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Abstract

Let {f1, f2, . . . , ft} ⊂ Q[z1, . . . , zN ] be a set of homogeneous polyno-
mials. Let Z denote the complex, projective, algebraic set determined
by the homogeneous ideal I = (f1, f2, . . . , ft) ⊂ C[z1, . . . , zN ]. Numer-
ical continuation-based methods can be used to produce arbitrary pre-
cision numerical approximations of generic points on each irreducible
component of Z. Consider the prime decomposition

√
I =

⋂
i Pi over

Q[z1, . . . , zN ]. In this article, it is shown that these approximated
generic points may be used in an effective manner to extract exact
elements Gi,j ∈ Z[z1, . . . , zN ] from each Pi. A collection of examples
and applications serve to illustrate the approach.
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Introduction

Recent progress on homotopy based methods in the context of polynomial
systems has expanded the arsenal of tools that can be brought to bear in
computational algebraic geometry. A potential shortcoming of the output
provided by numerical tools, in relation to symbolic methods, is a loss of
exactness. Despite this feature, numerical approaches are still favored in
several contexts due, in part, to their ability to provide meaningful output
when working with dozens or even hundreds of variables, well beyond the
reach of most non-numerical methods. It has been the common goal of a
number of researchers to develop algorithms which combine the best prop-
erties of numerical methods (parallelizability, ability to work with inexact
coefficients, slower complexity growth, ability to work with a large number
of variables) with the best properties of symbolic methods (exact results,
straightforward certification, wide flexibility in algebraic structures). This
has led to a number of hybrid numeric/symbolic algorithms which have ex-
tended the arena of applicability of computational algebraic geometry. In
this paper, we focus our attention on a hybrid numeric/symbolic algorithm
which uses the inexact data provided by numerical homotopy methods to
derive exact results through lattice basis reduction techniques. This exact
data can then be post-processed and certified using symbolic methods.

Let I be a homogeneous ideal in C[z1, . . . , zN ], let Z be the associated
complex projective algebraic variety, and let S be the associated complex
projective scheme. Through numerical homotopy continuation methods,
combined with monodromy breakup, it is practical to produce sets of nu-
merical data points (of prescribed precision) which are in one to one corre-
spondence with the irreducible components of Z [31, 34]. More precisely, for
each irreducible component V of Z, one can determine a set of numerical
data points that approximate a set of general points on V with a prescribed
precision. The set of numerical data points which corresponds to a given
irreducible component of Z is called a witness set for the component. It is
interesting to note that with further computational effort, it is sometimes
feasible to produce witness sets in correspondence with the irreducible com-
ponents of the scheme S [24]. The examples section of this paper will touch
lightly on properties of S. However, the primary focus of this paper will
concern the algebraic variety Z and its decomposition into irreducible com-
ponents. In particular, let Z =

⋃
d Zd denote the decomposition of Z into

pure d-dimensional components and let Zd =
⋃
j Zd,j denote the decomposi-

tion of Zd (the d-dimensional component of Z) into irreducible d-dimensional
varieties. A full witness set for Z is a collection of witness point sets Wd,j ,
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one set for each Zd,j , with Wd,j denoting a non-empty set of numerically
approximated generic points on Zd,j . It is a key observation that each of
these sets may be expanded to include an arbitrary number of points ap-
proximating generic points on the corresponding component and that each
of these approximations may be computed to arbitrarily high precision [7].
Please refer to §1.1 or [34] for further details.

Let F = {f1, . . . , ft} ⊂ C[z1, . . . , zN ] be a finite collection of homoge-
neous polynomials and let I(F ) ⊂ C[z1, . . . , zN ] denote the homogeneous
ideal they generate. Let Z = V (I(F )) denote the associated complex pro-
jective algebraic variety. Suppose further that {f1, . . . , ft} ⊂ Q[z1, . . . , zN ]
(i.e. that the set of generators of I(F ) all have rational coefficients). A goal
of this paper is to use the full witness set for Z to compute exact elements
in each component of the prime decomposition of

√
I over Q[z1, . . . , zN ].

More precisely, we describe a hybrid numeric/symbolic algorithm with the
following input and output:

INPUT: A finite subset F = {f1, f2, . . . , ft} ⊂ Q[z1, . . . , zN ].

OUTPUT: A collection of finite sets G1, G2, . . . , Gk such that

• For each i, Gi ⊂ Q[z1, . . . , zN ].

• For each i 6= j, no associated prime of
√
I(Gi) is contained in an

associated prime of
√
I(Gj).

• For each i, the scheme defined by I(Gi) is generically smooth and the
variety defined by I(Gi) is equidimensional.

