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Abstract. Bertini real is a command line program for numerically
decomposing the real portion of a one- or two-dimensional complex ir-
reducible algebraic set in any reasonable number of variables. Using nu-
merical homotopy continuation to solve a series of polynomial systems
via regeneration from a witness set, a set of real vertices is computed,
along with connection information and associated homotopy functions.
The challenge of embedded singular curves is overcome using isosingular
deflation. This decomposition captures the topological information and
can be used for further computation and refinement.
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1 Introduction

Bertini real seeks to automate the task of visualizing and computing on real
algebraic curves and surfaces. From only a defining polynomial system, the pro-
gram computes a cellular decomposition of the real portion of a one- or two-
dimensional complex algebraic set. The output of Bertini real is a set of text
files, containing the set of computed vertices, the connections between them, and
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any associated homotopies. Using the homotopies, the decomposition can be re-
fined to the user’s desire with a supplemental program simply titled sampler.
An interactive visualization suite is provided in MATLAB.

Bertini real works by leveraging the power of homotopy continuation [2,
3], numerical irreducible decomposition [8], regeneration [5], randomization [3],
and isosingular deflation [6] to decompose the real parts of complex one- and
two-dimensional components of algebraic varieties. It produces a cell decompo-
sition, similar to the output of other decomposition methods, most notably the
Cylindrical Algebraic Decomposition [1].

2 Functionality

Bertini real is an MPI parallel-enabled compiled program called from the com-
mand line. The two necessary ingredients to run the software are: 1) a Bertini

input file, and 2) a Numerical Irreducible Decomposition (NID) produced by
Bertini. It further depends on MATLAB for symbolic calculations (e.g. deflation,
symbolic derivatives and determinants), the Boost C++ support library, as well
as GMP and MPFR (for multiple-precision numerics). Compilation requires a
library-compiled version of Bertini [2].

The basic pattern for usage of Bertini real is summarized below.

1. Create a NID, via Bertini. This gives a witness set for each irreducible
component, as well as information on each component’s degree, multiplicity,
and deflation requirements.

2. Run Bertini real on a single irreducible component. Bertini real checks
if the component is self-conjugate. If it is not, Bertini real finds the in-
tersection of the component with its conjugate and proceeds. The program
further deflates the system [6] so that the component is reduced and properly
deflated, so that we may track on it. It then finds a cell decomposition of
the real points in the complex set.

3. Refine the decomposition. Bertini real produces raw decompositions that
are bare skeletons of the objects they describe. If the user wants to view
a smoothed version, or use the decomposition for further calculations, they
might want to refine using the program sampler, provided as part of the
Bertini real package.

4. Visualize. Visual interpretation of the data typically quickly reveals any
problems which might have been encountered during computations. The
suite of graphical software is provided through MATLAB.

3 Application

3.1 Curve

Consider a three-jointed revolute planar robot, with equal link lengths – and
let the length be unity. If we fix a point in the workspace of the robot, we get
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Fig. 1. Example of curve decomposition. A 3R planar robot of unit link length places
its end effector at the point (x, y) = (1, 0). Left: projection onto the cosines of the
angles. Right: projection onto sines. These two plots are simpler than viewing the joint
angles directly, due to the periodic nature of trigonometric functions.

a curve of solutions in terms of the joint angles such that the end effector is
placed at the point. Equations are given below in (1), with si = si = sin θi, and
ci = ci = cos θi.

c1 − s3(c1s2 + c2s1) + c1c2 − s1s2 + c3(c1c2 − s1s2)− 1
s1 + c1s2 + c2s1 + s3(c1c2 − s1s2) + c3(c1s2 + c2s1)

c22 + s21 − 1
c22 + s22 − 1
c23 + s23 − 1

 = 0 (1)

In Fig. 1, we present the three components of the solution curve when we
grasp the point (x, y) = (1, 0). On the left is a projection of the set onto the
cosines, and the figure on the right are the sines.

