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A reactive system’s slow dynamic behavior is approximated well by evolution on manifolds of
dimension lower than that of the full composition space. This work addresses the construction of
one-dimensional slow invariant manifolds for dynamical systems arising from modeling unsteady
spatially homogeneous closed reactive systems. Additionally, the relation between the systems’ slow
dynamics, described by the constructed manifolds, and thermodynamics is clarified. It is shown that
other than identifying the equilibrium state, traditional equilibrium thermodynamic potentials
provide no guidance in constructing the systems’ actual slow invariant manifolds. The construction
technique is based on analyzing the composition space of the reactive system. The system’s finite
and infinite equilibria are calculated using a homotopy continuation method. The slow invariant
manifolds are constructed by calculating attractive heteroclinic orbits which connect appropriate
equilibria to the unique stable physical equilibrium point. Application of the method to several
realistic reactive systems, including a detailed hydrogen-air kinetics model, reveals that constructing
the actual slow invariant manifolds can be computationally efficient and algorithmically easy.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3171613�

I. INTRODUCTION

Modeling physical problems of multiscale nature is a
formidable task, even with modern computational capabili-
ties. Typical examples are found in atmospheric chemistry,1

biochemistry,2 and combustion,3 where a number of physical
and chemical processes that occur at different scales exist. In
simulation, the presence of a broad range of scales incurs a
large computational cost.4 In the case of combustion, this
cost increases with the number of species and the number of
reactions.5 Also, as the range of time scales widens, solution
verification becomes increasingly difficult. In the literature,
numerous methods based on several approaches have been
proposed to reduce the computational cost of simulating re-
active systems described by detailed kinetics.6–23 The main
challenge for these methods is to simplify the model equa-
tions without significant loss of accuracy.

For spatially homogeneous reactive systems, reaction
dynamics are described by a set of nonlinear coupled ordi-
nary differential equations �ODEs�. The solutions of this set
of ODEs are represented by trajectories in the species com-
position space. Each trajectory represents the reactive sys-
tem’s evolution with time for a specific initial condition. Af-
ter a short transient, the evolved trajectories seem to be
attracted to a special trajectory and stay exponentially close
to it until they reach equilibrium in infinite time.12 The reac-
tive system’s slow modes are the only active ones on this
special trajectory. This implies that the system’s slow dy-
namics can be described by these manifolds which are of

smaller dimension than the full composition space
dimension.17 Thus, identifying this manifold for a reactive
system makes it possible to reduce the computational cost by
filtering the system’s fast modes. Such an approach relies on
identifying these manifolds within the species composition
space which describes the slow dynamics of a reactive
system.19–23

The dimension reduction approach can significantly re-
duce the computational cost of modeling the detailed kinetics
of a reactive system.21 This approach is based on represent-
ing the chemistry of a reactive system’s variables in terms of
the chemistry of a reduced number of variables. Within the
dimension reduction approach, two major techniques exist.
The first set of methods employs local linear time scale
analysis to separate the system’s modes into fast and slow,
such as intrinsic low-dimensional manifolds �ILDMs�,10

computational singular perturbation �CSP�,12–14 and global
quasilinearization �GQL�.11 The dynamics are segregated us-
ing chemical bases. These bases are generated a priori in the
ILDM and GQL, while in the CSP they are estimated locally
by iteration. Although ILDM is more efficient than CSP, it is
less accurate.24,25 Furthermore, the calculated manifolds us-
ing ILDM and GQL are not invariant.26

The second set of methods, which is the main subject of
this work, employs a geometrical approach to describe the
multiscale kinetics. Examples include the quasisteady state
assumption,27 iterative methods,15,16 the Davis and Skodje
method,17 the minimal entropy production trajectory �MEPT�
method,19,28 the method of invariant manifold �MIM�,20 the
rate-controlled constrained equilibrium �RCCE� method,29,30

and the invariant constrained equilibrium edge preimagea�Electronic mail: powers@nd.edu.
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curve �ICE-PIC� method.21,31 The Davis and Skodje method
and the iterative methods are the most accurate among these
approaches.32,33 The Davis and Skodje method is based on a
global composition space analysis of the full dynamics of a
reactive system. However, such construction has been done
only for small model systems.17,22 The iterative methods are
based on constructing the attractive invariant manifold from
the system trajectories. Although these methods have a rapid
rate of convergence, they require a sufficiently accurate
guess to converge.17 Also, these methods have been used
only for small model systems.

The MEPT, MIM, RCCE, and ICE-PIC methods employ
classical thermodynamics far from the equilibrium state to
construct the attractive manifolds. While results from this
class of methods may seem intuitive, they have not been
fully compared to the more accurate iterative methods or
Davis and Skodje method. Moreover, the MEPT approach
relies on the concept of minimum entropy production.34 The
validity of this principle has been called into question in
other fields, e.g., heat diffusion.35

The slow invariant manifold �SIM� for a reactive system
is a subset of the species composition space. It describes the
asymptotic structure of the invariant attracting reactive sys-
tem’s trajectories during their relaxation toward equilibrium.
This work focuses on constructing only one-dimensional
�1D� SIMs, although for each reactive system there are SIMs
of different dimensions.

A heteroclinic orbit is defined as a trajectory that con-
nects two critical points. A 1D SIM is defined here as a
heteroclinic orbit that is locally attractive along the complete
trajectory. A similar idea has been investigated before in
literature.17,22,23 With the exceptions of the iterative methods
and the technique presented by Davis and Skodje, all previ-
ously discussed methods, and any other method based on
them, only approximate the reactive systems’ actual SIMs or
parts of them.

The present paper offers the first construction of a SIM
for a realistic detailed kinetics system. The main goal of this
work is to identify a reactive system’s actual 1D SIM. We
confine our attention to isothermal systems, although exten-
sion to nonisothermal systems is straightforward. This paper
is organized as follows. In Sec. II the mathematical founda-
tion is presented for closed isothermal spatially homogenous
reactive systems. Then, in Sec. III the proposed method to
construct the actual 1D SIM is presented in a geometric
frame. In Sec. IV, several test cases are introduced, and their
actual 1D SIMs are constructed. Moreover, comparisons to
other methods are conducted. Then, results for a hydrogen-
air reactive system using detailed kinetics are presented, and
lastly conclusions are stated.

II. MATHEMATICAL BACKGROUND

In this section, a brief description of the governing equa-
tions is presented. The superscript �o� denotes evaluation at
reference pressure, quantities with superscripts �� � and �e�
correspond, respectively, to the initial state and to the equi-

librium state, and quantities with an overbar �–� denote the
evaluation of these quantities on a molar basis.

A. Model equations

We consider a closed, spatially homogenous, premixed
reactive mixture of calorically imperfect ideal gases de-
scribed by detailed mass-action kinetics. The mixture is con-
fined in a volume V at temperature T and pressure p. This
mixture consists of N species composed of L atomic ele-
ments which undergo J reversible reactions of the form

�
i=1

N

�ij��i = �
i=1

N

�ij��i, j = 1, . . . ,J . �1�

Here, �i is the chemical symbol of species i, and for the jth
reaction, �ij� and �ij� are the stoichiometric coefficients of spe-
cies i, denoting the number of moles of reactants and prod-
ucts, respectively. For such mixtures, the total mass �M� re-
mains constant throughout the reaction process, and for each
reaction in the mechanism the mass of each element is con-
served. Total mass and element mass balances are enforced
by the following linear relations:

M = �
i=1

N

M̄ini = �
i=1

N

M̄ini
�, �2a�

�
i=1

N

�li�ij = 0, l = 1, . . . ,L, j = 1, . . . ,J , �2b�

where M̄i, ni, and �li are, respectively, the molecular mass of
species i, the number of moles of species i, and the element
index matrix, which provides the number of moles of ele-
ment l in species i. Also, �ij =�ij� −�ij� is the stoichiometric
matrix, which gives the net stoichiometric coefficient for
species i in reaction j. Equation �2b� demands that �ij lie in
the right null space of �li and physically means that the mass
and number of moles of each element is conserved in each
reaction. In general, �li and �ij are nonsquare matrices of
dimensions L�N and N�J, respectively. However, �li is of
full rank, while �ij is of rank R� �N−L�; commonly R= �N
−L�. In this work, we focus on systems in which J�R. How-
ever, for less common systems in which J�R, our analysis
can be easily modified.

The change in the number of moles of species i with
time �t� due to chemical reaction is described by the follow-
ing system:36

dni

dt
= V�

j=1

J

�ijrj, i = 1, . . . ,N , �3a�

ni�t=0 = ni
�, i = 1, . . . ,N , �3b�

where

rj = kj��
i=1

N �ni

V
	�ij�

−
1

Kj
c�

i=1

N �ni

V
	�ij�	, j = 1, . . . ,J , �4�

is the reaction rate given by the law of mass action. Here, for
the jth reaction, kj and Kj

c are, respectively, the Arrhenius
kinetic rates given by
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kj = AjT
�j exp�− Ēj

RT
	, j = 1, . . . ,J , �5�

and the equilibrium constants given by

Kj
c = � po

RT
	�i=1

N �ij

exp�−
�i=1

N
	̄i

o�ij

RT
	, j = 1, . . . ,J . �6�

In Eqs. �5� and �6�, R=8.314�107 erg /mol/K is the univer-
sal gas constant, and for each reaction the quantities Aj, � j,

and Ēj represent the collision frequency factor, the
temperature-dependency exponent, and the activation energy,
respectively. Also, 	̄i

o are the chemical potentials given by

	̄i
o = M̄i�hi − Tsi

o�, i = 1, . . . ,N . �7�

Here, hi and si
o are the specific enthalpy and the specific

entropy of species i. For ideal gases, hi and si
o are constant

for a given T.

