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ABSTRACT

Automatic Target Recognition (ATR) often confronts intricate visual scenes, necessitating models capable of
discerning subtle nuances. Real-world datasets like the Defense Systems Information Analysis Center (DSIAC)
ATR database exhibit unimodal characteristics, hindering performance, and lack contextual information for
each frame. To address these limitations, we enrich the DSIAC dataset by algorithmically generating cap-
tions and proposing new train/test splits, thereby creating a rich multimodal training landscape. To effec-
tively leverage these captions, we explore the integration of a vision-language model, specifically Contrastive
Language-Image Pre-training (CLIP), which combines visual perception with linguistic descriptors. At the
core of our methodology lies a homotopy-based multi-objective optimization technique, designed to achieve
a harmonious balance between model precision, generalizability, and interpretability. Our framework, de-
veloped using PyTorch Lightning and Ray Tune for advanced distributed hyperparameter optimization, en-
hances models to meet the intricate demands of practical ATR applications. All code and data is available at
https://github.com/sabraha2/ATR-CLIP-Multi-Objective-Homotopy-Optimization.

Keywords: automatic target recognition, multi-objective optimization, multimodal models, homotopy contin-
uation

1. INTRODUCTION

Over the past decade, deep learning has emerged as the driving force behind advancements in machine learning,
revolutionizing tasks ranging from image recognition to natural language processing. As researchers continue to
push for model improvements, the practice of transferring state-of-the-art models across domains has become
increasingly prevalent. However, this process is far from straightforward and often requires engineering efforts
to ensure successful adaptation. A significant challenge lies in the inherent limitations of vision datasets, which
typically offer a limited number of visual classes. Consequently, models trained on such datasets may excel only in
specific tasks, lacking the versatility demanded by some real-world applications. Recognizing this issue, OpenAI
introduced a groundbreaking neural network model named Contrastive Language-Image Pre-training (CLIP).1 By
training on a diverse array of images alongside a broad range of natural language supervision, CLIP transcended
these constraints, empowering researchers to address classification requirements without the need for task-specific
training data.

Automatic Target Recognition (ATR) stands out as a domain that can greatly benefit from the potential
of CLIP. In ATR, systems are tasked with the detection, identification, and classification of objects or targets
within sensor data, a crucial function in military applications such as target tracking and surveillance. While
conventional vision models may aid in target recognition, they often lack the contextual understanding provided
by textual information. On the other hand, CLIP has the unique capability to leverage textual descriptions
associated with targets, enabling the model to produce more robust representations that capture both visual and
semantic information.

Inspired by promising implications, our research aims to showcase an example in ATR that underscores the
innovative capabilities of the CLIP model. ATR extends beyond simple object detection, addressing complex
scenarios such as low resolution and long-range targets, often observed in sensors like infrared, thermal, or Syn-
thetic Aperture Radar (SAR). To explore these nuances, we leverage the Defense Systems Information Analysis
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Center (DSIAC) ATR Database2 for its unique characteristics. Given the absence of contextual annotations
in the dataset, we generate descriptive captions for each frame. Additionally, we explore optimizing learning
models, where our focus lies on a homotopy-based multi-objective framework aimed at strategically balancing
essential aspects of CLIP model training: (1) minimizing contrastive loss to amplify discriminative accuracy
and (2) maximizing similarity scores to better synchronize text and image representations. While prior work
on YOLOv53 demonstrated the efficacy of a single-objective hyperparameter optimization strategy,4 we chose a
more nuanced approach. With these empirical observations, we aspire to fuel advancements in ATR research,
ultimately contributing to target recognition and surveillance applications.
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Figure 1: Homotopy-Based Multi-Objective Optimization Framework in CLIP. Our method applies a
homotopy-based approach to blend Symmetric Cross-Entropy and Cosine Similarity Losses, controlled by the homotopy
parameter t. This parameter evolves over training epochs, adjusting the balance between precise alignment and similarity
of multimodal embeddings, to support a cohesive trajectory in learning the shared representation space.

2. BACKGROUND

To our knowledge, the potential advantages of employing a CLIP model in ATR remain unexplored. Unlike
classical methods, which often rely on hand-tuned hyperparameters,5–9 the integration of CLIP introduces a
novel paradigm in target recognition. Thus, in this section, we briefly describe recent work on deep learning and
hyperparameter optimization.

