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Goals for this boot camp
..

® Introduce many of the basic
- structures,
- methods, and
- assumptions

of numerical algebraic geometry (and not the nitty-gritty theory underlying it)

® Show some Bertini Classic I/O

® Give us a common language for the next 2.5 days



Game plan
..

|. Polynomial systems and their solution sets
2. Finding isolated solutions (homotopy continuation)
3. Advanced topics for isolated solutions

4. Finding positive-dimensional solution sets (briefly)



Game plan
..

|. Polynomial systems and their solution sets
A. Examples
B. Intuition from linear algebra
C. Some words

D. Bertini’s theorem



A. Examples

ntuition from linear algebra

Polynomial systems and their solution sets « ...

Example 1: 2 —-1=0

Two solutions: 7 = +1




Polynomial systems and their solution sets « ...

A. Examples

ntuition from linear algebra

Example 2: 2 —1=0

Three solutions (1 real, 2 non-real)
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A. Examples

ntuition from linear algebra

Polynomial systems and their solution sets « ...

Example 3: P —1=0

Four solutions (2 real, 2 non-real)




Polynomial systems and their solution sets « ...

A. Examples

ntuition from linear algebra

5

Example 4: f(aj, y) —

Four solutions: (:_




A. Examples

ntuition from linear algebra

Polynomial systems and their solution sets « ...

Example 5: g($, y) = 9

Four solutions: (=44, +:27) € C*

Visualization harder...



A. Examples

B. Intuition from linear algebra

Polynomial systems and their solution sets « ...

% +y? — 1

Example 6: h(:z:, ?/) — | g2 i (y + 0)2 — 1

|
Jv

c =2 C

T b
B &4

2 complex




A. Examples

ntuition from linear algebra

Polynomial systems and their solution sets « ...

Example 7: { (T — 1; ]

Solutions: & = 0 (aline) and (1, 1) (a point).

(Two sets, two dimensions!)



A. Examples

ntuition from linear algebra

Polynomial systems and their solution sets « ...

Example 8 [ (y —2%)(s 2+ 22— 1)(x 2
(z—a)(2® +y°+ 22— 1)(y —2)
(z —2°)(y — %) (x* +9y° + 22 — 1)(2 — 2)

Solutions:

Dimension 2: One surface
Dimension |: Three lines and one cubic curve
Dimension 0: One point

(“Nlustrative example” from Sommese-Verschelde-Wamepler, SIAM J. Numer.An.’01)



A. Examples

B. Intuition from linear algebra

Polynomial systems and their solution sets « «...

Linear systems vs. polynomial systems

Linear = Polynomial

# solutions Oor 1 0 or more

..............................................................................................................................................

solution | point, line,  points, curves,
components | plane, etc. | surfaces, etc.

vanishing set 5
foreach  hyperplane | hypersurface
equation 5



A. Examples

B. Intuition from linear algebra

Polynomial systems and their solution sets « ..

Some words

Solution set: The set of all solutions of a polynomial system f. Also called
an algebraic set and sometimes a variety. Sometimes denoted V(f).

Irreducible component: One “piece” of an algebraic set, e.g.,a curve or a
point.

D D
Irreducible decomposition: 7 =V(f) = U Z; = U U Z; i»Where
i=0 i=0 jEA;
D is the dimension of Z,
1 cycles through possible dimensions of irreducible components,
7 is an index within dimension i, and the
Z; ; are the irreducible components.



A. Examples

. Intuition from linear algebra

Polynomial systems and their solution sets « ..

Example 8 [ (y —2%)(s 2+ 22— 1)(x 2
(z—a)(2® +y°+ 22— 1)(y —2)
(z —2°)(y — %) (x* +9y° + 22 — 1)(2 — 2)

Solutions:

Dimension 2: One surface <
Dimension |: Three lines and one cubic curve

Dimension 0: One point\ \
/ | | |




A. Examples

B. Intuition from linear algebra

Polynomial systems and their solution sets « ..