B. Thermodynamic conditions

Adopting Dalton’s law for ideal mixtures and consider-
ing a mixture of calorically imperfect ideal gases implies that
the thermal state equation is

p =
RTn

V
, �8a�

where

n = �
i=1

N

ni. �8b�

Also, the mixture Gibbs free energy �G� is given by the
following relation:37

G = �
i=1

N

ni	̄i, �9a�

where

	̄i = 	̄i
o + RT ln� pXi

po 	, i = 1, . . . ,N . �9b�

Here, Xi=ni /n is the mole fraction of species i. This thermo-
dynamic property is of special interest. The minimum of G
within the region of composition space with positive ni cor-
responds to the reactive system’s equilibrium state,38 which
is identified by the following relation:

�
i=1

N

�ij	̄i = 0, j = 1, . . . ,J . �10�

Another thermodynamic property of interest is the mix-
ture entropy �S�, which is defined as

S = �
i=1

N

nis̄i. �11a�

where

s̄i = M̄isi
o − R ln� pXi

po 	 . �11b�

The differential change of S is postulated by the second law
of thermodynamics,38 although it is stated differently in
nonequilibrium thermodynamics than in classical
thermodynamics.37 In nonequilibrium thermodynamics, the
differential change of S is denoted as39

dS = deS + diS , �12a�

in which deS is the change in entropy due to the system’s
exchange of matter and energy with its surroundings, and

diS = −
1

T
�
i=1

N

	̄idni, �12b�

is the change in entropy due to irreversible processes within
the system. Thus, an expression for the irreversibility pro-
duction rate �
�, also known as the entropy production rate,
is introduced as34


 =
diS

dt
= −

1

T
�
i=1

N

	̄i
dni

dt
. �13�

Similar to G, 
 is a convex function in composition space
with a minimum at the reactive system’s equilibrium point.

C. Governing equations

The complete system, Eq. �3�, defines an N-dimensional
composition space. But, in any closed reactive system the
total number of moles of each element is conserved. By mul-
tiplying both sides of Eq. �3a� by �li, summing the result
from i=1 to N, employing Eq. �2b� to set the right side to
zero, integrating the resulting homogeneous differential
equation, and applying the initial condition, Eq. �3b�, we
obtain

�
i=1

N

�lini = �
i=1

N

�lini
�, l = 1, . . . ,L . �14�

Generally, Eq. �14� is an underconstrained linear system of L
equations for the N values of ni.

40 This implies it has solu-
tions of the following form:

ni = ni
� + M��

k=1

R

Dikzk	, i = 1, . . . ,N . �15�

Here, zk=nk /M ,k=1, . . . ,R, is a reduced composition vari-
able which physically represents the number of moles of spe-
cies k per total mass and Dik is a dimensionless constant
matrix of size N�R and has a full rank R. Each column
vector of Dik is linearly independent of the remaining col-
umn vectors. However, Dik is not unique; it can be con-
structed in several ways. In this work, Dik is constructed
using the following procedure. First, a row-echelon form of
the �ij matrix is obtained by performing a series of row op-
erations on Eq. �3a�. The number of nonzero rows in the
row-echelon form of �ij is the rank of �ij and Dik, since �ij

and Dik span the same column space. We use elementary row
operations to identify the N�N lower triangular matrix �L�,
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which, when matrix multiplied with Eq. �3a� yields
L ·dn /dt=VU ·r, where U=L ·� is an upper triangular ma-
trix of dimension N�R. This nonunique matrix describes the
system’s linear constraints, which are obtained by integrating
the N−R homogenous ODEs that are obtained as a result of
reduction to the row-echelon form. Then, the Dik matrix is
constructed such that the first R row vectors of it are set in
the reduced row-echelon form, while the other row vectors
are obtained using L to reflect the system’s constraints. A
detailed example will be given later to illustrate the construc-
tion of Dik for a realistic reactive system.

Equation �15� allows the N species to be represented in
terms of R dependent variables. First, take the time deriva-
tive of Eq. �15� to get

dni

dt
= M��

k=1

R

Dik
dzk

dt
	, i = 1, . . . ,N . �16a�

Now, by substituting Eq. �3a� into Eq. �16a�, we obtain

V

M
�̇i = ��

k=1

R

Dik
dzk

dt
	, i = 1, . . . ,N , �16b�

where

�̇i = �
j=1

J

�ijrj, i = 1, . . . ,N , �16c�

is the molar production rate per unit volume of species i. In
Gibbs notation, Eq. �16b� is written as

V

M
�̇ = D ·

dz

dt
, z � RR, �̇ � RN. �16d�

Since D is nonsquare, we take the matrix product of both
sides of Eq. �16d� with DT to obtain

V

M
DT · �̇ = DT · D ·

dz

dt
, z � RR, �̇ � RN. �16e�

Then, to remove D from the right hand side of Eq. �16e�, we
take the matrix product of both sides by �DT ·D�−1. Conse-
quently, the rate of evolution of the species in the reactive
mixture is governed by

dzk

dt
= ẇk, k = 1, . . . ,R , �17a�

zk�t=0 = zk
�, k = 1, . . . ,R , �17b�

where

ẇk =
1

�
�
j=1

R 
��
i=1

N

DikDij	−1��
i=1

N

Dij�̇i	�, k = 1, . . . ,R ,

�18�

is the molar production rate of species k in the reduced com-
position space and �=M /V is the mixture mass density. So,
the reactive system’s solutions, represented as trajectories,
move within the reduced composition space RR, where
RR�RN.

III. METHODOLOGY

From a geometric point of view, the species specific
moles z correspond to a vector in the Euclidian composition
space RR. This vector is given by the following relation:

z = L�n� � L:�RN → RR� , �19�

where

L�n� =
1

M
�DT · D�−1 · DT · �n − n�� �20�

is a linear operator that accounts for all the system’s linear
constraints. The evolution of z in time is described as an
autonomous dynamical system of the standard form,

dz

dt
= f�z�, z � RR, �21�

where f is a set of R nonlinear coupled algebraic functions.
For our isothermal system, these functions are polynomials
of degree d connected with a given reaction mechanism.

The construction method of the SIM is based on identi-
fying all the equilibria of the dynamical system that de-
scribes the species evolution, Eq. �21�. In general, the set of
equilibria of such functions is complex,

ze � CR � f�ze� = 0 . �22�

Also, as demonstrated by Perko,41 the set of equilibria ze

contains finite equilibria and equilibria located at infinity.
Both classes of equilibria will be of interest. Furthermore,
the equilibria can be positive dimensional continua; i.e.,
high-dimensional equilibria. Such equilibria have dimension
larger than zero; 1D equilibria are curves, two-dimensional
�2D� equilibria are surfaces, three-dimensional �3D� equilib-
ria are volumes, etc.42,43 Here, BERTINI,44 a code based on
homotopy continuation, is used to obtain the system’s equi-
libria to any desired accuracy. Then, the equilibria are con-
nected via trajectories obtained by numerical integration of
the species evolution equations using any computationally
inexpensive scheme; here we use the fourth-order Runge–
Kutta scheme. Finally, we are able to identify the 1D SIM
that describes the asymptotic structure of the invariant at-
tracting trajectories.

In this work, all calculations have been performed to 100
significant digits. However, all the listed results have been
rounded to three significant digits. Integer values indicate
that the reported numbers are exact. The thermodynamic
properties are obtained from the public domain edition of the
CHEMKIN package.45 Subsequently, the property values are
treated as having infinite precision. For the results presented
in Sec. IV, the computational time to construct any 1D SIM
is approximately 15 s on a MacBookPro 2.16 GHz machine,
including the identification of the equilibria. However, the
computational time to construct the 1D SIM presented in
Sec. V is approximately 60 s on the same machine.

A. Equilibria: BERTINI

BERTINI is a software package designed to compute the
solutions of polynomial systems over C using homotopy
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continuation. Polynomial systems that arise from chemical
reactions are often poorly scaled which can lead to numerical
difficulties when computing the solutions. When BERTINI is
used to solve polynomial systems as discussed in this work,
the polynomial systems are first rescaled using SCLGEN.46

SCLGEN is an algorithm that uses both a change of variables
and equation scaling to rescale the given polynomial system
into one which has coefficients of reduced variability
and centered about unity, i.e., a rescaling of the
equations to reduce the magnitude differences between the
coefficients of the equations. For example, if
f1�z1 , . . . ,zR� , . . . , fR�z1 , . . . ,zR� are polynomials, SCLGEN

computes real constants 1 , . . . ,R and �1 , . . . ,�R to define
the rescaled system g1�x1 , . . . ,xR� , . . . ,gR�x1 , . . . ,xR� by

g�x� = � · f�� · z�, �g,f,z,�,� � RR.

Reference 42 provides a detailed description of using
homotopy continuation to describe all solutions to a given
polynomial system.

