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Abstract

This paper is concerned with certifying that a given point is near an exact
root of an overdetermined or singular polynomial system with rational co-
efficients. The difficulty lies in the fact that consistency of overdetermined
systems is not a continuous property. Our certification is based on hybrid
symbolic-numeric methods to compute the exact rational univariate rep-
resentation (RUR) of a component of the input system from approximate
roots. For overdetermined polynomial systems with simple roots, we com-
pute an initial RUR from approximate roots. The accuracy of the RUR
is increased via Newton iterations until the exact RUR is found, which we
certify using exact arithmetic. Since the RUR is well-constrained, we can
use it to certify the given approximate roots using α-theory. To certify iso-
lated singular roots, we use a determinantal form of the isosingular deflation,
which adds new polynomials to the original system without introducing new
variables. The resulting polynomial system is overdetermined, but the roots
are now simple, thereby reducing the problem to the overdetermined case.
We prove that our algorithms have complexity that are polynomial in the
input plus the output size upon successful convergence, and we use worst
case upper bounds for termination when our iteration does not converge to
an exact RUR. Examples are included to demonstrate the approach.
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1. Introduction

In their recent article [24], F. Sottile and the second author showed
that one can get an efficient and practical root certification algorithm using
α-theory (c.f. [59, 8]) for well-constrained polynomials systems. The same
paper also considers overdetermined systems over the rationals and show
how to use α-theory to certify that a given point is not an approximation of
any exact roots of the system. However, to certify that a point is near an
exact root, one can use universal lower bounds for the minimum of positive
polynomials on a disk That paper concludes that all known bounds were
“too small to be practical.”

A closer look at the literature on lower bounds for the minimum of
positive polynomials over the roots of zero-dimensional rational polynomial
systems reveals that they all reduce the problem to the univariate case and
use univariate root separation bounds (see, for example, [12, 27, 11, 28]).
This led to the idea of directly using an exact univariate representation for
certification of the input system instead of using universal lower bounds that
are often very pessimistic. For example, the overdetermined system

f1 := x1 −
1

2
, f2 := x2 − x2

1, . . . , fn := xn − x2
n−1, fn+1 := xn

has no common roots, but the value of fn+1 on the common root of f1, . . . , fn
is double exponentially small in n. While universal lower bounds cover these
artificial cases, our approach, as we shall see, has the ability to terminate
early in cases when the witness for our input instance is small.

In principle, one can compute such a univariate representation using
purely algebraic techniques, for example, by solving large linear systems
corresponding to resultant or subresultant matrices (see, for example, [62]).
However, this purely symbolic method would again lead to worst case com-
plexity bounds. Instead, we propose a hybrid symbolic-numeric approach,
using the approximate roots of the system, as well as exact univariate poly-
nomial remaindering over Q. We expect that our method will make the
certification of roots of overdetermined systems practical for cases when the
universal lower bounds are too pessimistic, or when the actual size of our
univariate representation is significantly smaller than in the worst case.

Consider an overdetermined system f = (f1, . . . , fm) ∈ Q[x1, . . . , xn] for
some m > n, and assume that the ideal I := 〈f1, . . . , fm〉 is radical and
zero dimensional. With these assumptions Roullier’s Rational Univariate
Representation (RUR) for I exists [54], as well as for any component of I
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over the rationals. Since the polynomials in the RUR have also rational
coefficients, we can hope to compute them exactly, unlike the possibly irra-
tional coordinates of the common roots of I. With the exact RUR, which is
a well-constrained system of polynomials, we can use α-theory as in [24] to
certify that a given point is an approximate root for the RUR, and thus for
our original system f . Alternatively, from an RUR, we can compute Hermite
matrices for our system which can be used to certify that there is an exact
root within ε of our given point.

Our numerical method to compute an RUR for I or for a rational com-
ponent of I consists of three steps:

1. compute approximations of all isolated roots to a given accuracy of
a random well-constrained (square) set of linear combinations of the
polynomials f1, . . . , fm using homotopy continuation (e.g., see [4, 60]);

2. among the roots computed in Step 1, choose a subset that is a candi-
date to be approximations to roots of I or a rational component of I
– for this step, we can only give heuristics on how to proceed;

3. construct a rational RUR from the approximate roots chosen in Step 2
using Lagrange interpolation and rational number reconstruction, and
check whether the polynomials in f reduce to zero modulo the com-
puted RUR. If yes, terminate, if not, continue to compute iteratively
more accurate approximations of the RUR.

We propose two methods to increase the accuracy of the computed RUR.
The first one, called Local Newton Iteration, simply repeats Step 3 with
ever more accurate root approximations. The second one, called Global
Newton Iteration, is a version of Hensel’s lifting and was used in the non-
Archimedian metric in, for example, [30, 63, 66, 20]. We apply it in the
usual Euclidean metric on coefficient vectors with rational entries. In [23],
it was shown that the two methods are equivalent when using the p-adic
non-Archimedian metric but different under the Euclidean metric. Further-
more, [23] gives sequential and parallel complexity analysis for the itera-
tions of both of these methods.

Note that termination of the above steps depends on the choice of ap-
proximate roots in Step 2. In particular, for wrong choices, the iterated
RUR will never converge to an exact RUR of a rational component of I.
We will exhibit several approaches for termination: either by an a priori
bound on the height of the coefficients of the exact RUR, or by incorporat-
ing certification of non-roots as in [24].
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Another approach that eliminates the heuristic choice in Step 2 is to
compute an exact RUR for all roots computed in Step 1. From this RUR,
using symbolic techniques, one can compute an exact RUR for I. This
method will always converge to an exact RUR, provided that the roots
computed in Step 1 are certified approximate roots of the well-constrained
system and the round off error is negligible. Even though this technique is
less efficient than the one described above, one may choose it if the method
summarized above fails. Note that this hybrid symbolic-numeric method
is highly parallelizable, which may make it preferable compared to purely
symbolic methods to compute an RUR for I via elimination.

In the second part of the paper, we consider certifying isolated singu-
lar roots of a rational polynomial system. Due the behavior of Newton’s
method near singular roots (e.g., see [21]), standard techniques in α-theory
can not be applied to certify such roots even if the polynomial system is
well-constrained. The key tool to handle such multiple roots is called defla-
tion. Deflation techniques “regularize” the system thereby creating a new
polynomial system which has a simple root corresponding to the multiple
root of the original system [15, 25, 39, 40, 49, 50]. In this work, we will focus
on using a determinantal form of the isosingular deflation [25], in which one
simply adds new polynomials to the original system without introducing new
variables. The new polynomials are constructed based on exact information
that one can obtain from a numerical approximation of the multiple root. In
particular, if the original system had rational coefficients, the new polynomi-
als which remove the multiplicity information also have rational coefficients.
Thus, this technique has reduced us to the case of an overdetermined system
over Q in the original set of variables that has a simple root.

1.1. Related work

One of the applications of certifying near-exact solutions of overdeter-
mined and singular systems is the certification of computerized proofs of
mathematical theorems, similarly as the software package alphaCertified

of [24] was applied to confirm a conjecture of Littlewood in [9].

