
b
.

Then

x = 1 · x =
(a
b
· y
)
· x =

(a
b
· x
)
· y = 1 · y = y.

Hence the multiplicative inverse of a
b
is unique. □

Existence of multiplicative inverses makes algebra much easier for rational numbers. For
instance, if a, b ∈ Q, the equation

ax = b

has a solution x ∈ Q as long as a ̸= 0. This is definitely not true if we replace Q by Z.
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Existence of multiplicative inverses also implies the so-called density property for rational
numbers.

Proposition 8.8 (Density Property for Q). If x, y ∈ Q are rational numbers with x < y,
then there exists z ∈ Q such that x < z < y.

Proof. Observe that 2x = x + x < x + y < y + y = 2y. Multiplying through by 2−1, we
obtain

x < 2−1(x+ y) < y.

Hence z = 2−1(x+ y) satisfies the conclusion of the theorem. □

Not everything is better for rational numbers, however: the well-ordering principle fails.

Proposition 8.9. The set {x ∈ Q : x > 0} has no smallest element.

Proof. Call the set S. Suppose, in order to get a contradiction, that x is the smallest element
in S. Then x ̸= 0 by definition of S. The density property therefore gives us z ∈ Q such
that 0 < z < x. In particular, z ∈ S. This contradicts the fact that x was the smallest
element in S. We conclude that S has no smallest element. □

Finally, we point out one other deficiency of Q. This one deeply troubled the Greeks who
discovered it.

Theorem 8.10. There is no x ∈ Q such that x2 = 2.

Lest we lose sight of the forest because of the trees: the strategy is to assume x = a/b
is rational and written in lowest terms; then we use the equation x2 = 2 to show that a
and b are even, which means we can cancel a factor of 2 from numerator and denominator,
contrary to assumption.

Proof. Suppose, to get a contradiction, that the assertion is false: there is a rational number
a
b
such that

a2

b2
=

2

1
.

By Theorem 8.3, we can assume that gcd(a, b) = 1. Thus

a2 = 2b2.

In particular, 2|a · a. Since 2 is prime, it follows from Corollary 5.10 that 2|a. Thus a = 2k
for some k ∈ Z. Plugging this into the previous equation and cancelling a factor of 2 gives

2k2 = b2.

Thus 2|b2, which further implies that 2|b. But if 2 divides both a and b, we see that a and b
are not relatively prime. Having reached a contradiction, we conclude that there is no x ∈ Q
such that x2 = 2. □
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9. Real numbers: completeness

In previous sections we have discussed integers and rational numbers at some length. Now
we turn to real numbers. The set of all real numbers is usually denoted with the boldface R.
It includes both integers and rational numbers; that is, Z ⊂ Q ⊂ R. However, R is strictly
larger than even Q. A real number that does not belong to Q is called irrational.
Among the various important subsets of R, intervals should be mentioned immediately.

These come in various flavors. There are

• open intervals (a, b) := {x ∈ R : a < x < b}
• closed intervals [a, b] := {x ∈ R : a ≤ x ≤ b}
• ‘half-open’ intervals (a, b] or [a, b).

Note that we occasionally use +∞ and −∞ as the right and left endpoints, respectively, of
open and half-open intervals. This should be understood to mean that the endpoint question
doesn’t exist. For instance [4,∞) is the set of all real numbers larger than or equal to 4.
But what exactly is a real number? One might say that it’s something that can be

expressed as an infinite decimal expansion; something like

3.141592654 . . .

for instance. As answers go, this isn’t half bad, but it requires a lot of qualification and
elaboration before one can turn it into a logically water-tight definition of ‘real number.’ In
fact, it’s rather difficult to say precisely what one means by the term ‘real number.’ Therefore
we will do here as we did earlier with integers. Rather than try to say what real numbers
‘are,’ we will content ourselves with tackling the more practical question of how real numbers
behave—i.e. what the rules are for arithmetic and order. In this section, we will be especially
concerned to compare and contrast the behavior of real numbers with that of their nearest
relatives, rational numbers.

As with rational numbers, the real numbers constitute an ordered field : arithemetic and
order of real numbers satisfy all the axioms from Sections 1 and 2 and the additional assertion
(see Proposition 8.7).

M4: Every non-zero real number has a multiplicative inverse.

In particular, division is a (mostly) legitimate operation for real numbers. As a consequence
of the axioms, one can appropriate arguments used for rational numbers to show that real
numbers enjoy the density property (see Proposition 8.8 and its proof) but fail to obey the
well-ordering principle (see Proposition 8.9).

So why, if real numbers turn out to behave pretty much like rational numbers, do we
not just content ourselves with rational numbers and leave the rest to posterity to bother
with? Would it make any difference? After all, as various state legislatures are said to have
noticed, it’s a little easier to think about, say, 22/7 than it is to cope with 3.141592654 . . . .
Of course, we already began to see at the end of Section 8 that it does make a difference.
Positive rational numbers don’t necessarily have rational square roots. But the deficiency
inherent in rational numbers is actually much deeper that this. Identifying the real problem
requires a definition or two.

Definition 9.1. A set S ⊂ R is bounded above if there is a number M ∈ R such that x ≤ M
for all x ∈ S. The number M is called an upper bound for S.
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Take for example the open interval S = (0, 1). Clearly, 1 is an upper bound for S. So, for
that matter, is 75, or 1, 000, 000. If, on the other hand, S is the set of all prime numbers,
then S has no upper bound. Given any M ∈ R, we can always find a prime number that
exceeds M . The moral here is that a set of real numbers needn’t have an upper bound, but
if it has one, then it actually has a great many upper bounds. Nevertheless, as the example
(0, 1) suggests, not all upper bounds are created equal.

Definition 9.2. An upper boundM for a set S is called the least upper bound (or supremum)
of S, if M is no larger than any other upper bound for S. We denote the least upper bound
for S, provided it exists, by supS.

We leave it to you the reader to define lower bound and greatest lower bound (also called
infimum) for a set of real numbers. As the wording of Definition 9.2 suggests, least upper
bounds are unique if they exist.

Proposition 9.3. A set S ⊂ R has at most one least upper bound.

Proof. Suppose that x1, x2 are both least upper bounds for S. Then since x1 is a least upper
bound and x2 is an upper bound, it follows that x1 ≤ x2. The same argument shows that
x2 ≤ x1, too. Hence x1 = x2, and we conclude that S can’t have more than least upper
bound. □

Existence of least upper bounds is the thing that separates R from Q.

Completeness Axiom. A set S ⊂ R that is non-empty and bounded above has a least
upper bound.

For instance, the set
S = {t ∈ R : t2 ≤ 2}

is non-empty (exercise: name one real number in S). It’s bounded above by e.g. 1.5,
because numbers t > 1.5 satisfy t2 > (1.5)2 > 2 and therefore do not belong to S. So by the
completeness axiom, S has a least upper bound x. It seems at least plausible that x2 = 2,
and we will prove later that this is indeed the case, but let’s just take it on faith right now.

Now what if we forget about real numbers and only consider rational numbers? Then our
set becomes

S ′ = {t ∈ Q : t2 ≤ 2}.
As before S ′ is non-empty (name one rational number in S) and bounded above by 1.5 which
is a rational number. However, S ′ has no least upper bound. But wait, you say, it does. The
number x above is still the least upper bound for S ′. However, x2 = 2 so by Theorem 8.10,
x is not a rational number. Therein lies the rub: for the duration of this paragraph, we’ve
erased all memory of irrational numbers, so as far as we’re concerned the number x no longer
exists. In summary, S ′ has an upper bound but not a least upper bound. In the place we’d
like that least upper bound to be, the set Q has only a hole. This is why we bother with
real numbers.

To see another instance of this phenomena, consider the set

T = {t ∈ R : t is smaller than the circumference of a circle of radius 1}.
This set also has a least upper bound (what is it?), but only if we allow for irrational numbers.
The problem in both these examples is that the set Q is riddled with holes. Everywhere
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we’d normally expect to find an irrational number, the set Q has a yawning gap that only a
bona fide real number can fill.

Let us consider the completeness axiom from another point of view by comparing it with
a variant of the well-ordering principle (see Proposition 3.9): Every non-empty subset of Z
that is bounded above has a largest element. The largest element in a set is often called its
maximum. Note that a maximum is automatically a least upper bound, but not vice versa:
1 is the maximum and least upper bound of [0, 1], but it is only the least upper bound of
(0, 1). Hence the well-ordering principle can be regarded as a particularly strong version of
the completeness axiom, and one might imagine that the completeness axiom will play for
R somewhat the same role that the well-ordering principle did for Z. This is certainly true,
but it requires a little more care to put the completeness axiom to work.

First we point out an obvious fact that does not depend on completeness at all.

Proposition 9.4. Suppose x ∈ R satisfies x ≤ ϵ for all positive ϵ ∈ R. Then x ≤ 0.

Proof. Assume instead that x > 0. Then 0 < 1
2
< 1 implies that

0 <
x

2
< x.

This contradicts x < ϵ for ϵ = x
2
. It follows that x ≤ 0. □

The next, similarly ‘obvious’, fact says that natural numbers form an unbounded subset
of R. We use completeness to prove it in somewhat the same way we used the well-ordering
property to show that there are no natural numbers strictly between 0 and 1.

Proposition 9.5 (Archimedean Property). Given any x, y ∈ R with x > 0, there exists
n ∈ N such that nx > y.

Proof. Suppose, in order to reach a contradiction, that x > 0 and y are real numbers such
that nx ≤ y for all n ∈ N. Then y is an upper bound for the non-empty set

S = {nx : n ∈ N}.
By the completeness axiom, the least upper bound z = supS exists. In particular, z−x < z
is not an upper bound for S. So there exists n ∈ N such that nx > z − x. Adding 1 to n,
we find

(n+ 1)x > z − x+ x = z.

But (n+1)x ∈ S, too, so we see that z is not actually an upper bound for S: a contradiction.
□

Corollary 9.6 (Density property (again)). Given x, y ∈ R such that x < y, then there exists
z ∈ Q such that x < z < y.

If we didn’t insist that z be rational in the conclusion of this Corollary, the proof would
be simpler: we could just take z = x+y

2
and declare victory.