B. Finite equilibria

To obtain the dynamical system’s finite equilibria, we
find all the ze that satisfy f�ze�=0. One of these finite equi-
libria is the reactive system’s physical equilibrium point.
This critical point is of special interest; it represents the
minimum of G. Moreover, it is the only critical point located
inside the physically accessible domain �S�,40 which is de-
fined as a subspace within the reduced composition space
where all the species are positive semidefinite and finite,

S � RR � n � 0. �23�

The rest of the finite equilibria are located outside S; they are
nonphysical since at least one of the species mole numbers is
negative, ni�0.

Next, the dynamic behavior of the system within the
neighborhood of each finite equilibrium is investigated by
employing standard linearization techniques. For a hyper-
bolic equilibrium,41 the Hartman–Grobman theorem is used
to reveal its dynamical character. For a nonhyperbolic equi-
librium, the Hartman–Grobman theorem is not applicable, so
the normal form theory41,47 is utilized to reveal the dynami-
cal character of the equilibrium. The Hartman–Grobman
theorem and the normal form theory are briefly reviewed in
the Appendix. First, we linearize the system in the neighbor-
hood of each equilibrium. We start by defining the perturba-
tion from the equilibrium as z�=z−ze. The dynamics can be
described locally as

dz�

dt
= Je · z� + O�z�2� . �24a�

Here,

Je = � �f

�z
�

z=ze
�24b�

is the constant Jacobian matrix evaluated at an equilibrium.
The stability of each equilibrium is determined by examining
the eigenvalue spectrum �i of Je and the corresponding
eigenvectors �i. The local time scales over which the dy-

namical system, Eq. �21�, evolves are given by the reciprocal
of the real part of the system’s eigenvalues, 1 / �Re��i��.

In general, the eigenvalues are complex, where the re-
ciprocal of the real parts provides the scales of the amplitude
growth, and the reciprocal of the imaginary parts represents
the period of oscillations. The physical equilibrium point
must be a stable node;48 i.e., all the eigenvalues of Je are real
and negative. Furthermore, the ratio between the largest and
smallest time scales identifies the system’s stiffness. In addi-
tion, the eigenvector associated with the least negative eigen-
value represents the system’s slowest mode or direction in
composition space along which the trajectories approach the
equilibrium. Similarly, the eigenvector associated with the
largest eigenvalue represents the system’s fastest mode.

C. Infinite equilibria

To identify the dynamical system’s infinite equilibria, the
projective space technique is employed.42,46,49 This technique
maps the critical points at infinity into the finite domain
where they can be easily computed. The projective space
mapping, given here in its simplest form for pedagogical
purposes, consists of the following one-to-one transforma-
tion:

Zk =
1

zk
, k � �1, . . . ,R , �25a�

Zi =
zi

zk
, i � k, i = 1, . . . ,R , �25b�

where zk is any arbitrarily selected dependent variable and Z
are the state variables in the projective space. As a result of
employing this transformation, the infinite equilibria are
mapped onto the line Zk=0. In certain cases there is a degen-
eracy in this transformation. We omit further details, but this
is overcome in practice by employing the more robust trans-
formation,

Zk =
1

� j=1

R
ajzj

, k � �1, . . . ,R , �26a�

Zi =
zi

� j=1

R
ajzj

, i � k, i = 1, . . . ,R , �26b�

where we take aj � �0,1� to be a set of random numbers,
such that � j=1

R aj =1.
The projective space technique has the disadvantage of

introducing a singularity in the dynamical system. To over-
come this difficulty, we define a transformed independent
variable � in the projective space which is related to t in the
original space as follows:

dt

d�
= �Zk�d−1, �27�

where we recall that d is the maximum degree of the poly-
nomials in f. By employing this mapping, the original dy-
namical system, Eq. �21�, is recast in the projective space in
the following form:
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dZ

d�
=

d

d��
Z0

Z1

]

Zk−1

Zk

Zk+1

]

ZR

�
= Zk

d ·�
Zk

−1

f1�Z1, . . . ,ZR� − Z1fk�Z1, . . . ,ZR�
]

fk−1�Z1, . . . ,ZR� − Zk−1fk�Z1, . . . ,ZR�
− Zkfk�Z1, . . . ,ZR�

fk+1�Z1, . . . ,ZR� − Zk+1fk�Z1, . . . ,ZR�
]

fR�Z1, . . . ,ZR� − ZRfk�Z1, . . . ,ZR�

�
= F�Z� , �28�

where we denote Z0= t. The finite equilibria satisfying
F�Ze�=0 of the resulting dynamical system, Eq. �28�, repre-
sent the infinite equilibria of the original dynamical system,
Eq. �21�. We note here that Z�RR+1, although the value of
Z0

e is irrelevant.

D. Construction method

Here, the procedure for constructing the closed spatially
homogenous reactive system’s 1D SIM is presented. In this,
the following conjecture has been found to be useful. At this
stage we have no formal proof for it.

Conjecture: Only the system’s isolated nonphysical real
finite and infinite equilibria are relevant to the construction
of a 1D SIM connecting to the physical equilibrium. Further-
more, among these nonphysical equilibria, only those with
one unstable eigenvector direction can be candidate mem-
bers of the 1D SIM.

As a consequence of the first part of the conjecture, the
high-dimensional equilibria and the complex equilibria are
not relevant to this study. Furthermore, as a consequence of
the second part of the conjecture, the real critical points with
the following dynamical character are excluded: sinks,
sources, saddles with more than one positive eigenvalue, and
nonhyperbolic equilibria with more than one positive eigen-
value.

The system’s finite and infinite equilibria that satisfy our
conjecture will be called candidate equilibria. Starting from
each one of these equilibria, a heteroclinic orbit is generated
tangent to its unstable direction. Only heteroclinic orbits that
connect to the physical equilibrium are relevant to the con-
struction of the 1D SIM. In general, the 1D SIM consists of
at most two branches. Among the heteroclinic orbits, two
such orbits represent the branches of the system’s 1D SIM.
These orbits can be identified since they are the only ones
that approach the physical equilibrium point tangent to its
slowest mode, and they are attractive.

First, the candidate points are categorized based on their
location; the first category contains the finite candidate
points, and the second category contains the candidate points
located at infinity. Within each category the candidate points
are ordered based on the magnitude of their unstable modes,
i.e., positive eigenvalue. In each category, the first candidate
point is taken as the one with the least positive eigenvalue,
i.e., slowest time scale.

Next, we start the process of SIM construction by gen-
erating a heteroclinic orbit from the first candidate point in
the first category; the finite candidate point with the least
positive eigenvalue. To generate such an orbit, Eq. �21� is
integrated in the direction of the eigenvector associated with
the positive eigenvalue pointing toward the reactive system’s
physical equilibrium. Then, we check whether the generated
orbit approaches the physical equilibrium point in the direc-
tion of its slowest mode, i.e., the eigenvector associated with
the least negative eigenvalue at the physical equilibrium
point. Subsequently, if the physical equilibrium is not located
at the origin, another orbit is generated starting from the
finite candidate point with the second lowest positive eigen-
value. If both of these orbits approach the physical equilib-
rium point in the direction of its slowest mode, then these
two orbits correspond to the SIMs’ two branches. Otherwise,
we generate a new heteroclinic orbit from the finite candidate
point with the third lowest eigenvalue, and so on. After using
all finite candidate points, we follow the same procedure
using the infinite candidate points. This procedure halts as
soon as we construct two heteroclinic orbits that approach
the physical equilibrium point in the direction of its slowest
mode.

Finally, the attractiveness of the constructed 1D SIM is
examined locally along the complete manifold. Here, in ad-
dition to visual examination, we pose the following criteria
to hold along each branch of the 1D SIM. The eigenvalues �i

of J are computed locally along the heteroclinic orbit. Call
�1 the largest eigenvalue. Then we require that for i�1,

�i � 0 and S �
��1�
��i�

� 1. �29�

The constraints ensure that the composition field contracts
along the 1D SIM. Note that these criteria are more restric-
tive than the requirement for a contraction mapping, i.e.,
�i=1

R �i�0. Furthermore, the criteria preclude the SIM from
emanating from a source.

To summarize, we take the 1D SIM to consist of at most
two heteroclinic orbits that are locally attractive along their
complete trajectories.

IV. MODEL PROBLEMS

In this section, we illustrate our strategy for constructing
a 1D SIM using three problems. The first problem is a simple
but realistic reactive system. The other two systems have
been used in the literature as prototypes for illustrating alter-
nate techniques of constructing SIMs.
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A. Zel’dovich mechanism

A common reaction kinetics model is the Zel’dovich
mechanism of nitric oxide formation.27 This mechanism con-
sists of N=5 species, L=2 elements, and J=2 reversible re-
actions. Kinetic data are adopted from Baulch et al.,50 see
Table I. A special case in which the system is isochoric will
be considered, and the assigned mixture temperature and vol-
ume are T=4000 K and V=103 cm3, respectively. For con-
venience, the assigned initial number of moles of each spe-
cies is n�=10−3 mol.

Here, i= �1,2 ,3 ,4 ,5 correspond to the species
�NO,N,O,O2,N2, and l= �1,2 correspond to the elements
�N,O, respectively. For this system � has dimension 2�5,

� = �1 1 0 0 2

1 0 1 2 0
	 ,

and � has dimension 5�2,

� =�
1 − 1

− 1 − 1

1 1

− 1 0

0 1
� .