As we mentioned in the Introduction, for well-constrained (square) poly-
nomial systems, the paper [24] applies α-theory (c.f. [59, 8]) to obtain an
efficient and practical root certifying algorithm. It is proposed to use uni-
versal lower bounds to certify approximate roots of overdetermined systems.
In [16], an α-theory for overdetermined systems was developed. However,
since this approach cannot distinguish between local minimums and roots,
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we can not use it to certify roots of overdetermined systems. There is an
extended body of literature on using interval arithmetic and optimization
methods to certify the existence or non-existence of the solutions of well-
constrained systems with guaranteed accuracy, e.g., [36, 46, 56, 67, 34, 48].
Techniques to certify each step of path tracking in homotopy continuation
for well-constrained systems using α-theory are presented in [5, 6, 22]. Re-
cently, a certification method of real roots of positive dimensional systems
was studied in [68].

Related to the certification problems under consideration is the prob-
lem of finding certified sum of squares (SOS) decompositions of rational
polynomials. In [52, 53, 31, 32], they turn SOS decompositions given with
approximate (floating point) coefficients into rational ones, assuming that
the feasible domain of the corresponding semidefinite feasibility problem has
nonempty interior. In [45], they adapt these techniques to the degenerate
case, however they also require a feasible solution with rational coefficients
exists. The certification of more general polynomial, semi-algebraic and
transcendental optimization problems were considered in [2]. In [57], they
compute rational points in semi-algebraic sets and give a method to decide if
a polynomial can be expressed as an SOS of rational polynomials. Note that
we can straightforwardly translate the certification of approximate roots of
overdetermined polynomial systems into polynomial optimization problems
over compact convex sets (using a ball around the approximate root), how-
ever, we cannot guarantee a rational feasible solution. Instead, we propose
to construct the rational representation of several irrational roots that form
a rational component of the input system. Note also that the coefficient
vector of the RUR of the input ideal is the solution of a linear system cor-
responding to multiples of the input polynomials that appears as the affine
constraints in Lasserre’s relaxation in [38], and thus can be computed us-
ing purely symbolic methods. However, here we propose a more efficient
symbolic-numeric approach, constructing an RUR from approximate roots,
and allowing RUR’s of smaller rational components as well.

The idea of computing an exact solution from numerical approximations
is not new. In [13], they give a randomized algorithm that for a given
approximate zero z corresponding to an exact zero ξ of a polynomial sys-
tem F1, . . . , Fn ∈ Q[x1, . . . , xn] finds the RUR of the irreducible component
Vξ ⊂ V (F1, . . . , Fn) in polynomial time depending on n, the heights of Fi,
the degree of the minimal polynomial of a primitive element for Vξ, and the
height of this minimal polynomial. The algorithm in [13] uses the algorithm
in [33] for the construction of the minimal polynomial of a given approximate
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algebraic number. However, the algorithm in [33] requires an upper bound
for the height of the algebraic number, and this bound is used in the con-
struction of the lattice that they apply LLL lattice basis reduction. To get
such bound a priori, we would need to use universal bounds for the height.
In order to get an incremental algorithm with early termination for the case
when the output size is small, one can modify the algorithm in [33] to be
incremental, but that would require multiple application of the lattice basis
reduction algorithm. Alternatively, one can apply the PSLQ algorithm as
in [17], which is incremental and does not require an a priori height bound.
The main point of the approach in this paper is that we assume to know all
approximate roots of a rational component, so in this case we can compute
the exact RUR much more efficiently, and in parallel, as we prove in this
paper and in [23]. So instead of multiple LLL lattice basis reduction, we
propose a cheaper lifting and checking technique.

Related literature on certification of singular zeroes of polynomial sys-
tems include [35, 55, 44, 41, 42]. However, these approaches differ from ours
in the sense that they certify singular roots of some small perturbation of
the input polynomial system while in the present paper we certify singular
roots of an exact polynomial system with rational coefficients.

2. Certifying roots of overdetermined systems

As described in the Introduction, the philosophy behind our method is
to avoid using universal worst case lower bounds as certificates. Instead, we
aim to compute an exact univariate representation for our system that can
be used for the certification. The Introduction outlined the steps of our pro-
posed method to compute such a representation with details presented here.

2.1. Preliminaries

Let us start with recalling the notion of Roullier’s Rational Univariate
Representation (RUR), originally defined in [54]. We follow here the ap-
proach and notation in [20].

Let f = (f1, . . . , fm) ∈ Q[x1, . . . , xn] for some m ≥ n, and assume that
the ideal I := 〈f1, . . . , fm〉 is radical and zero dimensional. The factor ring
Q[x1, . . . , xn]/I is a finite dimensional vector space over Q, and we denote

δ := dimQQ[x1, . . . , xn]/I.
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Furthermore, for almost all (λ1, . . . , λn) ∈ Qn (except a Zariski closed sub-
set), the linear combination

u(x1, . . . , xn) := λ1x1 + · · ·+ λnxn

is a primitive element of I, i.e. the powers 1, u, u2, . . . , uδ−1 form a lin-
ear basis for Q[x1, . . . , xn]/I (c.f. [54]). Let q(T ) ∈ Q[T ] be the minimal
polynomial of u in Q[x1, . . . , xn]/I, and let xi = vi(u) be the polynomials
expressing the coordinate function as linear combinations of the powers of u
in Q[x1, . . . , xn]/I. Note that from u = λ1x1 + · · ·+ λnxn, we must have

u = λ1v1(u) + · · ·+ λnvn(u).

and

〈q(T ), x1 − v1(T ), . . . , xn − vn(T )〉 = 〈I, T − (λ1x1 + · · ·+ λnxn)〉.

Definition 2.1. Let I = 〈f1, . . . , fm〉 ⊂ Q[x1, . . . , xn] be as above. The
Rational Univariate Representation (RUR) of I is given by

• a primitive element u = λ1x1+· · ·+λnxn of I for some λ1, . . . , λn ∈ Q;

• the minimal polynomial q(T ) ∈ Q[T ] of u in Q[x1, . . . , xn]/I, a monic
square-free polynomial of degree δ;

• the parametrization of the coordinates of the zeroes of I by the zeroes
of q, given by

v1(T ), . . . , vn(T ) ∈ Q[T ]

all degree at most δ − 1 and satisfying

λ1v1(T ) + · · ·+ λnvn(T ) ≡ T mod q(T ).

In the algorithms below, we compute an RUR that may not generate the
same ideal I as our input polynomials, nevertheless it contains I, i.e., the
polynomials f1, . . . , fm vanish modulo the RUR. In this case, the RUR will
generate a component of I. The common roots of the RUR of a component
of I correspond to a subset of V (I). For any subset V ⊂ V (I), one can
construct an RUR of the corresponding component of I that satisfies the
following definition. Finally, we distinguish between RUR’s of components
and rational components of I.
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Definition 2.2. Let I = 〈f1, . . . , fm〉 ⊂ Q[x1, . . . , xn] be as above and fix a
primitive element λ1x1 + · · ·+ λnxn ∈ Q[x1, . . . , xn] of I. The polynomials

T − λ1x1 + · · ·+ λnxn, q(T ), v1(T ), . . . , vn(T ) (1)

form a Rational Univariate Representation (RUR) of a component of I if it
satisfies the following properties:

• q(T ) ∈ C[T ] is a monic square-free polynomial of degree d ≤ δ,

• v1(T ), . . . , vn(T ) ∈ C[T ] are all degree at most d− 1 and satisfy

λ1v1(T ) + · · ·+ λnvn(T ) ≡ T mod q(T ),

• for all i = 1, . . . ,m we have

fi(v1(T ), . . . , vn(T )) ≡ 0 mod q(T ).