5

Some more words

Regular/nonsingular solution: A solution of a polynomial system f at
which the Jacobian matrix (below) has full rank. Other solutions are called

singular solutions.

- Ofh Ofr ~
8:131 e aCCN

Ofn Ofn
L Ox1 "t Oz A

242 —1 ] - J_[2£U 2y ]

Example 6: h(z,y) =

2+ (y+c)P—1 2¢ 2y + 2c
¢ =1 (2 solutions): J(0.866,~0.5) = | ;102 ! ] (full rank)
c = 2 (1 double solution): J(0,—1) = 8 _22 ] (rank-deficient)




A. Examples
B. Intuition from linear algebra

Polynomial systems and their solution sets cswws

D. Bertini’s theorem

Bertini’s Theorem

Polynomial systems can have different numbers of function (n) and variables (N).
If N >n (more variables), there will be no isolated solutions (handled later).
If N <n (more equations), we can replace f/ with N random linear combinations

of the polynomials of f. Call the new system f. Each solution of f is a solution
of f,but f might have more solutions (Bertini junk).

(not very random)

Example 9: - 332 1 -
_ + fot f3
T, _ 2_1 fl
f(@,y) ::gy—l _f1+2f2+f3_
] ] X X

Solutions: (1,1), (—1,—1)  (1,1), (=1, —1), (2, —1), (=2,1)




Game plan
..

|. Polynomial systems and their solution sets
2. Finding isolated solutions (homotopy continuation)
3. Advanced topics for isolated solutions

4. Finding positive-dimensional solution sets (briefly)



Game plan
I,

2. Finding isolated solutions (homotopy continuation)
A. Homotopy continuation in a nutshell
B. Start systems
C. Bells & whistles
D. Endgames

E. Bertini Classic (1.x)



Finding isolated solutions

A. Homotopy continuation

B. Start systems

C. Bells & whistles

D. Endgames

E. Bertini Classic (1.x)

Given fi,...,fn € Clz1,...,2n],we want to find all 2 € CVs.t. f;(2) =0 Vi.

For each isolated solution, %, we aim to compute a numerical

approximation 2z such that ||Z — z]| < FinalTol.

How do we accomplish this? Homotopy continuation.




A. Homotopy continuation

B. Start systems

Finding isolated solutions Gl & v

E. Bertini Classic (1.x)

Given polynomial system f : C¥ — C" (the target system) homotopy
continuation is a 3-step process:

|. Choose and solve a polynomial system ¢ : C¥ — C" (the start system)
based on characteristics of f(z) but relatively easy to solve.

2. Form the homotopy H : CV x C — CV given by

H(z,t) = f(2) - (1= 1)+ g(2) -
so that H(z,1) = g(z) and H(z,0) = f(2).

3. Use numerical predictor-corrector methods to follow the solutions as ¢
marches from 1 to 0, one solution at a time. (Notice the parallelizability!)




A. Homotopy continuation

Finding isolated solutions &
E. Bertini Classic (1)

2 e CN

t=0 t=1




A. Homotopy continuation

. Start systems

Finding isolated solutions Gl & v

. Bertini Classic (1.x)




t=0.5

t=0.75

t=1




t=0.25

t=0.5

t=0.75




t=0

t=0.25

t=0.5




@ 1ROUBLE!

t=0

t=0.25




t=0




A. Homotopy continuation

Finding isolated solutions Gl & vl
E. Bertini Classic (1.x)




A. Homotopy continuation

Finding isolated solutions Gl & vl
E. Bertini Classic (1.x)




A. Homotopy continuation

Finding isolated solutions Gl & vl
E. Bertini Classic (1.x)




A. Homotopy continuation

Finding isolated solutions Gl & vl
E. Bertini Classic (1.x)




A. Homotopy continuation
B. Start systems

Finding isolated solutions Gl & v

E. Bertini Classic (1.x)

Root counts and start systems

Bézout: For a system with N polynomials and variables, the number of finite,
N

isolated solutions < | [ deg(f)). (Over projective space, one can make
1=1
more exact statements....)