For the constraint of element conservation for each reaction,
Eq. �2b�, we have

� · � = �0 0

0 0
	 .

Thus, there are two element constraints in this model.
We start by formulating the set of ODEs that describes

this kinetic model. Following Eq. �3a�, we get

d

dt�
n1

n2

n3

n4

n5

� = V�
1 − 1

− 1 − 1

1 1

− 1 0

0 1
��r1

r2
	 , �30a�

where, from Eq. �4�,

r1 =
A1T�1

V2 exp�− Ē1

RT
	�n2n4 −

n1n3

K1
c 	 ,

r2 =
A2T�2

V2 exp�− Ē2

RT
	�n2n1 −

n5n3

K2
c 	 .

Now, Eq. �30a� defines a real RN composition space. To
reduce the dimension of this composition space, we construct
the matrix D. First, we perform a series of row operations on
Eq. �30a� to find all of the system’s linear constraints; i.e., we
generate the row-echelon form of �,

�
1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

1

2
−

1

2
0 1 0

1

2

1

2
0 0 1

� d

dt�
n1

n2

n3

n4

n5

� = V�
1 − 1

0 − 2

0 0

0 0

0 0
��r1

r2
	 ,

�30b�

or in Gibbs notation,

L ·
dn

dt
= V�U · r� .

We note that the rank of � is R=2 which corresponds to the
number of the nonzero rows of U=L ·�.

In Eq. �30b� the last three equations are homogenous, so
this model contains three linear constraints. Moreover, it im-
plies that the behavior of n as a function of time is described
by the evolution of only two variables: n1 and n2. The re-
maining variables, �n3 ,n4 ,n5, can be expressed in terms of
n1 and n2. These expressions are obtained by integrating the
three homogenous equations in the system to obtain

n2 + n3 = c1, �31a�

1
2n1 − 1

2n2 + n4 = c2, �31b�

1
2n1 + 1

2n2 + n5 = c3, �31c�

where c1, c2, and c3 are constants that are determined from
n�. Further elementary row operations on Eqs. �31a�–�31c�
reveal the following set:

n1 + n3 + 2n4 = c1 + 2c2 = n1
� + n3

� + 2n4
�, �32a�

n1 + n2 + 2n5 = 2c3 = n1
� + n2

� + 2n5
�, �32b�

�
i=1

N

ni = c1 + c2 + c3 = �
i=1

N

ni
�. �32c�

TABLE I. Zel’dovich mechanism of nitric acid formation. The species are
NO, N, O, O2, and N2.

j Reaction
Aj

�cm3 / �mol s K�j�� � j

Ēj

�cal/mol�

1 N+O2�NO+O 5.841�109 1.01 6195.6
2 N+NO�N2+O 21.077�1012 0.00 0.0
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Equations �32a� and �32b� indicate that the total number of
moles of elemental oxygen and nitrogen are conserved.
Equation �32c� states that the total number of molecules is
constant. This last constraint is a consequence of including
only bimolecular reactions in this kinetic model.

Now, by including the dependent variables, Eqs.
�31a�–�31c� can be rearranged to obtain

�
n1

n2

n3

n4

n5

� =�
0

0

c1

c2

c3

� +�
1 0

0 1

0 − 1

− 1
2

1
2

− 1
2 − 1

2

��n1

n2
	 , �33a�

and by introducing the reduced composition space variables
as zk= �nk−nk

�� /M , k=1,2, we get

�
n1

n2

n3

n4

n5

� =�
n1

�

n2
�

c1 − n2
�

c2 − 1
2n1

� + 1
2n2

�

c3 − 1
2n1

� − 1
2n2

�

� + M�
1 0

0 1

0 − 1

− 1
2

1
2

− 1
2 − 1

2

��z1

z2
	 .

�33b�

Using Eqs. �32a�–�32c�, this system can be rewritten as

n =�
n1

n2

n3

n4

n5

� =�
n1

�

n2
�

n3
�

n4
�

n5
�

� + M�
1 0

0 1

0 − 1

− 1
2

1
2

− 1
2 − 1

2

��z1

z2
	

= n� + MD · z . �33c�

As we can see, this model problem is now described in
the R=2 dimensional reactive composition space. Using Eqs.
�17a� and �18�, the nonlinear ODE that describes the reactive
system evolution is

dz

dt
= f�z� = ẇ , �34a�

where

ẇ =
− 1

�
�r2 − r1

r1 + r2
	 . �34b�

The mixture total mass is calculated using Eq. �2a�, M
=1.20�10−1 g. So, the mixture density is �=1.20
�10−4 g /cm3. Explicitly, the evolution of the system is

dz1

dt
= 2.51 � 102 + 1.16 � 107 z2 + 6.99 � 108

z2
2 − 9.98 � 104 z1 − 3.22 � 109 z2z1, �35a�

dz2

dt
= 2.51 � 102 − 1.17 � 107 z2 − 6.98 � 108

z2
2 + 8.47 � 104 z1 − 1.84 � 109 z2z1, �35b�

where we note that the maximum degree of Eq. �35� is d
=2.

1. Finite equilibria

The procedure described in Sec. III B is used to find the
finite equilibria of the autonomous dynamical system, Eq.
�34a�, which describes the evolution of z. By equilibrating
the left hand side of Eq. �35� and using BERTINI to find all the
ze that satisfy f�ze�=0, we find the following finite equilibria:

R1 � �ze� = �− 1.78 � 10−5,− 1.67 � 10−2� mol/g,

R2 � �ze� = �− 4.20 � 10−3,− 2.66 � 10−5� mol/g,

R3 � �ze� = �3.05 � 10−3,2.94 � 10−5� mol/g.

Here, all the finite equilibria are real isolated critical points.
The rest of the species are obtained from Eq. �33c�,

R1 � �ne� = �− 2.14 � 10−6,− 2.00 � 10−3,

4.00 � 10−3,1.70 � 10−8,3.00 � 10−3� mol,

R2 � �ne� = �− 5.04 � 10−4,− 3.20 � 10−6,

2.00 � 10−3,1.25 � 10−3,2.25 � 10−3� mol,

R3 � �ne� = �3.66 � 10−4,3.53 � 10−6,2.00 � 10−3,

8.19 � 10−4,1.82 � 10−3� mol.

It is clear that R1 and R2 are nonphysical equilibria, while R3

is a physical root that satisfies Eq. �23�; R3 is the reactive
system’s unique physical equilibrium point.

To investigate the dynamical character of each critical
point, first Eq. �35� is linearized to find Je. Following Eq.
�24b� we obtain

Je = �− 9.98 � 104 − 3.22 � 109z2
e 1.16 � 107 + 1.40 � 109z2

e − 3.22 � 109z1
e

8.47 � 104 − 1.84 � 109z2
e − 1.17 � 107 − 1.40 � 109z2

e − 1.84 � 109z1
e 	 . �36�
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By substituting R1, R2, and R3 into Je, linear analysis in the
neighborhood of each critical point reveals that R1 is a
source, R2 is a saddle, and R3 is a sink. The system’s eigen-
values and the corresponding eigenvectors associated with
each finite critical point are

R1:��,�� = �4.18 � 107,2.35 � 107�,

��7.00 � 10−1,7.14 � 10−1�T,

�3.61 � 10−1,9.33 � 10−1�T� ,

R2:��,�� = �7.11 � 105,− 4.64 � 106�,

��1.00,2.89 � 10−2�T,

�− 9.83 � 10−1,1.81 � 10−1�T� ,

R3:��,�� = �− 1.91 � 105,− 1.73 � 107�,

��1.00,1.79 � 10−3�T,

�− 1.07 � 10−1,9.94 � 10−1�T� .

The eigenvalues’ and eigenvectors’ units are 1 /s and mol/g,
respectively.

Since the finite root R2 has only one unstable mode, i.e.,
positive eigenvalue, it is a candidate point for the 1D SIM
construction. Moreover, the system’s physical fast and slow
time scales are the ones associated with its physical equilib-
rium, R3. These are, respectively, 5.78�10−8 s and 5.24
�10−6 s, which give rise to a stiffness of O�102�. So, even
the two-step Zel’dovich mechanism retains stiffness at T
=4000 K. The multiscale nature of this system is clearly
shown in Fig. 1, where the full dynamics of the evolution of
the species are presented. Here, the first reaction commences
at t�10−8 s, and the system enters its last relaxation toward
the physical equilibrium state after t�10−5 s.

2. Infinite equilibria

In addition to its three finite critical points, this system
has equilibria at infinity. They can be identified using the
projective space technique described in Sec. III C. Arbi-
trarily, we select k=1, so the Zel’dovich reactive system in
the projective space is realized by the following transforma-
tion: Z0= t ,Z1=1 /z1 ,Z2=z2 /z1. Subsequently, we have

dZ0

d�
= Z1, �37a�

dZ1

d�
= 9.98 � 104Z1

2 − 2.51 � 102Z1
3 + 3.22 � 109Z1Z2

− 1.16 � 107Z1
2Z2 − 6.99 � 108Z1Z2

2, �37b�

dZ2

d�
= 8.47 � 104Z1 + 2.51 � 102Z1

2�1 − Z2�

− 1.84 � 109Z2 − 1.16 � 107Z1Z2 + 2.52 � 109Z2
2

− 1.16 � 107Z1Z2
2 − 6.99 � 108Z2

3. �37c�

By using BERTINI to find all the Ze that satisfy F�Ze�
=0, we find three equilibria,

I1 � �Ze� = �0,0� ,

I2 � �Ze� = �0,1.01� ,

I3 � �Ze� = �0,2.60� ,

and they represent the infinite equilibria of the original sys-
tem, Eq. �35�. Here, all the infinite equilibria are real isolated
critical points.

