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ABSTRACT
Computing the real solutions to a system of polynomial
equations is a challenging problem, particularly verifying
that all solutions have been computed. We describe an
approach that combines numerical algebraic geometry and
sums of squares programming to test whether a given set is
“complete” with respect to the real solution set. Specifically,
we test whether the Zariski closure of that given set is in-
deed equal to the solution set of the real radical of the ideal
generated by the given polynomials. Examples with finitely
and infinitely many real solutions are provided, along with
an example having polynomial inequalities.

1. INTRODUCTION
Local solving methods, such as using Newton’s method,

local optimization approaches, and critical point methods as
highlighted in Section 5, allow one to compute real solutions
to system of equations. The typical drawback of using such
local methods is the inability to verify that all real solutions
have been computed. This article uses sums of squares pro-
gramming to validate that a complete real solution set has
been computed, that is, the Zariski closure of the given set
is equal to the Zariski closure of the set of all real solutions.
The method follows in the footsteps of work combining nu-
merical and symbolic methods, particularly [4, 18].

A typical situation where one may need to test the com-
pleteness of a real solution set is computing critical points.
For example, § 8.6 considers computing the critical points of
a potential energy landscape. In such situations, local nu-
merical methods, e.g., [20, 51], exist for locating real critical
points. Our approach provides a global stopping criterion
for validating that all real solutions have been identified.

A related situation is the computation of the real critical
points of a projection of a solution set used in the numerical
decomposition of real curves and surfaces [3, 11, 14, 47]. The
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failure to correctly compute the set of real solutions leads to
a failure in the decomposition of the real component. Hence,
correct and complete computation of sets of real solutions is
paramount to correctly computing the decomposition.

One approach for certifying the existence of real solu-
tions is based on the local analysis of Newton’s method us-
ing Smale’s α-theory [60] developed in [33]. Building on
α-theory, there are methods for certifying smooth continu-
ous paths for Newton homotopies [29, 30] and general ho-
motopies [10]. For example, if a smooth path is defined by
a real system of equations which has a real starting point,
then the endpoint of the path must also be real.

From an algebraic viewpoint, the radical of an ideal gen-
erated by a given collection of polynomials consists of all
polynomials that vanish on the solution set of the given
polynomials. There are several algorithms for computing
the radical of a zero-dimensional ideal – some numerical,
e.g., [35, 42, 43] and some symbolic, e.g., [9, 22]. When
there are infinitely many solutions, one can reduce to the
zero-dimensional case, for example, via [22, 39].

The real radical of an ideal generated by a given collec-
tion of polynomials with real coefficients consists of all poly-
nomials that vanish on the real solution set of the given
polynomials. There have been several proposed methods for
computing the real radical of an ideal. Some are symbolic,
e.g., [8] based on the primary decomposition (see also [54,
64, 66, 67]). Others are numerical, based on moment matri-
ces when the number of real solutions is finite, e.g., [40, 41,
42, 43, 44]. A promising approach for computing the real
radical when there are infinitely many real solutions was de-
veloped in [49] providing a stopping criterion for verifying
that a Pommaret basis has been computed. Other meth-
ods for computing real solutions include computing a point
on each semi-algebraically connected component of the real
solution set, e.g., [1, 2, 27, 57],

As discussed in [49], one key issue related to computing the
real radical using semidefinite programming with moment
matrices is knowing when the generated polynomials form a
basis for the real radical. In our approach, we first compute
a set S which is a subset of the Zariski closure of the real
solution set. Then, we compute polynomials that vanish
on S. Finally, for each of the computed polynomials, we
use sums of squares programming to verify that it is indeed
in the real radical. Since the polynomials can be validated
independently, one could easily parallelize this part of the
computation. Since S is contained in the Zariski closure
of the real solution set, every polynomial contained in the
real radical vanishes on S. Conversely, if every polynomial
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that vanishes on S is contained in the real radical, we know
that a generating set for the real radical has been computed.
Hence, S is complete since the Zariski closure of S is equal
to the Zariski closure of the real solution set of the original
system of equations, i.e., the solution set of the real radical.

One of the pitfalls of using purely symbolic methods to
compute real radicals is the typical computation of field ex-
tensions. As an illustrative example, consider the polyno-
mial f(x) = x3−2 having rational coefficients, i.e., f ∈ Q[x].
Since f = 0 has one real solution, namely x = 3

√
2, the real

radical of the ideal generated by f is 〈x − 3
√

2〉 which is
generated by a polynomial not in Q[x].