•
⋂
i

√
I(Gi) =

√
I(F ).

As described in §2, the roots of this algorithm are found in lattice basis
reduction techniques. In particular, given a set of vectors V = {V1, . . . , Vt} ∈
Cr, we will use a lattice basis reduction algorithm to find linearly indepen-
dent vectors W1, . . . ,Ws ∈ Zr which are nearly orthogonal to every vector
in V . It should be noted that the use of lattice basis reduction algorithms,
to find integer relations on a set of vectors, is not new. For instance, such
algorithms have been applied to diverse problems in cryptography, number
theory, and integer linear programming. However, the ability to approxi-
mate generic points to arbitrary precision, for every irreducible component
of an algebraic set Z, is a recent development. As a consequence, the in-
put and the corresponding value of the output is different than in previous
considerations of related problems. In particular, the applications of the
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fundamental algorithm of this article, described in §3, have not previously
been considered in the literature in the setting of adaptive multiprecision
for generic points on algebraic varieties.

The following section, §1, provides a brief introduction both to numerical
algebraic geometry and to what we call exactness recovery algorithms, such
as LLL. In §2 there is a description of the algorithm, a discussion of several
choices available for subalgorithms, remarks on computational complexity,
and remarks on an initial, Maple14 based implementation with numerical
data supplied by Bertini [6]. Within Maple 14 there is an implementation of
the LLL algorithm and basic Gröbner basis commands. For more extensive
Gröbner basis calculations, we have utilized programs such as Macaulay2,
Singular, and CoCoA [18, 19, 10]. In §3, we describe modifications of the
fundamental algorithm to solve problems in other settings, including elimi-
nation theory, the desingularization of curves, and the construction of van-
ishing ideals for join and secant varieties. Finally, in §4, we conclude the
paper and summarize the results.

We would like to thank a number of individuals and organizations for
various forms of support during this project, aside from those listed on
the first page. In particular, we appreciate the useful comments and sound
advice of H. Hong, E. Kaltofen, M. Singer, S. Sullivant, and A. Szänto during
a visit by the first author to North Carolina State University. The first,
second, fourth, and fifth authors would also like to express their gratitude
to Doug Arnold and the organizers of the IMA (Institute for Mathematics
and Its Applications) Thematic Year on Applications of Algebraic Geometry.
The final draft of the paper was completed at the Spring 2011 thematic
semester of the Mittag-Leffler Institute on Algebraic Geometry with a view
towards applications.

1 Background

The algorithms described in Sections 2 and 3 make use of two types of com-
putation: numerical computation in the context of tracking paths while con-
sidering homotopies between polynomial systems and symbolic computation
in the context of finding a special almost orthogonal basis for a lattice. The
symbolic phase of the computation is used to determine linear forms with
integer coefficients which approximately vanish at prescribed numerically
approximated points arising as output of the numerical phase of the compu-
tation. The point of this section is to give brief introductions to numerical
homotopies between polynomials systems and to lattice basis reduction al-
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gorithms along with appropriate references for the interested reader.

1.1 Numerical algebraic geometry

The term numerical algebraic geometry is often used to describe the set
of numerical methods used to extract algebraic and geometric information
from polynomial systems. The field is growing rapidly and now includes a
wide range of algorithms (both numeric and numeric-symbolic). The class
of numerical algorithms that are extensively used in this paper are rooted
in homotopy continuation. In the context of numerical algebraic geometry,
the idea of homotopy continuation is to link a pair of polynomial systems
through a deformation and to relate features of the two systems through this
deformation. For instance, one can track known isolated, complex solutions
of one polynomial system to unknown, complex solutions of a second poly-
nomial system through a deformation of system parameters. Please refer
to [1, 25, 34] for further details.

The core algorithm of homotopy continuation can be combined with
monodromy breakup to produce the witness sets described in the Introduc-
tion. This involves reducing positive-dimensional irreducible components to
the zero dimensional case by slicing with a linear space of complementary
dimension. In essence, a flag of linear spaces is used in a cascade algorithm
to produce witness points for each irreducible component. As a byproduct,
the algorithm also determines the dimension and degree of each irreducible
component [31]. A witness point further serves as a numerical approxima-
tion to a generic point on the component that it labels. A set of non-empty
witness sets for a variety (one witness set for each irreducible component),
together with an identification of the degree and dimension of each compo-
nent, is called a numerical irreducible decomposition of the variety. Parts of
this decomposition are unique (the degree and dimension of each irreducible
component) while others are not (the specific witness point set for a given
positive dimensional component).