To investigate the dynamical character of each critical
point, Eqs. �37b� and �37c� are linearized to find Je, and the
eigenvalues and corresponding eigenvectors are calculated,

I1:��,�� = �0,− 1.84 � 109�,

��1.00,4.61 � 10−5�T,�0,1�T� ,

I2:��,�� = �2.54 � 109,1.12 � 109�,

��1.00,− 1.65 � 10−2�T,�0,1�T� ,

I3:��,�� = �3.65 � 109,− 2.90 � 109�,

��1.00,− 1.66 � 10−2�T,�0,1�T� ,

where the eigenvalues’ units are g /mol/s2, the units of the
first component of each eigenvector are g/mol, and the sec-
ond component is dimensionless.

It is clear that I2 is a source, I3 is a saddle with one
positive eigenvalue, and I1 is a nonhyperbolic critical point.
Consequently, the Hartman–Grobman theorem is not appli-
cable at I1. The normal form theory47 is utilized to investi-
gate the dynamical character of I1. It is found that I1 is a
saddle node,49 which consists of two hyperbolic sectors, one
parabolic sector, and three separatrices, in the nomenclature
of Ref. 41. Further details are presented in the Appendix.
Only one of these separatrices is unstable. Thus, I1 and I3 are
candidate points for constructing the system’s 1D SIM.

3. The construction of the SIM

Now, following our 1D SIM construction procedure, the
candidate points are ordered as follows: First R2, second I1,
and third I3. So, starting from the unstable direction of the
candidate point R2, Eqs. �35� are numerically integrated to
generate a heteroclinic orbit. This orbit approaches R3, the
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FIG. 1. The time evolution of species for the Zel’dovich model problem.
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reactive system’s physical equilibrium point, along its slow-
est mode. So, the generated orbit represents the first branch
of the 1D SIM. Then, starting from the unstable direction of
the candidate point I1, Eqs. �37� are numerically integrated to
generate another heteroclinic orbit. Also, this orbit ap-
proaches R3 along its slowest mode. So, it represents the
second and last branch of the reactive system’s 1D SIM, see
Fig. 2. Subsequently, there is no need to check the third
candidate point I3.

In Fig. 2, part of the system’s composition space and the
SIM are shown. Upon visual examination of the attractive-
ness of the constructed SIM, it is clearly seen that all trajec-
tories inside S, and some outside of it, are attracted to the
constructed 1D SIM. Moreover, along the SIM’s two
branches, including the three equilibria R3, R2, and I1, the
criteria �29� are satisfied, and S decreases monotonically
along the 1D SIM; its maximum value is 0.15 at R2.

4. Relation between thermodynamics and the SIM

To examine the relationship between system’s slow dy-
namics and thermodynamics, 
 and G are calculated within
S. In a 2D composition space, the scalar fields, G and 
, can
be represented by contours. Near equilibrium these contours
approach ellipses. The major axes of these ellipses are
aligned with the eigenvector associated with the largest ei-
genvalue of that function’s local Hessian matrix �H�. Simi-
larly, the minor axes are aligned with the eigenvector asso-
ciated with the smallest eigenvalue of H. Figure 3 shows
several contours of the system’s Gibbs free energy and irre-
versibility production rate along with the constructed 1D
SIM for the Zel’dovich mechanism. Figure 3�a� is far from
R3, while Fig. 3�b� is an expansion in the vicinity of R3. In
Fig. 3�b� stretching has been employed to expose the differ-
ence between the contours’ major/minor axes and the SIM.
Even within the close neighborhood of R3 the contours’ axes
are not aligned with the 1D SIM. So, here equilibrium ther-
modynamic quantities cannot explain the 1D SIM, which
describes the system’s preferred path toward equilibrium.
Moreover, the gradients of these thermodynamic scalar func-
tions do not drive the system’s dynamics.

In general, in the vicinity of an equilibrium point,

G = G�ze + � �G

�z
�

z=ze
· z� +

1

2
z�T · HG

e · z� + ¯ , �38a�


 = 
�ze + � �


�z
�

z=ze
· z� +

1

2
z�T · H


e · z� + ¯ , �38b�

where He is defined as

Hij
e = � �2

�zi � zj
�

z=ze
. �38c�

Note that HG
e and H


e are symmetric matrices. However, the
gradients of G and 
 vanish at the physical equilibrium;
G and 
 have minima at ze. Moreover, at the equilibrium

=0. So, the deviations from equilibrium values are de-
scribed by

G − G�z=ze = 1
2z�T · HG

e · z� + ¯ , �39a�


 = 1
2z�T · H


e · z� + ¯ . �39b�

Explicitly, for the Zel’dovich model,

H

e = � 1.49 � 1015 − 2.09 � 1016

− 2.09 � 1016 1.18 � 1019 	 , �40a�

HG
e = � 1.52 � 1013 − 8.03 � 1011

− 8.03 � 1011 1.36 � 1015 	 , �40b�
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FIG. 2. A region of the finite composition space for the Zel’dovich mecha-
nism. The solid dots represent finite critical points, the open circle represents
an infinite critical point, the arrows indicate the flow directions, and the
dashed simplex represents the physically accessible domain of the system, S.
The SIM is illustrated as a thick line, the thin lines represent trajectories, and
R3 represents the system’s physical equilibrium state.
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FIG. 3. �a� The SIM for the Zel’dovich mechanism near the physical equi-
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irreversibility production rate and Gibbs free energy, respectively. The solid
dots represent finite critical points, and the open circle represents an infinite
critical point.
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Je = �− 1.95 � 105 1.84 � 106

3.06 � 104 − 1.73 � 107 	 . �40c�

So, the eigenvalues and the eigenvectors of these matrices
are given by

H

e :��,�� = �1.18 � 1019,1.46 � 1015�,

��1.78 � 10−3,− 1.00�T,�− 1.00,− 1.78 � 10−3�T� ,

HG
e :��,�� = �1.36 � 1015,1.52 � 1013�,

��5.97 � 10−4,− 1.00�T,�− 1.00,− 5.97 � 10−4�T� ,

Je:��,�� = �− 1.73 � 107,− 1.91 � 105�,

��− 1.07 � 10−1,9.94 � 10−1�T,

�1.00,1.79 � 10−3�T� ,

where for each matrix the second eigenvector yields the di-
rection of the slow mode. It is clear that these eigenvectors
are not aligned with each other. For Je, the arc tangent of the
ratio between the second component and the first component
of �2 defines the angle � at which the 1D SIM approaches R3.
Similarly, the same ratio between the second component and
the first component of �2 of HG

e and H

e defines the angles at

which each scalar field approaches R3. These are

�SIM = tan−1�1.79 � 10−3

1.00
	 = 1.79 � 10−3 rad,

�G = tan−1�− 5.97 � 10−4

− 1.00
	 = 5.97 � 10−4 rad,

�
 = tan−1�− 1.78 � 10−3

− 1.00
	 = 1.78 � 10−3 rad.

Thus, even at R3, the reactive system’s SIM cannot be iden-
tified using G or 
. Indeed, at R3 the error in 
 is small; the
difference between �SIM and �
 is O�10−5 rad�. But, this
error grows as we move away from R3. Moreover, because
they are not identical, other choices of parameters would lead
to larger differences.

To reinforce our point, we address this issue in more
detail. Indeed, all the system’s trajectories within S approach
the equilibrium point in infinite time. This point is the mini-
mum of G and 
. Near equilibrium, the system’s dynamics
relax onto the eigenvector associated with the slowest time
scale. At the equilibrium point, the eigenvector associated
with the smallest eigenvalue of Je defines the direction of the
system’s slowest mode. The major/minor axes of G and 

contours are aligned with the eigenvectors of HG

e and H

e ,

respectively. However, it is easy to show that at equilibrium
there is a relationship between these two Hessians.