One choice of start system is the total degree or Bézout start system:

I
g = ; (Recall the first 3 examples!)
N ZKZN —1 -

This has exactly |]deg(f;) isolated, nonsingular, finite solutions.
1=1

This could be overkill — there might be many fewer solutions of f!

Different root counts lead to different start systems.




A. Homotopy continuation
B. Start systems

Finding isolated solutions G el & v

E. Bertini Classic (1.x)

Root counts and start systems

Bézout (multihomogeneous version): The number of finite, isolated
solutions is also bounded above by some combinatorial formula built from
the multidegrees of the polynomials, when the variables are broken into
multiple groups.

Depending on choice of variable groups, you might get fewer or more
startpoints (typically more).

Example: | 7y — 1
z? — 1

The total degree is 4.



A. Homotopy continuation
B. Start systems

Finding isolated solutions G el & v

D. Endgames
E. Bertini Classic (1.x)

Root counts and start systems

Example: [ :Eg _i ] (z,y)
a’/‘ —_—

The total degree is 4.

The 2-homogeneous (or 2-hom) degree is 2, so we can build a start system

with 2 nonsingular, isolated solutions and follow only 2 paths to find all
solutions!



A. Homotopy continuation

B. Start systems
C. Bells & whistles

Finding isolated solutions  ©:i

E. Bertini Classic (1.x)

Root counts and start systems

It is tempting to just try all possible variable groupings...DON’T!

The number of such groupings for n variables grows as the Bell number:

N|1 2 3 4 5 6 7 8
Bel(N) |1 2 5 15 52 203 877 4140
N| 9 10 11 12
Bell(N) | 21,147 115,975 678,570 4,213,597
N 25
Bell(N) | 4,638,590,332,229,999,353

(See Wampler, Numer. Math.,’93 for more on this.)



A. Homotopy continuation
B. Start systems

Finding isolated solutions Gl & v

E. Bertini Classic (1.x)

Root counts and start systems

Coeflicient-Parameter \

Uu -——-U--—-
I

Products | Polytopes

@ --U--- U

Monomial Products

Polynomial Newton

easier

3 specificity
;;ggtlgn U (fewer paths)

Linear Products

U

Multihomogeneous

U

Total Degree

(from Sommese-Wampler ‘05 book)

Warning: | am entirely ignoring polyhedral homotopies, which can be very
efficient in terms of the number of paths to be tracked but is sometimes
expensive in terms of precomputation.




A. Homotopy continuation
B. Start systems

Finding isolated solutions G bl & i

E. Bertini Classic (1.x)

The gamma trick

“2. Form the homotopy H : CY x C — C¥ given by

H(z,t) = f(z)- (1 =t) +g(2) -t
so that H(z,1) = g(2) and H(z,0) = f(z).”

In fact, we use the homotopy:

H(z,t)=f(2)- (1 —1t) +vg(2) -t | o

where v € C is chosen at random.




A. Homotopy continuation
B. Start systems

Finding isolated solutions G el & s

E. Bertini Classic (1.x)

Detecting divergence

Input can be hon-homogeneous (mixed degrees in each polynomial) or
homogeneous (all terms in any one polynomial have the same degree).

Either way, Bertini will homogenize (if necessary) and work over a random
patch of P". Thus, paths of infinite length become paths of finite length.

Even so, paths diverging to infinity often have highly singular endpoints, so it is
preferable to avoid them. In Bertini, we kill any path that exceeds the
threshold SecurityMaxNorm after t reaches 0.1. (Good for speed!)



A. Homotopy continuation
B. Start systems

Finding isolated solutions . el & whistes

D. Endgames

E. Bertini Classic (1.x)

Adaptive steplength

At A2



A. Homotopy continuation
B. Start systems
C. Bells & whistles

Finding isolated solutions &

E. Bertini Classic (1.x)

Adaptive precision

For matrix A € CV*¥ the singular value decomposition (SVD) of A is a
decomposition A = UXV* with various properties.