By working over R, one avoids the use of field extensions
for computing the generators of the real radical. Thus, the
theoretical results for our approach assume an exact compu-
tational model over R as in [12]. The drawback is that the
computations in practice are performed using floating-point
arithmetic. In the examples, we approximate the compu-
tational model by utilizing adaptive precision floating-point
computations where each point in the subset S of the so-
lution set is described via a numerical approximation and
an algorithm that can be used to approximate it efficiently
to arbitrary precision as in [28]. For example, α-theory [60]
verifies that a numerical approximation is in the quadratic
convergence basin of Newton’s method and thus Newton’s
method can be used to efficiently refine the numerical ap-
proximation. One could then use exactness recovery meth-
ods, e.g., [5], with the refinability of numerical approxima-
tions to determine exact results.

The remainder of the article is as follows. Section 2 focuses
on radicals, irreducible decomposition, and Zariski closures.
Real radicals, sums of squares, and semidefinite program-
ming are discussed in Section 3. In Section 4, we present the
criterion for showing that a set S is complete with respect
to the real radical. This approach depends on the ability to
compute such an S, which is highlighted in Section 5, and
the ideal of S, which is discussed in Section 6. Section 7 con-
siders the real solution set for collection of equations and in-
equalities. Several examples are presented in Section 8 with
a discussion of the limitations of our approach in Section 9.
We conclude in Section 10.
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2. ZARISKI CLOSURE AND RADICALS
Let f1, . . . , fk ∈ C[x1, . . . , xn] and consider the ideal gen-

erated by these polynomials, namely I = 〈f1, . . . , fk〉. The
polynomials f = {f1, . . . , fk} and the corresponding ideal
I = 〈f〉 define the same solution set in Cn, namely

VC(f) = VC(I) = {x ∈ Cn | fi(x) = 0 for i = 1, . . . , k}

A set A ⊂ Cn is called an algebraic set if there is a collection
of polynomials g ⊂ C[x1, . . . , xn] such that A = VC(g). The
algebraic set A is irreducible if there does not exist algebraic
sets A1, A2 ( A with A = A1 ∪ A2. Given an algebraic
set A, there exists a unique collection (up to relabeling) of
irreducible algebraic sets X1, . . . , X` such that

A =
⋃̀
i=1

Xi and Xj 6⊂
⋃
i 6=j

Xi.

Each Xi is called an irreducible component of A.
In numerical algebraic geometry, an irreducible algebraic

set is represented by a witness set, see, e.g., [63, Chap. 13].
A numerical irreducible decomposition for an algebraic set A
is a collection of witness sets for the irreducible components
of A. Such a decomposition can be computed using various
algorithms, e.g., [6, 32, 61, 62].

For any subset T ⊂ Cn, the ideal defined by T is

I(T ) = {f ∈ C[x1, . . . , xn] | f(t) = 0 for all t ∈ T}.

The Zariski closure of T is the algebraic set T = VC(I(T )),
which is the intersection of all algebraic sets that contain T .

For an ideal I, the radical of I is
√
I = {p ∈ C[x1, . . . , xn] | pα ∈ I for some α ∈ Z>0}

with
√
I = I(VC(I)) following Hilbert’s Nullstellensatz.

3. REAL RADICAL & SUMS OF SQUARES
Many of the topics from § 2 have analogous statements

over R. Let f1, . . . , fk ∈ R[x1, . . . , xn] with f = {f1, . . . , fk}
and I = 〈f〉. The set of solutions in Rn is

VR(f) = VR(I) = {x ∈ Rn | fi(x) = 0 for i = 1, . . . , k} = VC(I) ∩ Rn.

The real radical of I is

R√
I =

{
p ∈ R[x]

∣∣∣∣ p2α +
∑`
j=1 g

2
j ∈ I

for some α ∈ Z>0, gj ∈ R[x]

}
. (1)

with R√I = I(VR(I)) following the real Nullstellensatz, e.g.,
see [13, Chap. 4].

Example 1. For f(x) = x3 − 2 and I = 〈f〉, we have:

• VC(I) = { 3
√

2, ω 3
√

2, ω2 3
√

2} and VR(I) = { 3
√

2},
•
√
I = I, and

• R√I = 〈x− 3
√

2〉
where ω is the primitive cube root of unity. In particular,

(x− 3
√

2)4 + (
√

3x2 −
√

3
3
√

4)2 = 4(x3 − 2)(x− 3
√

2) ∈ I.