To find this relation, we start by substituting Eq. �16a�
into Eq. �13� to obtain


 = −
M

T
�
i=1

N

�
k=1

R

	̄iDik
dzk

dt
. �41�

Also, by substituting Eq. �15� into Eq. �9a�, we have

G = �
i=1

N

	̄i�ni
� + M�

k=1

R

Dikzk	 . �42�

The gradient of G with respect to the reduced composition
variables z is given by

�G

�zk
= M�

i=1

N

	̄iDik, k = 1, . . . ,R . �43�

Now, by substituting Eqs. �17a� and �43� into Eq. �41�, the
irreversibility production rate is given by


 = −
1

T
�
k=1

R
�G

�zk
ẇk. �44�

Thus, the local Hessian of 
 is given by

�2


�zi � zj
= −

1

T
�
k=1

R � �G

�zk

�2ẇk

�zi � zj
+

�2G

�zi � zk

�ẇk

�zj

+
�2G

�zj � zk

�ẇk

�zi
+

�3G

�zi � zj � zk
ẇk	 . �45�

At equilibrium, G is minimized, and thus

ẇk�z=ze = 0, k = 1, . . . ,R , �46a�

� �G

�zk
�

z=ze
= 0, k = 1, . . . ,R . �46b�

Subsequently,

� �2


�zi � zj
�

z=ze
= −

1

T
�
k=1

R � �2G

�zi � zk

�ẇk

�zj
+

�2G

�zj � zk

�ẇk

�zi
	

z=ze
,

�47a�

or in Gibbs notation, and using Eq. �24b�,

H

e = −

1

T
��HG

e · Je� + �HG
e · Je�T� . �47b�

In the highly unusual case in which HG
e is diagonal with

identical eigenvalues, the SIM can be identified by consider-
ation of the eigenvectors of H


e . In that case, the eigenvectors
of Je are aligned with those of H


e . However, essentially all
practical reactive systems have HG

e which is not diagonal and
does not have identical eigenvalues. Thus, HG

e operates on Je

in a nonuniform way, such that the eigenvalues and the
eigenvectors of H


e are not the same as those of Je. Thus, the
system’s dynamics cannot be deduced from 
 or G. In con-
clusion, we can state that any approach that employs equi-
librium thermodynamic potentials alone to deduce a reactive
system’s slow dynamics has inherent flaws.

B. Thermodynamics-based SIM

The second example in this work is identical to the sec-
ond example presented by Lebiedz.19 A simple closed reac-
tive system contains three species given by the following
kinetics model: A+A�B�C. Using the same argument, de-
scribed in the original work,19 that the total mass is con-
served, the dimension of the composition space of this model
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problem is reduced from N=3 to N−1=2. Also, for conve-
nience, the dimensionless variables cA and cB in the original
work19 are denoted here by z1 and z2, respectively. The evo-
lution of the reactive system is described by19

dz1

dt
= 10−5z2 − z1

2, �48a�

dz2

dt
= z1

2 + �1 − 1002z2 − z1� � 10−5, �48b�

which is in the form of Eq. �21�, and it is clear that d=2.
To construct the actual SIM for this system, we use the

procedure of Sec. III. For this system, two finite equilibria
are found,

R1 � �ze� = �9.99 � 10−5,9.99 � 10−4� ,

R2 � �ze� = �− 1.00 � 10−4,9.99 � 10−4� .

The two finite equilibria are isolated points with real coordi-
nates. Also, linear analysis in the neighborhood of each equi-
librium reveals that R1 is a sink and R2 is a saddle. The
eigenvalues and the associated eigenvectors at the equilibria
are

R1:��,�� = �− 2.00 � 10−4,− 1.00 � 10−2�,

��1.00,1.93 � 10−2�T,�− 1.02 � 10−3,1.00�T� ,

R2:��,�� = �2.00 � 10−4,− 1.00 � 10−2�,

��1.00,− 2.05 � 10−2�T,�− 9.79 � 10−4,1.00�T� .

It is clear that R1 is the system’s unique equilibrium point
and R2 is a candidate saddle; its eigenvalue spectrum con-
tains only one positive eigenvalue.

To investigate the existence of an equilibrium at infinity,
the projective space technique is employed. By choosing k
=2, the projective space is realized by the following trans-
formation: Z0= t ,Z1=z1 /z2 ,Z2=1 /z2. The reactive system’s
behavior at infinity is described by the following set of
ODEs:

dZ0

d�
= Z2, �49a�

dZ1

d�
= 10−5Z2 − Z1

2 + 10−5Z1Z2�1002 + Z1 − Z2� − Z1
3,

�49b�

dZ2

d�
= − Z1

2Z2 + 10−5Z2
2�1002 + Z1 − Z2� . �49c�

For this system there are two equilibria,

I1 � �Ze� = �0,0� ,

I2 � �Ze� = �− 1,0� .

Stability analysis in the neighborhood of these equilibria re-
veals that I2 is a stable proper node,41 with �1=�2=−1, while
I1 is a nonhyperbolic critical point with �1=�2=0. Using the
normal form theory47 we find that I1 is a nonhyperbolic node

which consists of two hyperbolic sectors and two parabolic
sectors, in the nomenclature of Ref. 41.

Since R2 is the only critical point with one unstable di-
rection, it is the only candidate point for this system. Conse-
quently, the system’s SIM has only one branch. In Fig. 4�a�,
the system’s 1D SIM is presented and several trajectories
have been generated away from it to examine the attractive-
ness of the SIM. Also, along the SIM’s branches, including
R1 and R2, criteria �29� hold, and the maximum value of S
=1.99�10−2 occurs at R2.

Figure 4�a� shows what might be considered as a second
branch for the system’s 1D SIM, although our criteria indi-
cate that this system’s 1D SIM has only one branch. A wider
range of the system’s composition space is shown in Fig.
4�b�. It is apparent that there is an attractive small region that
extends horizontally to the right of R1. However, as will be
shown in Sec. IV B 1, this apparent “attractive manifold,”
which does not satisfy our global criteria �29�, is not unique.

1. Global composition space

To obtain a better understanding of the dynamics of this
system, sketches of the global phase portrait are illustrated in
Fig. 5. Because of scaling effects, it is difficult to graphically
illustrate the global dynamical behavior. First, in Fig. 5�a�,
the view of the projective space in the transformed coordi-
nates is shown. Since there are two sinks for this system, R1

and I2, there are two basins of attraction.51 Each basin con-
tains only one sink, which all the trajectories inside of it
approach. The shaded area represents part of the basin of

SIM R1R2

z 2

10
8
6
4

0
2

×10-2

-1 -0.5 0 0.5 1
z1

×10-4

z 2

10
8
6
4

0
2

×10-2

0 1
z1
2 3 4

×10-3R1R2

(a)

(b)

FIG. 4. Part of the finite composition space for the Lebiedz system �Ref.
19�. The thick line is the system’s 1D SIM, the thin lines represent trajec-
tories, the dashed lines represent the fast invariant manifolds, and the arrows
indicate the flow directions. R2 is a nonphysical finite critical point and R1

represents the system’s physical equilibrium point. �a� is a blow-up near the
system’s SIM and �b� is a wider range of the system’s composition space.
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attraction for R1. Also, illustrated in dashed lines, the fast
invariant manifolds of R2 and R1 define the boundary be-
tween the two basins and the two parts of the basin of attrac-
tion for R1, respectively.

Next, a projection of the system’s Poincaré sphere41,52

onto a 2D plane is presented in Fig. 5�b�. The Poincaré
sphere is a central projection technique which maps the com-
position space onto a sphere and is defined as

ui =
zi

�1 + � j=1

R
zj

2
, i = 1, . . . R , �50a�

uR+1 =
1

�1 + � j=1

R
zj

2
. �50b�

This technique has been used before in the literature to
analyze the global dynamics of reactive systems.17,22 The
major disadvantage of this technique is that it is not a one-
to-one transformation, although it is useful for analyzing
low-dimensional systems. In Fig. 5�b�, the circle’s boundary
represents infinity in the untransformed space and the shaded

area is the basin of attraction for R1. Also, Ī1 and Ī2 are
antipodal points to the infinite critical points I1 and I2.41

These antipodal points, or images, appear as a consequence
of not using a one-to-one mapping, and their dynamical be-
havior is equivalent to I1 and I2 with reversed flow direction;

i.e., I2 is a sink and Ī2 is source.
Figure 5 clearly shows that the constructed 1D SIM

gives an accurate description of the asymptotic behavior of
the system’s trajectories, although it consists of only one
branch. Moreover, it shows that the horizontal attractive sub-
manifold near R1, which might appear to be a second branch
of the system’s 1D SIM, is not unique. This apparent attrac-
tive manifold consists of heteroclinic orbits that initiate from

Ī2. However, none of these orbits are attractive along their

complete trajectories; near Ī2 all orbits have S�1.

2. SIM and MEPT

This system, described by Eq. �48�, has been employed
by Lebiedz19 to present the MEPT method. The MEPT
method is based on minimizing a classical thermodynamic
quantity, which is in this case the irreversibility production
rate 
. To compare the system’s actual 1D SIM to its MEPT,
a series of calculations was performed to reproduce the
MEPT. By following the same procedure described in the
original work,19 we were able to reconstruct the MEPT for
this system. This is given by the dashed line in Fig. 6 and is
identical to the one presented in Ref. 19.

Figure 6�a� is identical to Fig. 4 of Ref. 19; Fig. 6�b�
shows a wider range of the system’s finite composition
space, and Fig. 6�c� is a closer look at the system’s dynami-
cal behavior near the physical equilibrium. Figure 6 clearly
shows that the MEPT is not an attractive manifold, although
near R1 it seems attractive. However, any trajectory ap-
proaching R1 from the right side is as attractive as the MEPT
near R1. Moreover, the MEPT is a subset of a heteroclinic

orbit that connects Ī2 with R1, and as noted S�1 near Ī2.
Subsequently, the MEPT is not attractive along its complete
trajectory, and thus does not correspond to the SIM of the
system.

C. Simple hydrogen-oxygen reactive system

This example is adopted from Sec. II of Ren et al.,21

where it serves as a model problem for illustrating how to
construct the ICE-PIC manifold. Here, it is used to demon-
strate the simplicity of extending our proposed technique to
higher-dimensional reactive systems and to comment on the
ICE-PIC method.