Proof. If x < 0 < y then I can take z = 0.
If instead, 0 < x < y then we proceed as follows. Since y − x > 0 the Archimedean

property gives me a (necessarily positive) integer b ∈ Z such that b(y − x) > 1. That is,
by > bx + 1. The Archimedean property also tells me that there exist integers n such that
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n ·1 > bx. Since bx > 0, all such n are positive, so the Well-Ordering principle tells me there
is a smallest such n, which I call a. Hence a > bx, which means x < a/b. But by minimality
of a, we have on the other hand that (a− 1) ≤ bx. Thus

a ≤ bx+ 1 < by,

so a/b < y. Taking z = a/b completes the proof when x and y are positive.
The remaining case to consider is x < y < 0. But multiplying through by −1 gives

0 < −y < −x, and the previous case applies, giving us z ∈ Q such that −y < z < −x.
Multiplying through by −1 again, we get x < −z < y. So −z ∈ Q is the number we seek. □

We close by showing that the completeness axiom implies the existence of
√
2 as a real

number.

Theorem 9.7. There exists x ∈ R such that x2 = 2.

Proof. As above, let S = {t ∈ R : t2 < 2}. Then as we noted S is non-empty and bounded
above by 1.5. Let x = supS be the least upper bound. Then for any ϵ > 0, we have x+ϵ > x,
so x + ϵ /∈ S. That is, (x + ϵ)2 ≥ 2. On the other hand, x − ϵ < x means that x − ϵ is not
an upper bound for S; i.e. there exists t ∈ S such that t > x− ϵ. Hence

(x− ϵ)2 < t2 < 2.

In summary
(x− ϵ)2 < x2, 2 < (x+ ϵ)2.

In particular,
|x2 − 2| < (x+ ϵ)2 − (x− ϵ)2 = 4xϵ ≤ 4 · 1.5ϵ = 6ϵ.

Since this inequality holds for any positive ϵ, so we conclude that 1
6
|x2 − 2| is smaller than

any positive number. Applying Proposition 9.4, we conclude that 1
6
|x2 − 2| = 0. In other

words x2 = 2. □

A variation on this argument establishes the existence of nth roots of positive real numbers.
We leave the proof to our ambitious readers.

Theorem 9.8. For any positive integer n and positive real number a, there exists x ∈ R
such that xn = a.
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10. Sequences of real numbers: convergence

Real numbers are very slippery creatures. Most cannot be pinned down exactly. For
instance we cannot write down

√
2 precisely as a decimal number. We can only say things

like
√
2 = 1.414 . . . , giving a few digits and suggesting with our . . . that we could give more

digits if we’d already had dinner and our favorite show weren’t about to start. Since in
most cases, we can only approximate the real numbers we find, it is essential to have a firm
logical foundation for approximation. It turns out to be rather tricky to get the details of
this just right. Historically, it took centuries to do it. Isaac Newton and the calculus gave
approximation center stage in mathematics, but the logical foundations for Newton’s ideas
weren’t completed until the work of Weierstrass in the latter half of the 19th century.

10.1. Absolute values and distance. In order to discuss approximation, it is crucial to
have some notion of ‘distance’ in hand. That is, it is important to be able to tell how far an
approximation is from the thing it is approximating. Measuring the distance between real
numbers is accomplished using the absolute value function | · | : R → R, which is given by

|x| :=
{

x if x ≥ 0
−x if x < 0.

The next result summarizes the most important properties of absolute values.

Proposition 10.1. Given x, y ∈ R, we have

(1) |x| ≥ 0, and |x| = 0 if and only if x = 0;
(2) |xy| = |x||y|;
(3) |x+ y| ≤ |x|+ |y|.
(4) ||x| − |y|| ≤ |x− y|.

The third assertion in this proposition is known as the triangle inequaltity, and it will play
a prominent role in our work.

Proof. The first two assertions are readily verified, and we leave the proof of the fourth
(which is really just a variation on the third) to the reader. To prove the triangle inequality,
we suppose first that x and y are both non-positive. Then x+ y ≤ 0 and

|x+ y| = −x− y = |x|+ |y|.
Similarly, |x+ y| = |x|+ |y| if x and y are non-negative. If, on the other hand, x and y have
opposite signs—say x > 0 and y < 0, then

|x+ y| = ||x| − |y|| = ±(|x| − |y|) ≤ |x|+ |y|.
The sign in the third term is determined by whether |x| or |y| is larger. In any case, we have
shown that |x+ y| ≤ |x|+ |y| regardless of the signs of x and y. □

For our purposes, the distance between two numbers x, y ∈ R will be the quantity |x− y|.
Note that the first, second, and third assertions in Proposition 10.1 translate to the following
important facts about distance.

• |x− y| ≥ 0, and |x− y| = 0 if and only if x = y.
• |x− y| = |y − x|
• |x− y| ≤ |x− z|+ |z − y| for every z ∈ R.
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10.2. ...into the fray. The key logical construct underlying everything else about approx-
imation is the idea of a convergent sequence, and it is this idea (specifically Definition 10.3)
that we take up now. Most find it a little tricky to keep straight and use accurately at first,
but be persistent. Once you become truly comfortable with it, your future classes in real
analysis (i.e. advanced calculus) will be much easier for you.

Definition 10.2. If S is a set, then a sequence (xn) of elements of S is a function x : N → S.
The values xn := x(n) are called terms of the sequence.

For example, one might have S = N and define x : N → S by setting x(n) to be the nth
prime number. Thus x1 = 2, x2 = 3, x3 = 5, etc, and (xn) just gives the prime numbers
in increasing order. The set S in Definition 10.2 is perfectly arbitrary, and one might want
to consider sequences of sets, sequences of chess moves, or sequences of bad movies when
the occasion calls for it. However, for the time being, the set S will always be R, and by
‘sequence’ we will mean ‘sequence of real numbers.’ Note also that we’ll often write down
sequences that are missing one or more leading terms. For instance, ( 1

n
) doesn’t technically

make sense when n = 0, but for our purposes, that won’t matter.
While you shouldn’t forget that a sequence is a actually a special kind of function, you’ll

be well-served most of the time to think of a sequence less formally as a neverending list of
terms. For example ( 1

n
) is just 1

1
, 1
2
, 1
3
, 1
4
, . . . . Indeed, whenever you’re confused about the

definition of a particular sequence, you should reach for some scrap paper and try to write
down the first five or so terms of the sequence.

Memorize the first half of the following definition word for word, repeat it to yourself
in spare moments, and think about what it’s saying every night as you drift off to sleep.
Imagine that well-armed but mathematically challenged aliens will descend on the planet at
the end of this term and threaten to destroy humanity unless you personally explain this
definition to them.

Definition 10.3. A sequence (xn) is said to converge to a number L ∈ R if for every ϵ > 0
there exists N ∈ N such that n ≥ N implies that |xn − L| < ϵ.
We call L the limit of (xn) and write limxn = L or, less formally, xn → L. If (xn) does

not converge to any real number L, then we say that (xn) diverges.

The following examples show how this definition gets used.

Example 10.4. The sequence ( 1
n
) converges to 0.

Proof. Let ϵ > 0 be given. By the Archimedean principle, we can find a number N ∈ N such
that N = N · 1 > 1/ϵ. Then if n ≥ N , we have∣∣∣∣ 1n − 0

∣∣∣∣ = 1

n
≤ 1

N
<

1

1/ϵ
= ϵ.

Therefore lim 1
n
= 0. □

The next example is so simple it’s confusing.

Example 10.5. Given c ∈ R, the constant sequence (c) converges to c.
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Proof. Let ϵ > 0 be given. Take N = 0. Then if n ≥ N , and xn = c is the nth term in the
sequence, we have

|xn − c| = |c− c| = 0 < ϵ.

Therefore, lim c = c. □

Let’s try something a bit more representative.

Example 10.6. lim n
3n−2

= 1
3
.

Proof. Let ϵ > 0 be given. Let N ∈ N be some number greater than 2
9ϵ
+ 2

3
(Note that in

particular N ≥ 1). Then if n ≥ N , we have∣∣∣∣ n

3n− 2
− 1

3

∣∣∣∣ =

∣∣∣∣ 2

9n− 6

∣∣∣∣
=

2

9n− 6

≤ 2

9N − 6

<
2

9(2/3 + 2/9ϵ)− 6
= ϵ.

□

The reader should be aware that in the preceding proof we did not arrive at our choice of
N by luck or magic. Before starting the proof, we solved the inequality |xn − 1

3
| < ϵ for n,

making the solution our choice of N .
The reader should also take care to see that when we use < or ≤ signs, the inequality really

holds. For instance, when we replaced n by N , which is smaller than n, then the value of
the entire expression really did increase. Many beginners (and not a few seasoned veterans)
are tempted to make mistakes of convenience when working with inequalities, incorrectly
saying that one expression is smaller than another because they want it to be so, rather than
because it is.

Finally, we point out that in order to keep the presentation moving, we often omit a little
algebraic calculation in our work. The first = in the above proof is a good example of this
practice. While it does help control the clutter, it also means that you will find yourself
needing to fill in some of the missing computations as you read. Keep a pencil and paper
handy for this purpose.

Example 10.7. The sequence ((−1)n) diverges.

Proof. Suppose, in order to reach a contradiction, that lim(−1)n = L. Take ϵ = 1, for
instance. By definition of convergence, there exists N ∈ N such that n ≥ N implies that
|(−1)n − L| < 1. In particular, if n ≥ N is an even integer, then

|(−1)n − L| = |1− L| < 1.

Thus L lies in the interval (0, 2). Likewise, if n ≥ N is odd, we have

|(−1)n − L| = | − 1− L| < 1.
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Hence L also lies in the interval (−2, 0). But (0, 2) ∩ (−2, 0) = ∅, so the limit L does not
exist, and the sequence diverges. □

Intuitively, the problem in the previous example is that the sequence ((−1)n) wants to
have two limits: -1 and 1. The next result says that this sort of simultaneous posses-
sion/consumption of cake is impossible.

Theorem 10.8. A sequence has no more than one limit.