There are several important features of the methods of numerical alge-
braic geometry that should be remembered later in this article. The first
feature is the ability to refine witness points to arbitrarily high precision via
Newton’s method. A second feature is the ability to produce an arbitrary
number of witness points on any given component. A third feature is the
parallelizability of these numerical methods. For instance, 1000 processors
could be used in parallel to track 1000 paths and could be used in parallel
to refine the accuracy of each witness point to arbitrarily high precision.
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1.2 Algorithms for exactness recovery

Given a subspace W of a vector space V , a fundamental problem in linear
algebra is to find an orthogonal basis for W . A related (but harder) problem
is the following:

Problem 1.1 Let w1, w2, . . . , wt ∈ Ck and let ε, B be prescribed positive real
numbers. Find a maximal linearly independent set of vectors v1, v2, . . . , vs ∈
Zk such that ||vi|| < B for all i and |vi · wj | < ε for all i, j.

This problem gained particular prominence in the 1970s and 1980s and
led to a substantial literature on lattice basis methods including the well-
known LLL algorithm [23]. Much was written on lattice based methods
during the ensuing years, and several other algorithms have been discovered.
Since the goal of this paper is the application of such methods rather than the
development of a new algorithm of this type, we will restrict our attention
to the LLL algorithm as described in [23, 17]. It is worth noting that there
are improvements to the LLL algorithm [26, 28, 27], as well as alternatives
(such as BKZ and PSLQ [16, 30]), but a full analysis and description of the
various options would not significantly enhance the value of this article.

As a component of our main algorithm, we will be interested in an LLL-
reduced lattice basis for a lattice L ∈ Rk. With respect to the data that we
will need, the following are two of the most relevant properties of the LLL
algorithm:

1. Given an input basis B = b1, b2, . . . , bt for a lattice L ∈ Rk, the LLL
algorithm will output an LLL-reduced lattice basis B∗ = b∗1, . . . , b

∗
t for

L in polynomial time.

2. The length of b∗1 is no larger than c1 ·M where M is the length of the
shortest vector in the lattice and c1 is a known factor. Similarly, b∗2 is
within a known factor, c2, of the second shortest vector, etc.

For more details on the LLL algorithm and some applications, please see
[11, 23].

2 Fundamental algorithm

The core algorithm of the paper is provided in this section. An initial, con-
ceptual discussion of the algorithm, along with definitions needed for the
algorithm, is given in §2.1. The technical form of the algorithm is given in
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§2.2, while an illustrative example and implementation details are provided
in §2.3 and §2.4, respectively. Finally, brief discussions of symbolic verifica-
tion of the results of this numeric-symbolic method and a few words about
complexity are provided in §2.5.

2.1 Conceptual discussion

Let {f1, f2, . . . , ft} ⊂ Q[z1, . . . , zN ] be a set of homogeneous polynomi-
als with rational coefficients. Consider the ideal J = (f1, f2, . . . , ft) ⊂
C[z1, . . . , zN ] generated in the ring of polynomials with complex coefficients.
There exist homogenous polynomials {g1, g2, . . . , gs} ⊂ Q[z1, . . . , zN ] such
that

√
J = (g1, g2, . . . , gs) ⊂ C[z1, . . . , zN ]. Let

√
JQ = (g1, g2, . . . , gs) ⊂

Q[z1, . . . , zN ]. Consider the prime decomposition
√
JQ =

⋂r
`=1 PQ,` of

√
JQ

in Q[z1, . . . , zN ]. Note that PQ,` is prime when considered as an ideal in
Q[z1, . . . , zN ] and has a set of generators, G` ⊂ Q[z1, . . . , zN ]. However, the
ideal PC,`, generated by G` in C[z1, . . . , zN ], may fail to be prime. A simple
example of such phenomenon is the ideal LQ = (z2 + 1) ⊂ Q[z] compared to
the ideal LC = (z2 + 1) ⊂ C[z]. LQ is prime but LC is not prime.

Let V (J) denote the complex algebraic variety determined by J . Recall
that a witness set for V (J) consists of a list of sets W1, . . . ,Wt corresponding
to the irreducible components V1, . . . , Vt of V (J) and with the elements in Wi

consisting of numerically approximated generic points on the corresponding
irreducible component Vi. The goal of Algorithm 1 (see Section 2.2) is
to use the LLL algorithm, and a high accuracy witness set for V (J), to
obtain sets of polynomials, lying in Q[z1, . . . , zN ], that generate PQ,` for
each `. In other words, our goal is to compute a prime decomposition of√
JQ from generic points on each irreducible component of V (J). In general,

we do not accomplish this goal using solely Algorithm 1. However, the data
that we do produce (relying heavily on numerical homotopy algorithms and
the LLL algorithm) makes significant progress towards computing a prime
decomposition of

√
JQ. Furthermore, this data can sometimes be utilized

by a Gröbner basis algorithm to complete the prime decomposition in a
setting where neither Gröbner basis techniques alone nor Algorithm 1 alone
could complete the decomposition. This combination of numerical homotopy
methods for determination and refinement of generic points, lattice basis
reduction for recovery of exactness, and Gröbner basis algorithms for final
processing appears to be novel and effective.