The reaction mechanism contains N=6 species, L=3 el-
ements, and J=6 reversible reactions, see Table II. A special
case in which the system is isobaric, identical to Ren et al.,21

will be considered. The assigned mixture temperature and
pressure are T=3000 K and p=1 atm, respectively. The
initial conditions are �n1

�=3.03�10−4 ,n2
�=1.01�10−4 ,

n3
�=3.03�10−4 ,n4

�=2.32�10−5 ,n5
�=1.11�10−4 ,n6

�=3.32
�10−3� mol. Here, i= �1,2 ,3 ,4 ,5 ,6 corresponds to the
species �H2,O,H2O,H,OH,N2, respectively. This gives
rise to M=1.01�10−1 g.

SIM
R2 R1

Z2

Z1I2 I1

R1R2

SIM

I1

I2

I2

I1

u2

u1

(a)

(b)

FIG. 5. Sketches of �a� the projective space portrait and �b� the global phase
portrait for the Lebiedz system �Ref. 19�. The solid dots represent finite
critical points, the shaded area represents the basin of attraction of the sys-
tem’s physical equilibrium state R1, the thick line represents the SIM, the
dashed lines represent the fast invariant manifolds, and the thin lines are
trajectories. The open circles denote critical points at infinity and their im-

ages �Īi�.
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The reactive system in this model problem is described
in the R=N−L=3 dimensional reactive composition space.
The system’s only constraints are the conservation of ele-
ments; thus, the ODEs that describe the system evolution are
of the form

dz

dt
= f�z�, z � R3. �51�

The dynamics are fully described by �H2,O,H2O, and the
rest of the species, �H,OH,N2, are given by the system’s
constraints, Eq. �15�,

2n1 + 2n3 + 2n4 + n5 = 1.25 � 10−3 mol, �52a�

n2 + n3 + n5 = 4.15 � 10−4 mol, �52b�

2n6 = 6.64 � 10−3 mol, �52c�

which are identical to those given by Ren et al.21

The time evolution of the species is shown in Fig. 7. The
multiscale nature of this system is clearly seen. Also, it can
be noted that the times at which the first reaction event com-
mences and that at which the system relaxes onto its equilib-
rium are approximately t=10−9 s and t�10−3 s, respec-
tively.

1. The construction of the SIM

We use the method described in Sec. III to construct the
SIM for this system. First, all the system’s finite equilibria
are identified. There are 15 isolated critical points; eight of
them are complex and seven are real. The real critical points
are

R1 � �ze� = �− 1.67 � 10−1,3.04 � 10−3,

3.53 � 10−3� mol/g,

R2 � �ze� = �6.44 � 10−2,1.21 � 10−2,

− 7.12 � 10−3� mol/g,

R3 � �ze� = �− 6.47 � 10−3,− 2.01 � 10−2,

− 2.19 � 10−3� mol/g,
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FIG. 6. The dashed line represents the calculated MEPT and the thin lines
represent trajectories in the composition space of the Lebiedz system �Ref.
19�. �a� is identical to Fig. 4 in Ref. 19, while �b� is a wider range of the
system’s finite composition space, and �c� is a blowup near the system’s
physical equilibrium R1. Different sets of trajectories are illustrated in each
figure.

TABLE II. Simple hydrogen-oxygen kinetics mechanism. The species are H2, H, O, OH, H2O, and N2.

j Reactiona

Aj

��mol /cm3��1−�i=1
N

�ij� � /s/K�j� � j

Ēj

�cal/mol�

1 O+H2�H+OH 5.08�104 2.7 6 290.0
2 H2+OH�H2O+H 2.16�108 1.5 3 430.0
3 O+H2O�2OH 2.97�106 2.0 13 400.0
4 H2+M�2H+M b 4.58�1019 �1.4 104 380.0
5 O+H+M�OH+M b 4.71�1018 �1.0 0.0
6 H+OH+M�H2O+M b 3.80�1022 �2.0 0.0

aUnless otherwise specified, the third body collision efficiency coefficients are unity, =1.
bThe nonunity third body collision efficiency coefficients are H2

=2.5 and H2O=12.
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FIG. 7. The time evolution of species for the simple hydrogen-oxygen re-
active system; identical to that of Ren et al. �Ref. 21�.
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R4 � �ze� = �1.98 � 10−3,5.04 � 10−3,

9.42 � 10−3� mol/g,

R5 � �ze� = �− 1.21 � 10−3,− 4.45 � 10−3,

5.03 � 10−3� mol/g,

R6 � �ze� = �2.72 � 10−3,3.34 � 10−4,

4.72 � 10−3� mol/g,

R7 � �ze� = �2.03 � 10−3,3.10 � 10−4,

3.07 � 10−3� mol/g.

It is clear that R1, R2, R3, and R5 are nonphysical equilibria.
Moreover, R4 and R6 are also nonphysical critical points; this
can be shown by computing the values of other species using
the system’s constraints, Eq. �52�. Thus, R7 is the system’s
unique physical equilibrium point, consistent with the results
in Fig. 7.

Figure 8 shows part of the system’s finite composition
space, all the finite equilibria, and the system’s S within the
dashed simplex. The dynamical analysis within the neighbor-
hood of each critical point reveals that R3 and R7 are sinks,
and R1, R2, R4, R5, and R6 are saddles. The eigenvalue spec-
trum associated with each finite critical point is

R1:��� = �2.92 � 103,− 6.67 � 106 � i1.00 � 108� s−1,

R2:��� = �1.84 � 1014,− 1.27 � 1012,− 1.70 � 1014� s−1,

R3:��� = �− 1.03 � 105,− 2.97 � 107 � i2.64 � 107� s−1,

R4:��� = �1.62 � 107,8.94 � 106,− 4.65 � 104� s−1,

R5:��� = �3.22 � 104,− 2.13 � 106 � i6.71 � 106� s−1,

R6:��� = �1.57 � 104,− 6.28 � 106 � i4.37 � 106� s−1,

R7:��� = �− 5.59 � 103,− 9.08 � 106,− 1.77 � 107� s−1.

The fastest and slowest time scales associated with the physi-
cal equilibrium R7 are 5.65�10−8 and 1.79�10−4 s, respec-

tively. This will give rise to a stiffness O�103�, which indi-
cates that the system’s trajectories, inside the physical
domain, will relax onto the SIM at a steep angle; the fast
modes will be exhausted rapidly.

To explore the existence of equilibria at infinity, the pro-
jective space technique is employed. We select k=2, al-
though other choices would work as well. So, the reactive
system in the projective space is realized by the following
transformation: Z0= t, Z1=z1 /z2, Z2=1 /z2, and Z3=z3 /z2. For
this system there are two equilibria located at infinity, but
neither of them are isolated. One is a 1D equilibrium, and the
other is a 2D equilibrium. Consequently, R1, R2, R5, and R6

are the only candidate points, since the eigenvalue spectra of
the corresponding Jacobians each contain only one unstable
mode.

To construct the SIM, the dynamical system, Eq. �51�, is
numerically integrated, starting from the candidate points, in
the direction of the unstable mode pointing toward R7. First,
we generate a heteroclinic orbit starting from R1, since it has
the slowest unstable mode among the candidate points. The
generated orbit connects with R7 along its slowest mode.
Thus, it represents the first branch of the system’s 1D SIM.
Then, we generate another heteroclinic orbit starting from
R6. This orbit also approaches R7 along its slowest mode to
form the second branch of the 1D SIM. Subsequently, there
is no need to generate trajectories starting from the other
candidate points R2 and R5.

The system’s 1D SIM is presented in Fig. 9. Although
the SIM has been constructed and it can be illustrated, the
right branch of the SIM is not presented entirely due to scal-
ing effects. Some trajectories in Fig. 9 have been generated
from inside S, while others have been initiated from its
boundary. The attractiveness of the SIM is revealed by visu-
ally examining the relaxation of several trajectories rapidly
onto it. This observation is consistent with our previous pre-
diction that has been obtained based on the stiffness of the
system. In addition, it has been verified that along the SIM’s
two branches the criteria �29� hold, and the maximum value
of S along the 1D SIM is approximately 2.50�10−3 at R6.
Thus, the SIM is highly attractive; this is consistent with
observation and our previous prediction.
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2. Comparison to ICE manifold

In this section, we compare the constructed SIM with the
previously published21 ICE manifold. Calculations are first
performed to reproduce the ICE manifold for the considered
reactive system.

Generation of the ICE manifold is based on minimizing
a classical thermodynamics potential. First, the constrained
equilibrium manifold �CEM� is developed by varying one
dependent variable to minimize the system’s Gibbs potential
for each combination of the rest of the dependent variables.
The intersection between the CEM and S defines a closed
curve. Then, starting from several points located on the
closed curve, trajectories are generated. The collection of all

these trajectories represents the ICE manifold. Figure 10
shows the 1D SIM and the 2D ICE manifold. The computed
ICE manifold is identical to that illustrated in Fig. 4 of Ren
et al.21

From Fig. 10, it is clear that there are trajectories within
S which are not attracted to the 2D ICE manifold. However,
all the system’s trajectories are attracted to the 1D SIM. Al-
though it is difficult to visualize in Fig. 10, the 2D ICE
manifold does not contain the system’s SIM: The 1D SIM is
not a subset of the 2D ICE manifold. The error of the ICE
manifold grows as we move away from R7. Consequently,
the 2D ICE manifold cannot fully identify the system’s SIM.