If, in addition, q(T ), v1(T ), . . . , vn(T ) ∈ Q[T ] are rational polynomials, we
call (1) a RUR of a rational component of I.

First note that the set

{q(T ), x1 − v1(T ), . . . , xn − vn(T )} (2)

forms a Gröbner basis for the ideal it generates with respect to the lexi-
cographic monomial ordering defined by T < x1 < · · · < xn and is well-
constrained. When we have an RUR of I, (2) is a Gröbner basis for

〈I, T − (λ1x1 + · · ·+ λnxn)〉.

In particular, one can compute an RUR of I with purely symbolic elimina-
tion methods, such as Buchberger’s algorithm, or resultant based methods.
Moreover, since (2) is well-constrained, one can apply standard α-theoretic
tools to certify solutions.

Let
T − (λ1x1 + · · ·+ λnxn), q(T ), v1(T ), . . . , vn(T )

be an RUR for I and

q′(T ), v′1(T ), . . . , v′n(T ) ∈ Q[T ]
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be an RUR for a rational component of I with respect to the same primitive
element. Then, we have

q(T ) ≡ 0 and vi(T ) ≡ v′i(T ) mod q′(T ) for i = 1, . . . , n.

This shows that we can obtain an RUR for a rational component of I from
an RUR of I using symbolic univariate polynomial factorization over Q
and univariate polynomial remainders (we only use this in our complexity
estimates, not in the computation that we propose).

Next, let us recall the relationship between the RUR of a component of I
and the corresponding (exact) roots. Let V := {ξ1, . . . , ξd} ⊆ V (I) ⊂ Cn
be the exact roots of a component of I, and denote ξi = (ξi,1, . . . , ξi,n) for
i = 1, . . . , d. Then for any n-tuple (λ1, . . . λn) ∈ Qn such that

λ1ξi,1 + · · ·+ λnξi,n 6= λ1ξj,1 + · · ·+ λnξj,n if i 6= j,

we can define a primitive element u = λ1x1+· · ·+λnxn for V . Since all roots
are distinct, such primitive element exists and a randomly chosen n-tuple
from a sufficiently large finite subset of Qn will have this property with high
probability (c.f. [54]). Fix such (λ1, . . . λn) ∈ Qn, and define

µi := λ1ξi,1 + · · ·+ λnξi,n, i = 1, . . . d. (3)

Then,

q(T ) :=

d∏
i=1

(T − µi) (4)

is the unique monic polynomial of degree d vanishing at the values of u
corresponding to each point in V . For each j, vj(T ) in the parametrization
of the coordinates is the unique Lagrange interpolant satisfying

vj(µi) = ξi,j for i = 1, . . . , d. (5)

Unfortunately, the common roots of I may be irrational, so numerical
methods will compute only approximations to them. However, the coef-
ficients of the RUR of I are rational numbers, so we may compute them
exactly. This is not always true for RUR’s of components of I, only for
RUR’s of rational components. Below, we will show how to recover the
exact coefficients of the RUR of a rational component of I from numerical
approximations of the roots of I. We start with giving heuristics for find-
ing a good initial RUR which we will use as a starting point for iterative
methods which are locally convergent to the exact RUR.
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2.2. Initialization

As shown later, the iterative methods we use are locally convergent, so we
need an initial RUR that is sufficiently close to the exact one in order to have
convergence. In this subsection, we discuss heuristics to find a good initial
approximate RUR that we can use as the starting point for our iteration.

More precisely, to compute an initial RUR for a rational component of I
we propose the following:

1. Homotopy method. Let f = (f1, . . . , fm) ∈ Q[x1, . . . , xn] for some
m > n be the defining equations of I. As in [24, Section 3], for any
linear map R : Qm → Qn which we will also consider as a matrix
R ∈ Qn×n, we define the well-constrained system R(f) := R ◦ f . For
almost all choices of R ∈ Qn×m, the ideal generated by R(f) is zero
dimensional and radical. We fix such an R ∈ Qn×m and throughout
this paper we use the notation

F = (F1, . . . , Fn) := R(f). (6)

In this step, we assume that by using numerical homotopy algorithms
(c.f. [4, 60]), we have computed approximate roots for each root in
V (F ), i.e., local Newton’s method with respect to F is quadratically
convergent starting from these approximate roots (see [24, Section 2]
on how to certify approximate roots of well-constrained systems). Us-
ing α-theory for F , we can estimate the distance from each of these
approximate roots to the exact ones.

Denote an upper bound for these distances by ε.

2. Candidates for roots of a component of I. To find the subset of
approximate roots to V (F ) that approximates the roots in (a com-
ponent of) V (I), we propose several methods. The first one is to
choose the roots that has residuals for all fi for i = 1, . . . ,m up to a
given tolerance t. The tolerance t can be chosen based on ε defined
above in Step 1, and the height and degree of each of the polynomials
in f . Another approach could incorporate the ideas in [24, Section 3]
to exclude the roots that are not approximations of V (I) by com-
paring the approximate roots of R(f) to the approximate roots of an
other random square subsystem R′(f) for some R′ ∈ Qn×m. Finally,
if we know that I or a rational component of I has only a very small
number of common zeroes, then we can check all subsets of the roots
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computed in Step 1 that have that cardinality as candidates for the
common roots of a component of I.

Denote the cardinality of the roots selected in this step by d.

3. Initial RUR. In this step, we compute an approximation to the RUR
of a component of I from the d candidates selected in the previous step
using (3), (4) and (5). In Section 2.3, we will discuss the sensitivity of
this step to the perturbation of the roots, and give an upper bound for
the distance of the approximate RUR computed from the exact one.

As mentioned in the Introduction, we propose two iterative methods for
increasng the precision of the approximate RUR: in the first we use Local
Newton Iteration and the second we use Global Newton Iteration. These are
the subjects of the next two subsections.

2.3. Increasing the Precision of the RUR using Local Newton Iteration

The main idea of increasing the precision of the RUR by local Newton
iteration is very simple: we repeat the computation of (3), (4), and (5) in the
approximate RUR with ever more accurate roots that are computed by in-
dependently applying Newton’s iteration to each of the d approximate roots.

Here, we analyze the accuracy that we can achieve for the approximate
RUR after k iterations.

