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Abstract. Given a polynomial system f , this article provides a gen-
eral construction for homotopies that yield at least one point of each
connected component on the set of solutions of f = 0. This algorithmic
approach is then used to compute a superset of the isolated points in the
image of an algebraic set which arises in many applications, such as com-
puting critical sets used in the decomposition of real algebraic sets. An
example is presented which demonstrates the efficiency of this approach.
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Introduction

For a polynomial system f with complex coefficients, the fundamental
problem of algebraic geometry is to understand the set of solutions of
the system f = 0, denoted V(f). Numerical algebraic geometry (see,
e.g., [5,23] for a general overview) is based on using homotopy continua-
tion methods for computing V(f). Geometrically, one can decompose V(f)
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into its irreducible components, which corresponds numerically to com-
puting a numerical irreducible decomposition with each irreducible com-
ponent represented by a witness set. The first step of computing a nu-
merical irreducible decomposition is to compute witness point supersets
with the algorithms [11,20,22] relying upon a sequence of homotopies. At
each dimension where a solution component could exist, a generic linear
space of complementary dimension is used to slice the solution set; the
witness points are then the isolated points in the intersection of the so-
lution component and the linear slice. Accordingly, a crucial property of
the algorithms employed is that they must generate a finite set of points,
say S, in the slice that includes all isolated points of the slice.

In this article, we change the focus from irreducible components to
connected components. We present an approach that computes a finite
set of points in V(f) containing at least one point on each connected
component of V(f) using a single homotopy, built on a similar theoretical
viewpoint as the nonconstructive approach presented in [17, Thm. 7]. This
work is complementary to methods for computing a finite set of points
in the set of real points in V(f), denoted VR(f), containing at least one
point on each connected component of VR(f) [1,9,19,28].

Our approach is particularly relevant to numerical elimination theory
[5, Chap. 16], which seeks to treat projections of algebraic sets in a similar
fashion as general algebraic sets but without having on hand polynomials
that vanish on the projection (and without computing such polynomials).
This is a numerical alternative to symbolic elimination methods [27]. In
particular, suppose that f(x, y) is a polynomial system that is defined on a
product of two projective spaces, and let X = π(V(f)) where π(x, y) = x.
We do not have a polynomial system that defines X, so we do all com-
putations via points in its pre-image, π−1(X)∩ V(f). In particular, if we
wish to compute a finite set of points S ⊂ V(f) such that π(S) includes
all isolated points of X, it suffices if S contains a point on each connected
component of V(f). Our new algorithm enables one to compute such a
set S using a single homotopy; one does not need to separately consider
each possible dimension of the fibers over the isolated points of X.

The viewpoint of computing based on connected components also has
many other applications, particularly related to so-called critical point
conditions. For example, the methods mentioned above in relation to real
solutions, namely [1,9,19,28], compute critical points of V(f) with respect
to the distance function (see also [8]). In [6,7], critical points of V(f) with
respect to a linear projection are used to numerically decompose real
algebraic sets. (We discuss this in more detail in § 3.) Other applications



include computing witness point sets for irreducible components of rank-
deficiency sets [2], isosingular sets [12], and deflation ideals [15].

To highlight the key point of this paper, consider computing rank-
deficiency sets as in [2]. With this setup, one adds new variables related to
the null space of the matrix. To make sure that all components of the rank-
deficiency sets are computed, traditional approaches need to consider all
possible dimensions of the null space. The point of this paper is to provide
an algorithmic approach by which one only needs to consider the smallest
possible null space dimension, thereby simplifying the computation.

The rest of the article is organized as follows. Section 1 derives an
algorithmic approach that computes at least one point on every connected
component of V(f) using one homotopy. This is discussed in relation to
elimination theory in § 2, while § 3 focuses on computing critical sets of
projections of real algebraic sets. An example illustrating this approach
and its efficiency is presented in § 4.

1 Construction of homotopies

The starting point for constructing one homotopy that computes at least
one point on each connected component of a solution set of polynomial
equations is [17, Thm. 7]. Since this theorem is nonconstructive, we de-
rive an algorithmic approach for performing this computation in Prop. 1
and sketch a proof. We refer to [23] for details regarding algebraic and
analytic sets with [17, Appendix] providing a quick introduction to basic
results regarding such sets.