As a starting point for the data fed to the LLL portion of the algorithm,
suppose we know an upper bound D on the degree of a set of minimal gener-
ators of P` (for some particular value of `), and that we have computed the
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generic points in a corresponding witness set to an adequate level of precision
given D and the expected size of the coefficients of the generators. While the
complex variety determined by P` may have several irreducible components,
this set of components is a subset of the set of irreducible components of
V (J). We do not know, a priori, how many irreducible components of V (J)
comprise V (P`). However, we do know that the homogeneous ideals of any
two irreducible components of V (P`) will have identical Hilbert functions.

The algorithm proceeds as follows: let x̂ be a numerical approximation,
of prescribed accuracy, to a general point x on an irreducible component, Vi
of V (J). This corresponds to a generic point on an irreducible component
of the complex variety V (P`) for some `. For each degree d ≤ D, find a
set Kd of linearly independent, degree d polynomial relations with integral
coefficients using an exactness recovery algorithm (in our case, we use LLL).
Let Q1 be a set of minimal generators, with integral coefficients, for the ideal
generated by

⋃
i≤DKd. This finite set can be determined using exact linear

algebra in a straightforward manner. If a priori bounds are known on the
degree of a set of minimal generators of P` and on the size of the coefficients
in the generators, then the ideal generated by Q1 is expected to be equal
to P`. One can use numerical algebraic geometry to determine if V (Q1) is
generically reduced, if V (Q1) contains Vi as an irreducible component, if the
homogeneous ideals of the irreducible components of V (Q1) all have the same
Hilbert function, and if the irreducible components of V (Q1) are a subset
of the irreducible components of V (J). Thus it can be determined which of
the irreducible components of V (J) correspond to irreducible components
of V (Q1) and they can be removed from further consideration. Now repeat
the procedure with a generic point on an irreducible component of V (J)
that has yet to be considered. An iteration of this procedure will exhaust
the list of irreducible components of V (J) leading to a collection of sets
of polynomials, Q1, . . . , Qt with integer coefficients. Furthermore, by the
manner in which they were constructed,

√
JQ =

⋂t
i=1

√
(Qi). Without the

aid of Gröbner basis techniques, we have difficulty determining if each ideal
(Qi) is saturated and free of non-distinguished embedded components [15].
Additionally, if V (Qi) is reducible as a complex variety, we have difficulty
verifying that (Qi) is a prime ideal in the ring Q[z1, . . . , zN ]. However, if
V (Qi) is smooth and irreducible as a complex variety, then the techniques
of numerical linear algebra can be used to verify that the saturation of Qi
(with respect to the irrelevant ideal) is prime.

Let M denote the set of all monomial exponents of a particular de-
gree d. The core of the method is to detect homogeneous polynomials
F (z0, . . . , zN ) =

∑
α∈M cαz

α ∈ Z[z0, . . . , zN ] which vanish at x by using
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the LLL algorithm to find an LLL reduced lattice basis for a lattice built
from x̂. To do so, we first define the standard degree d Veronese embedding
of a point p ∈ PN . This is the map vNd : PN → P(N+d

N )−1 sending a point
p to the tuple of all degree d monomials, each evaluated at p. By utiliz-
ing this map and invoking continuity, the problem of finding homogeneous
polynomials of degree d with integer coefficients that vanish at x is embed-
ded in the problem of finding integer vectors whose dot product with vNd (x̂)
is very small. LLL and its variants are well-suited to finding such integer
vectors. To apply LLL, we first build a lattice whose basis is the columns
of a particular (

(
N+d
N

)
+ 1) ×

(
N+d
N

)
matrix A. The matrix A is built by

stacking an
(
N+d
N

)
×
(
N+d
N

)
identity matrix on the vector C · vNd (x̂) where C

is a large number chosen by the user. One then finds an LLL reduced basis,
b∗1, . . . , b

∗
(N+d

N ), from the lattice basis generated by the columns of A. This is

an ordered basis of vectors of length
(
N+d
N

)
+1 whose first

(
N+d
N

)
entries will

be integers and whose final entry will be a real number typically of small to
moderate size. Let L be a vector in the lattice. The dot product of the first(
N+d
N