Proof. Suppose that (xn) has two limits A and B. Then for any ϵ > 0, there exists N1 ∈ N
such that n ≥ N1 implies that

|xn − A| < ϵ,

and n ≥ N2 implies that
|xn −B| < ϵ.

Therefore, if n is larger than both N1 and N2, we see that

|A−B| = |(A− xn) + (xn −B)| ≤ |xn − A|+ |xn −B| < 2ϵ.

However, ϵ > 0 was arbitrary here, so we have in effect shown that |A− B| is smaller than
any positive number. This implies that |A − B| = 0, i.e. A = B. We conclude that a
sequence has at most one limit. □

An important point concerning the definition of convergent sequence is that one can always
ignore finitely many of the terms. When checking, for instance, to see if some sequence
converges to π, it is completely irrelevant if the first 600 terms are all equal to −1010. What
matters is that after some point the terms become close to π.
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11. Three useful theorems about limits

After a few tries at using the definition of convergence to prove that some sequence con-
verges, almost anyone will be left with the nagging sense that life is very precious and short
and that there must be some quicker, more convenient way to dispose of such problems. In
this section, we do our best to validate that sentiment. There are at least three standard
ways to get around using the definition of convergence. None of them, by itself, is fool-
proof, but taken together, these three methods will suffice to address most garden variety
convergence problems.

Theorem 11.1. Let (xn) and (yn) be sequences converging to real numbers A and B, re-
spectively. Then

(1) lim(xn + yn) = A+B;
(2) limxnyn = AB;
(3) lim(xn − yn) = A−B;
(4) if B ̸= 0, then limxn/yn = A/B.

Proof. We will prove the first three of these assertions, leaving the third as an exercise for
you, the reader.

To prove the first assertion, let ϵ > 0 be given. Since limxn = A, there exists N1 ∈ N
such that n ≥ N1 implies |xn − A| < ϵ/2. Likewise, there exists N2 ∈ N such that n ≥ N2

implies |yn −B| < ϵ/2. Therefore, if we set N = max{N1, N2}, then n ≥ N implies that

|(xn + yn)− (A+B)| = |(xn − A) + (yn −B)| ≤ |xn − A|+ |yn −B| < ϵ

2
+

ϵ

2
= ϵ.

The ‘≤’ is the triangle inequality, and the ‘<’ comes from the fact that if n ≥ N , then
n ≥ N1 and n ≥ N2. In any case, we conclude that lim(xn + yn) = A+B.
To prove the second assertion, we again let ϵ > 0 be given. Since lim xn = A, there exists

N1 ∈ N such that n ≥ N1 implies |xn −A| < min{ϵ/2|B|, 1}. Similarly, there exists N2 ∈ N
such that n ≥ N2 implies |yn−B| < ϵ/(2|A|+2). If we take N = max{N1, N2}, and n ≥ N ,
then first of all

|xn| = |xn − A+ A| ≤ |xn − A|+ |A| ≤ 1 + |A|.
Moreover,

|xnyn − AB| = |xnyn − xnB + xnB − AB|
≤ |xnyn − xnB|+ |xnB − AB|
= |xn||yn −B|+ |B||xn −B|

< (1 + |A|) ϵ

2|A|+ 2
+

|B|ϵ
2|B|

=
ϵ

2
+

ϵ

2
= ϵ.

To see that third assertion holds, note that

lim(xn − yn) = lim xn + lim(−yn) = lim xn + (lim−1)(lim yn) = lim xn − lim yn.

The first equality holds because of the first assertion in this theorem, the second holds
because of the second assertion in this theorem, and the third holds because of Example
10.5. □
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Example 11.2. Let us show using Theorem 11.1 that lim (n+1)3

2n3+n
= 1

2
. We have

lim
(n+ 1)3

2n3 + n
= lim

n3

n3

(1 + 1
n
)3

2 + 1
n2

= lim
(1 + 1

n
)3

2 + 1
n2

=
lim(1 + 1

n
)3

lim(2 + 1
n2 )

=
(lim 1 + lim 1

n
)3

lim 2 + lim 1
n2

=
(1 + lim 1

n
)3

2 + (lim 1
n
)2

=
(1 + 0)3

2 + 0
=

1

2

The first two equalities are just algebra. The third relies on the fourth assertion in Theorem
11.1. The fourth uses the second assertion in Theorem 11.1 in the numerator and the first
assertion in Theorem 11.1 in both numerator and denominator. The fifth equality relies in
the denominator on the second assertion in Theorem 11.1, and it uses Example 10.5 in both
numerator and denominator. The sixth equality follows from Example 10.4.

Definition 11.3. A sequence (xn) is said to be bounded if there is a number M ∈ R such
that |xn| ≤ M for all n ∈ N.

Proposition 11.4. A convergent sequence is bounded.

Proof. Suppose that (xn) converges to L. Taking ϵ = 1, we then have N ∈ N such that
n ≥ N implies that |xn − L| < 1. In particular, if n ≥ N , then

|xn| = |xn − L+ L| ≤ |xn − L|+ |L| < 1 + |L|.
Moreover, since there are only finitely many indices n smaller than N , it follows that there
is a number K ∈ R such that |xn| ≤ K when n < N .
Therefore, if M = max{K, 1 + |L|}, we can conclude that |xn| ≤ M for all n ∈ N. That

is, (xn) is bounded. □

Example 11.5. Here and below, we will consider the sequence (rn) for various real numbers r.
For now, let us suppose that |r| > 1. I claim then (and it’s that (rn) is unbounded. In light
of Proposition 11.4, it follows that (rn) diverges (i.e. if convergent sequences are bounded
then unbounded sequences diverge).

Now my claim that (rn) is unbounded when |r| > 1 is intuitively pretty clear. However,
technically, it needs justifying. This can be accomplished in much the same way we proved
the Archimedean Property. Specifically, I suppose in order to reach a contradiction that (rn)
is bounded. That is, there is M ∈ R such that |r|n ≤ M for all n ∈ N. By the Completeness
Axiom then, I can choose a least upper bound m for the set {|r|n : n ∈ N}. Since |r| > 1, I
have that m/|r| < m and therefore that |rn| > m/|r| for some n ∈ N. But then |rn+1| > m,
contradicting the fact that m is an upper bound for the powers of |r|. It follows that (rn) is
unbounded. □

It is not true that a bounded sequence converges. For instance ((−1)n) is bounded by
1, but we showed in the previous section that it does not converge. However, with a little
additional information, boundedness of a sequence does sometimes imply its convergence.

Definition 11.6. A sequence (xn) is said to be increasing if xn ≤ xn+1 for all n ∈ N.
Similarly, (xn) is said to be decreasing if xn ≥ xn+1 for all n ∈ N. Increasing and decreasing
sequences are said to be monotone.
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Theorem 11.7 (Monotone Convergence Theorem). A bounded monotone sequence con-
verges.

Proof. Let (xn) be a bounded monotone sequence. Without loss of generality, we may assume
that xn is increasing. By the Completeness Axiom for R, boundedness of (xn) implies that
there is a least upper bound L for the terms xn. We will show that limxn = L.
To do this, let ϵ > 0 be given. On the one hand, we have that xn ≤ L for all n ∈ N

because L is an upper bound for (xn). On the other hand, since L is the smallest such upper
bound, we know that xN > L − ϵ for some N ∈ N. Moreover, since (xn) is increasing, we
see additionally that xn ≥ L− ϵ for every n ≥ N .
To summarize, we now see that n ≥ N implies that

L− ϵ < xn ≤ L < L+ ϵ.

In other words, |xn − L| < ϵ.
This proves that (xn) converges to L. □

In order to apply this theorem, we prove a useful, albeit relatively minor, auxiliary result.

Lemma 11.8. Suppose that (xn) is a sequence with limxn = L. Then limxn+1 = L, too.

In other words, shifting the index by one in a sequence does not affect its limit.

Proof. Given ϵ > 0, the hypothesis that xn → L gives us a natural number N such that
n ≥ N implies |xn − L| < ϵ. But if n ≥ N , then n+ 1 ≥ N , too. Hence n ≥ N implies also
that |xn+1 − L| < ϵ. This proves lim xn+1 = L. □

Example 11.9. Let us again consider the sequence (rn), this time for 0 ≤ r ≤ 1. Then we
have for all n that

0 ≤ rn+1 = r · rn ≤ rn < 1.

That is, the sequence is decreasing and bounded below by 0. By the Bounded Convergence
Theorem, we conclude that (rn) converges to some number L ∈ R. Moreover, the previous
lemma and the second assertion in Theorem 11.1 tell us that

L = lim rn+1 = (lim r)(lim rn) = rL.

That is, L(1−r) = 0. Thus either r = 1, in which case lim rn = lim 1 = 1, or lim rn = L = 0.

Theorem 11.10 (Squeeze Theorem). Let (an), (bn), (cn) be sequences whose terms satisfy
an ≤ bn ≤ cn for all n ∈ N. If (an) and (cn) converge to L ∈ R, then so does (bn).

Proof. Let ϵ > 0 be given. Since lim an = L, we have N1 ∈ N such that |an − L| < ϵ
whenever n ≥ N1. Similarly, we N2 ∈ N such that |bn − L| < ϵ whenever n ≥ N2. So if we
take N = maxN1, N2, then for any n ≥ N , we have

−ϵ < an − L ≤ bn − L ≤ cn − L < ϵ.

In other words |bn − L| < ϵ. We conclude that lim bn = L. □
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Example 11.11. Returning once more to the sequence (rn), we suppose that −1 < r < 0.
Then since 0 < |r| < 1 and

−|r|n < rn < |r|n

for all n ∈ N, the Squeeze Theorem tells us that

0 = − lim |r|n lim−|r|n = lim rn = lim |r|n = 0.

Note that if we put all our examples together, we arrive at the following handy fact.

Proposition 11.12. The sequence (rn)

• diverges if r ≤ −1 or r > 1;
• converges to 1 if r = 1; and
• converges to 0 if −1 < r < 1.

11.1. More elaborate examples. The sequence (rn)n∈N is really pretty straightforward.
You might be interested in seeing some trickier examples. Here I present two that I particu-
larly like. One relies on the Squeeze Theorem and the other on the Monotone Convergence
Theorem to show that the sequence in question converges.