3.2 Surface

Now consider a two-joint revolute planar robot with link lengths `1 = 1, `2 = 0.5,
and let the target position for the end effector be variable and denoted (x, y),
as in (2). The set of points in the plane the robot can reach is realizable using a
surface decomposition. The workspace ought to be an annulus, and this is indeed
the result of the decomposition when projected onto (x, y) as in Fig. 2.

c1 − x+ (c1c2)/2− (s1s2)/2
s1 − y + (c1s2)/2 + (c2s1)/2

c21 + s21 − 1
c22 + s22 − 1

 = 0 (2)

4 Underlying theory

4.1 Curve

The implementation of curve decomposition in Bertini real follows the algo-
rithm laid out in [7], depicted in Fig. 3, and summarized informally below.
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Fig. 2. Example of surface decomposition. A 2R planar robot with differing link lengths
is allowed to move freely, and we decompose its workspace as a surface in terms of (x, y)
and the sines and cosines of the joint variables. On the left, projection of the surface
onto (x, y) gives an annulus as expected. At the right, the surface is tilted, revealing
the two solutions, in terms of the arctangent of (s2, c2).

To begin, there is a little user set up, the foremost of which is to run Bertini

with configuration setting TrackType:1 to obtain a NID. Optionally, the user
may write a file containing a (random) real projection and a sphere of interest.
Bertini real automatically tests for self-conjugacy. A non-self-conjugate com-
ponent is intersected with its own conjugate to produce a finite set of isolated
real points, which terminates the computation. Otherwise, Bertini real carries
out the following six steps.

1. Find critical points. These points will include singular points, and points
such that the curve is tangent to the direction of projection, and they will
satisfy the system:

fcrit =

 f(x)

det

(
Jf(x)
Jπ1(x)

) = 0, (3)

where J indicates the Jacobian matrix of partial derivatives and π1 : CN → C
is the random real projection being used for the decomposition. Let c1, . . . , cn
be the real critical points, ordered so that π1(c1) < π1(c2) < · · · < π1(cn).

2. Intersect with sphere. To cut off unbounded arcs of the curve, or to focus
the view to the user’s region, we intersect with a sphere of center x0 and
radius r, and solve the system (4), inserting the real intersection points into
the list of ordered critical points.

fsphere =

[
f(x)

||x− x0||22 − r2
]
. (4)

3. Slice. To find what will become the midpoints of the edges of the decom-
position, slice the curve between its critical points, by tracking from the
single witness linear L to each midpoint projection value, pmi

= (π1(ci) +
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5. Merge 4. Connect the dots

3. Slice2. Intersect with sphere1. Find critical points

6. Refine

Fig. 3. The six major steps for a curve decomposition as implemented in Bertini real.
This illustration uses an elliptic curve, x3 − 2x + 1 − y2 = 0.

π1(ci+1))/2, as:

Hmidslice =

[
f(x)

tL(x) + (1− t)(π1(x)− pmi
)

]
.

4. Connect the dots. Use the following homotopy to track midpoints first left
and then right to the points on the curve above each critical point:

Htrack =

[
f(x)

π(x)− (tpmi
+ (1− t)p)

]
,

where p is taken first as p = π1(ci) and then as p = π1(ci+1).
5. Merge. Optionally, we can remove superfluous intersections which lie in the

same projection fiber as critical points. These points arise when the curve
has non-critical branches above a critical point, and they can be removed to
produce a simpler decomposition.

6. Refine. Optionally, the user can refine the decomposition to their specifica-
tion. By using the same homotopy as in Step 4, we can move the generic point
in the center of each edge to any projection value p, π1(ci) < p < π1(ci+1).
Two methods are available in Bertini real: 1) a fixed-number method,
where the user specifies how many points they want per edge; and 2) an
adaptive method, where the user specifies a distance tolerance and a limit
on the of number of refinement iterations.

4.2 Surface

The implementation of surface decomposition in Bertini real follows the algo-
rithm laid out in [4], depicted in Fig. 4, and summarized informally below.
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Fig. 4. The six major steps for a surface decomposition as implemented in
Bertini real. This example uses the Whitney Umbrella, x2 − y2z = 0, a degree 3
surface in three variables, which is unbounded and contains a curve of singularity
(around part of which, the surface is one-real dimensional.

Similarly to a curve decomposition, there is a small amount of user set up.
Of course, one must obtain a NID, and the user may choose a projection and
sphere. Self-conjugacy testing, and deflation are performed automatically. The
six steps below are for self-conjugate components only. Any non-self-conjugate
component is intersected with its conjugate component, producing at most a
curve, which is then treated as in the curve case above. The decomposition of a
surface is found with respect to two random real projections, π1, π2 : CN → C,
as follows.