For our purposes, the key is that Y is diagonal with nonnegative real entries
called the singular values of A.

Using this, we can define the condition number of A as:

K(A) = Smaz

Smin

Wilkinson: When solving linear system Az = b,
ACC ~ PREC — logo(k(A))




A. Homotopy continuation
B. Start systems
C. Bells & whistles

Finding isolated solutions &

E. Bertini Classic (1.x)

Adaptive precision

ACC =~ PREC — logyy(k(A))

So, when the condition number gets high, we can increase precision to salvage
accuracy. (There are many details....)

This isn’t free!!
The key point is that zones of ill-conditioning can cause numerical trouble but
AMP reduces the size of these zones significantly. Of course, there is a limit

on PREC and failure-causing pathologies can be constructed.

Bertini will either get through these zones or report path failures (rather
than report incorrect results).




A. Homotopy continuation
B. Start systems

Finding isolated solutions S el & v

D. Endgames
E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.



A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at { = (.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

See Morgan-Sommese-Wampler, Num. Math. ’92 for details.



A. Homotopy continuation
B. Start systems

Finding isolated solutions S el & v

D. Endgames
E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame




A. Homotopy continuation
B. Start systems

Finding isolated solutions S el & v

D. Endgames
E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame




A. Homotopy continuation
B. Start systems

Finding isolated solutions S el & v

D. Endgames
E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

S~

See Morgan-Sommese-Wampler, Adv. in Appl. Math. ’92 for details.




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

S b




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

N




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

o
Two main options:

|. Power series endgame

2. Cauchy endgame

N




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

N




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

N




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame ®

2. Cauchy endgame

N




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame ©

N




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

N




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

N,




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

NS




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

— .




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

\.>/{><,/




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

N




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame

L




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame ®

N




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame ¢

N

2. Cauchy endgame




A. Homotopy continuation
B. Start systems

Finding isolated solutions C. el & v

E. Bertini Classic (1.x)

Endgames

We cannot avoid singularities and ill-conditioning at ¢ = 0.

Interesting systems often have singular solutions, but we cannot track into
t = 0. We use endgames built from interpolation or complex analysis.

Two main options:

|. Power series endgame

2. Cauchy endgame




A. Homotopy continuation
B. Start systems
C. Bells & whistles

Finding isolated solutions  ©:i

E. Bertini Classic (1.x)

Bertini

Bertini is free to download and use, and the source code is publicly available.
It may be downloaded (source code or binary) at bertini.nd.edu.

2002: Project started
2006: Initial beta release, during IMA special year.
2006-2015: Various extensions, releases.
2015: Latest version (1.5.2).
~ 8 downloads/day
~ 300 citations

Bates  Brake Hauensteln Sommese Wampler

m

Next up: Bertini 2.0 (b2)
Large development team (you??), C++, Boost, Eigen, GPL3, modules, etc.
More on that soon....



Homotopy continuation
Start systems

. Bells & whistles
Endgames

Finding isolated solutions o

monNnw>

Bertini Classic 1/0O

2 +y? — 1
i+ (y+c)” -1

h(z,y) =

Dans-MacBook-Pro-2:tmp_19mayl6 bates$ more input

variable_group Xx,Yy;
function f,q;

f=x"24+y"2 -1,
g = x"2 + (y+1)°2 - 1;
END;

Dans-MacBook-Pro-2:tmp_19mayl6 bates$ bertini input



Homotopy continuation
Start systems

. Bells & whistles
Endgames

Finding isolated solutions o
.X)

Finite Solution Summary

monNnw>

(screen output)

NOTE: nonsingular vs singular is based on condition number and identical endpoints

| Number of real solns | Number of non-real solns | Total
Non-singular | 2 | 0 | 2
Singular | 0 | 0 | ©
Total | 2 | 0 | 2

Finite Multiplicity Summary

Multiplicity | Number of real solns | Number of non-real solns

1 | 2 | 0

The following files may be of interest to you:

main_data: A human-readable version of the solutions - main output file.
raw_solutions: A list of the solutions with the corresponding path numbers.
raw_data: Similar to the previous, but with the points in Bertini's homogeneous

coordinates along with more information about the solutions.
real_finite_solutions: A list of all real finite solutions.

finite_solutions: A list of all finite solutions.
nonsingular_solutions: A list of all nonsingular solutions.
singular_solutions: A list of all singular solutions.