Suppose that E is a complex algebraic vector bundle on an n-dimen-
sional irreducible and reduced complex projective set X. Denote the bun-
dle projection from E to X by πE . A section s of E is a complex alge-
braic map s : X → E such that πE ◦ s is the identity; i.e., for all x ∈ X,
(πE ◦ s)(x) = πE(s(x)) = x.

There is a nonempty Zariski open set U ⊂ X over which E has a triv-
ialization. Using such a trivialization, an algebraic section of E becomes
a system of rank(E) algebraic functions. In fact, all polynomial systems
arise in this way and results about special homotopies which track dif-
ferent numbers of paths, e.g., [14,18,24], are based on this interpretation
(see also [23, Appendix A]).

Let us specialize this to a concrete situation.

Example 1. Suppose that X ⊂
∏r
j=1 Pnj is an irreducible and reduced

n-dimensional algebraic subset of a product of projective spaces. For ex-



ample, X could be an irreducible component of a system of multihomo-
geneous polynomials in the variables

z1,0, . . . , z1,n1 , . . . , zr,0, . . . , zr,nr ,

where [zj,0, . . . , zj,nj ] are the homogeneous coordinates on the jth projec-
tive space, Pnj . Each homogeneous coordinate zj,k has a natural inter-
pretation as a section of the hyperplane section bundle, denoted LPnj (1).
The dth power of the hyperplane section bundle is denoted by LPnj (d).
A multihomogeneous polynomial defined on

∏r
j=1 Pnj with multidegree

(d1, . . . , dr) is naturally interpreted as a section of the line bundle

L∏r
j=1 P

nj (d1, . . . , dr) := ⊗rj=1π
∗
jLPnj (dj),

where πk :
∏r
j=1 Pnj → Pnk is the product projection onto the kth factor.

A system of n multihomogeneous polynomials

f :=

 f1...
fn

 (1)

where fi has multidegree (di,1, . . . , di,ni) is interpreted as a section of

E :=
n⊕
i=1

L∏r
j=1 P

nj (di,1, . . . , di,r).

The solution set of f = 0 is simply the set of zeroes of the section f .

The nth Chern class of E , which lies in the 2nth integer cohomology
group H2n(X,Z), is denoted by cn(E). Let d := cn(E)[X] ∈ Z, i.e., d de-
notes the evaluation of cn(E) on X.

Example 2. Continuing from Example 1, let c :=
∑r

j=1 nj − n be the
codimension of X. Using multi-index notation for α = (α1, . . . , αr) where
each αi ≥ 0 and |α| =

∑r
i=1 αi, we can represent X in homology by∑

|α|=c

eαHα

where Hi := π−1i (Hi) with hyperplane Hi ⊂ Pni and Hα = Hα1
1 · · ·Hαr

r .
Moreover, d := cn(E)[X] is simply the multihomogeneous Bézout number



of the system of multihomogeneous polynomials restricted to X, i.e., the
coefficient of

∏r
j=1 z

nj

j in the expression∑
|α|=c

eαz
α

 · n∏
i=1

 r∑
j=1

di,jzj

 .

In particular, d is simply the number of zeroes of a general section of E
restricted to X.

A vector space V of global sections of E is said to span E if, given any
point e ∈ E , there is a section σ ∈ V of E with σ(πE(e)) = e. We assume
that the rank of E is n = dimX. If V spans E , then Bertini’s Theorem
asserts that there is a Zariski dense open set U ⊂ V with the property
that, for all σ ∈ U , σ has d nonsingular isolated zeroes contained in the
smooth points of X, i.e., the graph of σ meets the graph of the identically
zero section of E transversely in d points in the set of smooth points of X.

Let |V | := (V \ {0})/C∗ be the space of lines through the origin of V .
Given a complex analytic vector bundle E spanned by a vector space of
complex analytic sections V , the total space Z ⊂ X ×|V | of solution sets
of s ∈ V is

Z := {(x, s) ∈ X × |V | : s(x) = 0} . (2)

For simplicity, let p : Z → X and q : Z → |V | denote the maps induced
by the product projections X×|V | → X and X×|V | → |V |, respectively.

Since V spans E , the evaluation map

X × V → E

is surjective so that the kernel is a vector bundle of rank dimV −rank(E).
Let K denote the dual of this kernel and P(K) denote (K∗ \X)/C∗, the
space of lines through the vector space fibers of the bundle projection
of K∗ → X. The standard convention of denoting (K∗ \ X)/C∗ by P(K)
and not P(K∗) is convenient in many calculations.