First, let’s recall the Fibonacci sequence (an)n∈N given inductively by a0 = a1 = 1 and
then an = an−1 + an−2 for all n ≥ 2. The first ten terms are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

It’s not hard to show (e.g. by induction) that this sequence is increasing and unbounded.
In particular it diverges. I’ll leave that as an exercise for you. However, if we define a
new sequence (xn)n∈N by taking xn := an+1/an to be the ratio of successive terms of the
Fibonacci sequence, something interesting happens. The first ten terms of this sequence are
(to 6 decimal places)

1, 2, 1.5, 1.66667, 1.6, 1.625, 1.61538, 1.61905, 1.61765, 1.61818

This looks like settling down. In fact, the following is true.

Theorem 11.13. Let (an)n∈N be the Fibonacci sequence. Then lim an+1

an
= 1+

√
5

2
.

The number 1+
√
5

2
is known as the golden ratio, and it figures prominently both in math

and in nature, and even in some classical art and architecture. Before we start the proof,
let’s first consider why one might suspect that the golden ratio shows up in this context. If,
based on the above numerical evidence we just assume that the sequence (an+1/an) converges
to some number L, then we can play a little trick to find L. First observe that

xn :=
an+1

an
=

an + an−1

an
= 1 +

1

an/an−1

= 1 +
1

xn−1

.

Thus, using the fact that (xn) and (xn−1) have the same limits, we find

L = limxn = lim 1 +
1

xn−1

= 1 +
1

limxn−1

= 1 +
1

L
.

Note here that we’re assuming L ̸= 0, but since an+1 > an ≥ 1 for all n, we have xn > 1 for
all n, so that’s a safe assumption. Anyhow, rearranging gives us that L2 − L − 1 = 0. A
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quick application of the quadratic formula then gives

L =
1 +

√
5

2
or L =

1−
√
5

2
.

But the second of these is negative, so if the limit L exists, it has to equal the golden ratio.
Now we proceed to actually prove our theorem.

Proof. Let L be the golden ratio. It suffices to show that if xn = an+1/an, then

lim(xn − L) = 0.

To this end, we employ the relationship between xn and xn−1 that we derived above and the
fact that L = 1 + 1/L to obtain

|xn − L| =
∣∣∣∣1 + 1

xn−1

− L

∣∣∣∣ = ∣∣∣∣ 1

xn−1

− 1

L

∣∣∣∣ = |xn − L|
|L||xn−1|

≤ |xn−1 − L|
L

.

Thus,
0 ≤ |xn − L| ≤ L−1|xn−1 − L| ≤ L−2|xn−2 − L| ≤ · · · ≤ L−n|x0 − L|

That is,
−L−n|x0 − L| ≤ xn − L ≤ L−n|x0 − L|

Since L > 1, it follows that limL−n|x0 − L| = 0. So the Squeeze Theorem tells us that
lim(xn − L) = 0, too. □

Our next example comes from considering the financial notion of compound interest.

Theorem 11.14. For each n ≥ 1, let xn =
(
1 + 1

n

)n
. Then limxn exists and is equal to a

number between 2 and 3.

Proof. Let xn = (1+1/n)n denote the nth term in our sequence. The binomial theorem tells
us that

xn =
n∑

j=0

(
n
j

)
1

nj
.

For any 0 ≤ j ≤ n, we can rewrite the jth term of the sum on the right as follows.

(3)

(
n
j

)
1

nj
=

n · (n− 1) . . . (n− j + 1)

j!nj
=

1

j!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− j − 1

n

)
In particular, we have (

n
j

)
1

nj
≤ 1

j!
≤ 1

2j−1
.

This tells us that

xn ≤ 1 + 1 +
n∑

j=2

2j−1 = 1 + 1 +
1
2
− 1

2n+1

1− 1
2

≤ 1 + 1 + 1 = 3.

for all n ∈ N. Hence our sequence (xn) is bounded above.
Moreover, since

(
1− k

n

)
≤
(
1− k

n+1

)
for any 0 ≤ k ≤ n, Equation (3) also tells us that(

n
j

)
1

nj
≤
(
n+ 1
j

)
1

(n+ 1)j
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for all n ∈ N and 0 ≤ j ≤ n. It follows from this that

xn+1 =
n+1∑
j=0

(
n+ 1
j

)
1

(n+ 1)j
>

n∑
j=0

(
n+ 1
j

)
1

(n+ 1)j
≥

n+1∑
j=0

(
n
j

)
1

nj
= xn.

That is, our sequence is monotone increasing. So by the Monotone Convergence Theorem
the sequence (xn) converges. □

By adapting and building onto the proof of Theorem 11.14, one can further show the
following.

Theorem 11.15. For each x ∈ R, the limit

E(x) := lim
(
1 +

x

n

)n
exists. The resulting function E : R → R has the following properties

• E(0) = 1;
• E(x) is a strictly increasing function of r.
• E(x+ y) = E(x)E(y) for all x, y ∈ R;
• E has range E(R) = (0,∞).

We omit the proof here, noting only that the third conclusion is the hardest to establish.
Actually, if you employ some Calculus, you’ll find that E(x) = ex is the exponential func-
tion. You can think of this theorem as one route to defining the exponential function and
establishing its basic properties. Most calculus books these days proceed differently. They
define the natural logarithm function first and then obtain the exponential function as the
inverse of log x.
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12. Representing real numbers

Definition 12.1. Let b > 1 be an integer. A base b (or b-ary) expansion is an expression

(4) dkdk−1 . . . d1d0.d−1d−2 . . .

where for each j ≤ k, the digit dj is an integer in the range {0, . . . , b − 1}. By convention,
the leading index k is always taken to be non-negative; if k > 0, then one requires that the
leading digit dk be non-zero.

For instance 3.141592654 . . . is a familiar base 10 expansion. A typical base 2 expansion
would be something like 10100.0010011100 . . . . Note that for the sake of simplicity we do
not allow a leading minus sign in our expansions. So technically, we’ll only be talking about
b-ary expansions of non-negative real numbers. Our first and principal goal is to explain
carefully how b-ary expansions correspond to real numbers and vice versa.

Given a base b expansion 4, dk . . . d1d0.d−1d−2 . . . , we associate a sequence (xn)n∈N of real
numbers as follows. The nth b-ary approximation of the expansion is the real number

xn =:=
k∑

j=−n

djb
j.

We write
xn = dk . . . d0.d−1 . . . d−n

for short. So, for the base 10 expansion 3.14159265 . . . , we have

x3 = 3.141 = 3 + 1 · 10−1 + 4 · 10−2 + 1 · 10−3 =
3141

1000
.

Proposition 12.2. We have for all n ∈ N that 0 ≤ xn ≤ bk+1 − b−n

Proof. Let us recall the formula for a geometric sum: if r ̸= 1 is a real number and m > ℓ
are integers, then

m∑
j=ℓ

rj =
rm+1 − rℓ

r − 1
.

Since 0 ≤ dj ≤ b− 1 for each j, we have

0 ≤ xn =
k∑

j=−n

djb
j ≤

k∑
j=−n

(b− 1)bj = (b− 1)
bk+1 − b−n

b− 1
= bk+1 − b−n.

□

The next result tells us that we can identify each b-ary expansion with a non-negative real
number.

Theorem 12.3. The sequence (xn) converges to a limit x ∈ R satisfying 0 ≤ x ≤ bk+1.

Proof. Observe that xn+1 − xn = d−(n+1)b
−(n+1) ≥ 0. Therefore (xn) is increasing. Proposi-

tion 12.2 tells us that (xn) is bounded. Therefore, by the Bounded Convergence Theorem,
we find that (xn) converges. The limit x ∈ R is the least upper bound of the terms xn, and
since all terms lie between 0 and bk+1, we have 0 ≤ x ≤ bk+1. □

40



From now on, we will simply write

x = dk . . . d0.d−1 . . .

to indicate that we indentify the real number x = limxn with the b-ary expansion on the
right. For example, the repeating 5-ary expansion 2.2222 . . . is identified with the real
number

x = limxn = lim
n→∞

0∑
j=−n

2 · 5j = lim
n→∞

2
n∑

j=0

5−j = 2 lim
1− 5−n+1

1− 5−1
= 2 · 1

1− 1
5

=
5

2
.

That is 2.2222 · · · = 5
2
.

Having shown that each b-ary expansion gives rise to a real number, we must now show
that each real number comes from some b-ary expansion. To do this, it helps to make a
couple of observations about arithmetic of b-ary expansions.

Proposition 12.4. Suppose in base b that x = dk . . . d0.d−1 . . . and Then for any ℓ ∈ Z, we
have bℓ · x = ek+ℓ . . . e0.e−1 . . . where ej+ℓ = dj for each j ≤ k.

In other words, one gets the b-ary expansion for bℓx by shifting the decimal point ℓ places
to the right in the b-ary expansion for x. So in base 10, for example, we have

105 · 3.141592654 · · · = 314159.2654 . . .

Proof. We have

bℓx = bℓ lim
n→∞

dk . . . d0.d−1 . . . d−n

= bℓ lim
n→∞

k∑
j=−n

djb
j = lim

n→∞

k∑
j=−n

djb
j+ℓ = lim

n→∞

k+ℓ∑
j=−n+ℓ

dj−ℓb
j

= lim
n→∞

dk . . . d−ℓ.d−ℓ−1 . . . d−n = dk . . . d−ℓ.d−ℓ−1 . . .

which is what we needed to show. □

Theorem 12.5. Let b ∈ N − {1} be a given base. Then any real number x ∈ [0,∞) has a
base b expansion.

Proof. Since b > 1, we have that x/bℓ ∈ [0, 1) for some ℓ ∈ N. Moreover, if we can
show that x/bℓ has a b-ary expansion 0.d−1d−2 . . . , then it follows from Proposition 12.4 that
x = d−1 . . . d−ℓ.d−ℓ−1 . . . . Therefore, we can assume without loss of generality that x ∈ [0, 1).