The algebraic description of the real radical R√I presented
in (1) shows that this definition depends on sums of squares.
A polynomial s ∈ R[x1, . . . , xk] is called a sum of squares if

s =
∑`
j=1 g

2
j for some g1, . . . , g` ∈ R[x1, . . . , xk]. Clearly,

every polynomial that is a sum of squares has even degree.
The polynomials of even degree that are sums of squares

are characterized by positive semidefinite matrices. A sym-
metric matrix M ∈ Rm×m is positive semidefinite if, for
all y ∈ Rm, yTMy ≥ 0. This condition is equivalent to all
eigenvalues of M being nonnegative. We will write M � 0
if M is positive semidefinite.

Let s ∈ R[x1, . . . , xk] be a polynomial of degree 2d and Xd
be the vector of all monomials in x1, . . . , xn of degree at
most d. Hence, there exists a symmetric matrix C such that

s(x) = XT
d · C ·Xd. (2)

The polynomial s is a sum of squares if and only if there is a
positive semidefinite matrix C such that (2) holds, e.g., [16].

Example 2. As shown in Ex. 1, the quartic polynomial
s(x) = 4(x3 − 2)(x− 3

√
2) is a sum of squares. Let

X2 =

 1
x
x2

 and C =

 8 3
√

2 −4 −2 3
√

4

−4 4 3
√

4 −2 3
√

2

−2 3
√

4 −2 3
√

2 4

 .
It is easy to verify that C � 0 and s(x) = XT

2 · C ·X2.



For a given polynomial s of degree 2d, the set of symmet-
ric matrices C such that (2) holds is a linear space. Hence,
testing that a polynomial is a sum of squares can be accom-
plished by solving a semidefinite feasibility problem.

Example 3. Continuing with s(x) = 4(x3 − 2)(x − 3
√

2)
from Ex. 2, consider the linear space

L =


 s00 s01 s02
s01 s11 s12
s02 s12 s22


∣∣∣∣∣∣∣∣

s00 = 8 3√2
2s01 = −8

2s02 + s11 = 0

2s12 = −4 3√2
s22 = 4

 .

Since s(x) = XT
2 · C · X2 if and only if C ∈ L, it follows

that s is a sum of squares if and only if there exists C ∈ L
such that C � 0, which is a semidefinite feasibility problem.

To facilitate the task of converting between sums of squares
problems and semidefinite programming problems in the ex-
amples, we utilize the software package SOSTOOLS [55].

Given a polynomial p ∈ R[x1, . . . , xn], we can decide if

p ∈ R√I using (1). That is, p ∈ R√I if and only if there exists
α ∈ Z>0 and h1, . . . , hk, g1, . . . , g` ∈ R[x1, . . . , xn] such that

p2α +
∑̀
j=1

g2j =

k∑
i=1

hifi

which is equivalent to requiring that

− p2α +

k∑
i=1

hifi is a sum of squares. (3)

Thus, given a polynomial p ∈ R[x1, . . . , xn], one can test if

p ∈ R√I by solving a semidefinite feasibility problem. We
use this observation in our method, which is described next.

4. VALIDATION
Given an ideal I ⊂ R[x1, . . . , xn], S ⊂ VR(I) = VC( R√I),

and I(S) = 〈g1, . . . , g`〉, we describe an approach for vali-

dating that S is complete, i.e., S = VR(I) which occurs if

and only if R√I = 〈g1, . . . , g`〉 = I(S).

Procedure 1 Validating Real Solution Sets

Input: Polynomials f = {f1, . . . , fk} ⊂ R[x1, . . . , xn], a set

S ⊂ VR(I) with I(S) = 〈g1, . . . , g`〉, integer αmax ∈ Z≥0.

Output: A boolean which is True if I(S) = R
√
I(f) can be

validated up to αmax, otherwise False.
1: (Optional) Replace f with a Gröbner basis for

√
I(f).

2: for m = 1, . . . , ` do
3: Initialize α := 1 and success := False.
4: while success = False do
5: if there exists hi ∈ R[x1, . . . , xn] such that the poly-

nomial q = −g2αm +
∑
i hifi is a sum of squares then

6: Set success := True.
7: else
8: Increment α := α+ 1.
9: if α > αmax then

10: return (S,False)
11: return (S,True)

Theorem 4. Procedure 1 is a correct algorithm.