The space P(K) is easily identified with Z and the map p is identified
with the map P(K) → X induced by the bundle projection. From this
identification, we know that Z is irreducible.

Let E denote a rank n algebraic vector bundle on a reduced and irre-
ducible projective algebraic set spanned by a vector space V of algebraic
sections of E . Suppose that σ ∈ V and τ ∈ V have distinct images in |V |
and let ` := 〈σ, τ〉 ⊂ |V | denote the unique projective line, i.e., linear P1,



Solution path

Fig. 1. Illustration of the terminology of the paper. The upper space is in terms of
the variables of the problem, with solid lines representing solutions paths, starting at
the finite nonsingular zeros of some τi, and ending at some zero of σ. We show here
many τi systems, which all are deformed into σ. At the bottom, the patch represents
the vector space V and the lines ` interpolate from some τi to σ.

through the images of σ and τ in |V |. Letting λ and µ be homogeneous
coordinates on `, i.e, spanning sections of L`(1), we have the section

H(x, λ, µ) := λσ + µτ (3)

of q∗q−1(`)L`(1) ⊗ p∗E . Choosing a trivialization of E over a Zariski open

dense set U and a trivialization of L`(1) over a Zariski open dense set
of `, e.g., the set where µ 6= 0, H is naturally interpreted as a homotopy.
See Figure 1 for an illustration.

With this general setup, we are now ready to state a specialization of
the nonconstructive result [17, Thm. 7]. The key difference is that this
specialization immediately yields a constructive algorithm for computing
a finite set of points containing at least one point on each connected
component of σ−1(0).

Proposition 1. Let E denote a rank n algebraic vector bundle over an ir-
reducible and reduced n-dimensional projective algebraic set X. Let V be a
vector space of sections of E that spans E. Assume that d := cn(E)[X] > 0
and τ ∈ V which has d nonsingular zeroes all contained in the smooth
points of X. Let σ ∈ V be a nonzero section of E, which is not a multiple
of τ . Let ` = 〈σ, τ〉 and H as in (3). Then, there is a nonempty Zariski
open set Q ⊂ ` such that

1. the map qZQ of ZQ :=
{
H−1(0) ∩ (X ×Q)

}
to ` is d-to-one; and



2. the finite set ZQ∩σ−1(0) contains at least one point of every connected
subset of σ−1(0).

Proof. Let Z as in (2). The projection map q : Z → |V | may be Stein
factorized [23, Thm. A.4.8] as q = s ◦ r where r : Z → Y is an algebraic
map with connected fibers onto an algebraic set Y and s : Y → |V | is
an algebraic map with finite fibers. The surjectivity of q implies that s is
surjective and dimY = dim |V |. Since Z is irreducible, Y is irreducible.

It suffices to show that given any y ∈ Y , there is a complex open neigh-
borhood U of y with s(U) an open neighborhood of s(y). A line ` ⊂ |V | is
defined by dim |V | − 1 linear equations. Thus, s−1(`) has all components
of dimension at least 1. The result follows from [23, Thm. A.4.17].

Remark 1. If X is a codimension c irreducible component of multiplicity
one of the solution set of a polynomial system f1, . . . , fc in the total space,
we can choose our homotopy so that the paths over (0, 1] are in the set
where df1 ∧ · · · ∧ dfc is non-zero.

2 Isolated points of images

With the theoretical foundation presented in § 1, this section focuses on
computing a finite set of points containing at least one point on each con-
nected component in the image of an algebraic set which, in particular,
provides a finite superset of the isolated points in the image. Without loss
of generality, it suffices to consider projections of algebraic sets which cor-
responds algebraically with computing solutions of an elimination ideal.

Lemma 1. Let V be a closed algebraic subset of a complex quasiprojective
algebraic set X. Let π : X → Y denote a proper algebraic map from X
to a complex quasiprojective algebraic set Y . If S is a finite set of points
in V that contains a point on each connected component of V , then π(S)
is a finite set of points in π(V ) which contains a point on each connected
component of π(V ). In particular, π(S) is a finite superset of the zero-
dimensional components of π(V ).

Proof. The image of a connected set is connected.