For each n ∈ N ∪ {0} we set

mn = max{m ∈ N : and m ≤ bnx}, d−n = mn − bmn−1.

We will show that the numbers d−n are the digits in a b-ary expansion for x.
First we show that the value of d−n is appropriate. Since x < 1, m0 = 0. For n ≥ 1, we

have

(5) mn ≤ bnx < mn + 1,
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the latter inequality following from the fact that mn is the largest integer not exceeding bnx.
Similarly, mn−1 ≤ bn−1x < mn−1 + 1. In particular, bmn−1 is an integer not exceeding bnx,
so it follows that bmn−1 ≤ mn. Putting these inequalities together, we deduce

0 ≤ mn − bmn−1 < bnx− bmn−1 = b(bn−1x−mn−1) ≤ b · 1 = b.

That is, mn − bmn−1 = d−n ∈ {0, 1, . . . , b− 1} for every n ∈ N.
Next we show that xn := mn/b

n is the nth approximant of the expansion

0.d−1d−2 . . .

Applying the definition of mn and dn repeatedly, we obtain

mn = bmn−1 + d−n = b(bmn−2 + d−n+1) + d−n

= b2mn−2 + bd−n+1 + d−n = . . .

= bnm0 + bn−1d−1 + bn−2d−2 + · · ·+ bd−n+1 + d−n

= bn−1d−1 + bn−2d−2 + · · ·+ bd−n+1 + d−n

since mn = 0. Therefore

xn =
mn

dn
= 0.d−1d−2 . . . d−n+1d−n

as claimed.
Finally, the inequality (5) further implies

x− 1

bn
<

mn

bn
≤ x.

So by the Squeeze Theorem,

x = lim
mn

bn
= 0.d−1d−2 . . .

□

It turns out that b-ary expansions are not always unique. For instance, in base 10,

1 = 1.000 · · · = 0.9999999 . . .

One can see that the second expansion really does represent 1 by directly computing the
sequence of approximants and then evaluating the limit. Alternatively, one can apply Propo-
sition 12.4: if x = 0.9999 . . . , then we have

10 · x = 9.99999 · · · = 9 + x

Solving for x gives x = 1. It turns out that a real number x has more than one b-ary
expansion if and only if it has a terminating expansion; i.e. one for which there is an index
N such that dn = 0 for all n ≤ N . Moreover, if x has a terminating expansion, then it has
exactly one other expansion (what is it?). We will not prove these things here. Instead, we
turn to the subject of b-ary expansions of rational numbers.

Definition 12.6. A b-ary expansion x = dk . . . d0.d−1 . . . is repeating if there exist m ∈ Z
and r ∈ Z+ such that for all j ≤ m, dj = dj−r. In this case, we write

x = dk . . . d0.d−1 . . . dm . . . dm−r,

and we call r the period of the expansion.
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For example, in base 8

26.74543 := 26.74543543543543 . . .

is repeating with period r = 3 starting at digit m = −3. The real number associated to a
repeating expansion is rational and can always be computed by using Proposition 12.4 as we
did with 0.9 above. For instance, if x = 26.74543, then

85x− 82x = 2674543.543− 2674.543 = 2674543− 2674.

However, one must take some care at this point, because the integers on the right are in
expressed in base 8, whereas we are implicitly working in base 10 on the left. Since base 10
is more familiar, we resolve the problem by converting to base 10 on the right.

32704x = (85−82)x = 2·86+6·85+7·84+(4−2)·83+(5−6)·82+(4−7)·8+(3−4) = 750503.

Therefore, x = 750503
32704

, which (believe it or not) is in lowest terms.
It is also true that every rational number has a repeating b-ary expansion. To see why

this is so, we will compute the base 7 expansion of 2
5
. Since 2

5
≤ 1, we have

2

5
= 0.d−1d−2d−3 . . . .

Multiplying by 7 gives

2 +
4

5
= 7 · 2

5
= d−1.d−2 . . . d−3

The portion of the expansion to the right of the decimal point is smaller than 1, so we must
have 2 = d−1 and 4

5
= 0.d−2d−3 . . . Mutliplying by 7 again, we find

5 +
3

5
= 7 · 4

5
= d−2.d−3d−4 . . .

Therefore d−2 = 5. Continuing in this fashion, we obtain

6 +
1

5
= d−3.d−4d−5 · · · ⇒ d−3 = 6.

1 +
2

5
= d−4.d−5d−6 · · · ⇒ d−4 = 1.

At this point, we also notice that

2

5
= 0.d−5d−6 · · · = 0.d−1d−2 . . .

so d−5 = d−1, d−6 = d−2, and so on. That is, the base 7 expansion of 2
5
repeats with period

4. We conclude that
2

5
= 0.2561

The ideas used in the previous two examples can be codified to prove

Theorem 12.7. A real number x ≥ 0 has a repeating b-ary expansion if and only if x is
rational.
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Proof. If x = dk . . . d0.d−1 . . . repeats with period r beginning at digit m, then as in the
previous example, we have

bj−mx− b−mx = (dk . . . d−m−1)b.

In particular, we have sx = t where s, t ∈ N. Hence x is rational.
Now suppose that s

t
> 0 is a rational number. We will show that s

t
has a repeating b-ary

expansion. If s
t
has a terminating (and therefore repeating) expansion, then we are done, so

we may assume that s
t
does not have a terminating expansion. In particular, we can assume

that t ≥ 2 (why?).
Consider the integers bjs mod t, j ∈ N. Since every integer is congruent to one of the

integers 0, 1, . . . , t− 1 modulo t, we must have

bj1s ≡ bj2 mod t

for some j2 > j1. In particular, t divides (bj2 − bj1)s. Therefore, if the b-ary expansion of s
t

is dk . . . d0.d−1 . . . , then

dk . . . d−j2 .d−j2−1dj2−2 · · · − dk . . . d−j1 .dj1−1dj1−2 · · · = (bj1 − bj1)
s

t
= ∗.0000 · · · ∈ N.

It follows (from uniqueness of non-terminating expansions) that d−j2−1 = d−j1−1, d−j2−2 =
dj1−2 and so on. That is, the b-ary expansion of s

t
begins repeating with period j2 − j1 by

(at least) the −j1th digit.
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13. Subsequences

We saw earlier that the sequence ((−1)n)n∈N diverges. However, it is intuitively clear that
in some weaker sense this sequence ‘converges’ to both 1 and −1. The notion of ‘subsequence’
is designed to give some credence to this intuition.

Definition 13.1. Let (xn)n∈N be a sequence of real numbers and (nk)k∈N a strictly increasing
sequence of natural numbers. Then the sequence (xnk

)k∈N is called a subsequence of (xn).

So for example, taking nk = 2k shows us that the constant sequence ((−1)2k) = (1) is
a subsequence of ((−1)n). Similarly, taking nk = 2k + 1 shows that the constant sequence
(−1) is also a subsequence of ((−1)n). The first subsequence converges to 1 and the second
to −1. We call these numbers ‘accumulation points’ of ((−1)n).

Definition 13.2. If (xn) is a subsequence and (xnk
) is a subsequence converging to L ∈ R,

then we call L an accumulation point (or limit point) of (xn).

Returning to another familiar example, we consider ( 1
n
). Taking n = 2k shows us that ( 1

2k
)

is a subsequence. Note that in this case, both the sequence and the subsequence converge
to 0. This is as one would expect.

Proposition 13.3. If (xn) converges to L ∈ R, then so does every subsequence of (xn).

Proof. Let (xnk
)k∈N be a subsequence. Note that since the indices (nk) are strictly increasing

(i.e. nk < nk+1 for every k ∈ N), it follows that nk > k for all k ∈ N. This can be proven
inductively, and we leave the details as an exercise for the reader.

To show that lim xnk
= L, we let ϵ > 0 be given. Since limxn = L, we have N ∈ N such

that n ≥ N implies |xn − L| < ϵ. Moreover, if k ≥ N , we have from the previous paragraph
that nk ≥ N . So k ≥ N implies |xnk

− L| < ϵ. Therefore lim xnk
= L. □

The utility of subsequences is that they are more flexible than sequences in many situa-
tions. That is, even when a given sequence doesn’t converge, one can often choose a conver-
gent subsequence. Recall for instance that a bounded sequence needn’t converge. However,
the next result shows that a bounded sequence always has a convergent subsequence.

Theorem 13.4 (Bolzano-Weierstrass Theorem). Every bounded sequence has an accumula-
tion point.

Proof. Let (xn) be a bounded sequence–say |xn| ≤ M for every n ∈ N. First we will define
a sequence of closed intervals [ak, bk], k ∈ N with the following properties:

• [ak, bk] contains infinitely many terms of the sequence (xn).
• [ak+1, bk+1] ⊂ [ak, bk];
• bk − ak =

2M
2k

.

Indeed we define our intervals ‘recursively’. We take [a0, b0] = [−M,M ]. Then we set [a1, b1]
equal to whichever half [a0, 0], [0, b0] contains infinitely many terms of (xn). If both halves
contain infinitely many terms of (xn), then we arbitrarily choose the left half (it doesn’t
matter). We then continue this process ad nauseum: given [a0, b0], [a1, b1], . . . , [ak, bk], we
split [ak, bk] into two halves of equal length and let [ak+1, bk+1] be a half that contains infinitely
many points of (xn). One can check without much trouble that the resulting intervals satisfy
all three of the criteria we laid out above.
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Observe that since [ak+1, bk+1] ⊂ [ak, bk] for all k ∈ N, it follows that (ak) is inreasing
and (bk) is decreasing. Moreover, |ak|, |bk| ≤ M for all k ∈ N. Therefore, the Bounded
Convergence Theorem tells us that lim ak = A and lim bk = B for some A,B ∈ R. In fact,
we have

B − A = lim bk − ak = lim
2M

2k
= 0,

so A = B.
Finally, we choose the indices nk for our subsequence. We let n0 = 0. Since [a1, b1]

contains infinitely many terms of (xn), we can choose n1 > n0 to so that xn1 ∈ [a1, b1]. We
then proceed by iterating this process. Having chosen n0 < · · · < nk, we take advantage of
the fact that [ak+1, bk+1] contains infinitely many terms of (xn) to choose nk+1 > nk so that
xnk+1

∈ [ak+1, bk+1].
The end result is a subsequence (xnk

) of (xn) satisfying

ak ≤ xnk
≤ bk for all k ∈ N.