)
entries of L with the vector C · vNd (x̂) is the real number appearing

as the final entry in L. If the final entry in L is small then the first
(
N+d
N

)
entries of L correspond to an integer vector which is almost orthogonal to
C · vNd (x̂). This integer vector is the coefficient vector of a degree d polyno-
mial. If there exist small integer vectors that are nearly orthogonal to the
vector C ·vNd (x̂), then these tend to appear in the span of the earlier vectors
in the LLL-reduced basis. In general, the earlier entries of the LLL-reduced
basis tend to have relatively small entries followed by a dramatic jump in
entry size. The vectors that are of interest are the ones whose entries are
relatively small. A key point that drives the computation is that if a poly-
nomial F evaluates to zero at x and if x̂ is very close to x then F evaluated
at x̂ will be small [23]. There is a growing collection of polynomial time
algorithms which may also be used and which may demonstrate increased
efficiency in some situations. However, an exploration and comparison of
these alternative algorithms goes beyond the scope of this paper, see [20].

By fixing the required input precision and the maximum degree of rela-
tions, it is clear that the above process terminates. It should be noted that
upper bounds do exist on the largest degree generator of P` given the degree
of the variety V (P`), see [9], but these tend to be impractically large. To
make matters worse, bounds on the coefficient size may not be known, and
hence the precision requirements may be ambiguous. While these issues can
be mitigated, as discussed in §2.4, they cannot at present be eliminated.
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2.2 The fundamental algorithm

Let J , x̂, D, and vNd (·) be as in the previous section. We assume for the
moment that x̂ has an adequate level of accuracy, as mentioned in §2.1. For
each degree d from 1 to D, we store in Kd all integer relations of degree d
discovered by feeding the degree d Veronese embedding of x̂ into the LLL
algorithm. We then store in G(x̂) a subset of the elements in

⋃
i≤DKd that

minimally generate the ideal I(
⋃
i≤DKd). Thus, at the end of the algorithm,

we have collected in G(x̂) a set of independent integer polynomials which
“almost” vanish at x̂.

The following pseudocode describes the LLL component of the algorithm:
the computation of G(x̂) from a single witness point x̂.

Algorithm 1 Basic algorithm
Input: A positive integer D and a floating point approximation x̂ of a
general point x on an irreducible component, Vi, of V (J).
Output: G(x̂).
K := {}
G(x̂) := {}
for d = 1 to D do

Compute vNd (x̂)
Compute integer relations on vNd (x̂)
K ← {relations on vNd (x̂`)}

end for
Compute a minimal generating set for (K)
G(x̂)← {minimal generating set for (K)}

As mentioned earlier, one can use numerical algebraic geometry to de-
termine if V (G(x̂)) is generically reduced, if V (G(x̂)) contains Vi as an
irreducible component, if the homogeneous ideals of the irreducible compo-
nents of V (G(x̂)) all have the same Hilbert function, and if the irreducible
components of V (G(x̂)) are a subset of the irreducible components of V (J).
Thus it can be determined which of the irreducible components of V (J)
correspond to irreducible components of V (G(x̂)) and they can be removed
from further consideration. The algorithm can then iterate on a generic
point of an irreducible component of V (J) that has not yet been considered.
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2.3 An illustrative example

As an illustrative example, consider the twisted cubic curve realized as the
image of the Veronese map v1

3 : P1 ↪→ P3 where v1
3([s : t]) = [s3 : s2t : st2 :

t3]. It is simple to produce high accuracy approximations of generic points
on this curve by choosing random floating point pairs and considering their
image via the Veronese map. Given these, we can run the algorithm to
recover the defining equations of the twisted cubic.

Running the algorithm with a witness point (numerical approximation
of a general point) computed to 200 digits and D = 4, Algorithm 1 provides
the following polynomials in the ideal of the twisted cubic curve:

Component 1: −zw + yx
−yw + x2

−zx+ y2

In fact, the algorithm found no polynomials of degree 1, three of degree
2, and many of degrees 3 and 4. The polynomials of degrees 3 and 4 were
determined to be dependent on the three degree 2 polynomials.

