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1. Preliminaries.

In these notes, we concern ourselves with special objects called matrix Lie
groups and their corresponding Lie algebras, connected via the exponentiation
map. Our main goal is to establish that the Lie algebra corresponding to a
matrix Lie group is a real vector space. Thus, in order to further study a Lie
group, one might more easily study its corresponding Lie algebra, since vector
spaces are well-studied.

In these notes, we refer to the set of m × n matrices over the field F by
Mm×n(F ). We also use the notation R for field of real numbers and C for the
field of complex numbers.

We expect that the reader is familiar with the exponential of a matrix.
Namely, if A is an n× n matrix, the matrix

eA :=

∞∑
i=0

Ai

i!
(1)

is the exponential of A, often called “e to the A”. It can be shown that the
exponential function exp : Mn×n(C) → Mn×n(C) defined by exp(A) = eA is
well-defined with domain Mn×n(C). In other words, the series in (1) converges
for each A ∈Mn×n(C).

2. Matrix Lie Groups.

Before we can answer the question of what a matrix Lie group is, we must
first define a group.

Definition 1. A group is a set G together with a map ∗ : G × G → G
[∗(g1, g2) 7→ g1 ∗ g1] such that

1. (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3), g1, g2, g3 ∈ G;

2. There exists e ∈ G such that e ∗ g = g ∗ e = g for each g ∈ G;

3. For each g ∈ G there exists h ∈ G such that h ∗ g = g ∗ h = e.

Example 2. We give several examples of matrix groups. In each case, the prod-
uct is given by matrix multiplication. Recall that matrix multiplication is asso-
ciative.
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1. GL(n,R) := {A ∈Mn×n(R) : A−1 exists}. The general linear group (over
R). Note that

(a) GL(n,R) is closed with respect to matrix multiplication, since (AB)−1 =
B−1A−1.

(b) The n× n identity matrix is an element of GL(n,R).

(c) For each A, A−1 is an element of GL(n,R) satisfying property 3.

2. SL(n,R) := {A ∈Mn×n(R) : det(A) = 1}. The special linear group (over
R).

(a) SL(n,R) is closed with respect to matrix multiplication, since if
detA = 1 and detB = 1, then detAB = 1.

(b) The n× n identity is an element of SL(n,R).

(c) For each A, A−1 exists and detA−1 = 1 as well.

3. U(n) := {A ∈Mn×n(C) : AA∗ = I}. The unitary group.

4. SU(n) := {A ∈ Mn×n(C) : AA∗ = 1,detA = 1}. The special unitary
group.

5. H. The Heisenberg group. The set of real matrices of the form1 a b
0 1 c
0 0 1

 .
Note that H is closed under multiplication and that1 a b

0 1 c
0 0 1

−1 =

1 −a ac− b
0 1 −c
0 0 1

 .

All of these examples are actually more precisely called matrix Lie groups.
We give the precise definition of a matrix Lie group below. But first, we give a
remark on Sophus Lie.

Remark 3. Sophus Lie (1842 - 1899) was a Norwegian mathematician. His ma-
jor achievement was discovering that such transformation groups as mentioned
above could be better understood by “linearizing” them and studying the cor-
responding linear spaces, called Lie algebras.

Definition 4. Let An be a sequence of complex matrices. We say that An
converges to a matrix A if each entry of An converges to the corresponding
entry of A.

Definition 5. A matrix Lie group is any subgroup H of GL(n,C) with the
property that if An is a sequence of matrices in H and An converges to a matrix
A, then either A belongs to H or A is not invertible.
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Essentially, what the definition of a matrix Lie group requires is that H be
a closed subset of GL(n,C). Geometrically, one can think of matrix Lie groups
as manifolds embedded in a space. Although we do not discuss at length on
this notion, it does help motivate the following discussion.

3. Connectedness.

Definition 6. A matrix Lie Group G is connected if for each E,F ∈ G, there
is a continuous path A : [a, b] → G, such that A(t) ∈ G for each t, A(a) = E,
and A(b) = F .

It turns out that most of the groups from Example 2 are connected. We
show now the case for U(n). In our proof, we will construct a path from any
unitary matrix to the identity matrix. It follows that one can construct a path
between any two unitary matrices, by first traveling to the identity, then out to
the other unitary matrix.

Proposition 7. The group U(n) is connected for each n ≥ 1.

Proof. Let U be unitary. Recall that if U is unitary, then U∗U = I = UU∗,
so U is normal. By the spectral theorem for normal operators, there exists an
orthonormal system of eigenvectors for U . Recall that each e-value of U satisfies
|λ| = 1, so we may write

U = U1


eiθ1 0 · · · 0
0 eiθ2 · · · 0
...

...
. . .

...
0 0 · · · eiθn

U∗1 (∗)

where U1 is unitary and θi ∈ R. Conversely, one can show that a matrix of the
form (∗) is unitary by noting that UU∗ = I. For each t ∈ [0, 1] define

A(t) = U1


ei(1−t)θ1 0 · · · 0

0 ei(1−t)θ2 · · · 0
...