Since lim ak = lim bk = A, the squeeze theorem implies that limxnk
= A. In particular (xn)

has an accumulation point. □

In closing, we consider an example that illustrates the point that sequences can behave
much more wildly than our favorite whipping boy {(−1)n}. Recall that the rational numbers
and the natural numbers have the same cardinality. That is, there is a bijective function
f : N → Q. So letting xn = f(n) for every n ∈ N, we obtain a sequence (xn) and claim that
every real number is a limit point of (xn).

To prove the claim, let us fix a real number L ∈ R. To prove that L is a limit point of
(xn), we must find a subsequence (xnk

) ⊂ (xn) converging to L. We do this as follows. Let
y1 be a rational number between L−1 and L. Such a number exists by the density property.
In fact (and this will be important in what follows), there are actually infinitely many such
rational numbers. For now we just pick one and continue. Because f is surjective, we have
y1 = f(n1) for some n1 ∈ N.

Now we pick a rational number y2 ∈ (L − 1/2, L). Again, we have y2 = f(n2) for some
n2 ∈ N. Moreover, we can assume that n2 > n1; in other words we can assume that
y2 ̸= f(0), f(1), . . . f(n1). This is because there are infinitely many rational numbers between
L−1/2 and L, whereas only finitely many of them are accounted for by f(0), f(1), . . . , f(n1).
We then construct the rest of our subsequence in the same manner. Having chosen y1 =

f(n1) ∈ (L− 1, L), y2 = f(n2) ∈ (L− 1/2, L), . . . yk = f(nk) ∈ (L− 1/k, L) with n1 ≤ n2 ≤
· · · ≤ nk, we choose a rational number yk+1 ∈ (L− 1

k+1
, L) different from f(0), f(1), . . . , f(nk).

Then yk+1 = f(nk+1) for some nk+1 > nk.
The result is that (yk) = (f(nk)) = (xnk

)k∈N is a subsequence of (xn) satisfying L− 1/k <
xnk

< L for every k ∈ N. Since L = limL− 1/k = limL, the Squeeze Theorem tells us that
L = limxnk

. That is, L is a limit point of (xn).
Since L was an arbitrary real number, we conclude that every real number is a limit point

of (xn).
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14. A Bit About Continuity

To wrap up our discussion of real numbers, we briefly consider the notion of a continuous
function. The reader should be aware that there is a good deal more to say about this
subject than we will mention here. Any undergraduate course in ‘analysis’ (i.e. advanced
calculus) would go into more depth about continuity. However, our abrieviated discussion
of continuity will allow us to state two important theorems about continuous functions and
then end where we began with real numbers: with a statement about nth roots.

Definition 14.1. Let S ⊂ R be a set and f : S → R a function. We say that f is continuous
at a ∈ S if for every sequence (xn) in S such that xn → a, we have

lim f(xn) = f(a).

If f is continuous at every point of S, we say that f is continuous on S.

In other words, f is continous if you can ‘move limits inside f ’.

Example 14.2. Every polynomial P (x) = ckx
k + ck−1x

k−1 + · · · + c1x + c0 with coefficients
c0, . . . , ck ∈ R is continuous on R. This follows from Theorem 11.1: if xn → a, then

limP (xn) = lim(ckx
k
n + ck−1x

k−1
n + · · ·+ c1xn + c0

= lim(ckx
k
n) + lim(ck−1x

k−1
n + · · ·+ lim c1xn + lim c0

= (lim ck)(limxn)
k + (lim ck−1)(limxn)

k−1 + (lim c1)(limxn) + lim c0

= cka
k + ck−1a

k−1 + . . . c1a+ c0 = P (a).

Using the same kind of argument, one can also show that every rational function (i.e. quotient
P (x)/Q(x) of polynomials) is continuous on its domain (i.e. where the denominator is non-
zero).

Example 14.3. The function f : R → R given by

f(x) =

{
1 if x ≥ 0

−1 if x < 0

is not continuous at 0. To see this, consider the sequence (−1/n). This sequence converges
to 0. However,

lim f(−1/n) = lim−1 = −1 ̸= 1 = f(0)

contrary to the definition of continuity.

To prove this, we need

Lemma 14.4. Suppose that (xn) is a convergent sequence such that A ≤ xn ≤ B for every
n ∈ N. Then A ≤ limxn ≤ B.

Proof. Exercise. □

The next three results concern continuous functions f : [a, b] → R on compact (i.e. closed
and bounded) intervals [a, b]. The first of these results is just a precursor, but the last two
are of fundamental importance in math and its applications.

Lemma 14.5. A continuous function f : [a, b] → R is bounded.
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Proof. Suppose f : [a, b] → R is continuous on the closed interval [a, b] ⊂ R. Assume, in
order to get a contradiction, that f is unbounded, say e.g. that f is not bounded above.
Then for any n ∈ N there exists a point xn ∈ [a, b] such that f(xn) ≥ n. The resulting
sequence (xn) ⊂ [a, b] is bounded, so by the Bolzano-Weierstrass Theorem, it contains a
subsequence (xnk

)k∈N converging to some number x ∈ [a, b]. Since f is continuous, we have

f(x) = f( lim
k→∞

xnk
) = lim

k→∞
f(xnk

).

This means (taking ϵ = 1) that there exists K ∈ N such that k ≥ K implies

|f(xnk
)− f(x)| < 1.

In particular f(xnk
) < 1 + f(x) for all k ≥ K. But nk ≥ k for all k ∈ N, so from our choice

of sequence (xn) we see that

k ≤ nk ≤ f(xnk
) ≤ 1 + f(x)

for every integer k ≥ K. This is impossible, because 1 + f(x) is fixed and independent of k.
We conclude instead that f is bounded above. The same argument shows that f is bounded
below. □

Theorem 14.6 (Extreme Value Theorem). Let f : [a, b] → R be a continuous. Then there
are points xmin, xmax ∈ [a, b] such that

f(xmin) ≤ f(x) ≤ f(xmax)

for every x ∈ [a, b].

In other words, a continuous function on a closed interval has a maximum and a minimum
value.

Proof. We will prove the existence of xmax. The proof for xmin is similar. By the lemma, f
is bounded. Let M = sup f([a, b]) be the least upper bound for the values of f . Then for
any n ∈ N, the quantity M −1/n < M is not an upper bound for f([a, b]) so there is a point
xn ∈ [a, b] such that f(xn) ≥ M − 1

n
.

As in the proof of the previous lemma, this gives us a bounded sequence (xn) ⊂ [a, b],
and we invoke the Bolzano-Weierstrass Theorem to get a subsequence (xnk

)k∈N converging
to some number xmax ∈ [a, b].
So on the one hand, continuity of f tells us that

lim
k→∞

f(xnk
) = f( lim

k→∞
xnk

) = f(xmax).

But on the other hand, M − 1
nk

≤ f(xnk
) ≤ M for every k ∈ N. Since limk→∞M − 1

nk
=

M = limk→∞M , the Squeeze Theorem implies that

lim
k→∞

f(xnk
) = M.

So putting our hands together, we find M = f(xmax). Finally, because M is an upper bound
for the range of f , we conclude that f(x) ≤ f(xmax) for every x ∈ [a, b]. □

Theorem 14.7 (Intermediate Value Theorem). Let f : [a, b] → R be a continuous function.
Suppose that y is a number between f(a) and f(b). Then there exists x ∈ [a, b] such that
f(x) = y.

48



Proof of the Intermediate Value Theorem. Suppose for argument’s sake that f(a) ≤
f(b) (the opposite case is handled similarly). If y = f(a) or y = f(b), then we’re already
done. So we can assume f(a) < y < f(b). Regardless, the set

S := {x ∈ [a, b] : f(x) ≤ y}
contains a, and is bounded above by b. By the completeness axiom, it therefore has a least
upper bound x ∈ [a, b].
Since x is the least upper bound for S, we can choose for any n ∈ N an element an ∈ S

such that x − 1/n ≤ an ≤ x. Since lim x − 1/n = x = limx, the Squeeze Theorem tells us
that lim an = x. So by continuity of f and Lemma 14.4, we have

f(x) = f(lim an) = lim f(an) ≤ y.

Note that since f(x) ̸= b, we must also have that x < b. So if we set bn := x+ 1
n
(b−x), then

x < bn ≤ b1 = b for all n ≥ 1, and bn → x. So on the one hand, x < bn means that bn /∈ S
(why?), hence f(bn) > y for any n ∈ N. But on the other hand continuity of f then tells us
that

f(x) = f(lim bn) = lim f(bn) ≥ y.

Summing up, we’ve now shown y ≤ f(x) ≤ y, so that f(x) = y. □

Corollary 14.8. Given any n ∈ Z+ and y ∈ [0,∞), there exists a unique x ∈ [0,∞) such
that xn = y.

Proof. Let f : [0,∞) → R be given by f(x) = xn. In particular, f is a polynomial and
therefore continuous on [0,∞).

Suppose first that y ≤ 1. Then

f(0) = 0 ≤ y ≤ 1 = f(1).

Therefore, by the Intermediate Value Theorem there is a number x ∈ [0, 1] such that xn =
f(x) = y.

Suppose instead that y ≥ 1. Then since n ≥ 1, we have f(1) = 1 ≤ y ≤ yn = f(y).
Therefore, by the Intermediate Value Theorem again, there exists x ∈ [1, y] such that xn =
f(x) = y. This proves that every non-negative real number has a non-negative nth root.
Now suppose that some y ∈ [0,∞) has two non-negative nth roots x1 and x2. Then

xn
1 = xn

2 . Now we have either x1 < x2, x1 > x2, or x1 = x2. If x1 < x2, then n ≥ 1
implies xn

1 < xn
2 , which cannot be. Similarly, x2 < x1 implies xn

2 < xn
1 . Therefore, the only

possibility is x1 = x2. This proves that non-negative nth roots are unique. □

We close by noting that one can combine the Extreme Value and Intermediate Value
Theorems into a single statement.