Proof. Let I = 〈f1, . . . , fk〉. Since VR(I) = VR(
√
I),

replacing f by a Gröbner basis for
√
I does not impact the

set of real solutions.
For a given p ∈ R[x1, . . . , xn], we know p ∈ R√I if and only

if there exists α ∈ Z>0 and h1, . . . , hk ∈ R[x1, . . . , xn] such

that (3) holds. In particular, since S ⊂ VR(I), we know
R√I ⊂ I(S) = 〈g1, . . . , g`〉 so that R√I = I(S) if and only

if (3) holds for each p = gi. If all of the corresponding α’s
for each gi are at most αmax, then Procedure 1 will correctly
determine I(S) = R√I.

If p 6∈ R√I, then, for every α ∈ Z>0, (3) does not hold. In
Procedure 1, we use the upper bound αmax so that Proce-
dure 1 always terminates.

If one could compute an a priori upper bound on the
largest possible value for α, then we could replace αmax with
this bound. However, without such a bound, we simply keep
searching for new points to add to S, which is described
next. If p 6∈ R√I, then there must exist a point x ∈ VR(I)
such that p(x) 6= 0. In fact, there is an irreducible compo-

nent X ⊂ VR(I) = VC( R√I) such that p(x) 6= 0 for every x
in a dense open subset of X.

We have implemented this procedure using floating-point
arithmetic computations for several example systems 1 while
a full general-purpose implementation is left for future work.

5. GENERATING A CANDIDATE SET
Input for Procedure 1 is a set S and generators for I(S).

Hence, in this section we provide techniques for generating
S with the next focusing on computing I(S).

5.1 Approaches for locating real solutions
A classical approach for attempting to find a real solution

is to use Newton’s method or related variants, see, e.g., [38].
For a polynomial system with real coefficients, if the initial
point is real, then every solution obtained from Newton’s
method is also real. Of course, there are many challenges as-
sociated with finding real solutions using Newton’s method,
particularly when VC(f) is not a complete intersection or
the real solutions are singular with respect to f . That is,
problems can occur with Newton’s method, e.g., divergence,
if the dimension of the solution set is less than dimension
of the null space of the Jacobian at the solution [23, 24].
Nonetheless, heuristic techniques such as damping methods,
reusing Jacobians for several iterations, or using chord or
secant methods can be utilized [38].

Another approach for computing real solutions is to utilize
numerical optimization techniques. Standard iterative tech-
niques include those based on nonlinear least squares ap-
proaches such as the Levenberg-Marquardt algorithm and
alternating least squares [37]. Other standard methods in
optimization include the worker bees method, genetic algo-
rithms, and the Nelder-Mead method, see, e.g., [17].

Critical point methods combine optimization and poly-
nomial system solving techniques. For example, Seiden-
berg [58] considered the critical points of the distance func-
tion between the set of real solutions and a given real point y∗

that was not a solution. The set of all such critical points
contains a point on every connected component of the real
solution set [1, 56, 58]. By utilizing homotopy continuation,
one can compute a finite subset of critical points containing

1Available at www.nd.edu/˜aliddel1/validate-reals
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a point on every connected component [27]. Moreover, one
can then sample more real points by moving y∗.

Rather than compute all critical points, one can attempt
to compute the closest critical point to the given y∗. This
can be accomplished using a classical optimization approach
such as the gradient descent method or a homotopy-based
approach called gradient descent homotopies [25]. By testing
at many values of y∗, one aims to quickly generate many real
solutions, e.g., as shown in [25, Fig. 3].

Other so-called “local” solving methods exist for finding
real solutions, which have been used in various disciplines.
Some examples include techniques in theoretical chemistry,
e.g., [20, 51, 52] and solving power-flow equations in electri-
cal engineering, e.g., [45, 48].

5.2 Real solutions and isosingular sets
After a real solution has been located, one can now try

to extract additional information about the geometry of the
solution set near this point. One approach is to compute a
local irreducible decomposition using local witness sets [15]
to see if local structure provides insight into the components
of the real solution set passing through the computed real
point. Another approach is to utilize isosingular sets [34],
which may also help in improving the numerical stability of
interpolation, described in the next section.

Let f1, . . . , fk be polynomials and z ∈ VC(f). Let Jf(z)
be the Jacobian matrix of f evaluated at z. For an integer `,
let det` Jf(z) be the collection of all (`+ 1)× (`+ 1) minors
of Jf(z). Thus, det` Jf(z) = 0 if and only if rank Jf(z) ≤ `.
For a polynomial system g, let dnull(g, z) = dim null Jg(z).
The deflation sequence of z with respect to f is defined by

di(f, z) = dnull(Di(f, z), z) for i ∈ Z≥0

where D0(f, z) = f and

Di(f, z) =

[
Di−1(f, z)

detdi−1(f,z) JD
i−1(f, z)

]
.