Let F = (F1, . . . , Fn) be as in (6). Let {z(0)
1 , . . . ,z

(0)
d } ⊂ Cn be the

the d approximate roots we identified in Step 2 of Subsection 2.2, and let
{z∗1, . . . ,z∗d} ⊂ Cn be the corresponding exact roots in V (F ). For each
i = 1, . . . , d and k ≥ 0 we define the (k + 1)-th Newton iterate by

z
(k+1)
i := z

(k)
i − JF (z

(k)
i )−1F (z

(k)
i ),

where JF (z
(k)
i ) is the n× n Jacobian matrix of F evaluated at z

(k)
i , which

we assume to be invertible. Then, using our assumption in Step 1 of Sub-
section 2.2, namely that for all i = 1, . . . , d,

‖z(0)
i − z∗i ‖2 ≤ ε,

and that the Newton iteration is quadratically convergent from each z
(0)
i to

z∗i , we get that (using for example [8])

‖z(k)
i − z∗i ‖2 ≤ ε

(
1

2

)2k−1

.
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Next, we analyze the possible loss of precision when applying (4) and (5)
in the computation of the approximate RUR. Note that the Lagrange in-
terpolation step in (5) may involve exponential loss of precision if we are
not careful. In particular, the condition number of the Lagrange interpolant
in the monomial basis is exponential in the number of nodes d even if the
nodes µi are in the interval [−1, 1] (c.f. [18]). However, using an orthogonal
polynomial basis such as Chebyshev polynomials, the condition number of
the Lagrange interpolant in this basis is linear in d, assuming that the nodes
µi are in the interval [−1, 1] (it is

√
2d for Chebyshev polynomials, c.f. [18]).

Choosing an appropriate primitive element u = λ1x1 + · · · + λnxn ensures
that all nodes µi are in [−1, 1]. Finally, we can convert the Chebyshev basis
back to monomial bases by solving a triangular linear system with condition
number at most d2d−1 (c.f. [19, Lemma 2]).

Denote by q(k)(T ) and v(k)(T ) = (v
(k)
1 (T ), . . . , v

(k)
n (T )) the approxi-

mate RUR corresponding to {z(k)
1 , . . . ,z

(k)
d }, and let q∗(T ) and v∗(T ) =

(v∗1(T ), . . . , v∗n(T )) be the exact RUR corresponding to {z∗1, . . . ,z∗d}. Then,
using the above argument, we get the following bound for the error of the
coefficients of the interpolation polynomials:

‖v(k)
j (T )− v∗j (T )‖2 ≤ εd2

(
1

2

)2k−1−d
, (7)

which converges to zero as k → ∞, since d and ε are fixed throughout our
iteration. We can use the same bound as in the right hand side of (7) for
the accuracy of the polynomial q(k)(T ). Note that to get the above bound
we assume that there is no roundoff error in our computations, only the
approximation error from the roots.

2.4. Increasing the Precision of the RUR using Global Newton Method

In this section, we give an adaptation of the global Newton method
(also called multivariate Hensel lifting or Newton-Hensel lifting) from the
non-Archimedean metric defined by a p-adic valuation used, for example,
in [29, 63, 66, 20] to the Euclidean metric defined by the usual absolute value
on Q or C. Global Newton method increases the accuracy of the approximate
RUR directly, using polynomial arithmetics, without using approximations
of the roots, as shown below.

The recent work [23] includes several versions of the global Newton
method that are shown to be equivalent when the coefficient ring possesses
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a p-adic absolute value, but different when considered over a coefficient field
such as Q with the usual absolute value. One of these versions of the global
Newton method is equivalent to that obtained from the local Newton iter-
ation described above. Moreover, the parallel complexity of the different
versions of the global Newton iteration are compared in [23], and demon-
strated that they can be efficiently parallelized.

In order to make this paper self contained, we recall a version of the
global Newton method presented in [23] which is not equivalent to the one
in the previous section, giving an alternative method to increase the accu-
racy. As we will see below, this version relates to some higher dimensional
local Newton iteration. As a consequence, we prove the local quadratic
convergence to the exact rational univariate representation with additional
details provided in [23].

Given F = (F1, . . . , Fn) and u =
∑n

i=1 λixi in Q[x1, . . . , xn] as before,
we define the map

Φ : Q(n+1)d → Q(n+1)d

as the map of the coefficient vectors of the following degree d−1 polynomials:

Φ :


v1(T )

...
vn(T )
∆q(T )

 7→

F1(v(T )) mod q(T )

...
Fn(v(T )) mod q(T )∑n

i=1 λivi(T )− T

 , (8)

where
∆q(T ) := q(T )− T d.

If u, q(T ), v1(T ), . . . , vn(T ) is an exact RUR of a component of 〈F 〉 then
clearly

Φ (v1(T ), . . . , vn(T ),∆q(T )) = 0.

We apply the (n+ 1)d dimensional Newton iteration to locally converge to
the coefficient vector of an exact RUR which is a zero of Φ. Note that below
we will consider the map Φ as a map between

Φ : (Q[T ]/〈q(T )〉)n+1 → (Q[T ]/〈q(T )〉)n+1 ,

and that (Q[T ]/〈q(T )〉)n+1 and Q(n+1)d are isomorphic as vectors spaces. As
was shown in [23], the Newton iteration for Φ respects the algebra structure
of (Q[T ]/〈q(T )〉)n+1 as well.

The first lemma gives the Jacobian matrix of Φ.
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Lemma 2.3 ([23]). Let F = (F1, . . . , Fn), u, q(T ), v(T ) and Φ be as
above. For i = 1, . . . , n define mi(T ) and ri(T ) as the quotient and re-
mainder in the following division with remainder:

Fi(v(T )) = mi(T )q(T ) + ri(T ). (9)

Then the Jacobian matrix of Φ defined in (8) respects the algebra structure
of (Q[T ]/〈q(T )〉)n+1, and is given by

JΦ(v(T ),∆q(T )) :=

n 1
−m1(T )

JF (v(T ))
... n

−mn(T )
λ1 · · · λn 0 1

mod q(T ). (10)

The definition below is given using polynomial arithmetic modulo q(T ),
but as we will see below, it is equivalent to the Newton iteration correspond-
ing to Φ as a map defined on Q(n+1)d. For the definition to be well defined
we need the following assumptions:

Assumption 2.4. Let F , u =
∑n

i=1 λixi, q(T ) and v(T ) polynomials over
Q as above. We assume that

1. q(T ) is monic and has degree d,

2. vi(T ) has degree at most d− 1,

3. ∂q(T )
∂T is invertible modulo q(T ),

4. λ1v1(T ) + · · ·+ λnvn(T ) = T ,

5. JF (v(T )) :=
[
∂Fi
∂xj

(v(T ))
]n
i,j=1

is invertible modulo q(T ).

6. JΦ := JΦ(v(T ),∆q(T )) defined in (10) is invertible modulo q(T ).

Definition 2.5. If F (x1, . . . , xn), u(x1, . . . , xn), q(T ) and v(T ) are polyno-
mials over Q satisfying Assumption 2.4, we define

u =

n∑
i=1

λixi = T,

w(T ) := v(T )−
(
JF (v(T ))−1F (v(T )) mod q(T )

)
,
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∆(T ) :=

n∑
i=1

λiwi(T )− T, (11)

r(T ) := F (v(T )) mod q(T ), (12)

U(T ) :=
∂v(T )

∂T
−
(
JF (v(T ))−1 ∂r(T )

∂T
mod q(T )

)
, (13)

Λ(T ) :=

n∑
i=1

λiUi(T ) that we will show to be invertible mod q(T ), (14)

V (T ) := w(T )−
(

∆(T )

Λ(T )
U(T ) mod q(T )

)
, (15)

Q(T ) := q(T )−
(

∆(T )

Λ(T )

∂q(T )

∂T
mod q(T )

)
. (16)

The next proposition shows that V (T ) and Q(T ) from Definition 2.5 are
the Newton iterates for the function Φ.