Theorem 14.9. If f : [a, b] → R is a continuous function on a closed interval, then its
range f([a, b]) is also a closed interval.

Proof. Very quickly, if xmin, xmax ∈ [a, b] are points where f achieves its minimum and
maximum values, then one can use the Intermediate Value Theorem to show that f([a, b]) =
[f(xmax), f(xmin)]. Details left as an exercise. □
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15. The Fundamental Theorem of Algebra

The main goal of this section is to prove

Theorem 15.1 (Fundamental Theorem of Algebra). Every non-constant polynomial has a
complex root.

The proof relies on two basic facts that we will not prove here. However, it should be
emphasized that we have already proved these things in the setting of real numbers and the
proofs in the complex case are completely parallel. What is lacking is a theory of convergence
sequences of complex numbers, and as it turns out, this theory proceeds readily from the
things we have done for sequences of real numbers.

In particular one defines continuity for complex functions f : C → C the same as we did
for real functions f : R → R, and proves in exactly the same way that

Proposition 15.2. Every polynomial P : C → C with complex coefficients is a continuous
function.

One may (correctly) restate the Extreme Value Theorem for complex functions in the
following fashion. In particular, ‘closed disks’ take the place of ‘closed intervals’ and because
there is no useful ‘order’ (i.e. <) for comparing complex numbers, the conclusion of the
theorem uses |f(z)| instead of just f(z).

Theorem 15.3 (Extrem Value Theorem for complex functions). If D = {z ∈ C : |z| ≤ R}
is a closed disk, and f : D → C is a continuous function, then there exists z0, z1 ∈ D such
that |f(z0)| is minimal and |f(z1)| is maximal—i.e. |f(z0)| ≤ |f(z)| ≤ |f(z1)| for every
z ∈ D.

Again, we omit the proof, but it closely resembles the proof we gave for the Extreme Value
Theorem for real functions.

Taking the previous two facts for granted, we now proceed to prove (and state–see further
below) the Fundamental Theorem of Algebra. We fix a polynomial P (z) = anz

n + · · · + a0
with coefficients aj ∈ C and an ̸= 0.

Lemma 15.4. There exists R > 0 such that |z| > R implies |P (z)| ≥ |P (0)|.

The proof of this lemma is a little messy, but it amounts to saying somewhat carefully that
when |z| is large enough, the leading term anz

n in P (z) completely dwarfs the rest of the
terms.
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Proof. Note that if |z| ≥ 1, we have

|P (z)| ≥ |anzn| −

∣∣∣∣∣
n−1∑
j=0

ajz
n−1

∣∣∣∣∣
≥ |an||z|n −

n−1∑
j=0

|aj||z|j

≥ |an||z|n − |z|n−1

n−1∑
j=0

|aj|

= |z|n−1(|an||z| −
n−1∑
j=0

|aj|).

The first two inequalities follow from the triangle inequality. The third inequality is where
the assumption |z| ≥ 1 is used. If we further assume that

|z| ≥ |an|−1

(
|a0|+

n−1∑
j=0

|aj|

)
,

then we can continue the previous estimate as follows.

|P (z)| ≥ |z|n−1(|a0|+
n−1∑
j=0

|aj| −
n−1∑
j=0

|aj|) = |z|n−1|a0| ≥ |a0|.

Since P (0) = a0, this proves that |P (z)| ≥ |P (0)| whenever

|z| ≥ R := max

{
1, |an|−1

(
|a0|+

n−1∑
j=0

|aj|

)}
.

□

Corollary 15.5. There exists z0 ∈ C such that |P (z0)| ≤ |P (z)| for all z ∈ C.

Proof. Let R be as in the Lemma 15.4 and let D = {z ∈ C : |z| ≤ R}. By Theorem 15.3,
there exists z0 ∈ D such that |P (z0)| ≤ |P (z)| for all z ∈ D. Since 0 ∈ D, Lemma 15.4 tells
us that

|P (z0)| ≤ |P (0)| ≤ |P (z)|
for all z /∈ D, too. Since C = D ∪ (C−D), we conclude that |P (z0)| ≤ |P (z)| for all z ∈ C.
□

Proof of Fundamental Theorem of Algebra. Suppose, in order to get a contradiction,
that the polynomial P (z) has degree n ≥ 1 but no roots. Let z0, as in Corollary 15.5, be the
point where |P (z)| is minimal. Then Q(z) := P (z + z0) is also a degree n polynomial with
no roots, and |Q(z)| achieves its minimum value at z = 0. Since Q(0) ̸= 0, we have

Q(z) = c0 + ckz
k + ck+1z

k+1 + . . . cnz
n
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where c0 ̸= 0 and k ≤ n is the smallest positive index such that ck ̸= 0. In other words

Q(z) = c0 + ckz
k + zk+1R(z)

for some polynomial R. Let w ∈ C satisfy wk = −c0/ck and M be the maximum value of
|R(z)| among points z with |z| ≤ |w|. Then for r < 1 we have

|Q(rw)| = |c0+ckr
kwk+rk+1wk+1R(rw)| = |c0(1−rk)+rk+1wk+1R(rw)| ≤ |c0|(1−rk)+Mrk+1|w|k+1.

And if we further assume that 0 < r < |c0|
2M |w|k+1 , we find

|Q(rw)| ≤ |c0|(1− rk) +Mr · rk|w|k+1 ≤ |c0|(1− rk) + |c0|
rk

2
= |c0|(1− rk/2) < |c0|.

This contradicts the fact that |Q(0)| = |c0| is the minimum value of |Q(z)|. Therefore Q has
a root after all, and so does the original polynomial P . □
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Appendix A. Cardinality

We learn the following principle when we are quite young: one can determine whether two
different sets contain the same number of objects by pairing each object in the first set with
an object in the second; if there are no objects left over in either set, then the sets are the
same size. Most of us first employed the set of fingers on our hands as the benchmark for
sizing up other sets. Later on, we learned to abstract the pairing game somewhat and use
(subsets of) N as our standard yardstick. It was Cantor’s simple but revolutionary idea to
extend the whole ‘comparing by pairing’ idea to permit comparison of sizes for infinite sets.
The fundamental notion is as follows.

Definition A.1. We say that two sets A have the same cardinality if there exists a bijection
f : A → B. For short, we write #A = #B. More generally, we say that #A ≤ #B if there
exists an injective function f : A → B.

Since a bijection and its inverse are both injective functions, it follows that #A = #B
implies #A ≤ #B and #B ≤ #A. The notation suggests that the converse should also be
true: if #A ≤ #B and #B ≤ #A, then #A = #B. However, that is not always so obvious.
For instance. the functions f : (−1, 1) → [−1, 1] given by f(x) = x and g : [−1, 1] → (−1, 1)
given by g(y) = y/2 are both injective. Hence #(−1, 1) ≤ #[−1, 1] and #[−1, 1] ≤ #(−1, 1).
But it’s not so clear whether there exists an actual bijection h : (−1, 1) → [−1, 1]. In fact,
there is. With a some ingenuity you can even give a formula for the function in this case.
More generally, though, the Schroeder-Bernstein Theorem says that having injections in both
directions always implies that there’s a bijection.

Theorem A.2 (Schroeder-Bernstein, also Cantor). Suppose that A and B are sets and
that there exist injective functions f : A → B and g : B → A. Then there is a bijection
h : A → B.

So #A ≤ #B and #B ≤ #A imply that #A = #B after all. The proof of this is
amazingly short, but without elaboration it is also amazingly difficult to grasp. Here I drag
the argument out a bit by tying it to a more familiar conundrum. Which came first: the
chicken or the egg? Hopefully this makes it a little easier to digest2, but it’ll probably still
take some effort on your part.

Let’s call the elements of A ‘eggs’ and those of B ‘chickens’. If b = f(a), then we’ll say
that b ‘hatched from a’, and if a = g(b), we’ll say that ‘a was laid by b’ (which sort of implies
that all chickens are hens here, but this is what happens when you ruin a nice analogy by
thinking too hard about it). Since f and g are injective, we know that no chicken hatches
from more than one egg; nor is any egg laid by two different chickens. On the other hand,
neither f nor g are assumed to be surjective: there might be ‘unhatched’ chickens (i.e. those
in B − f(A)) and ‘unlaid’ eggs (i.e. those in A− f(B)).

In any case, each chicken and egg has an ‘ancestry’: for instance, if a0 ∈ A is an egg laid by
b0 ∈ B, and b0 is hatched from a1 ∈ A and a1 is laid by b1 ∈ B, then the last few generations
in the ancestry of a0 are a0, b0, a1, b1. Now the ancestry of a0 can be finite. For instance, if
a0 is an unlaid egg, then the entire ancestry of a0 consists of the single generation ‘a0’. More

2so to speak
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generally, if somewhere in the ancestry of a0, we encounter an unlaid egg an, then the family
tree stops there: and the full ancestry of a0 is the finite sequence

a0, b0, a1, b1, . . . , an−1, bn−1, an.

In other words, a0 = g(f(g(f(. . . g(f(an)) . . . ))). We let Aegg ⊂ A consist of those eggs
whose ancestors begins with an unlaid egg. Similarly, it could happen that the chicken came
first: if we meet an unhatched chicken as we descend through the generations preceding a0,
then the full ancestry of is a0, b0, . . . , bn−1, an−1, bn, where the unhatched chicken bn ∈ B is
the ultimate progenitor. We let Achicken denote the set of eggs whose ancestors begins with
an unhatched chicken.

A final possibility is that the ancestry of an egg a0 is infinite: as we go back through the
generations preceding a0, we never encounter an unhatched chicken or an unlaid egg, and
the ancestry of a0 is then infinite a0, b0, a1, b1, a2, b2, . . . . I should point out here that an
ancestry might (or might not) be infinite by being periodic: e.g. it could be that a0 is laid
by b0 which hatches from a1 which is laid by b1 which hatches from a0. So the ancestry
a0, b0, a1, b1, a0, b0, a1, b1, . . . is infinite with period four3. Regardless, let us denote the set of
all eggs with infinite ancestries by Ainfinite.
This exhausts the possibilities for ancestries of eggs: we have A = Aegg∪Achicken∪Ainfinite,

where the three subsets on the right are mutually disjoint. We have a corresponding partition-
by-ancestry B = Begg ∪Bchicken ∪Binfinite of chickens.