The deflation sequence is a nonincreasing sequence of non-
negative integers and thus has a limit, say d∞(f, z) ≥ 0,
called the isosingular local dimension of z with respect to f .

Due to potential issues with using minors, e.g., the to-
tal number of them and the potential for each to have very
high degree, there are alternative approaches. For exam-
ple, a so-called strong deflation approach based on the null
space method of [19, 46] was presented in [34], and a variant
involving polynomial many new functions proposed in [31].

If X(f, z) is the Zariski closure of all points in VC(f) which
have the same deflation sequence with respect to f as z, then
[34, Lemma 5.14] yields that there is a unique irreducible
component of X(f, z) which contains z, denoted Isof (z),
called the isosingular set of z with respect to f . In particu-
lar, d∞(f, z) = dim Isof (z).

Suppose that z ∈ VR(f) ⊂ Rn. Since z is a smooth point
on the irreducible set Isof (z), we have Isof (z) ∩ Rn ⊂ VR(f)

and Isof (z) = Isof (z) ∩ Rn ⊂ VR(f). That is, if I = 〈f〉,

Isof (z) ⊂ VC(
R√
I) and

R√
I ⊂ I(Isof (z)).

The isosingular local dimension is a lower bound on the local
real dimension at z, which is sharp if z is a smooth point
on a unique irreducible component of VC( R√I). Moreover, if
d∞(f, z) > 0, we can use standard sampling techniques in
numerical algebraic geometry, see, e.g., [7, § 8.3], applied to

Isof (z) to produce an arbitrary number of additional points

for which polynomials in R√I must vanish.
Additionally, by using isosingular sets and numerical al-

gebraic geometry, we can utilize standard membership tests,
see, e.g., [7, § 8.4], to determine if a newly found point
x ∈ VR(I) is already contained in the set S.

6. INTERPOLATION
From the set S ⊂ VR(I) constructed in § 5, the next task

is to compute a collection of polynomials which vanish on S
with Procedure 1 testing whether I(S) is equal to R√I.

Suppose that T ⊂ Cn is a finite set such that I(T ) is gen-
erated by real polynomials and d ≥ 1. Let B form a basis
for the finite-dimensional vector space of all polynomials in
n variables with real coefficients of degree at most d, namely
R[x1, . . . , xn]≤d. The linear space of polynomials of degree
at most d in I(T ), denoted I(T )≤d, is (isomorphic to) the
null space of matrix M where Mij = βj(ti), i.e., the evalua-
tion of the jth basis element βj ∈ B at the ith point ti ∈ T . If
S is a finite set, then we simply take T = S. Otherwise, one
can take T to be a finite set consisting of sufficiently many
points on each irreducible component described by S. The
number of sample points needed on each component can be
a priori bounded based on the dimension of R[x1, . . . , xn]≤d.
One can also algorithmically bound the number of sample
points needed per component simply by continuing to add
sample points from each component to T until the rank of
the associated matrix M stabilizes.

As shown in [26], one can rescale each row independently
to improve the conditioning of interpolation. Moreover, for
positive-dimensional components, sampling points that are
spread out over the component using numerical algebraic
geometry as in § 5.2 also helps to improve conditioning.

Example 5. The solution set of the polynomial system

f = {x2 + y2 + z2 − 1, x2 + y2 + z − 1, x} (4)

consists of the three points

VC(f) = VR(f) = {(0, 1, 0), (0,−1, 0), (0, 0, 1)}

where the point (0, 0, 1) has multiplicity two with respect to f .
To illustrate, for d = 2, we choose the monomial basis

B = {1, x, y, z, x2, xy, xz, y2, yz, z2}

for R[x, y, z]≤2 with S = T = VR(f) where M is

1 x y z x2 xy xz y2 yz z2

(0, 1, 0) 1 0 1 0 0 0 0 1 0 0
(0,−1, 0) 1 0 −1 0 0 0 0 1 0 0

(0, 0, 1) 1 0 0 1 0 0 0 0 0 1

.

A basis for null M is given by the columns of the matrix

0 0 0 0 −1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 −1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


corresponding to the polynomials

x, x2, xy, xz, y2 + z − 1, yz, z2 − z



which form a basis for the linear space ( R√I)≤2. Note that
since each polynomial fi has degree at most 2, each fi is
contained in the linear span of these polynomials.

For illustrative purposes, we selected a monomial basis. In
practice, the choice of basis should be made based on numer-
ical conditioning.