Proposition 2.6 ([23]). Let F , u, q(T ), v(T ) and Φ be such that Assump-
tion 2.4 holds. Then, Λ(T ) defined in (14) is invertible modulo q(T ), and
thus V (T ) and Q(T ) are well defined in Definition 2.5. Furthermore[

V (T )
Q(T )− T d

]
=

[
v(T )

q(T )− T d

]
−J−1

Φ ·
[

F (v(T ))∑n
i=1 λivi(T )− T

]
mod q(T ), (17)

where the vector on the right hand side is Φ(v(T ), q(T )− T d). Finally, we
also have that

n∑
i=1

λiVi(T ) = T.

As a corollary, we know that the approximate RUR defined by the it-
eration in Definition 2.5 is locally quadratically and converges to an exact
RUR of a component of 〈F 〉.

Corollary 2.7. The iteration defined by Definition 2.5 is locally quadrat-
ically convergent to an exact RUR of a component of 〈F 〉, as long as As-
sumption 2.4 is satisfied in each iteration.

In the next section, we will need estimates on the accuracy of our iterates
after k iterations of the global Newton method. Here, we can use α-theory
applied to the function Φ as described in [24, Section 2] to certify that
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the initial RUR computed in Subsection 2.2 has the property of quadratic
convergence and bound the distance to the exact RUR it converges to.

Let Q(0)(T ) and V (0)(T ) = (V
(0)

1 (T ), . . . , V
(0)
n (T )) denote our initial

approximate RUR, and assume that it quadratically converges to the exact
zero Q∗(T ) and V ∗(T ) = (V ∗1 (T ), . . . , V ∗n (T )) of the map Φ. Note that this
exact RUR may not be an RUR of a rational component of I, i.e. it may
not have rational coefficients. At this stage, we will not be able decide its
rationality. Assume that we have a number ν such that

‖Q(0)(T )−Q∗(T )‖2 ≤ ν, ‖V (0)
i (T )− V ∗i (T )‖2 ≤ ν i = 1, . . . , n,

where the norm is the usual Euclidean norm of the coefficient vectors of the
polynomials over C. Then, using the quadratic convergence of the global
Newton iteration, according to [8], we get the following bound for the error of
the coefficients of the polynomials in the k-th iteration, denoted by Q(k)(T )

and V (k)(T ) = (V
(k)

1 (T ), . . . , V
(k)
n (T )):

‖Q(k)(T )−Q∗(T )‖2 ≤ ν
(

1

2

)2k−1

, ‖V (k)
i (T )− V ∗i (T )‖2 ≤ ν

(
1

2

)2k−1

(18)

which converge to zero as k →∞.

2.5. Rational Number Reconstruction

Below, we will show how to find the exact RUR of a rational component
of I once we computed a sufficiently close approximation of it. The main idea
is that we can reconstruct the unique rational numbers that have bounded
denominators and indistinguishable from the coefficients of the polynomials
in our approximate RUR within their accuracy estimates. Then, we can
use purely symbolic methods to check whether the RUR with the bounded
rational coefficients is an exact RUR for a component of our input system f .
Here, we recall the theory behind rational number reconstruction, and in
the next section we detail our “end game,” i.e. conditions for termination.

Since the coordinates of the approximate roots are given as floating point
complex numbers, we can consider them as Gaussian rational in Q(i), and
the same is true for the coefficients of the approximate RUR computed from
these roots in Subsection 2.3. However, since the exact RUR has rational
coefficients, we will neglect the imaginary part of the coefficients of the
approximate RUR. Therefore, we will assume that the coefficients of the
approximate RUR are in Q, given as floating point numbers.
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In this section, we use rational number reconstruction for each coefficient
of the approximate RUR that was computed in the previous subsections.
The following classical result implies that if a number is sufficiently close to a
rational number with small denominator, then we can find this latter rational
number in polynomial time (c.f. [58, Corrolary 6.3a] or [64, Theorem 5.26]).

Theorem 2.8 ([58, 64]). There exists a polynomial time algorithm which,
for a given rational number c and a natural number B tests if there exists a
pair of integers (z, d) with 1 ≤ d ≤ B and

|c− z/d| < 1

2B2
,

and if so, finds this unique pair of integers.

To compute the pair (z, d) ∈ Z2 for each coefficient c appearing in the
approximate RUR computed in the previous subsections, we use the bound
B ∈ N such that 1

2B2
∼= E, where E denotes our estimate of the accuracy of

our approximate RUR either from (7) or from (18). Thus, we can define

B :=
⌈
(2E)−1/2

⌉
.

For efficient computation of the rational number reconstruction, we can
use the extended Euclidean algorithm or, equivalently, continued fractions
(e.g., see [64, 65, 51, 43, 61]), or use LLL basis reduction as in [10]. The
computed rational polynomials with bounded denominators we denote by

q̂(T ) and v̂(T ) = (v̂1(T ), . . . , v̂n(T )). (19)

Remark 2.9. Theorem 2.8 does not guarantee existence of the the pair (z, d)
with the given properties, only uniqueness. In case the rational number re-
construction algorithm for some coefficient c returns that there is no rational
number within distance E with denominators at most B, we will need to
improve the precision E (which will increase the bound B on the denomina-
tor). This is done by applying further local or global Newton steps on our
approximates. As described in Theorem 2.12 below, if the bound B we ob-
tained this way is larger than an a priori bound, we terminate our iteration
and conclude that it did not converge to a RUR of a rational component.
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2.6. Termination

One key task is to decide whether to terminate our iterations or increase
the accuracy of the approximate RUR as described in Sections 2.3 and 2.4.

Let q̂(T ) and v̂(T ) = (v̂1(T ), . . . , v̂n(T )) be the rational polynomials
with bounded denominators as computed in Subsection 2.5. In this step
we will use our original overdetermined input system f = (f1, . . . , fm) in
Q[x1, . . . , xn] for some m ≥ n with I = 〈f1, . . . , fm〉.

First, we reduce symbolically each fi by the Gröbner basis

{q̂(T ), x1 − v̂1(T ), . . . , xn − v̂n(T )},

or equivalently we compute fi(v̂(T )) mod q(T ). If they all reduce to zero,
we return (19) as the exact RUR of I.

If not all fi(v̂(T )) mod q(T ) are zero, then either the accuracy of our ap-
proximate RUR was too small to “click on” the exact RUR in Subsection 2.5,
or the iteration does not converge to an RUR of a rational component of I.
To decide which case we are in, we will use a priori upper bounds on the
heights of the coefficients of an RUR of a rational component of I.

Below, we review some of the known upper bounds that we can use in
our estimates. First, we define heights of polynomials over Q in a way that
we can utilize symbolic algorithms over Z to get bounds.

Definition 2.10. Let p(T ) = T d + ad−1T
d−1 + · · ·+ a0 ∈ Q[T ] where each

ai = zi/di for zi ∈ Z and di ∈ N. Let P (T ) ∈ Z[T ] be any intereger
polynomial that is an integer multiple of p(T ), for example we can choose

P (T ) = bdT
d + bd−1T

d−1 + · · ·+ b0 :=

(
d−1∏
i=0

di

)
p(T ) ∈ Z[T ].