1. Decompose the critical curve. The critical curve is analogous to the outline
of an object when viewed in an image plane and is also the set where the
tangent is parallel to the two directions of projection, π1, π2. The curve is
defined by the system:

fcritcurve =


f

det

 Jf(x)
Jπ1(x)
Jπ2(x)


 = 0. (5)

Witness sets for the components of the critical curve are obtained via regen-
eration from the witness set, using a left-nullspace approach, and these are
passed the curve method for decomposition with respect to π1.

2. Decompose singular curves. As a matter of course from computing the wit-
ness set for the critical curve, we also obtain witness points for singular
curves, since every singular curve will also satisfy (5). We use isosingular de-
flation [6] to deflate the input system these witness points, thereby producing
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full witness sets. These are then decomposed with respect to π1 exactly as
for any other component of the critical curve.

3. Intersect with sphere. The intersection of the surface with a sphere of radius
r and center x0 will result in a curve, defined by (4). The intersection curve
is treated as part of the critical curve, so it too is decomposed with respect
to π1.

4. Slice. We perform a curve decomposition at each of two sets of π1 projection
values – at each critical π1-value, and halfway between each pair, coming from
the critical points of the critical curve, singular curves, and the sphere curve.
Call these critical slices and mid-slices, respectively. Each of these slices has
a constant π1 value and is decomposed with respect to π2.

5. Connect the dots. The midpoints of each edge of each mid-slice become the
center point for a face of the decomposition. The decompositions of the mid-
slices reveal how the midpoint is connected to the top and bottom edges of
its face, each coming from the critical curve, the sphere curve, or a singular
curve. The description of the face is completed by finding which edges in
the adjacent left and right critical slices connect to the midpoint. This is
determined using a homotopy that keeps the midpoint from crossing its top
and bottom edges as it is moved to the left and right critical projection
values: see [4].

6. Refine. The decomposition to this point is coarse, in that it provides a coarse
triangulation of the surface. A refinement method is provided in the separate
executable sampler, which refines each edge and face in the decomposition,
to contain a number of points of the user’s choice. Adaptive and eventually
optimal sampling for surfaces is a matter of ongoing development.

5 Technical contribution

5.1 Advances

Bertini real allows a non-expert access to the algorithms of [7, 4] for decom-
posing the real points of complex algebraic curves and surfaces, whereas the
previous prototype codes required expertise and worked only on sets of low de-
gree. Importantly, Bertini real is the first implementation that removes the
restriction to almost-smooth surfaces that was needed in [4] — non-smooth sur-
faces can now be treated in any number of variables. The largest curve we have
decomposed so far is a 3-3 Burmester curve [9] in 14 variables of degree 630.

5.2 Challenges

The main algorithms as implemented in Bertini real are all for affine varieties.
One can decompose any projective variety one wants, by considering patch equa-
tions and the transformation into an affine space. However, the Bertini tracker
loops used by Bertini real expect there to be a single homogenizing variable
for a single non-homogeneous variable group. Furthermore, Bertini as written
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was not intended to be called as a library as we do with Bertini real, so link-
ing into the loops required a great deal of finesse. This experience is helping the
setting up of specifications for the next version of Bertini.

While curves are comparatively easy to decompose, Bertini real’s surface
decomposer is currently capable of dealing with only moderately sized systems
— surfaces involving no randomization and six variables are generally currently
tractable. However, we have encountered difficulty decomposing a particular
Burmester surface, involving eight polynomials in ten variables. While we can
readily obtain the witness points for the critical curve, computing the critical
points of the critical curve remains a barrier for this problem. The code uses
a determinantal formulation of the criticality condition, wherein we compute a
symbolic determinant involving a Jacobian matrix. MATLAB struggles with this,
eventually spitting out a system over 25 MB in size. Worse, Bertini must then
parse this input file to create procedures for evaluating the function and its
Jacobian, which overwhelms the available computing resource.

The major obstacle to running large problems through the surface decom-
poser is therefore the elimination of the determinant. Alternate methods that
avoid the determinant are the subject of further research.
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