Paths Tracked: 4
Truncated infinite paths: 2 - try adjusting SecurityMaxNorm or set SecuritylLevel to 1 in the input file
Please see 'failed_paths' for more information about these paths.



Homotopy continuation
Start systems

. Bells & whistles
Endgames

Finding isolated solutions o
.X)

monNnw>

Number of variables: 2 ( . )
Variables: x vy ma|n_data ﬁle
Rank: 2

Solution @ (path number 1)

Estimated condition number: 5.439468605656218e+00

Function residual: 2.694578982019247e-16

Latest Newton residual: 5.945183495476102e-17

T value at final sample point: 3.906250000000000e-04

Maximum precision utilized: 52

T value of first precision increase: 0.000000000000000e+00

Accuracy estimate, internal coordinates (difference of last two endpoint estimates): 3.233556711006548e-13
Accuracy estimate, user's coordinates (after dehomogenization, if applicable): 5.993731656525824e-13
Cycle number: 1

8.660254037844386e-01 8.326672684688674e-17

-4,999999999999999%e-01 -1.734723475976807e-17

Paths with the same endpoint, to the prescribed tolerance:

Multiplicity: 1

Solution 1 (path number 3)

Estimated condition number: 7.927793214493077e+00

Function residual: 4.002966042486721e-16

Latest Newton residual: 1.540038302682865e-16

T value at final sample point: 3.906250000000000e-04

Maximum precision utilized: 52

T value of first precision increase: 0.000000000000000e+00

Accuracy estimate, internal coordinates (difference of last two endpoint estimates): 9.267175966288035e-13
Accuracy estimate, user's coordinates (after dehomogenization, if applicable): 1.300027528966579e-12
Cycle number: 1

-8.660254037844386e-01 5.551115123125783e-17

-5.000000000000000e-01 -2.775557561562891e-17

Paths with the same endpoint, to the prescribed tolerance:

Multiplicity: 1

At tol=1.000000000000e-10, there appear to be 2 solutions.



Game plan
..

|. Polynomial systems and their solution sets
2. Finding isolated solutions (homotopy continuation)
3. Advanced topics for isolated solutions

4. Finding positive-dimensional solution sets (briefly)



Game plan
..

3. Advanced topics for isolated solutions
A. Parameter homotopies
B. Certification

C. Regeneration



A. Parameter homotopies

Advanced topics for isolated solutions — ® core

C. Regeneration

Parameter homotopies

Given N polynomials, f = (fi(2,q) ..., fn(2,4)) in N variables z € C" and
k parameters g € CF, suppose we want to solve f = 0 at M points in
parameter space, qi, . .. ¢y € C* for some M>>0.

Option A (naive): Solve at each of the M points from scratch, using a
standard homotopy (such as a total degree homotopy).

Let P = # paths required to solve at each point in parameter space,
L = lower bound on # divergent paths for each run from scratch.