Now we note that if b = f(a) is the chicken that hatches from an egg a0 ∈ A with
ancestry a0, b0, a1, b1, . . . then the ancestry of b looks like b, a, b0, a1, b1, . . . . In particular, if
the ancestry of a0 begins with an egg, so does the ancestry of b. This shows that f(Aegg) ⊂
Begg. Similarly f(Achicken) ⊂ Bchicken, f(Ainfinite) ⊂ Binfinite, g(Begg) ⊂ Aegg, and so on.
Moreover, since every b ∈ Begg has at least one egg among its ancestors, we see that f(Aegg) =
Begg. As f is injective by hypothesis, it follows that f : Aegg → Begg is bijective. The
same reasoning shows that f : Ainfinite → Binfinite is bijective. Since there might be some
unhatched chickens, it is not, however, necessarily the case that f : Achicken → Bchicken is
bijective. But this is ok, because we can apply our reasoning to g instead of f , obtaining
that g : Bchicken → Achicken is bijective.

Putting all this information together, we see now that we can define a bijection h : A → B
as follows:

h(a) =

{
f(a) if a ∈ Aegg or a ∈ Ainfinite

g−1(b) if a ∈ Achicken

Then h is well-defined because the sets Aegg, Ainfinite and Achicken form a partition of A and
because g : Bchicken → Achicken is invertible. And h is bijective because Aegg, Ainfinite, Achicken

are sent bijectively (by f , f , and g−1, respectively) onto the sets Begg, Binfinite, Bchicken which
partition B. This completes the proof of the Schroeder-Bernstein Theorem. The issue of
whether chickens or eggs came first remains open. □

3evidently, time travel is possible in the chicken and egg universes we are considering!
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Appendix B. Advice about writing proofs

In the end, there is nothing even remotely close to a sure-fire algorithm for inventing and
writing proofs in mathematics. Every proof is liable to be its own challenge, requiring some
insight and creative way of expressing yourself that is distinct from proofs you’ve previously
seen. That said, however, it can be tremendously helpful to have some conventions to rely on
when trying to structure and write down your thoughts. Following conventions frees us up to
focus on the really important and distinctive points in our arguments, the way wearing the
same bland but acceptable clothes every Monday allows us to focus on the work ahead rather
than the distraction of choosing another outfit. And if they are familiar to our audience,
conventions also serve as helpful signals about the nature of the arguments to come and so
make the rest of what we write easier for a good audience to follow, like the meter in a poem
or the repetition of time-worn images and phrases in an orally transmitted story.

Following is a list of conventions that I have emphasized in this class. Most mathematicians
would find them familiar. Of course conventions tend to be rules of thumb rather than
axioms. They can and sometimes should be disregarded. So like nearly all free advice, my
list is well-intended, but it comes without a warranty.

• Most proofs (and definitions and theorems) make liberal use of symbols, equations,
etc–stuff you won’t find in the dictionary. Nevertheless, when read out loud, a proof
should sound like grammatical spoken English (except for the odd vocabulary), with
complete sentences tying nouns to verbs and subordinate clauses to main clauses. If
you can’t read it sensibly, chances are you’re not really saying just what you mean.

• Think first about how you’d like your proof to begin and end. Once you figure that
out, it’s a matter of charting a logical path from point A to point B. Many of the
items below are particular cases of this one.

• Whenever you introduce an object (typically, a new letter or symbol) in a proof, make
sure to identify it. Is it a set? An integer? A positive real number? A function?
A traffic light? Until you spell this out, your reader shouldn’t be expected to know
what you mean. Often enough, that’s because you don’t either. Not exactly.

• Here is a classic instance of the previous point: in defining prime number, a person
might say p is prime if the only numbers that divide p are 1 and itself. Now it can
be inferred from the use of the word divide that all the players in this statement
are integers, but that’s already expecting a lot from your audience. And even then,
the statement is technically incorrect since −1 also divides p. It is much (or rather
MUCH) better to say an integer p ≥ 2 is prime if the only natural numbers that
divide p are 1 and p, or alternatively, An integer p ≥ 2 is prime if for any n ∈ N,
n|p implies n = 1 or n = p.

• If you’re going to do a proof by contradiction, start by saying something like Suppose
(to get a contradiction) that the assertion fails. That is,. . . and then continue by
explicitly stating the negation of the assertion (e.g. ‘there exist finitely many prime
numbers’; or ‘there exists x ∈ Q such that x2 = 2’; or ‘there exists bijective function
f : N → R’; etc) which will lead you to your contradiction.

• If you’re going to do a proof by induction, start by saying We work by induction on
the number n of ducks in the given pond (or whatever integer it is you actually care
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about). For that matter it’s a good idea to label the base case and inductive steps
of your argument.

• If you’re trying to show that an object x satisfying properties A,B and C is unique,
then a good way to run your argument is to begin with Suppose that x and y both
have properties A, B, and C, and then aim to end with therefore x = y.

• Showing that a function f : A → B is injective is basically a uniqueness argument.
A good way to structure the argument is to begin with Suppose for some a, a′ ∈ A
that f(a) = f(a′), and then aim to end with therefore a = a′.

• It is remarkable how often a given mathematical assertion amounts to saying that
two sets A and B are the same. Recognizing when this is what’s at stake is therefore
very helpful. As often as not, it’s best to show A = B by showing that A ⊂ B and
then, separately, that B ⊂ A. And if you’re trying to accomplish the first of these
tasks, then it’s good to begin with something like To show that A ⊂ B, suppose
a ∈ A is any element, aiming to end with Therefore a ∈ B.

• Show that a function f : A → B is surjective amounts to showing equality of sets
f(A) = B. In this case, it’s automatic that f(A) ⊂ B, so you only need to show
B ⊂ f(A). So your proof should start with something like, If b ∈ B is any given
element, then . . . , proceed to identify a suitable element a ∈ A and then conclude
with something like . . . therefore f(a) = b. Hence f is surjective.

• Be careful about the distinction between logical connectives like ⇒ (implies) and
⇔ (is logically equivalent to), on the one hand; and algebraic connectives like = (is
equal to) and < (is less than), on the other. The former are often used to relate one
equation to another, whereas the latter occur within a single equation and relate one
algebraic expression to another. So for instance,

x2 − 4x+ 4 = 0 ⇔ (x− 2)2 = 0

and

x2 − 4x+ 4 = (x− 2)2 = 0

are two correct ways of saying more or less the same thing, but

x2 − 4x+ 4 ⇔ (x− 2)2 = 0

is (strictly spekaing) not only incorrect but nonsensical. A reader might or might not
figure out what’s really meant, but that shouldn’t be counted on. It’s a good exercise
here to try reading each of the three displayed lines out loud.

The following further suggestions aren’t writing conventions but rather (what I consider)
good practices.

• It is as important to be a good reader of mathematics as it is to be a good mathe-
matical writer. The first thing to understand and accept is that math is hardly ever
a light read. Even experienced mathematicians tend to read math very slowly with
frequent pauses to to try and digest the words on the page. For instance, when you
meet a new theorem and its proof, you should treat it like a one-act play, asking
yourself things like

– What are the characters here? I.e. what sort of thing does each symbol repre-
sent?
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– What are the assumptions (i.e. hypotheses)? What are the conclusions? (what
is the setting?)

– On an intuitive level, what is the theorem trying to express? (i.e. what are the
themes?)

– Where are the various assumptions used in the proof? How might the conclusion
fail if we omit an assumption, or just change it somehow?

– Again on an intuitive level, what is/are the basic idea(s) of the proof?
Obviously this all takes time, so just give yourself over to the process and try not to
watch the clock or keep checking your phone for new messages.

• When asked to prove an assertion, first make sure you understand what the hypothe-
ses are (i.e. what information you’re given) and then what the conclusion is (i.e.
what it is you’re supposed to prove).

• Also, before putting pen to paper, make sure you know the definition of each term/object
appearing in the assertion. If it’s a statement about prime numbers, make sure you
can recite the definition of prime number, etc. Almost all proofs somehow build from
the definitions of the objects involved, and many basic proofs involve little more than
this.

• Another good tactic is to try making up a few particular examples to test the hy-
potheses and conclusion in the statement you’re trying to prove. Sometimes seeing
how things play out in particular cases sheds a lot of light on what’s happening
generally.

• Other good things to try when stuck (in no particular order):
– Go through book, notes, etc and review everything else (other theorems and
proofs, propositions, examples) that might relate to what you’re trying to show.

– Turn your sticking point into a particular question.
– Sleep on it (implies that you’ve started well ahead of your deadline and that you
intend to come back to it later).

– Discuss with friends, classmates, instructor. Over ice cream. Especially if with
your instructor.

• Whenever you finish writing down your proof, set it aside for a day and then come
back and read what you wrote (preferably out loud) with a fresh eye. Be honest with
yourself about whether it seems well-phrased, clear, and correct. And if it doesn’t,
revise. And if you get stuck, return to the above suggestions.
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Appendix C. Glossary of notation

∀ for every
∃ there exists
∃! there exists unique
□ end of proof (alternatively, ‘QED’)
⇒ implies
:= is defined to be equal to
Z set of integers . . . ,−2,−1, 0, 1, 2, . . .
N set of non-negative integers 0, 1, 2, . . .
Z+ set of positive integers 1, 2, . . .
Q set of rational numbers
R set of real numbers
a|b the integer a divides the integer b
∈ is an element of; e.g. ‘3.2 ∈ R’ means that 3.2 is an element of R.∑n

j=m aj am + · · ·+ an
∅ the empty set

A×B cartesian product of the sets A and B
xRy x is related to y by R

≡ mod m congruent modulo m
f : A → B f is a function from A to B

#A cardinality of A
supS least upper bound, or supremum, of a set S ⊂ R
inf S greatest lower bound, or infimum, of a set S ⊂ R
(xn) sequence x0, x1, x2, . . .

limxn limit of the sequence (xn)
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