DeepTarget10 is a deep learning framework that performs ATR with two VGG1611 architectures pre-trained
on ImageNet.12 One network detects and localizes potential targets in a scene, which are then used as input to the
other network to classify them into their associated target types. The experimentation showed improvements over
Faster-RCNN,13 YOLOv2,14 and Single Shot MultiBox Detector (SSD)15 on target detection and recognition.
Note that the Comanche (BoeingSikorsky, USA) FLIR dataset used in that work is not publicly available. Chen
et al.16 conducted benchmarking studies on three variations of YOLOv2,14 analyzing their performance under
various conditions such as pre-training, target distances, and time of day. Another study by d’Acremont et
al.17 proposed a Convolutional Neural Network (CNN) architecture trained on DSIAC2 and realistic simulated
data. Their findings demonstrated superior performance compared to models trained without data augmentation
or fine-tuning.

Further investigations into ATR methodologies have explored the application of Faster R-CNN13 for infrared
target detection18 using DSIAC and even curated easy and hard test sets for comprehensive evaluation. Mean-
while, VS et al.19 introduced an unsupervised domain adaptive thermal object detection framework, employing



Faster R-CNN initialized with VGG weights11 for ATR applications on both DSIAC and KAIST.20 Finally,
Poster et al.21 shed light on the challenges posed by limited-size and variability in thermal image datasets. They
proposed a novel CNN architecture tailored for small object detection in data-limited settings and introduced a
more rigorous evaluation protocol for DSIAC to assess model generalizability. Their model exhibited superior
performance, achieving enhanced detection accuracy and minimizing overfitting.

Lastly, we acknowledge the pivotal role of hyperparameter optimization in enhancing model performance.
Prior work by Abraham et al.4 focused on single-objective optimization using DSIAC. The HOMOPT model
provided an efficient way to search the hyperparameter space of YOLOv53 and identify optimal set of parameters.
Building upon this, we extend our approach to a multi-objective framework using a CLIP model.

In the domain of ATR, the operational landscape is characterized by a complex array of visual signatures
arising from diverse targets and backgrounds. Traditional fine-tuning approaches often drive models towards
local optima, adept at distinguishing targets within a narrow subset of conditions but faltering when presented
with the full spectrum of operational scenarios. Herein lies the impetus for homotopy-based multi-objective
optimization—a methodology that navigates the intricate balance between discrimination and generalization.
By employing a homotopy parameter that gradually shifts the focus of the training objective, we push the
CLIP model to not only differentiate between targets robustly but also to align these distinctions with human-
like, descriptive language cues. This technique incrementally merges the specificity required for accurate target
identification with the semantic understanding necessary for flexible ATR applications.

3. METHODS

3.1 Caption Generation

Within our methodology, we prioritize the generation of descriptive captions directly from the structured nomen-
clature of DSIAC2 image filenames. This process is fundamental to pairing visual data with linguistically rich
annotations, enhancing the training effectiveness of CLIP models.

Initially, we employ regular expressions to accurately extract key identifiers from the filenames. These include
sensor codes, scenario specifics, and target classifications. Afterwards, the codes are mapped to descriptive terms
utilizing predefined dictionaries, translating them into accessible language that delineates sensor technology (e.g.,
“Mid-Wave Infrared” vs. “Visible Light”) and scenario context (detailing operational conditions such as time
of day and distance). This ensures the generation of captions that accurately describe the dynamics within
each frame, including the action being performed (e.g., vehicles “navigating in a circular pattern” and humans
“engaging in figure-8 movements”).

The synthesized captions serve not only to describe the visual content comprehensively but also to embed the
imagery within a context that mirrors natural human observation and language use. This nuanced embedding of
contextual, environmental, and operational details into the captions significantly enriches the dataset, thereby
facilitating a more effective training regime for CLIP models. Examples of images and the generated text can
be seen in Figure 2.

3.2 Dataset Splitting for Train and Test

In our study, we crafted the test set to ensure it encapsulates the diversity and complexity inherent in real-world
ATR tasks.