# paths: MP
# wasted: ML




A. Parameter homotopies

Advanced topics for isolated solutions — ® cores

C. Regeneration

Parameter homotopies

Option B (parameter homotopy):

I. Solve f = (fi(z,q¢) ..., fn(2,4")) for randomly chosen q' € C*.

2. Homotope from q’ to qi for i=l1,...,M, following all finite solutions from
the Step | solve at q'.

# paths: P + M(P-L)
# wasted: P

See Li-Sauer-Yorke, SIAM J. Num.An.’89 and Morgan-Sommese, Appl. Math. and Comp.’89.
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Parameter homotopies

Example: P=10, L=5, M = 1,000,000:

Option A Option B
# paths: MP = 10,000,000 # paths: P + M(P-L) = 5,000,010
# wasted: ML = 5,000,000 # wasted: P=10

Of course, if L=0 (not common), Option A is marginally better, at least in
terms of # paths.
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Parameter homotopies

Schematic

qi
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Parameter homotopies

Schematic: Step | l
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Parameter homotopies

Schematic: Step 2

’

e 9

a

qi



A. Parameter homotopies

Advanced topics for isolated solutions — ® cores

C. Regeneration

Parameter homotopies

Problem: Standard NAG software options include parameter
homotopy capabilities, but:

* parallelization is within the run (not between runs),

* failure mitigation is not automated (a headache), and

* each run includes startup costs, e.g., parsing.

Solution:

Paramotopy

D. Bates, D. Brake (Notre Dame), and M. Niemerg (IBM/Oak Ridge)
www.paramotopy.com

Free to use, source code publicly available

C++, Boost

Uses Bertini as a library

To be incorporated into Bertini 2.x in some form.
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Certification

Given some approximation of a nonsingular isolated solution of a polynomial

system, Newton’s method will: T |
diverge, R\
converge slowly, or
converge quadratically.

Basins of attractionforz2 + | =0

from MIT Open Courseware (Intro to Matlab Programming)
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Certification

Given some approximation of a nonsingular isolated solution of a polynomial
system, Newton’s method will:

diverge,

converge slowly, or

converge quadratically.

The region of quadratic convergence is quite small.
It is possible to prove that an approximation is within this region of quadratic

convergence for some solution. This is the crux of alpha theory, though the
certifiable region is extremely small!
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Certification

Two basic options (more introduced recently):

|. Certify as you go through a homotopy (Beltran-Leykin, NAG4M2) or
2. Post-certify (Hauenstein-Sottile, alphaCertified).

See the upcoming talk of Nick Hein & Alan Liddell.
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Regeneration

This is the latest equation-by-equation solver. Replaces standard
homotopy continuation with a number of simpler homotopies.

AT C T - f; 7 d2f1 d2f1 s
1 2

ol ml sl e i) [

S0l Il Il b e |
: : : : L&l)

O ([0 el Lo Lo | N

See Hauenstein-Sommese-Wampler, Math. Comp.’ |0 for more details.
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|. Polynomial systems and their solution sets
2. Finding isolated solutions (homotopy continuation)
3. Advanced topics for isolated solutions

4. Finding positive-dimensional solution sets (briefly)



Game plan

4. Finding positive-dimensional solution sets (briefly)

A. Slicing and the numerical irreducible decomposition
B. Bertini Classic I/O
C. Sampling

D. Real solutions



A. Numerical irreducible
decomposition

Finding positive-dimensional solution sets <’

D. Real solutions

D D
Recall: Z =V(f) = U Z; = U U Zi i, Where:
D is the dimension of 7,

1 cycles through possible dimensions of irreducible components,
7 is an index within dimension i, and the
Z; ; are the irreducible components.

(This is the irreducible decomposition of 7.)

For each positive-dimensional irreducible component, Z; ;, we aim to find
numerical approximations to some number of generic points on Z; ;.
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decomposition
B. Bertini I/O

Finding positive-dimensional solution sets <.

D. Real solutions

Key fact: Given irreducible component Z, ; of dimension i, for almost every
choice of linear space [, of codimension i, Z; ; intersects L in a set of a
particular number of points. That number is the degree of Z, ;.

So, to find deg(Z; ;) points on Z; ;, we can append i linears to f. We refer to
this operation as slicing.

To find points on all components, we can just loop through for all 7.
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D. Real solutions

Problem 1: We could pick up points on higher-dimensional components.
Problem 2: We could find points on multiple i-dimensional components.

Example: Suppose there are two curves and a surface. VWhen we slice for the
curves, we will find points on both curves and also on the surface.