V. DETAILED HYDROGEN-AIR MECHANISM

In this section, the 1D SIM for a detailed hydrogen-air
kinetic system is constructed. The reactive system is based
on the detailed kinetic mechanism extracted from Miller et
al.,53 and it has been widely used in the literature.54–56 This
mechanism consists of J=19 reversible reactions involving
N=9 species which are composed of L=3 elements, see
Table III. The system is an isochoric stoichiometric
hydrogen-air mixture which is initially at p�=107 dyn /cm2

and T=1500 K.
Utilizing the conservation of the three elements �H,O,N,

the H2-air reactive system can be described by the following
autonomous dynamical system:

dz

dt
= f�z�, z � R6. �53�

Here, i= �1,2 ,3 ,4 ,5 ,6 correspond to the species
�H2,O2,H,O,OH,H2O, respectively. The rest of the spe-
cies, �HO2,H2O2,N2, are recast using Eq. �15�.
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FIG. 10. A comparison between the actual 1D SIM, illustrated as thick line,
and the 2D ICE manifold for the simple hydrogen-oxygen reactive system.
The solid dots represent finite critical points, R7 represents the system’s
physical equilibrium state, and the dashed simplex represents S. Thin lines
represent trajectories inside S. The ICE manifold is identical to the one
presented in Ref. 21.

TABLE III. Reaction mechanism rate coefficients for hydrogen-air mixture.

j Reactiona

Aj

��mol /cm3��1−�i=1
N

�ij� � /s/K�j� � j

Ēj

�cal/mol�

1 H2+O2�2OH 1.70�1013 0.000 47 780
2 OH+H2�H2O+H 1.17�109 1.300 3626
3 H+O2�OH+O 5.13�1016 �0.816 16 507
4 O+H2�OH+H 1.80�1010 1.000 8826
5 H+O2+M�HO2+M b 2.10�1018 �1.000 0
6 H+2O2�HO2+O2 6.70�1019 �1.420 0
7 H+O2+N2�HO2+N2 6.70�1019 �1.420 0
8 OH+HO2�H2O+O2 5.00�1013 0.000 1000
9 H+HO2�2OH 2.50�1014 0.000 1900

10 O+HO2�O2+OH 4.80�1013 0.000 1000
11 2OH�O+H2O 6.00�108 1.300 0
12 H2+M�2H+M c 2.23�1012 0.500 92 600
13 O2+M�2O+M 1.85�1011 0.500 95 560
14 H+OH+M�H2O+M d 7.50�1023 �2.600 0
15 H+HO2�H2+O2 2.50�1013 0.000 700
16 2HO2�H2O2+O2 2.00�1012 0.000 0
17 H2O2+M�2OH+M 1.30�1017 0.000 45 500
18 H2O2+H�HO2+H2 1.60�1012 0.000 3800
19 H2O2+OH�H2O+HO2 1.00�1013 0.000 1800

aUnless otherwise specified, the third body collision efficiency coefficients are unity, =1.
bThe nonunity third body collision efficiency coefficients are H2

=3.3 and H2O=21.
cThe nonunity third body collision efficiency coefficients are H2

=3, H2O=6, and H=2.
dThe nonunity third body collision efficiency coefficients are H2O=20.
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The full dynamics of the species evolution are obtained
by integrating Eq. �53�, see Fig. 11. At t�10−8 s, the species
growth rates change slightly, which indicates that significant
dissociation reactions are induced. For 10−7� t�10−6 s, the
minor species continue to increase rapidly with different
growth rates. On the other hand, the major species H2, O2,
and N2 have essentially constant specific moles. Just past t
�10−6 s all the species undergo significant change, and the
radicals’ specific moles reach their maximum values. At t
�10−5 s, an exothermic recombination of radicals com-
mences forming the predominant product H2O, which con-
tinues up to t�5 s, after which the system approaches the
equilibrium state. Figure 11 clearly illustrates the multiscale
nature of this system.

The first step in constructing the SIM, following the
methodology presented in Sec. III, is to find all of the sys-
tem’s real isolated equilibria, finite and infinite. For this sys-
tem 284 finite equilibria and 42 infinite equilibria are found.
Of the finite equilibria, 1 is 3D, 1 is 2D, 6 are 1D, and 276
are zero dimensional �0D�. Of the 276 0D equilibria, 90 are
real, and 186 are complex. Of the 42 infinite equilibria, 6 are
1D and 36 are 0D. Of the latter 0D equilibria, 18 are com-
plex and 18 are real. One of the 90 real finite critical points
represents the unique physical equilibrium state of the sys-
tem. This corresponds to

R19 � �ze� = �1.98 � 10−6,9.00 � 10−7,1.72 � 10−9,2.67

� 10−10,3.66 � 10−7,1.44 � 10−2� mol/g.

Then, the dynamical character of each of the 108 iso-
lated real finite and infinite critical points is determined. It is
found that among them there are only 14 candidate points for
constructing the SIM; all of them are finite. The other critical
points are either sources, sinks, or saddles with more than
one unstable direction. By examining the trajectories that
emanate from the candidate points, only two are connected
with R19 tangent to its slowest mode via heteroclinic orbits.
These two candidate points are

R74 � �ze� = �6.26 � 10−5,3.43 � 10−5,− 2.30

� 10−6,4.80 � 10−7,− 1.54 � 10−5,1.44

� 10−2� mol/g,

R79 � �ze� = �− 3.34 � 10−6,− 1.50 � 10−6,5.27

� 10−9,8.82 � 10−10,− 6.66 � 10−7,1.44

� 10−2� mol/g,

and these two heteroclinic orbits combine to provide the two
branches of the 1D SIM. Figure 12 shows a 3D projection of
the 1D SIM embedded inside the six-dimensional composi-
tion space. The 1D SIM is attractive along the complete tra-
jectories; criteria �29� hold along the SIM’s branches. Sub-
sequently, it provides the best description of the system’s
slow dynamics.

VI. CONCLUSIONS

We have presented a robust method of constructing a 1D
SIM for a closed, spatially homogenous, isothermal, reactive
system described by detailed kinetics. The SIM corresponds
to the exact description of the slow dynamics in the compo-
sition space of the reactive system. The construction method
is based on a geometrical approach that relies upon finding
and examining the dynamical behavior of all of the system’s
critical points. It has been shown that the construction of a
1D SIM is algorithmically easy and computationally effi-
cient. The resulting procedure provides a useful tool to sig-
nificantly reduce the computational cost associated with
modeling reactive systems. The extension to nonisothermal
reactive systems and higher-dimensional SIMs will be ad-
dressed in the future.

We have investigated the relationship between thermo-
dynamics and a reactive system’s SIM. It has been demon-
strated that a reactive system’s 1D SIM cannot be identified
by consideration of the topology of a classical thermody-
namic function, such as 
, S, or G, even near the equilibrium
state. This point has been confirmed by a mathematical proof
which shows that equilibrium thermodynamic potentials do
not alone determine reactive systems’ dynamics during their
approach toward the physical equilibrium.
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APPENDIX: ELEMENTS OF DYNAMICAL SYSTEMS
THEORY

In this appendix, we briefly describe the Hartman–
Grobman theorem, the normal form theory, and the following
terms: A hyperbolic equilibrium point, a dynamical system
separatrix, a parabolic sector, and a hyperbolic sector.41,47,49

Consider a standard nonlinear dynamical system de-
scribed by

dz

dt
= f�z�, z � RR. �A1�

A point ze is called an equilibrium point of the system if
f�ze�=0. Now f�z� can be linearized in the neighborhood of
ze,

f�z� = Je · �z − ze� + 1
2 �z − ze�T · He · �z − ze� + ¯ , �A2�

where Je and He are the local Jacobian and Hessian matrices,
respectively, evaluated at ze. For this dynamical system, we
have the following.

�1� The point ze is a hyperbolic equilibrium point of the
system, if none of the eigenvalues of Je evaluated at ze

has zero real part. Otherwise, ze is a nonhyperbolic
equilibrium point of the system.

�2� A sector in the composition space of this system is an
open region in the neighborhood of any ze. Any sector
is one of three types: elliptic, parabolic, or hyperbolic.
If the trajectories within the sector are homoclinic or-
bits, it is an elliptic sector. If the trajectories within the
sector are heteroclinic orbits that connect ze with an-
other equilibrium point, it is a parabolic sector. Other-
wise, it is a hyperbolic sector.

�3� The trajectories that represent the boundaries of a hy-
perbolic sector are called separatrices. These separa-
trices approach ze as t→ ��.

The Hartman–Grobman theorem is used to identify the
local behavior of standard dynamical systems in the neigh-
borhood of its hyperbolic equilibria. Basically, if Eq. �A1�
has a hyperbolic equilibrium point ze, then the theorem states
that the local behavior of the dynamical system in the vicin-
ity of ze is qualitatively the same as the behavior of the
following linear system:

dz

dt
= Je · �z − ze� . �A3�

In other words, the local behavior of the dynamical system in
the vicinity of ze is approximated by the leading term of its
Taylor’s series.

On the other hand, the normal form theory is used to
identify the local behavior of a standard dynamical system in
the neighborhood of a nonhyperbolic equilibrium point. Ba-
sically, a local nonlinear coordinate transformation is con-
structed so that the nonlinear part of the original dynamical
system is brought to a canonical form.
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