We commenced by evaluating the distribution of DSIAC across various scenarios, each characterized by
a unique combination of sensor type, time of day, range, and target behavior. To ensure a comprehensive
assessment of the model’s capabilities, we aimed to include a balanced representation of day and night scenarios,
accommodating the fact that no nighttime imagery was collected with the i1co sensor. Hence, for the MWIR
sensor (cegr), which possessed nighttime data, we deliberately included scenarios that would test the model’s
robustness under low-illumination conditions.

Also, scenarios were stratified by range, ensuring that both proximal and distant targets were represented,
challenging the model’s precision across varying target distances. Similarly, we ensured the inclusion of diverse
target types, selecting scenarios that encompassed the full breadth of vehicle classes and human activities,
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Figure 2: DSIAC Caption Examples. The resulting captions applied to DSIAC frames from structured image
filenames. This captioning approach enhances the understanding of ATR scenarios with CLIP models through visual and
contextual information.

including those less frequently observed in the dataset to test the model’s recognition capabilities under sparse
data conditions.

The selected scenarios for the test set were as follows:

• Daytime Vehicle Scenarios: We included scenario codes 2005, 2011, and 2017, providing a broad
spectrum of target ranges from 1500 to 4500 meters.

• Nighttime Vehicle Scenarios: For the MWIR sensor data, we selected scenario codes 1925 and 1931,
which offered visibility into the model’s performance at 1500 and 3000 meters, respectively, under nighttime
conditions.

• Human Target Scenarios: We reserved scenario code 02008 for daytime human targets, ensuring the
model was evaluated on its ability to discern human forms at 2000 meters.

Selections were governed by a priority to challenge the model with scenarios that span a diverse array of opera-
tional conditions that test its generalization and discriminative abilities. This resulted in a train set of 368,475
image text pairs and a test set of 129,825 image text pairs.

3.3 Homtopy-Based Multi-Objective Optimization

Our method dynamically balances between two critical objectives during the training process: minimizing con-
trastive loss to enhance discriminative power and maximizing similarity score to improve alignment between the
textual and visual representations. We employ a homotopy parameter, t, which evolves from 0−1 over the course
of training, enabling a smooth transition from focusing primarily on contrastive loss to increasingly emphasiz-
ing the similarity score. This strategy allows us to navigate the trade-offs between these objectives efficiently,
aiming to find an optimal balance that fosters both precise target recognition and robust generalization across
diverse scenarios. The optimization process is facilitated by a customized training loop implemented in PyTorch
Lightning, which adapts the learning rate and updates the homotopy parameter based on predefined scheduling.

3.4 Experimentatal Setup and Loss Functions

The operational context of ATR imposes unique constraints and demands on machine learning models. To adapt
the CLIP models to these requirements, we adopted two distinct fine-tuning strategies: a direct fine-tuning
approach and a homotopy-based approach. The former seeks to establish robust image-text pair alignment via
a traditional optimization route with a single objective, whereas the latter explores a dynamic balance between
contrastive and similarity objectives mentioned previously, which allows for an adaptive learning trajectory. The



Algorithm 1 Homotopy-based Optimization for CLIP

Require: D (dataset),M (CLIP model), αstart (start learning rate), αend (end learning rate), T (total training
steps)

Ensure: Optimized CLIP modelM∗

1: Initialize modelM with pre-trained weights
2: Initialize learning rate α← αstart

3: Initialize homotopy parameter t← 0
4: for step← 1 to T do
5: Sample a batch {(xi,yi)}Ni=1 ∼ D
6: Encode images and texts: vi ←M.encode image(xi),wi ←M.encode text(yi)
7: Compute symmetric loss: Lsymmetric ← 1

2 (F.cross entropy(v,w) + F.cross entropy(w,v))
8: Compute similarity score: Ssimilarity ← CosineSimilarity(v,w)
9: Compute combined loss: L← (1− t) · Lsymmetric + t · Ssimilarity

10: UpdateM using gradients of L
11: Update learning rate α and homotopy parameter t
12: α← LinearSchedule(αstart, αend, T, step)
13: t← step

T
14: end for
15: M∗ ←M
16: returnM∗

allocation of 32 epochs for the direct fine-tuning approach was to ensure ample opportunity for the model to
refine its learning of complex ATR patterns. Meanwhile, the homotopy-based approach required only 16 epochs
due to its efficient traversal through the optimization landscape, shifting focus from contrastive discrimination
to similarity maximization as training progressed. This dual strategy ensures comprehensive coverage of the
learning spectrum, facilitating a nuanced understanding of the ATR domain challenges. Both methods drew
upon the foundational pre-training afforded by the train-CLIP library, a versatile tool for CLIP model training
created by Cade Gordon,22 ensuring a robust starting point for our specialized fine-tuning tasks.