Consider the concrete case where f is a polynomial system defined on
CN × PM . Let V(f) ⊂ CN × PM and Z(f) ⊂ PN × PM be the closure
of V(f) under the natural embedding of CN into PN . The approach of
Prop. 1 provides one homotopy which can be used to compute a point on
each connected component of Z(f). However, it may happen that a point



computed on each connected component of V(f) is at “infinity.” One
special case is the following for isolated points in the projection of V(f)
onto CN .

Corollary 1. Let f be a polynomial system defined on CN × PM and π
denote the projection CN × PM → CN . By considering the natural inclu-
sion of CN into PN , let Z(f) be the closure of V(f) in PN × PM . Let S
be a finite set of points in Z(f) which contains a point on each connected
component of Z(f) and SC = S ∩ (CN ×PM ). Then, π(SC) is a finite set
of points in π(V(f)) which contains the isolated points in π(V(f)).

Proof. Suppose that x ∈ π(V(f)) ⊂ CN is isolated. Let y ∈ PM such that
(x, y) ∈ V(f). By abuse of notation, we have (x, y) ∈ Z(f) so that there
is a connected component, say C, of Z(f) which contains (x, y). Since x is
isolated in π(V(f)), we must have C ⊂ {x} × PM . The statement follows
from the fact that C is thus naturally contained in CN × PM .

Example 3. To illustrate, consider the polynomial system

F (x) =

[
F1(x)
F2(x)

]
=

[
x21 + x22 + x23 + x24
x31 + x32 + x33 + x24

]
defined on C4. The set V(F ) ⊂ C4 is an irreducible surface of degree
six containing one real point, namely the origin, which is an isolated
singularity. Since dF1 and dF2 are linearly dependent at a singular point,
we can consider the following system defined on C4 × P1:

G(x, v) =

[
F (x)

v0 · dF1(x) + v1 · dF2(x)

]
.

Since G consists of 6 polynomials defined on a 5 dimensional space, we
reduce to a square system via randomization5 which, for example, yields:

f(x, v) :=


x21 + x22 + x23 + x44
x31 + x32 + x33 + x24

v0(x1 + x4) + v1(3x
2
1 + x4)

v0(x2 + x4) + v1(3x
2
2 + x4)

v0(x3 + x4) + v1(3x
2
3 + x4)

 .
5 In usual practice, “randomization” means replacing a set of polynomials with some

number of random linear combinations of the polynomials. When the appropriate
number of combinations is used, then in a Zariski-open subset of the Cartesian space
of coefficients of the linear combinations, the solution set of interest is preserved.
See, for example, [23, §13.5]. Here, for simplicity of illustration, we take very simple
linear combinations involving small integers. These happen to suffice, but in general
one would use a random number generator and possibly hundreds of digits to better
approximate the probability-one chance of success that is implied in a continuum
model of the coefficient space.



Consider the linear product [24] system:

g(x, v) :=


x21 + x22 + x23 + x44
x31 + x32 + x33 + x24

(v0 + v1)(x1 − 4x4 − 1)(x1 − 2)
(v0 − v1)(x2 + 2x4 − 1)(x2 − 3)
(v0 + 2v1)(x3 − 3x4 − 1)(x3 − 4)


together with the homotopy

H((x, v), [λ, µ]) = λf(x, v) + µg(x, v).

With this setup, g−1(0) has exactly d = 72 nonsingular isolated solutions
which can be computed easily.

We used Bertini [4] to track the 72 paths along a real arc contained
in the line 〈σ, τ〉 in which 30 paths diverge to infinity and 42 paths end at
finite points. Of the latter, 20 endpoints are nonsingular isolated solutions
which are extraneous in that they arose from the randomization and not
actually in V(G). The other 22 paths converged to points in {0}×P1: 18 of
which ended with v = [0, 1] ∈ P1 while the other 4 break into 2 groups of 2
with v of the form [1, α] and [1, conj(α)] where α ≈ −0.351 + 0.504 ·

√
−1.

In particular, even though {0} × P1 is a positive-dimensional solution
component of V(f) and also of V(G), we always obtain at least one point
on this component showing that the origin is the only point in V(F ) which
is singular with respect to F .