For d� 0, we know I(S) = 〈I(S)≤d〉. If S is a finite set,
then one can determine an upper bound on d such that I(S)
is generated by I(S)≤d. In particular, the function

c 7→ dimR[x1, . . . , xn]≤c − dim I(S)≤c

is the Hilbert function of I(S). If r is the minimum such
that |S| = dimR[x1, . . . , xn]≤r − dim I(S)≤r, i.e., the index
of regularity, then one knows that I(S) is either generated
by I(S)≤r or I(S)≤r+1. In fact, I(S)≤r generates I(S) if and
only if 〈I(S)≤r〉≤r+1 = I(S)≤r+1, i.e., the Hilbert function
of J = 〈I(S)≤r〉 in degree r + 1 is also equal to |S|.

Example 6. Continuing with Ex. 5, since

dimR[x, y, z]≤2 − dim I(S)≤2 = 10− 7 = 3 = |S|,

one can easily verify that I(S) is generated by I(S)≤2, i.e.,

R√
I = 〈x, y2 + z − 1, yz, z2 − z〉.

Example 7. The Hilbert function for the ideal I(S) where
S = {(0, 0), (0, 1), (1, 0)} is 1, 3, 3, . . . so that I(S) is either
generated by I(S)≤1 or I(S)≤2. Since I(S)≤1 = {0}, we
know that I(S)≤2 must generate I(S).

When S is infinite, we aim to reduce our computations
to standard computations performed over C as summarized
in § 2. In particular, by using isosingular sets as discussed
in § 5.2, we can actually assume that S = S and that we
have a numerical irreducible decomposition of S. Hence,
we simply need to compute d large enough so that S and
VC(I(S)≤d) have the same irreducible components so that

S = VC(I(S)≤d). Hence, I(S) =
√
〈I(S)≤d〉.

7. EQUALITIES AND INEQUALITIES
One can naturally generalize from real radicals of sys-

tems of polynomial equations to A-radicals of systems of
polynomial equations and inequalities. In particular, let
f1, . . . , fk, r1, . . . , rs ∈ R[x1, . . . , xn] with

I = 〈f1, . . . , fk〉 and A = {x ∈ Rn | ri(x) ≥ 0 for all i = 1, . . . , s}.

The A-radical of I is A
√
I = I(VR(I)∩A). Algebraically, one

can characterize A√I using sums of squares [50, 65]:

A√
I =

p ∈ R[x]

∣∣∣∣∣∣∣
p2α +

∑
ν∈{0,1}s

σν ·
s∏
j=1

r
νj
j ∈ I

for some α ∈ Z>0,
sum of squares σν ∈ R[x]

 . (5)

Rather than try to locate sample points that satisfy equali-
ties and inequalities, we will instead reduce to equations by
introducing “slack” variables. That is, we consider the ideal

J = 〈f1(x), . . . , fk(x), r1(x)− y21 , . . . , rs(x)− y2s〉.

Since VR(I) ∩ A = π(VR(J)) where π(x, y) = x, we know

A√
I =

R√
J ∩ R[x1, . . . , xn]. (6)

Thus, we compute S ⊂ VR(J) but only perform interpolation
on π(S). If 〈g1, . . . , g`〉 = I(π(S)) ⊂ R[x1, . . . , xn] and each

gi ∈ R√J , then I(π(S)) = A√I by (6).

8. EXAMPLES
As mentioned in the Introduction, the following examples

were computed using floating-point arithmetic operations.
By using approaches described in Section 5, each numerical
approximation of a solution naturally comes with an algo-
rithm which can be used to refine the approximation to ar-
bitrary accuracy. The scripts needed to run these examples
are available at www.nd.edu/˜aliddel1/validate-reals.

8.1 An illustrative example
To illustrate our approach, we consider the intersection of

a circle and a bivariate cubic, namely

f = {x2 + y2 − 2, 2xy2 − x+ 1}.

The system f = 0 has six solutions, all of which are real:

VR(f) = {(−1,±1), (1.366,±0.366), (−0.366,±1.366)}.

In our first test, we simply take S = VR(f). Since the
Hilbert function of I(S) is 1, 3, 5, 6, 6, . . . , we can show that
I(S) is generated by I(S)≤3. A basis for the linear space
I(S)≤3, computed as in § 6, is:

G =

{
y3 + x2y − 2y, xy2 − x/2 + 1/2,
x3 − 3x/2− 1/2, x2 + y2 − 2

}
.

Using either f or a Gröbner basis for 〈f〉, e.g.,

{x2 + y2 − 2, 2xy2 − x+ 1, 2y4 − 5y2 − x+ 2}, (7)

every g ∈ G was found to be in R
√
〈f〉 showing that S is

indeed equal to VR(f).