The polynomials above are known to be the defining equations of the
twisted cubic. What we can check without a Gröbner basis computation
is that each of the generators of the ideal vanish identically on any point
in the image of v1

3 and that the scheme defined by the ideal is smooth
and irreducible. From this we can conclude that the ideal is correct up to
saturation with the irrelevant ideal. The final post-processing uses Gröbner
bases to check that the ideal is saturated. The ideal we have computed can
be found symbolically by forming the ideal J = (w− s3, x− s2t, y− st2, z−
t3) ⊂ Q[s, t, w, x, y, z] then computing the elimination ideal J ∩Q[w, x, y, z].
By explicitly choosing a generic point in our method, we are in fact choosing
generic values for s and t, and then we only implicitly look for generators
of the elimination ideal without having to actually consider the variables s
and t. We will see a similar trend in other problems that can be solved with
elimination ideals.

2.4 Implementation details

There are many choices to be made when implementing this algorithm. The
goal of this section is to describe the choices made by the authors, though
it is an active research direction to evaluate these choices.
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Computation of x̂
The creation of the input data is well understood. In particular, the com-
putation of x̂ to arbitrarily high accuracy, from an ideal, is now relatively
simple, for example, using the software package Bertini [6]. Please refer
to §1.1 for further details. If the computation involves the image of a map,
as in the previous example, one may obtain approximations to generic points
in other ways.

Choice of exactness recovery algorithm and software
As described previously, there are many choices for exactness recovery algo-
rithms, and many more choices of implementations. As the authors of this
article developed the associated software in Maple, the Maple implementa-
tion of the LLL algorithm was used. There is a significant pool of literature
comparing different implementations of the LLL algorithm and comparing
various alternatives. There is little value in repeating the various benefits
and shortfalls of each algorithm and each implementation.

Checking independence of a set of generators for an ideal
To check whether a polynomial f is independent of a set of polynomials K
(i.e., that f is not in the ideal generated by the polynomials in K), one
obvious option is a Gröbner basis computation, i.e., the standard symbolic
ideal membership test. It may seem strange to perform a set of Gröbner basis
computations as part of an algorithm which may be used in place of a single
Gröbner basis computation. However, these Gröbner basis computations
are typically simpler than the direct symbolic computation of the prime
decomposition of J .

Another option for checking whether f is not in the ideal generated
by the polynomials in K is to expand all polynomials in K to the degree
of f (by multiplying each polynomial by all monomials of the appropriate
degree), write each polynomial as a vector of coefficients, and perform a rank
computation. We have found that this method is much less computationally
expensive than using Gröbner bases. Further refinements and replacements
to this method form a current stream of research.

Precision requirements
Another potential issue is the necessity of high precision. Even if we know
(or assume) bounds for both coefficient size and degrees of relations, the
necessary precision requirements can be very large. This is due primarily
to the length of the vectors representing the images of points under the
Veronese embedding; while a point in Pn is represented by a vector of length
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n+1, the image of a point in Pn under the degree d embedding is represented
by a vector of length

(
n+d
d

)
. To find a reliable relation with coefficients of

up to k digits, we require a minimum of
(
n+d
d

)
k digits of precision. For

example, in the case n = 4, a degree 6 relation with up to 3-digit coefficients
will require at least 627 digits of precision. It is worth noting that our
precision requirement is polynomial with respect to d given a fixed n, and
likewise is polynomial with respect to n given a fixed d.

The higher the precision we use, the longer the computations will take.
If generic points are being computed with homotopy continuation methods,
then computing high precision approximations is not a major issue. Paths
can typically be tracked in lower precision to arrive at a low precision ap-
proximation; sharpening is then carried out with Newton’s method which
tends to be computationally inexpensive. The main slowdown occurs in
the computation of integer relations. Several optimizations are available for
LLL or PSLQ. For example both can be adjusted to use machine precision
(64-bit) in much of the intermediate work. This and several other technical
improvements for LLL may be found in [29], additional heuristic improve-
ments are given in [2]. A low working precision variation of PSLQ is covered
in [3], along with a parallelizable version of the algorithm.