...
. . .

...
0 0 · · · ei(1−t)θn

U∗1 .
Then A(0) = U and A(1) = I. Furthermore, A(t) is unitary for every t. So each
unitary matrix can be connected to the identity. So U(n) is connected.

We have constructed the following table displaying whether each group
from Example 2 is connected.
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Group Connected? Components
GL(n,C) Yes 1
GL(n,R) No 2
SL(n,C) Yes 1
SL(n,R) Yes 1
U(n) Yes 1
H Yes 1

Note 8. The group GL(n,R) is not connected for the following reason. Suppose
that detE > 0 and detF < 0. Let A : [0, 1] → Mn×n(R) be a continuous
path connecting E and F . Compose det ◦A, a continuous function. By the
intermediate value theorem, there is a t ∈ (0, 1) such that (det ◦A)(t) = 0, i.e.,
the path A leaves GL(n,R).

4. Lie Algebra of a Matrix Lie Group.

As was mentioned earlier, it is often easier to study the so-called “Lie
algebra” of a matrix Lie group than the group itself. This is because the algebra
has some nice properties which we begin to discuss now.

Definition 9. Let G be a matrix Lie group. The Lie algebra of G, denoted
g, is the set of all matrices X such that etX belongs to G for each real number
t.

Example 10. We now discuss the corresponding Lie algebras of those groups in
Example 2.

1. gl(n,R) := {X : etX ∈ GL(n,R) ∀ t ∈ R}.

Claim 0.1. gl(n,R) = Mn×n(R).

Proof. Let X ∈Mn×n(R). Then etX is invertible and real for each real
t, i.e., etX ∈ GL(n,R).

Suppose X is a matrix such that etX is real for each t. Then X =
d
dt |t=0e

tX is real, i.e., X ∈Mn×n(R). �

2. sl(n,R) := {X ∈Mn×n(R) : etX ∈ SL(n,R) ∀ t ∈ R}.

Claim 0.2. sl(n,R) = {X ∈Mn×n(R) : tr(X) = 0}.

Proof. We require the theorem det eX = etr(X) (which we do not prove
in these notes). Let X satisfy tr(X) = 0. Then tr(tX) = 0 for each t.
So det etX = 1 for each t as required.

Conversely, suppose that det etX = 1 for each t. Then et·tr(X) = 1 for
each t. So t · tr(X) = (2πi)k, k ∈ Z for each t. So tr(X) = 0. �
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3. u(n) := {X ∈Mn×n(C) : etX ∈ U(n) ∀ t ∈ R}.

Claim 0.3. u(n) = {X ∈ Mn×n : X∗ = −X} (the set of skew-
symmetric matrices)

Proof. Recall that if etX ∈ U(n), then (etX)∗ = (etX)−1 = e−tX . Note
that

(etX)∗ = et
∗X∗

= etX
∗
.

So X∗ = −X. Conversely, we can see that such X satisfy etX ∈ U(n)
for each t. �

4. h := {X ∈ Mn×n(R) : etX ∈ H ∀ t ∈ R} (The Heisenberg algebra). The
Heisenberg algebra h consists of all matrices of the form0 a b

0 0 c
0 0 0

 .

We want to discuss some properties of a Lie algebra. But first, we require
some knowledge about the matrix exponential and the matrix logarithm.

5. The Exponential and the Logarithm.

We first make two observations about the matrix exponential function.
Suppose we have n×nmatricesA andX whereA is invertible. Then (AXA−1)m =
AXmA−1. So

eAXA
−1

= AeXA−1 (2)

by looking at the series in (1) term by term.
Now suppose X is an n× n matrix and t is a real number. Then

d

dt
etX = XetX = etXX. (3)

This follows by differentiating the series in (1) term-by-term and recognizing
that X commutes with powers of itself.

We now define the matrix logarithm. Although we do not concern our-
selves too much with the construction of this function, it can be shown that
such a function is well-defined and satisfies the following properties. (In the
theorem below, let ‖·‖ denote the operator norm on n× n matrices.)
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Theorem 11. The function log : Mn×n(C)→Mn×n(C) defined by

logA =

∞∑
m=1

(−1)m+1 (A− I)m

m

is well-defined and continuous on the set of all n×n matrices satisfying ‖A−I‖ <
1. And if A is real, then logA is real.

Furthermore, for each A with ‖A− I‖ < 1,

elogA = A.

For each X satisfying ‖X‖ < log 2, we have

‖eX − I‖ < 1 and log eX = X.

Hence, for matrices of a certain “distance” from the identity, the logarithm
is the inverse of the exponential. Note that log is defined as we would expect:
an extension of the Taylor expansion for log to matrices.

Lemma 12. There exists a constant c such that for all n× n matrices A with
‖A‖ < 1/2, we have

‖log(I +A)−A‖ ≤ c‖A‖2.