Incomplete solution set
Suppose that we take R = VR(f)∩{y ≥ 0}. Since the Hilbert
function of I(R) is 1, 3, 3, . . . and I(R)≤1 = {0}, we know
that I(R) is generated by three quadratics, approximately

G =

 y2 − 2.049y − 0.18301x+ 0.86603,
xy − 0.18301y − 0.68301x+ 1/2
x2 + 0.18301x+ 2.049y − 2.866

 . (8)

Using αmax = 5, we were unable to validate that any of the
polynomials in G where in R

√
〈f〉. In fact, we can show that

this is indeed correct since each polynomial in G is nonzero
at each of the three points in VR(f) \R.

Semialgebraic condition
We now validate that R = VR(f) ∩ {y ≥ 0} is the complete
solution set for the A-radical of 〈f〉 where A = {y ≥ 0}. To
that end, we add a slack variable z and consider the system

F = {x2 + y2 − 2, 2xy2 − x+ 1, y − z2}.

As described in § 7, we just need to show that each polyno-
mial in G from (8) is contained in R

√
〈F 〉. Using either F or

a Gröbner basis for 〈F 〉, namely (7) together with y−z2, we

validated that G ⊂ R
√
〈F 〉 showing that R is indeed equal to

VR(f) ∩ {y ≥ 0}, i.e., A
√
〈f〉 = I(R).

8.2 Positive-dimensional components
To illustrate the approach on a system such that the real

radical ideal is positive-dimensional, consider the system

f = {xyz, z(x2 + y2 + z2 + y), y(y + z)}.
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The set VC(f) consists of three lines, two of which are com-
plex conjugates of each other that intersect at the origin and
the other is a double line with respect to f , and an isolated
point. In particular, VR(f) is the line y = z = 0 and the
isolated point (0,−1/2, 1/2). So, we take

S = {(x, 0, 0) | x ∈ C} ∪ {(0,−1/2, 1/2)} ⊂ VR(f).

To simplify the real computations later, we first replace f
with a Gröbner basis for the radical

√
〈f〉, namely

f = {2yz − y, 2y2 + y, xy, 4x2z + 4z3 + y}.

With the isolated solution, sampling 3 points on the line is
enough to compute a basis for I(S)≤2 which generates I(S):

G = {z2 + y/2, yz − y/2, y2 + y/2, xz, xy, y + z}.

Each element in G was shown to belong to R
√
〈f〉 with α ≤ 2.

8.3 Katsura-5 system
As an illustration of our approach on a problem which

was solved using the semidefinite characterization of the
real radical in [41], we consider the Katsura-5 system as
in [41, Ex. 5.4]. The system consists of a linear, say f1, and
five quadratics, say f2, . . . , f6, in six variables, namely

f =



x1 + 2(x2 + x3 + x4 + x5 + x6)− 1,
x2
1 + 2(x2

2 + x2
3 + x2

4 + x2
5 + x2

6)− x1,
2(x1x2 + x2x3 + x3x4) + x4x5 + x5x6 − x2,
x2
2 + 2(x1x3 + x2x4 + x3x5 + x4x6)− x3,
2(x1x4 + x2x3 + x2x5 + x3x6)− x4,
x2
3 + 2(x1x4 + x1x5 + x1x6)− x5


.

The set VC(f) consists of 32 points, 12 of which lie in R6.
The set of real solutions, say S, is readily computed using
homotopy continuation.

The Hilbert function is 1, 6, 12, 12, . . . with I(S) being
generated by I(S)≤2. In particular, I(S)≤2 is a linear space
spanned by the linear f1 and 15 quadratics2.

Trivially, f1 ∈ R
√
〈f1, . . . , f6〉 and the quadratics are shown

to be in the real radical using α ≤ 2. This computation
validates that VR(f) consists of 12 points. Moreover, this
data matches that displayed in [41, Table 4].

8.4 High degree
Our next example was also presented in [41] which was

modeled after a system originally from [36, Sec 4.3]:

f =

 5x91 − 6x51x2 + x1x
4
2 + 2x1x3

−2x61x2 + 2x21x
3
2 + 2x2x3

x21 + x22 − 0.265625

 .

We note that the original system in [36] had the term−6x51x
2
2

while the system from [41] has the term −6x15x2. The sys-
tem f = 0 has 8 real solutions among the 20 complex solu-
tions. Our computations produce a generating set consisting
of 2 quadratics and 10 cubic polynomials for the ideal de-
fined the 8 real solutions which are shown to be in the real
radical using α ≤ 2.