3.4.1 Direct Fine-Tuning Approach

Direct fine-tuning employs a bidirectional retrieval framework aimed at optimizing the alignment between image
and text representations. This alignment is achieved through a contrastive learning strategy that utilizes sym-
metric cross-entropy loss, calculated based on similarity scores (logits) derived from dot products of image-text
pair embeddings within each batch. The process unfolds as follows:

1. Logits Calculation: For each image-text pair within a batch, embeddings are computed and normalized.
The similarity scores are then obtained by calculating the dot products of these embeddings. These scores
are subsequently scaled by elogit scale, which modulates the distribution’s sharpness, akin to temperature
scaling observed in the NT-Xent23 loss:

logits = elogit scale × (image embeddings · text embeddingsT )

2. Symmetric Cross-Entropy Loss Application: The symmetric cross-entropy loss24 is applied to the
calculated logits in a dual direction—once for images predicting corresponding texts, and once for texts
predicting corresponding images. This dual application ensures that the correct matches (identified by the
diagonal elements of the logits matrix) effectively guide the loss computation, thereby conceptualizing the
task as a classification challenge:

Lsym = − 1
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3. Loss Averaging: To ensure balanced penalization for alignment inaccuracies, the losses calculated from
both directional predictions are averaged, producing the final loss for the training step.

4. Learning Rate Scheduling: We adopt a learning rate schedule that initiates at 5 × 10−4 and method-
ically decays to 2 × 10−5, in line with a cosine annealing schedule with warm-up restarts. This pacing is
meticulously designed to match the evolving emphasis of the training objectives.

5. Mini-batching Strategy: To address computational constraints effectively, training data is partitioned
into smaller mini-batches, enabling the practical application of our homotopy-based method across exten-
sive datasets.

This direct fine-tuning approach allows for refined alignment between the visual and textual modalities by
focusing on minimizing symmetric cross-entropy loss, thereby enhancing the model’s performance in bidirectional
retrieval tasks.

3.4.2 Homotopy-Based Training Approach

In this study, we implement a homotopy-based training methodology, building upon the direct tuning strategy,
for the CLIP model, balancing between the symmetric cross-entropy loss and similarity maximization to refine the
alignment between image and text representations. Central to our approach is the homotopy parameter t, which
progressively transitions from 0 to 1 throughout the training epochs, facilitating a seamless shift from focusing
on symmetric loss reduction to emphasizing cosine similarity maximization between matching image-text pairs.
The combined objective function is formulated as:

Lcombined = (1− t) · Lsym + t · Lsimilarity

where Lsym denotes the average symmetric cross-entropy loss and Lsimilarity = − 1
N

∑N
i=1 sim(vi, wi) signifies the

negative average cosine similarity across normalized embeddings of corresponding image-text pairs, vi and wi.
The negative sign preceding the similarity score elucidates our intent to maximize this metric, in stark contrast
to minimizing the symmetric loss. This dual-objective strategy ensures a fluid progression throughout training,
enabling the model to initially harness distinct features, subsequently fine-tuning these attributes to bolster the
congruence between visual and textual modalities.

3.5 Evaluation of Tuned CLIP Models on the DSIAC ATR Test Set

In addition to the standard evaluation on an unseen test, we also report the training dynamics of both methods
in terms of the loss and retrieval accuracy. The model’s retrieval accuracy, both in the image-to-text and text-to-
image directions, is quantified by measuring the proportion of correctly identified matches based on the argmax
of the logits. For the test evaluation, batches of images and text pairs were processed by the fine tuned models
to generate embeddings, which were then subjected to cosine similarity analysis. This analysis quantitatively
measured the alignment between each image-text pair, offering insights into the ability of the models to correctly
associate visual content with textual descriptions under various ATR scenarios. Subsequent visualization using t-
SNE provided a qualitative assessment of the embedding spaces, revealing the models’ discriminative capabilities
and their robustness in handling the ATR task.