Proof. We note that

log(I +A)−A =

∞∑
m=2

(−1)m
Am

m
= A2

∞∑
m=2

(−1)m
Am−2

m
.

A property of the operator norm is that ‖XY ‖ ≤ ‖X‖‖Y ‖. A further property
is that ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖. So

‖log(I +A)−A‖ ≤ ‖A‖2‖
∞∑
m=2

(−1)m
Am−2

m
‖

≤ ‖A‖2
∞∑
m=2

‖A‖m−2

m

≤ ‖A‖2
∞∑
m=2

(1/2)m−2

m
.

The series on the right converges to some c ∈ R by the ratio test. So we obtain

‖log(I +A)−A‖ ≤ c‖A‖2

as required.

Theorem 13. Let X and Y belong to Mn×n(C). Then

eX+Y = lim
m→∞

(
e

1
mXe

1
mY
)m

.
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Proof. Expanding the first few terms of the power series multiplication for the
exponential, we obtain

e
1
mXe

1
mY = I +

1

m
X +

1

m
Y + Cm

where Cm is a series such that ‖Cm‖ ≤ k/m2 for some k ∈ R. By choosing m

large enough, we can make e
1
mXe

1
mY close enough to I, thus making e

1
mXe

1
mY

in the domain of the logarithm. Therefore, for sufficiently large m, applying
Lemma 12 gives

log
(
e

1
mXe

1
mY
)

= log

(
I +

1

m
X +

1

m
Y + Cm

)
(4)

=
1

m
X +

1

m
Y + Cm + Em, (5)

where Em is an error term which satisfies

‖Em‖ ≤ c‖
1

m
X +

1

m
Y + Cm‖2 ≤ c‖Cm‖2 ≤

ck

m2
,

for each m ≥ 2 and for some c ∈ R. Applying exp to both sides of (4) gives

e
1
mXe

1
mY = exp

(
1

m
X +

1

m
Y + Cm + Em

)
.

So (
e

1
mXe

1
mY
)m

= exp (X + Y +mCm +mEm) . (6)

Since both Cm and Em are on the order of 1/m2 and since the exponential is a
continuous function, we take the limit of both sides of (6) to obtain

lim
m→∞

(
e

1
mXe

1
mY
)m

= exp(X + Y ),

as required.

6. Properties of a Lie Algebra

Using our work in the previous section, we now obtain a nice result con-
cerning Lie algebras, namely, that they are real vector spaces. First we require
a small proposition.

Proposition 14. Let G be a matrix Lie group and g its corresponding Lie
algebra. Let X be an element of g and let A be an element of G. Then AXA−1

belongs to g.
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Proof. By (2) of section 5, we see that

et(AXA
−1) = AetXA−1.

Since A, A−1 and etX belong to G for each t, we see that AXA−1 belongs to g
by definition.

Theorem 15. Let G be a matrix Lie group and let g be its Lie algebra. Let
X,Y ∈ g. Then

1. sX ∈ g for each s ∈ R.

2. X + Y ∈ g.

Proof. For (1), if X ∈ g, then etX ∈ G for each t. So etsX ∈ G for each s since
ts ∈ R for each t, s ∈ R. Therefore, sX belongs to g by definition.

For (2), let X and Y belong to g. Theorem 13 gives

et(X+Y ) = lim
m→∞

(
exp

(
t

m
X

)
exp

(
t

m
Y

))m
. (7)

Since X and Y belong to g, exp
(
t
mX

)
and exp

(
t
mY

)
belong to G. Moreover,

since G is a group, their product belongs to G, as does any power of their
product. To make sure that the limit is in G, we need to make sure that the
limit is invertible. Since the left hand side of (7) is invertible with inverse
e−t(X+Y ), the limit is also invertible. Therefore, et(X+Y ) belongs to G. By
definition, X + Y belongs to g.

Thus, we have established that the Lie algebra is a real vector space. Be-
cause of this, we immediately get an interesting property about the Lie algebra:
that it is closed under the so-called bracket. The bracket of two elements X
and Y in a matrix Lie algebra g, denoted [X,Y ] is given by [X,Y ] = XY −Y X.
In a general Lie algebra, the bracket need not be defined in this way. But in
the case of matrices, this bracket definition is commonly used.

Corollary 16. Let G be a matrix Lie group and let g be its Lie algebra. Let
X,Y ∈ g. Then [X,Y ] = XY − Y X belongs to g.

Proof. Recall the property of the exponential given by (3) in section 5: d
dte

tX =
XetX = etXX. By the Leibniz rule of differentiation, we have

d

dt
etXY e−tX = etXY

d

dt

(
e−tX

)
+
d

dt

(
etXY

)
e−tx

= −etXY Xe−tX + etXXY e−tX .

Evaluation at t = 0 gives

d

dt
|t=0e

tXY e−tX = −Y X +XY = XY − Y X.

A property of vector spaces is that the derivative of any smooth curve lying in
g must also be in g. Since by Proposition 14, etXY e−tX belongs to g for each
t, we see that XY − Y X belongs to g.
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