8.5 Seiler system
As an illustration of our approach on a problem considered

in [49, Ex. 5], namely the Seiler system [59]

f =

 x23 + x2x3 − x21,
x1x3 + x1x2 − x3,
x2x3 + x22 + x21 − x1

 .

2Available at www.nd.edu/˜aliddel1/validate-reals.

1 2 3

4 5 6

7 8 9

Figure 1: Nearest-neighbor coupling for a 3× 3 grid
of nodes.

This system does not have a Pommaret basis with respect
to the total degree ordering defined by x1 < x2 < x3 [59].
Thus, [49] uses a change of coordinates to overcome this.

Even though f consists of 3 polynomials in 3 variables,
VC(f) is actually a curve. In particular, I = 〈f〉 is a one-

dimensional prime ideal, i.e., I =
√
I and VC(I) is an ir-

reducible curve. Hence, we know that I = R√I if we can
compute a real point x ∈ VR(I) which is smooth with re-
spect to f , i.e., the rank of Jf(x) is 2.

To that end, we utilize a gradient descent homotopy [25].
We took y = (1,−3/2, 3/4) and considered the homotopy

H(x, λ, t) =

[
f(x)− t · f(y)

λ0(x− y) + λ1∇f1(x) + λ2∇f2(x) + λ3∇f3(x)

]
where λ ∈ P3. Starting at x = y and λ = [1, 0, 0, 0] ∈ P3

when t = 1, we obtain a point, which is approximately
(0.7009,−0.2504,−0.5868), that lies on VR(f) and is indeed
a smooth point on VC(f). Hence, the isosingular set of this

point with respect to f is VC(f) showing that I = R√I.

8.6 An energy landscape
Our last example aims to compute the real critical points

of the energy landscape of the two-dimensional nearest-neigh-
bor φ4 model on a 3 × 3 grid as in [21, 53]. We label the
nodes 1, . . . , 9 with Figure 1 showing the coupling between
the nodes. Let N(i) denote the four nearest neighbors of
node i, e.g., N(1) = {2, 3, 4, 7}. After selecting various pa-
rameters for this model, we consider the potential energy

V (x) =

9∑
i=1

 1

40
x4i − x2i +

1

4

∑
j∈N(i)

(xi − xj)2
.

The system defining the critical points is f = ∇V so that

fi =
1

10
x3i − 2xi +

∑
j∈N(i)

(xi − xj)

The system f is a Gröbner basis and the set VC(f) consists
of 39 = 19,683 points. However, when searching for real
stationary points, one only obtains 3 points, namely

S = {(0, 0, 0, 0, 0, 0, 0, 0, 0), ± (w,w,w,w,w,w,w,w,w)}

where w =
√

20 ≈ 4.4721. Hence, I(S) is generated by

G = {x1(x21 − 20), x2 − x1, . . . , x9 − x1}.

All nine basis elements were found to be in R
√
〈f〉 with α =

1, 2, 2, . . . , 2, respectively. Therefore, S = VR(f), i.e., the
energy landscape V has exactly three real critical points.
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9. KNOWN LIMITATIONS
As a theoretical approach to computing real radicals using

sums of squares, the major practical limitation is based on
the value of α needed in (3). To prevent prevent arbitrarily
long runtimes, Procedure 1 uses an upper bound αmax which
we hope will be replaced in the future by an a priori upper
bound based on the input system f .

When using floating-point computations as in the exam-
ples above, one needs to be cognizant of the effects of round-
off error and conditioning in the computations. We can aim
to control this using adaptive precision computations with
numerical approximations of solutions that can be refined to
arbitrary accuracy.

Systems phrased with numerical approximations of exact
numbers can present problems in practice. Fundamentally,
these systems violate the model of computation as exact
numbers should be input exactly. Hence, representing 1/3
as 0.3333 means that the user is solving a different system
from using 1/3. Nonetheless, the robustness and aspects of
conditioning of this approach will be explored in future work.

10. CONCLUSION
By combining numerical algebraic geometry with sums of

squares programming, we have produced a method for certi-
fying that a set of polynomials generate the real radical. The
set of polynomials arises from the generators of a set S which
is contained in the Zariski closure of the set of real solutions.
As considered in [18], combining numerical algebraic geom-
etry and semidefinite programming can potentially improve
the efficiency of computations and produce new approaches,
in particular for computing and analyzing the set of real
solutions of a system of polynomial equations.
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