Working without degree bounds or precision requirements
The algorithm presented in §2.2 requires that x̂ be provided with adequate
precision and that a bound D on the degrees of a set of minimal generators
is known. However, the level of precision needed is practically impossible to
know a priori, and the only general degree bounds are impractically high.
However, there is a clear meta-algorithm that has a stopping criterion not
depending on a priori knowledge of precision needs or degree bounds. Let Vi
be an irreducible component of V (J). Suppose that Vi is smooth and that
it is the unique component of V (J) with a given Hilbert function. Then
the homogeneous ideal of Vi will have a minimal set of generators with
integer coefficients. Given a witness point x̂ for Vi, choose a bound D and
some level of precision, then run Algorithm 1. Let G(x̂) denote the output
of the algorithm. It can be checked (with numerical homotopy methods)
whether the resulting ideal, (G(x̂)), defines a smooth complex scheme whose
dimension and degree is the same as the complex variety Vi. If not, then
the computation can be repeated with a higher precision and/or a higher
bound D. In addition, one can determine other witness points on Vi and
refine them to very high accuracy. If each element of G(x̂), when evaluated
at these points, is very small then with very high probability, (G(x̂)) is
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equal to the saturation of I(Vi). If one of these tests fail (for instance if
G(x̂) does not define a smooth scheme with the same invariants as Vi or if
the elements of G(x̂) do not numerically evaluate to zero at high precision
witness points of Vi) then one can refine x̂, increase the value of D and rerun
Algorithm 1. Note that problems can arise if the irreducible component Vi
of V (J) is not smooth. For instance, there could be embedded components,
at the singular points of Vi, in the scheme defined by G(x̂) which happen to
be non-distinguished. With present numerical homotopy techniques, these
are difficult to detect. One, potentially expensive, work around is to use
Gröbner basis methods to determine if the ideal (G(x̂)) is radical and/or
saturated. It is important to note that in many problems, G(x̂) will be
much more manageable than the original system from the vantage point of
Gröbner basis computations. An additional problem can arise if one of the
ideals P` is not prime. This is an interesting problem that is beyond the
scope of the present paper.

A thorough complexity analysis of the algorithms involved with this
procedure would indicate whether it is favorable to increase D or increase
the accuracy of x̂. Since the generators of P` have a maximum degree and
since all generators will be recovered if adequately high accuracy is used,
there is at least a theoretical guarantee that the algorithm will terminate.

Irreducibility
On a final note, in finding integer relations we are intrinsically restricting
ourselves to finding relations over Q, whereas numerical homotopy methods
naturally work over C. One consequence is that the output witness point
data is complex, which introduces some redundancy when we look for in-
teger relations. In particular, any integer relation on a complex vector is
simultaneously a relation on both its real and imaginary parts. We can take
advantage of this fact to reduce the amount of data passed to the integer re-
lation algorithm. For each degree, instead of using the Veronese embedding
of the complex-valued point directly, we use a random linear combination of
its real and imaginary parts. Having a random linear combination ensures
that, with probability one, any relations found are relations on both the real
and imaginary parts independently, and hence gives a polynomial relation
on the original complex point.

An interesting related point is the ability to compute the intersection
of ideals by considering general linear combinations of compatible Veronese
embeddings of high accuracy witness points on different components. For
instance, suppose V (J) is a variety in PN with r irreducible components.
If x̂1, . . . , x̂r are witness points for each of the irreducible components of
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V (J) then the algorithm can be run on general linear combinations of
vNd (x̂1), . . . , vNd (x̂r) for each d. The output will consist of integral poly-
nomials vanishing on every component of V (J) thus recovering elements in√
J .

Proof-of-concept software for this method, in the form of several Maple
scripts, is currently available to the public from the website of the first au-
thor. Several additional examples, not found in this paper, are also available
at the website as Maple scripts.

2.5 Complexity

Complexity is a difficult issue to address. First, the complexity of the com-
putation of the numerical irreducible decomposition of a variety is unknown.
There are some back-of-the-envelope estimates in the literature, but there
is no solid foundation that allows for a careful complexity analysis at this
point. Second, the use of Gröbner basis methods as an intermediate step
in the algorithm will add significantly to the total computational cost of
the method. The use of characteristic sets or triangular sets may reduce
this cost, as might the use of numerical rank-finding methods. Due to the
unknowns surrounding complexity estiates, we treat such issues as beyond
the scope of the current paper.

3 Applications

3.1 Prime Ideal Decomposition

One of the more straightforward uses of the algorithm is to compute the
prime decomposition of (the radical of) some ideal with known generators.
Consider the radical ideal

J =<w3xz2 − w3y2z + 3wx2yz2 − 3wxy3z + 7wxz4 − 7wy2z3 + 2xy4z − 2y6,

w4xz − w3yz2 + 3w2x2yz + 7w2xz3 + 2wxy4 − 3wxy2z2 − 7wyz4 − 2y5z,

w5yz − w4yz2 − w4z3 + 3w3xy2z + 7w3yz3 + w3z4 − 3w2xy2z2 − 3w2xyz3

+ 2w2y5 − 7w2yz4 − 7w2z5 + 3wxyz4 − 2wy5z − 2wy4z2 + 7wz6 + 2y4z3 > .