Particularly of note were the evaluations conducted under low-illumination conditions and at extended ranges,
which were critical for assessing the models’ performance in operationally challenging scenarios typical of the
DSIAC ATR environment. The test set, with 129,825 image-text pairs, served not only as a measure of the
models’ current capabilities but also as a benchmark for future enhancements. By highlighting the strengths and
identifying potential areas for improvement, the evaluation process has laid the groundwork for developing more
advanced models that can effectively navigate the complexities of real-world Automatic Target Recognition.



Figure 3: Comparison of Fine-Tuning Approaches on CLIP Model’s Training Performance. These
plots illustrate a comparison of each of the fine tuning method’s training performance. A smoothed line averaging over 20
samples is plotted over the raw trajectories. The left graph presents the direct fine tuning method, illustrating episodic
variations in accuracy (red) and loss (blue) across the full span of training iterations, indicative of the model’s adaptive
response to the fine-tuning process. The right graph shows the multi-objecive homotopy method limited to 16 epochs,
where a discernible pattern of steady accuracy improvement and consistent loss minimization is observed.

4. RESULTS

4.1 Training Dynamics

Our comparative analysis of the training dynamics between direct fine-tuning and homotopy-based multi-
objective fine-tuning of a CLIP model reveals distinct patterns in both accuracy and loss over training epochs.
The direct fine-tuning approach demonstrates a rapid improvement in accuracy in the initial epochs, followed by
a plateau, suggesting quick adaptability to the training data. However, the loss trends for direct fine-tuning show
fluctuations, indicating potential instability in learning. Conversely, the homotopy-based approach exhibits a
steadier, albeit slower, increase in accuracy, coupled with a consistent decrease in loss, suggesting a more stable
and gradual learning process.

The training dynamics observed suggest differing efficiencies and effectiveness of the two methods. Direct fine-
tuning achieves high accuracy quickly but at the cost of potential overfitting, as indicated by the fluctuating loss.
This might suggest that while the model rapidly aligns with the training data’s features, it may not generalize
well to unseen data. On the other hand, the homotopy-based approach with consistent loss reduction and gradual
accuracy improvement indicate a more balanced learning process, possibly leading to better generalization. This
method seems to mitigate overfitting more effectively, potentially due to its multi-objective optimization that
balances different aspects of the learning process.

4.2 Test Evaluation

The histograms in Figure 4 depict the distribution of cosine similarities between image and text embeddings for
two distinct fine-tuning methods applied to a CLIP model, benchmarked on the DSIAC ATR data. Figure 4a
presents the distribution resulting from the direct fine tuning. This distribution is characterized by a broad
spread of cosine similarities with multiple peaks, suggesting a diverse range of alignment between the image-text
pairs. The peaks around the higher similarity values indicate a significant portion of tightly aligned pairs, which is
indicative of the model’s capability to correlate relevant features across modalities. However, the broader spread
towards lower similarities implies the existence of a substantial number of loosely aligned or even misaligned pairs.

In contrast, the homotoy based fine tuning method, as shown in Figure 4b, yields a distinctly different
distribution. Here, the histogram exhibits a more pronounced skew towards higher similarity values and a
narrower spread, indicative of a more consistently aligned set of embeddings. The presence of a peak towards the
higher end of the similarity spectrum and fewer low-similarity outliers suggests that this method fosters a closer
semantic connection between the paired embeddings. Notably, the histogram lacks the extended tail towards
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Figure 4: Similarities Distribution. Histograms showcasing the distribution of cosine similarities between image
and text embeddings for two fine-tuning approaches on a CLIP model. The left histogram (a) corresponds to direct
fine tuning, which demonstrates a varied distribution of similarities, indicative of a strong discrimination capability but
possibly less cohesion in image-text alignment. The right histogram (b) corresponds to homotopy-based fine tuning, which
shows a shift towards higher similarity scores, illustrating the method’s effectiveness in creating more aligned and cohesive
image-text representations as the training evolves from contrastive loss towards similarity score maximization

the negative similarity values seen in the direct fine tuning method, implying a reduced incidence of strongly
misaligned pairs.
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Figure 5: Distribution of Image and Text Embeddings. The direct fine-tuning plot shows a denser clustering,
indicating tight but potentially overfitted correlations. In contrast, the homotopy-based plot reveals a more dispersed
distribution, suggesting a flexible representation space that may facilitate better generalization to unseen data. The
presence of a central void in the homotopy-based plot (b) could reflect an intentional emphasis on semantic similarity over
mere feature matching, a characteristic development of the homotopy approach which gradually shifts from contrastive
loss to similarity maximization over the course of training.