Then the height of p is defined as

H(p) = H(P ) =
max{|bi| : i = 0, . . . , d}

gcd(bi : i = 0, . . . , d)

which is clearly independent of representation of p(T ) in Z[T ]. Finally, we
define the logarithmic height of p as

h(p) := logH(p).
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Note that if gcd(zi, di) = 1 for all i then

H(p) ≥ max
i
{|zi|, di} (20)

so we can use the height to bound the magnitude of the numerators and
denominators appearing in the coefficients of our polynomials.

The best known upper bounds for the logarithmic heights of the poly-
nomials in the RUR of I are as follows [14]. Assume that the input polyno-
mials f1, . . . , fm have degree at most D and logarithmic height at most h.
First, we give a bound for the logarithmic bound of the primitive element
u = λ1x1 + · · ·+ λnxn using [54, Lemma 2.1]:

h(λ1x1 + · · ·+ λnxn) ≤ 2(n− 1) log(nδ),

where δ is the number of roots in V (I). To use [14], which assumes that x1

is a primitive element, we take (f1, . . . , fm, λ1x1 + · · · + λnxn − T ) as our
input, with a logarithmic height upper bound

h′ := 2(n− 1) log(nδ) + h.

Then, using an arithmetic Bézout theorem in [37, Lemma 2.7] and [14, The-
orem 1], the logarithmic heights of the polynomials q(T ), v1(T ), . . . , vn(T )
in an RUR of I are bounded by

h(q), h(vi) ≤ 6n3h′Dn+1 ≤ 12n4hDn+1 log(nδ) i = 1, . . . n. (21)

To get a bound for the height of the polynomials in an RUR for a rational
component of I, we use Gelfund’s inequality for the height of a polynomial
divisor of an integer polynomial [26, Proposition B.7.3] (other bounds can
also be used, a survey of the known bounds of factors in Z[x] be found in [1]).
For P,Q ∈ Z[T ] such that P is a divisor of Q, we have

H(P ) ≤ edeg(Q)H(Q).

This, combined with (21), gives the following upper bound for the logarith-
mic heights of the polynomials in an exact RUR q∗(T ), v∗1(T ), . . . , v∗n(T ) of
a rational component of I:

h(q∗), h(v∗i ) ≤ 12δn4hDn+1 log(nδ) i = 1, . . . n, (22)
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where δ is the number of roots in V (I). This yields the following bound on
the heights of the polynomials in a RUR of a rational component of I:

H(q∗), H(v∗i ) ≤ Hnδe12δn4Dn+1
i = 1, . . . n, (23)

where H = eh is an upper bound for the height of the input polynomials in f .

Once we have an a priori bound for the heights of the polynomials in an
exact RUR of a rational component of I, we can use (20) and check if the
bound B for the denominators used in the rational number reconstruction
in Subsection 2.5 exceeds the a priori bound from (23). If that is the case,
we conclude that the iteration did not converge to an exact RUR of a ra-
tional component of I and terminate our algorithm. Otherwise, continue to
increase the accuracy of our approximation.

We summarize this subsection in the following theorems:

Theorem 2.11. Let I be as above. Assume that q∗(T ), v∗1(T ), . . . , v∗n(T ) is
an exact RUR of a rational component of I. Define the maximum height

H∗ := max{H(q∗), H(v∗1), . . . ,H(v∗n)}.

Assume that an approximate RUR, q(T ), v1(T ), . . . , vn(T ), satisfies

‖q(T )− q∗(T )‖2, ‖vi(T )− v∗i (T )‖2 ≤ E <
1

2(H∗)2
i = 1, . . . , n, (24)

for some E > 0, and let q̂(T ), v̂1(T ), . . . , v̂n(T ) obtained via rational number
reconstruction on the coefficients of q(T ), v1(T ), . . . , vn(T ) using the bound
B := d(2E)−1/2e > H∗. Then

q̂(T ) = q∗(T ), v̂1(T ) = v∗1(T ), . . . , v̂n(T ) = v∗n(T ).

Proof. Note that the coefficients of q∗(T ), v∗1(T ), . . . , v∗n(T ) have denomina-
tor at most H∗ < B by (20). Since the 2-norm gives an upper bound for the
infinity norm, we know all coefficients of q∗(T ), v∗1(T ), . . . , v∗n(T ) are at most
distance E from the corresponding coefficient of q(T ), v1(T ), . . . , vn(T ). By
Theorem 2.8, for each coefficient of of q(T ), v1(T ), . . . , vn(T ), there is at most
one rational number with denominator bounded by B =

⌈
(2E)−1/2

⌉
> H∗

within the distance of

1

2B2
=

1

2
⌈
(2E)−1/2

⌉2 ≤
1

2
(
(2E)−1/2

)2 = E.

This proves that the rational reconstruction must equal the exact RUR. 2

The next theorem considers the converse statement.
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Theorem 2.12. Let f ⊂ Q[x1, . . . , xn] be as above and assume that H
and D are the maximum height and degree of the polynomials in f respec-
tively. Also, let δ be the cardinality of the common roots of f in Cn. Assume
that we have an upper bound E for the accuracy of our approximate RUR
q(T ), v1(T ), . . . , vn(T ) either from (7) or from (18). Let B := d(2E)−1/2e
and assume that

B ≥ Hnδe12δn4Dn+1
.

Let q̂(T ), v̂1(T ), . . . , v̂n(T ) be obtained via rational number reconstruction
from the coefficients of q(T ), v1(T ), . . . , vn(T ) using the bound B for the
denominators. If

f(v̂(T )) 6≡ 0 mod q̂(T )

then there is no exact RUR of a rational component of I within the distance
of E from q(T ), v1(T ), . . . , vn(T ).

Proof. If there was an exact RUR of a rational component of I within E
from q(T ), v1(T ), . . . , vn(T ), the heights of its coefficients would be bounded
by B ≥ Hnδe12δn4Dn+1

as in (23). The rational number reconstruction
algorithm would have found this exact RUR, which is a contradiction. 2

Finally, we give the number of iteration needed (asymptotically) in the
“best case” and in the “worst case”.

Theorem 2.13. Let f ∈ Q[x1, . . . , xn]m and I = 〈f〉 be as above.

1. Assume that q∗(T ), v∗1(T ), . . . , v∗n(T ) is an exact RUR for a component

of I and assume that q(0)(T ), v
(0)
1 (T ), . . . , v

(0)
n (T ) is an initial approxi-

mate RUR which quadratically converges to q∗(T ), v∗1(T ), . . . , v∗n(T ) ei-
ther using local Newton iteration as in Subsection 2.3 or global Newton
iteration as in Subsection 2.4. Then the number of iterations needed
to find q∗(T ), v∗1(T ), . . . , v∗n(T ) is asymptotically bounded by

O(log(d) log log(H∗E0))

where H∗ = max{H(q∗), H(v∗1), . . . ,H(v∗n)} is the height of the output,
d = degT (q), and E0 is an upper bound on the Euclidean distance of
q(0)(T ),v(0)(T ) from the output q∗(T ),v∗(T ).