3 Computing critical points of projections

An application of Corollary 1 is to compute the critical points of an
irreducible curve X ⊂ CN with respect to a nonconstant linear projection
π : X → C. In particular, assume that f = {f1, . . . , fN−1} is a polynomial
system on CN such that X is an irreducible component of V(f) which has
multiplicity one with respect to f . A critical point of π with respect to X
is a point x ∈ X such that either

– x is a smooth point and dπ is zero on the tangent space of X at x; or
– x is a singular point of X.

In terms of rank-deficiency sets, the set of critical points is the set of
points on X such that

rank


dπ
df1
...

dfN−1

 ≤ N − 1. (4)



With this setup, there are finitely many critical points. In [7], which
includes an implementation of the curve decomposition algorithm of [16],
a finite superset of the critical points are needed to compute a cellular
decomposition of the real points of X. In fact, the points that are not
critical points simply make the cellular decomposition finer which can be
merged away in a post-processing step. Hence, one needs to compute at
least one point in each connected component in X × PN−1 intersected
with the solution set in CN × PN−1 of

f1
...

fN−1
dπ
df1
...

dfN−1

 · ξ


= 0.

The advantage here is that we obtain a finite superset of the critical
points using one homotopy regardless of the possibly different dimensions
of the corresponding null spaces, i.e., there is no need to cascade down
the possible null space dimensions.

The setup above naturally extends to computing witness point super-
sets for the critical set of dimension k− 1 of an irreducible component of
dimension k, e.g., critical curves of a surface.

4 Example

Consider the 12-bar spherical linkage from [25,26]. This device can be
viewed as 20 rigid rods meeting in spherical joints at 9 points, or since a
loop of three such rods forms a rigid triangle, as 12 rigid links meeting
in rotational hinges with the axes of rotation all intersecting at a central
point. The arrangement is most clearly seen in Figure 2(c). The irreducible
decomposition of the variety in C18 for the polynomial system F defined
below for this linkage was first computed in [9] and summarized in Ta-
ble 1. Here, we consider computing a superset of the critical points of the
the curve C which is the union of the eight one-dimensional irreducible
components having degree 36 with respect to the projection π defined
below in (5). We will compare approaches computed using Bertini [4].

The ground link for the linkage is specified by fixing three points,
namely P0 = (0, 0, 0), P7 = (−1, 1,−1), and P8 = (−1,−1,−1). The



Table 1. Decomposition of 12-bar spherical linkage system.

dimension degree # components

3 8 2

2

4 2
8 14
12 12
16 1
20 4
24 1

1
4 6
6 2

three coordinates of the other six points, P1, . . . , P6, are the 18 variables
of polynomial system F : C18 → C17. The 17 polynomials in F are the
following quadratics:

Gij = ‖Pi − Pj‖2 − 4,

(i, j) ∈ {(1, 2), (3, 4), (5, 6), (1, 5), (2, 6), (3, 7), (4, 8), (1, 3), (2, 4), (5, 7), (6, 8)};

Hk = ‖Pk‖2 − 3,

k ∈ {1, 2, 3, 4, 5, 6}.

Denoting the coordinates of Pi as Pi1, Pi2, Pi3, we choose6 a projection
map π : C18 → C defined by

π(P ) = 3
5
P11 + 13

17
P12 − 5

16
P13 + 26

27
P21 − 1

10
P22 + 1

6
P23 + 3

5
P31 + 7

17
P32 + 3

10
P33 +

1
4
P41 − 4

5
P42 + 1

3
P43 + 18

25
P51 + 14

29
P52 − 12

13
P53 − 17

30
P61 − 5

17
P62 + 13

20
P63

(5)

and consider the following system defined on C × P17 ⊂ C18 × P17:

f(P, ξ) =

 F (P )[
dπ

dF (P )

]
· ξ

 .
Since each irreducible component in C has multiplicity one with respect
to F , the irreducible components of V(f) ∩ (C × P17) must be of the
form {x} × L for some point x ∈ C and linear space L ⊂ P17. We aim to
compute all such points x.

With traditional methods, one would need to consider various dimen-
sions of the corresponding null spaces L. The advantage is that one obtains

6 As before, we choose simple rational coefficients for simplicity of presentation.



additional information, namely witness point supersets for the irreducible
components. The first approach is to consider each possible dimension
of P17 independently. Since the zero-dimensional case is equivalent in
terms of the setup and number of paths to the new approach discussed
below, we will just quickly summarize what would be needed to perform
this full computation. In particular, for each 0 ≤ i ≤ 16, starting with
a witness set for C × P17, the corresponding start system, after possible
randomization, would require tracking 36 · (17 − i), totaling 5508, paths
related to moving linear slices and the same number of paths to compute
witness point supersets.