Solution 1: Start at the top dimension and work your way down. Use a
membership test on points in lower dimensions to see if they sit on the
higher-dimensional components already found.

Solution 2: Carry out an equidimensional decomposition, using monodromy
and the trace test.
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Finding positive-dimensional solution sets <.
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In fact, there is a clever way to string the homotopies together, called a
cascade of homotopies. (There are more recent approaches, too.)

All told, the goal is to have deg 7, ; witness points on each component Z; ;,
yielding witness point set
Wi,j — Z’i,j ﬂ Lz

For each component, put the linear functions, the witness points, and the
original functions together and you have a witness set for the component:

Wi,j — (f7 Lia Wi,j)

Then, the numerical irreducible decomposition is the union of all such sets
for all irreducible components:

D D
w=Unw=UUw,

Recall Example 8 again:
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Example 8 [ (y —2%)(s 2+ 22— 1)(x 2
(z—a)(2® +y°+ 22— 1)(y —2)
(z —2°)(y — %) (x* +9y° + 22 — 1)(2 — 2)

Solutions:

Dimension 2: One surface
Dimension |: Three lines and one cubic curve
Dimension 0: One point




Finding positive-dimensional solution sets

A. Numerical irreducible

decomposition
B. Bertini I/O

C. Sampling
D. Real solutions

DO =D D

pk ot (D G (D

O =GO

CHomotopy + Start Solutions)

}

139 paths

99 at infinity

2 solutions

38 nonsolutions

38 paths

4 at infinity

14 solutions

20 nonsolutions

20 paths

1 at infinity

19 solutions

W W
lonLinel f= Wiy
Wl 8 on Sphere :
> 1 on Line 2 = Wia
6 to classify
1on Line3 = Wjig
3 on Cubic fl= Wia
Wo 13 on Sphere |

2 on Line 1

2 on Line 2

1 on Line 3

0 on Cubic

1 to classify

Wo

—_—

From Sommese-Verschelde-Wampler, SIAM J. Num.An. ’01.

y = Jo

1 Isolated J= Wpy

Cascade of
homotopies for
computing the
numerical irreducible
decomposition of the
illustrative example.

Notice that we find
the degree number of

points on each
component.
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Bertini Classic 1/0O

(screen output)

Dans-MacBook-Pro-2:tmp_19may16 bates$ more input skkkickkikkikk Witness Set Decomposition sekskokskorkskokkokk

CONFIG
| dimension | components | classified | unclassified

TrackType: 1;

| 2 | 1 |2 | ©
END; | 1 | 4 | 6 | o
| o | 1 | 1 | ©

INPUT
. sokokkkkkookkk Decomposition by Degree sokkskskokokskokokskokk
variable_group x,y,z;

function f,g,h; Dimension 2: 1 classified component

f o= (y=x"2)*%(x~+y"2+272-1)*(x-2) ; degree 2: 1 component

g = (z=x"3)*x(x™+y*2+272-1)*(y-2);

h = (z-x73)*(y-x"2)*(x"+y"*2+272-1)*(2-2) ; Dimension 1: 4 classified components
END; degree 1: 3 components

degree 3: 1 component

Dimension @: 1 classified component

[

degree 1: component

kokokokk ok Rk k Kk ok sk ok sk ok sk sk sk sk sk Sk sk k ok k ok sk ok k ok sk ok sk sk sk sk sk sk sk sk sk sk ok k ks k sk ok k ok
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Sampling

By following the solutions as we move the linears from a witness set, we pick
up more points on the same irreducible component. This is called
component sampling.

In this way, you can find many points on a curve (or other irreducible
component) quite rapidly.
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Real solutions

For real applications, people typically want real solutions!

This is very difficult. There are several recent, limited techniques using homotopy
methods:

* Khovanskii-Rolle continuation for fewnomials (Bates-Sottile, KhRo)
* Seidenberg-like methods (Hauenstein)

* Real cellular decompositions (Lu-Bates-Sommese-Wampler,
Besana-Di Rocco-Hauenstein-Sommese-VWampler,
Bates-Brake-Hao-Hauenstein-Sommese-Wampler, BertiniReal)

There are non-homotopy numerical methods, too (cellular exclusion, cylindrical
decomposition, etc.).