2. Assume that q(0)(T ), v
(0)
1 (T ), . . . , v

(0)
n (T ) is an initial approximate RUR

which quadratically converges to the polynomials q∗(T ), v∗1(T ), . . . , v∗n(T ),
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but these polynomials have irrational coefficients, i.e. they do not form
an RUR of a rational component of I. In this case we need

O(n log(dδnD) log log(HE0))

iterations to conclude that our iteration did not converge to an exact
RUR of a rational component of I. Here H and D are the maximum
of the heights and degrees of the polynomials in f , respectively, δ is the
number of roots in V (I), and d,E0 are as above in 1.

Proof. 1. By Theorem 2.11 to successfully terminate the algorithm with
the exact RUR we need to achieve inaccuracy of 1

2(H∗)2
. We will use the

error bound of the local Newton method to increase the accuracy of the
RUR given in (7) because that is a weaker bound than the one we got for
the global Newton method in (18), so the bound we get for the number of
iterations k in (7) will also give an upper bound for the iterations that we
need using the global Newton method. Thus using (7) we need that

d2E0

(
1

2

)2k−1−d
≤ 1

2(H∗)2
,

which is satisfied if
k ≥ c1 log(d) log log(E0H

∗)

for some constant c1 ≤ 2.
2. By Theorem 2.12 to terminate the algorithm in the worst case we need
to achieve accuracy

1

2(Hnδe12δn4Dn+1)2
.

Using the same argument as for the first claim for the error bound after k
iterations of either the local or the global Newton method, using (7) we need
that

d2E0

(
1

2

)2k−1−d
≤ 1

2(Hnδe12δn4Dn+1)2
,

which is satisfied if

k ≥ c2(n+ 1) log(dδnD) log log(E0H)

for some constant c2 ≤ 18. 2
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3. Certification of isosingular points

As summarized in the Introduction, we will use isosingular deflation [25]
to reduce to the case of certifying simple roots to overdetermined systems
which was discussed in Section 2. Due to this reduction, we can extend
this approach to all points which can be regularized by isosingular deflation,
called isosingular points. Since every isolated multiple root is an isosingular
point, this method applies to multiple roots. However, isosingular points
need not be isolated as demonstrated by the origin with respect to the
Whitney umbrella x2 − y2z = 0.

3.1. Isosingular deflation

Given a system g = (g1, . . . , gm) ∈ Q[x1, . . . , xn] and a root z of g = 0,
isosingular deflation is an iterative regularization process. For the current
purposes, we will only consider the deflation operator Ddet defined as follows.
Let d = dnull(g, z) = dim null Jg(z) be the dimension of the null space of
the Jacobian matrix Jg evaluated at z. Let ` =

(
n

n−d+1

)
·
(

m
n−d+1

)
and

{σ1, . . . , σ`} be the index set of all (n−d+1)× (n−d+1) submatrices of an
m×n matrix. If d = max{0, n−m}, then ` = 0 in which case we know that
z is a smooth point on an irreducible solution component of dimension d.
Define Ddet(g, z) = (gdet, zdet) where zdet = z and

gdet =


g

det Jσ1g
...

det Jσ`g

 .
The matrix Jσg is the submatrix of the Jacobian Jg indexed by σ. Clearly,
gdet consists of polynomials in Q[x1, . . . , xn].

Since the deflation operator Ddet will be repeatedly applied, we write
Dkdet(g, z) to mean k successive iterations with D0

det(g, z) = (g, z). This nat-
urally leads to an associated nonincreasing sequence of nonnegative integers,
called the deflation sequence, namely {dr(g, z)}∞r=0 where

dk(g, z) = dnull(Dk
det(g, z)) for k ≥ 0.

Since this nonnegative sequence is decreasing, it must have a limit and it
must stabilize to that limit. That is, there are integers d∞(g, z) ≥ 0 and
s ≥ 0 so that dt(g, z) = d∞(g, z) for all t ≥ s. When z is isolated, s is
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bounded above by the depth as well as multiplicity [15, 25, 39]. The limit
d∞(g, z) is called the isosingular local dimension of z with respect to g. The
isosingular points are those for which their isosingular local dimension is zero
so that, after finitely many iterations, isosingular deflation has regularized
the root, i.e., constructed a polynomial system for which the point is a
regular root. Clearly, such a system must consist of at least n polynomials,
but will typically be overdetermined.

Since the resulting polynomial systems have rational coefficients, it im-
mediately follows that every point in a zero-dimensional rational component
must have the same deflation sequence. This can be used to partition the
set of points under consideration into subsets and run the certification pro-
cedure described in Section 2 independently on each subset.

The construction of the deflation sequence and the resulting regularized
system is an exact process that depends upon z. In our situation where z is
only known approximately, we use the numerical approximations to compute
exact numbers, namely the nonnegative integers arising as the dimensions
of various linear subspaces which form the deflation sequence.

One drawback with Ddet is the number of minors used in each iteration,
namely ` =

(
n

n−d+1

)
·
(

m
n−d+1

)
. Since the codimension of the set of m × n

matrices of rank n − d is c = d(m + d − n), we will adjust Ddet to use
exactly c minors as follows. Since d = dnull(g, z), we can select an invertible
(n− d)× (n− d) submatrix of Jg(z). Rather than using all of {σ1, . . . , σ`},
we only use the c many which contain our selected invertible submatrix.
In particular, with this setup, the tangent space of these c many minors is
equal to the tangent space of all ` minors at z.

With this specialized construction, one now needs to be cautious that
two points with the same deflation sequence can fail to be regularized by
the system constructed by the other. However, all points in the same zero-
dimensional rational component will still be regularized simultaneously. In
particular, by comparing ranks of various submatrices, one may be able to
produce a finer partition of the points under consideration before indepen-
dently certifying each collection.

Example 3.1. As a demonstration, consider the Whitney umbrella defined
by g(x, y, z) = x2 − y2z. Following [25, Ex. 5.12], the deflation sequence
for the origin is {3, 2, 0, 0, . . . } showing that the origin is not isolated but
is an isosingular point. In particular, it takes two iterations to construct
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a polynomial system for which the origin is a regular root. Since Jg(0) is
identically zero, the first iteration appends all partial derivatives, say

g′(x, y, z) =


g(x, y, z)

x
yz
y2

 .
Since Jg′(0) has rank 1, the original formulation of Ddet will append 18
2 × 2 minors of Jg′. However, with our modification, we only need to add
the 6 minors which arise by submatrices that, in this case, include the unique
nonzero element of Jg′(0). For this example, it is easy to verify that the
ideal of the resulting regularizing polynomial system is equal to 〈x, y, z〉.

3.2. Certification

Given f = (f1, . . . , fm) ∈ Q[x1, . . . , xn] and a subset V ⊂ V (f) consisting
of isosingular points, the process for certification proceeds as follows.

1. Deflation sequences. Compute the deflation sequences for each of the
points in V . If each point is an isosingular point, then isosingular de-
flation will terminate and produce a regularized system for each point.
If one is not an isosingular point, one can apply the tests developed
in [25, Section 6] to determine that the sequence has stabilized with
the point having a positive isosingular local dimension. Remove all
such points from V and partition the remaining points based on their
deflation sequences and common regularizing polynomial systems, say
V1, . . . , Vk.

2. Certify each Vi. Associated with each Vi is a polynomial system f (i)

having rational coefficients that must be either well-constrained or
overdetermined. If it is well-constrained, simply apply standard α-
theoretic techniques for certification. If overdetermined, use the ap-
proach presented in Section 2 for certification.