Figure 5 provides a comparative visualization of the high-dimensional embedding spaces reduced via t-SNE to
contrast directly each of the fine tuning methods. For the direct fine tuning method (Figure 5a), the embeddings
are characterized by a more uniform distribution across the t-SNE plot. The image (blue) and text (red)
embeddings display a significant degree of overlap, with no clear demarcation between the modalities, implying
a more generalist feature capture that may not distinctly differentiate fine-grained semantic nuances.

The homotopy-based multi-objective fine tuning (Figure 5b) presents an embedding space with several notable
distinctions. The embeddings appear as denser clusters, signifying a more defined feature space. A remarkable



feature of this plot is the central depletion or ‘hole,’ which suggests that as the fine-tuning transitions from a
contrastive loss that emphasizes direct image-text pair similarities towards a similarity loss that aligns broader
semantic relationships, it fosters a more structured separation between distinct clusters. This could reflect a
refined mapping where embeddings are not merely drawn to their exact matches but are also repelled from
near-miss pairings, enhancing the model’s discriminative clarity.

5. DISCUSSION

The differential distributions of cosine similarities observed provide insights into their respective impacts on the
semantic alignment of the CLIP model’s embeddings. The broader distribution of cosine similarities for the direct
fine-tuning approach reflects a less discriminating optimization process, possibly due to a single-objective focus
over an extended training period. Conversely, the homotopy-based approach skews towards higher similarity
values, suggesting an optimization trajectory that prioritizes the cohesion of semantic associations between
images and texts.

The more concentrated distribution of cosine similarities in the homotopy-based approach underscores its
potential in creating a more precise and semantically rich embedding space. However, it is imperative to consider
the potential overfitting to the training data, particularly given the complex and varied nature of DSIAC. While
the homotopy-based method may yield a model adept at capturing the nuanced semantics within a constrained
evaluation set, further analysis is required to ascertain its performance across the broader, more diverse spectrum
of ATR conditions.

Overall, the findings suggest that the homotopy-based fine-tuning method’s multi-objective optimization pro-
duces an embedding space optimized for differentiation, which could be preferable for tasks where the distinction
between categories is paramount. Future work should investigate the impact of the central void on retrieval
performance and explore the balance between specialization and generalization in the embedding space. Quanti-
tative analyses, such as precision-recall curves and F1 scores for retrieval tasks across various categories, will be
essential to validate the insights provided by the t-SNE visualizations and to ascertain the practical implications
of each fine-tuning strategy.

6. CONCLUSION

This work sought to enhance the understanding and performance of CLIP models within the specialized domain
of Automatic Target Recognition (ATR), leveraging the nuanced and diverse DSIAC ATR Database. Our
methodology encompassed the generation of descriptively rich captions from DSIAC image filenames, employing
them with corresponding images to train the models through a homotopy-based multi-objective approach. The
meticulous curation of the test set, which mirrored the multifaceted reality of ATR scenarios, establishes a
rigorous benchmark for model evaluation.

The direct fine-tuning method, applied over an extended period of 32 epochs, equipped the model with a
broad semantic understanding, as evidenced by the t-SNE visualization and the distribution of cosine similarities.
Meanwhile, the homotopy-based fine-funing, conducted over 16 epochs, demonstrated a discernible shift towards
tighter semantic alignment, with the potential for heightened discriminative prowess in ATR tasks. The distinct
embedding landscapes revealed by the t-SNE plots and the comparative analysis of cosine similarity distributions
provides compelling visual and quantitative testimony to the efficacy of the training methodologies.

Looking forward, the insights gleaned from this research advocate for a nuanced approach to model training,
where the choice of methodology aligns with the operational imperatives of ATR systems. The homotopy-based
approach, in particular, holds promise for future exploration, especially in its potential to balance contrasting
training objectives efficiently. However, recognizing the limited scope of any single study, we advocate for ongoing
research to validate these findings across larger datasets and in operational environments.
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