Rather than treat each dimension independently, another option is
to cascade down through the dimensions, e.g., using the regenerative ex-
tension [13]. The implementation in Bertini, starting with a witness set
for C × P17, requires tracking 6276 paths for solving as well as track-
ing 3216 paths related to moving linear slices. Using 64, 2.3 GHz proces-
sors, this computation took 618 seconds.

Instead of using a method designed for computing witness point su-
persets, our new approach uses one homotopy to compute a point on each
connected component. This is all that is needed for the current applica-
tion via Corollary 1. Since dπ is constant and dF is a matrix with linear
entries, we take our start system to be

g(P, ξ) =


F (P )
ξ0

`1(P ) · ξ1
...

`17(P ) · ξ17


restricted to C × P17 where each `i is a random linear polynomial. In
particular, V(g)∩ (C ×P17) consists of d = 36 ·

(
17
1

)
= 612 points, each of

which is nonsingular with respect to g. The 612 solutions can be computed
from a witness set for C by tracking 612 paths related to moving linear
slices. Then, a point on each connected component of V(f) ∩ (C × P17)
is computed via Corollary 1 by tracking 612 paths. This computation in
total, using the same parallel setup as above, took 20 seconds.

Of the 612 paths, 492 diverge to infinity while 120 have finite end-
points. Of the 120 finite endpoints of the form (P, ξ), 78 are real (i.e.,
have P ∈ R18) with 22 distinct real points P since some points appear
with multiplicity while others have a null space with dimension greater
than one so that the same P can appear with several different null direc-
tions ξ. In detail, the breakdown of the 22 real points is as follows:



(a) (b) (c)

Fig. 2. Solutions to the 12 bar spherical linkage obtained from the critical point com-
putation: (a) an equilateral spherical four-bar configuration, corresponding to a non-
singular critical point on a degree four irreducible component; (b) a degenerate config-
uration, coming from the intersection of such a component with a higher-dimensional
irreducible component; (c) a rigid configuration arising from the intersection of the
irreducible curves of degree six.

– 14 real points are the endpoint of one path each. These points are
smooth points of C with rank dF = 17. Each lie on one of the degree
4 irreducible components of C and is an equilateral spherical four-bar
linkage of the type illustrated in Figure 2(a).

– 6 real points are the endpoint of 10 paths each. Each of these points

has rank dF = 12 with rank

[
dπ
dF

]
= 13 and arise where an irreducible

component of degree 4 in C intersects another irreducible component
of V(F ). The corresponding 12-bar linkage appears as in Figure 2(b).

– 2 real points are the endpoint of 2 paths each. Each of these points P

has rank dF = 16 and rank

[
dπ
dF

]
= 17 so that the corresponding null

vector ξ ∈ P17 is unique. Hence, the points (P, ξ) have multiplicity 2
with respect to f . These points correspond to a rigid arrangement as
shown in Figure 2(c), one the mirror image of the other.

To clarify the accounting, note that 14 · 1 + 6 · 10 + 2 · 2 = 78.

5 Conclusion

We have described an algorithmic approach for constructing one homo-
topy that yields a finite superset of solutions to a polynomial system
containing at least one point on each connected component of the solu-
tion set. This idea naturally leads to homotopies for solving elimination



problems, such as computing critical points of projections as well as other
rank-constraint problems. This method allows one to compute such points
directly without having to cascade through all the possible dimensions
of the auxiliary variables. This can provide considerable computational
savings, as we have demonstrated on an example arising in kinematics,
where the endpoints of a single homotopy include all the critical points
on a curve even though the associated null spaces at these points have
various dimensions.

We note that our approach has application to numerical elimination
theory but in that case leaves an open problem concerning sorting isolated
from non-isolated points. In the classical setting, when one finds a superset
of the isolated solutions, one can sift out the set of isolated solutions from
a superset by using, for example, either the global homotopy membership
test [21] or the numerical local dimension test [3]. In the elimination
setting, a modified version of the homotopy membership test as developed
in [10] can sort out which points are isolated under projection, but there
is no local dimension test in this setting as yet.
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