Successfully completing the certification proves that the points under
consideration are indeed isosingular points of f , i.e., the isosingular local
dimension is zero. However, as currently formulated, this does not yield
any information about the local dimension of the points, e.g., deciding if
the point is isolated or not. Furthermore, even if one knows that a given
point is isolated, this approach currently does not yield information about its
multiplicity. Both of these are topics that will be addressed in future work.
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4. Examples

4.1. An illustrative example

To demonstrate the approach, consider the polynomial system

g(x1, x2, x3) =

 x2
1 + x2

2 − 1
8x1 − 16x2

2 + 17
x1 − x2

2 − x3 − 1

 .
It is easy to verify that g has two roots of multiplicity 2. Thus, after ap-
pending det Jg, we are interested in the overdetermined polynomial system

f(x1, x2, x3) =

[
g(x1, x2, x3)

64x1x2 + 16x2

]
which has two regular roots. A randomization of f consists of 3 quadratics
which has 4 regular solutions, two of which can be shown to not correspond
to roots of f via [24, Section 3]. We start with the following numerical
approximations for the d = 2 points of interest:

z1 = (−0.250, 0.968,−2.188) and z2 = (−0.250,−0.968,−2.188)

with error bound ε = 0.002. From these numerical approximations, we see
that we can take the primitive element to be u = x2.

Using exact arithmetic, the initial RUR corresponding to this setup is

q(T ) = T 2−14641/15625, v1(T ) = −1/4, v2(T ) = T, v3(T ) = −547/250.

At k = 0 with E = εd221+d−2k , we have B =
⌈
(2E)−1/2

⌉
= 2. Since 1/4

can not be approximated by a rational number with denominator bounded
by B = 2 with an error of at most (2B2)−1 = 1/8, we perform a Newton
iteration on each zi. At k = 1, using a denominator bound of B = 16 with
error tolerance 1/512, we obtain

q(T ) = T 2 − 15/16, v1(T ) = −1/4, v2(T ) = T, v3(T ) = −35/16.

Since

f(−1/4, T,−35/16) =


T 2 − 15/16

2(T 2 − 15/16)
−(T 2 − 15/16)

0

 = 0 mod q(T )
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we have proven that f and g have (at least) 2 roots which form a rational
component. The corresponding well-constrained system from this RUR is x1 + 1/4

x2
2 − 15/16
x3 + 35/16

 .
4.2. A well-constrained system with regular and multiple roots

A common benchmark system is the Caprasse system which has 24 reg-
ular roots and 8 roots of multiplicity four [47], namely

g =

 x3
1x3 − 4x2

1x2x4 − 4x1x
2
2x3 − 2x3

2x4 − 4x2
1 − 4x1x3 + 10x2

2 + 10x2x4 − 2
x1x

3
3 − 4x1x3x

2
4 − 4x2x

2
3x4 − 2x2x

3
4 − 4x1x3 + 10x2x4 − 4x2

3 + 10x2
4 − 2

2x1x2x4 + x2
2x3 − 2x1 − x3

x1x
2
4 + 2x2x3x4 − x1 − 2x3

 .
Since the system is well-constrained, numerical approximations for the 24
regular roots can be certified using standard α-theory. Here, we consider
certifying the multiple roots. At each of these multiple roots, Jg has rank 2
with the lower right 2 × 2 block having full rank. Thus, we consider the
system f constructed by appending the four 3 × 3 minors of Jg containing
the lower right block to g.

From the numerical approximations of the 8 points zi that we computed
using Bertini [3], we see that u = x1−x2 +3x3−3x4 is a primitive element.
Starting the numerical approximations correct to 10 digits, we obtain the
following RUR after one Newton iteration:

q(T ) = (T 2 + 4/3)(T 2 + 12)(T 2 − 16T + 76)(T 2 + 16T + 76)
v1(T ) = −(4107T 7 − 347060T 5 + 15954064T 3 + 361834048T )/339935232
v2(T ) = −(6999T 7 − 672196T 5 + 32397008T 3 + 384342848T )/679870464
v3(T ) = (1851T 7 − 169876T 5 + 8058512T 3 + 181018688T )/169967616
v4(T ) = (6999T 7 − 672196T 5 + 32397008T 3 + 384342848T )/679870464

This RUR shows that the 8 roots arise from 4 rational components, each of
degree 2, with splitting field Q[

√
3].

4.3. Two cyclic system

A common family of benchmark systems are the cyclic-n roots [7]. Here,
we demonstrate using the approach for problems related to n = 4 and n = 9.
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For n ≥ 2, the cyclic-n system is

fn =

[ ∑n
j=1

∏D
k=1 xj+k for D = 1, . . . , n− 1∏n

k=1 xk − 1

]
where xn+` = x` for all ` = 1, . . . , n.

The solutions of f4 = 0 lie on two irreducible curves, with 8 embedded
points, which are isosingular points. We deflate these points simultane-
ously by appending in the four 3× 3 minors of Jf4 containing the first and
last rows, and second and third columns. By using numerical approxima-
tions computed by Bertini, we see that we can use the primitive element
u = x1 + 2x2 − x3 + 3x4. This yields the RUR:

q(T ) = (T − 1)(T + 1)(T − 3)(T + 3)(T 2 + 1)(T 2 + 9)
v1(T ) = (−T 5 + 121T )/120
v2(T ) = (−T 5 + 61T )/60
v3(T ) = (T 5 − 121T )/120
v4(T ) = (T 5 − 61T )/60

Now, for n = 9, we consider the overdetermined system

f(x) =

 f9(x)
x1 − x4

x1 − x7


motivated by Example 9 of [15, Section 7]. The degree of the ideal generated
by f is 162 with Bertini computing 54 regular points and 54 double points.
The following uses the primitive element u = x1 + 2x2− x3 + 2x5 + x6− x8.

For the 54 regular points, we compute

q(T ) = (T 2 + T − 101)(T 4 − T 3 + 102T 2 + 101T + 10201)
(T 2 + 19T + 79)(T 4 − 19T 3 + 282T 2 − 1501T + 6241)
(T 2 − 17T + 61)(T 4 + 17T 3 + 228T 2 + 1037T + 3721)
(T 12 − 2356T 9 + 5057697T 6 − 1161599884T 3 + 243087455521)
(T 12 − 304T 9 + 1122717T 6 + 313211504T 3 + 1061520150601)
(T 12 + 1802T 9 + 3020223T 6 + 409019762T 3 + 51520374361).

For the 54 double points, by comparing ranks of 8×8 submatrices of Jf ,
we are able to partition into 3 subsets of size 18. For each of these subsets,
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we compute the three as

q(T ) = (T 2 − 11T + 19)(T 4 + 11T 3 + 102T 2 + 209T + 361)
(T 12 + 704T 9 + 488757T 6 + 4828736T 3 + 47045881)

q(T ) = (T 2 + 13T + 31)(T 4 − 13T 3 + 138T 2 − 403T + 961)
(T 12 − 988T 9 + 946353T 6 − 29433508T 3 + 887503681)

q(T ) = (T 2 + T − 11)(T 4 − T 3 + 12T 2 + 11T + 121)
(T 12 − 34T 9 + 2487T 6 + 45254T 3 + 1771561).
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