This is still a major open problem!
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D. Real solutions

Here’s a sketch of how Bertini Real works: Curves first:

Given
1. a witness set for complex curve Z and

2. randomly chosen projection 7 = Az (A random),

we want to find real points or curves inside Z.

The isolated real solutions and the critical points of any real curve will be
isolated real solutions of

Crit(Z,m):=2ZnV (det [J J])
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This last bit is a polynomial system that we can solve. Let’s switch to a
schematic drawing, in R? for simplicity:

ﬁ

-
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D. Real solutions

Notice that there are three real curves (two compact) and two points that
we want to find.

A




A. Numerical irreducible
decomposition

Finding positive-dimensional solution sets o’

D. Real solutions

The polynomial system three slides back will find all isolated real points and
(where topology changes occur).

\/—\/—\,

N
O &

s
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Projecting these down via 7 (just function evaluation), we get points

“downstairs” with fibers containing singular points. Nothing “interesting”
happens between these points.

ﬁ\/\_/\»
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() @
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D. Real solutions

Choosing midpoints between these points “downstairs,” we may find all

by moving the slices of the witness set for Z to the appro-
priate linears. There is a special (parameter) homotopy for this move.

A




A. Numerical irreducible
decomposition
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D. Real solutions

Moving these fiber points back and forth (moving the midpoints downstairs
to the left and right to the black points), we play connect-the-dots and get a
schematic representation of the curve. If the real curve is singular deflation
1S necessary.

NN

™~ G2/
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A. Numerical irreducible
decomposition

B. Bertini I/O

C. Sampling

D. Real solutions

Now for the surface case:

The surface case relies heavily on the curve case.

In the curve case, we find projections of critical points, then connect the

dots in the fiber.

In the surface case, we find projections of critical points, construct

critical lines (giving critical curves), then connect the 2-D patches to the

critical curves.

Here’s a picture:



Finding positive-dimensional solution sets

A. Numerical irreducible
decomposition

B. Bertini I/O

C. Sampling

D. Real solutions

This surface has a hole and 02 |
a pinchpoint. 0. t\
o _
Red dots on z-axis correspond — ~
to topology changes upstairs. ;’:
.

The blue curve on the floor is

the projection of the critical curve. 1 ™

05 " .
We use the curve algorithm (previous 0 "
slides) to decompose the critical curve.
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Here, the gray arcs lie above
the critical slices in the floor of the
previous figure. Again, the curve

algorithm is used for this. 04
02
The purple arcs lie above N
undrawn midpoints between
-0.2

critical points.

The blue arcs show how the

midpoints of the gray and purple
arcs connect up. All light blue dots
were found via sampling. 04

05
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The hardest part of the
surface case is playing
“connect-the-edges.”

For this, we build a
homotopy that makes
critical points stay on the
critical curve and moves
the 2D cell midpoint to the
edge midpoints.

See Dan Brake’s talk for how to make use of this....




Finding positive-dimensional solution sets
..

General references for numerical algebraic geometry

Jick to LOOK INSIDE!
—

The Numerical Solution

Sommese-Wampler, Numerical solution of polynomial systems

WS arising in science and engineering, World Scientific, 2005.

» K

Bates-Hauenstein-Sommese-VWampler, Numerically
solving polynomial systems with Bertini, SIAM, 201 3.

More specific references:

Path-tracking: Allgower-Georg, SIAM, 2004.

Polyhedral methods: Li, Acta Numerica, 2003.

Algebraic kinematics: Sommese-VWampler, Acta Numerica, 201 3.
Many more — just ask!




THANKS!!

(These slides are already posted on my website.)

Partially supported by NSF ACI-1440467, FA8650-13-1-7317, and the IMA.