The astute reader might notice that these generators factor rather nicely:

J =<(w3z + 3wxyz + 7wz3 + 2y4)(xz − y2),

(w3z + 3wxyz + 7wz3 + 2y4)(wx− yz),
(w3z + 3wxyz + 7wz3 + 2y4)(wy − z2)(w − z) > .
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Since the ideal generators do not exceed degree seven, we will set D = 7.
Allowing for two-digit coefficients, we need at least 2(

(
3+7
3

)
−1) = 238 digits

of precision, so to be conservative we use 300 digits of precision. It should
be noted that it would suffice to set precision to 100 digits and D to four,
though we have no way of knowing that a priori.

We first run Bertini on the non-factored generator list, which in turn
outputs witness points on each of three components. Each witness point is
an approximation of a generic point accurate to 300 digits.

Next, for one witness point on the first component, we compute the
Veronese embeddings starting at degree one and continuing to degree seven,
then use LLL to search for integer relations on each embedding. As we find
relations, we reinterpret them as polynomial relations, and filter out any that
are algebraically dependent on lower-degree polynomial relations. Finally,
we repeat the process for one point on each of the other two components.
Our final output is the following:

Component 1: zw3 + 3zyxw + 7z3w + 2y4

Component 2: −zx+ y2

−xw + zy
−yw + z2

Component 3: x
y

−w + z

Given that the precision we used significantly overshoots what we would
require to deduce the same relations, this gives us strong evidence (but does
not prove!) that

J =
〈
zw3 + 3zyxw + 7z3w + 2y4

〉
∩
〈
−zx+ y2,−xw + zy,−yw + z2

〉
∩ 〈x, y,−w + z〉 .

For reference, symbolic computation of the same result with Gröbner
bases is described in [14], along with computation of radical ideals, which is
the topic of the next example.

3.2 Radical Ideals

Since varieties are in natural correspondence to radical ideals, we expect to
be able to recover generators for these as well. A subtle point, however, is
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that if the variety of a radical ideal,
√
J , is reducible, a random point chosen

on the variety will lie on some irreducible component. This means we will
always find elements in a prime component of

√
J , which will in general

properly contain
√
J . That is, using only one point in the algorithm, we

will find some relations not in
√
J . To get around this, we will use the

fact that
√
J is the intersection of its prime components, and hence consists

of all polynomials which simultaneously vanish on generic points on each
irreducible component.

We can tweak the algorithm to handle this new condition as follows:
instead of treating each irreducible component separately, we consider a set
of generic points with one generic point for each irreducible component. For
each degree, we take a random linear combination of the embedded images
of the points. We then use Algorithm 1 to find integer relations on the
general linear combination (much like we do to compress complex points, as
described in §2.4). Again, the random linear combination ensures that, with
probability one, the only integer relations that exist will be those that vanish
on each of the original embedded points independently, which is precisely
the condition we require for generators of

√
J .

For example, consider the ideal

J =<− 512w3y + 1728w2xy − 1944wyx2 + 729yx3,

− 45x2z2 − 230zwx2 + 200x3z + 5x2zy − 20zxwy − 50wyx2

+ 200yx3 − 200w2x2 − 42z3x− 98z2wx− 22z2xy − 5z4

+ 50x3w − 80w2xz − 10z3w − 3yz3 − 2z2wy − 8w2z2 > .

The degrees and coefficient size of the generators give us reasonable
guesses for appropriate bounds on the radical generators, so we set D = 4
and precision to 180 digits to allow coefficients with four digits. Running
the tweaked algorithm gives the following output:

Component 1: 8yw − 9yx,
−40xw2 + 8yw2 − 8zw2 + 10x2w + 13yxw − 48zxw
−10zyw − 10z2w + 4yx2 + 40zx2 + 2zyx− 17z2x
−3z2y − 5z3

Hence, we deduce that
√
J =<8yw − 9yx,−40xw2 + 8yw2 − 8zw2 + 10x2w + 13yxw − 48zxw

− 10zyw − 10z2w + 4yx2 + 40zx2 + 2zyx− 17z2x− 3z2y − 5z3 > .
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The reader may verify that the original ideal is identical to the following,
and thereby check the results:

J =<y3(8w − 9x)3,

(5x+ z)2(−5z2 − 10zw + 8zx− 3zy + 2wx− 2wy + 8xy − 8w2) > .

3.3 Elimination Ideals

An elimination ideal is the intersection of an ideal with a ring in fewer
variables. For example, if J ⊂ C[x0, x1, x2, x3], then J2

.= J ∩C[x2, x3] is an
elimination ideal (often called the second elimination ideal, since it eliminates
the first two variables). The ideal J2 consists of all polynomials in J that
only depend on the variables x2 and x3. If J has a minimal generating set
lying in Q[x0, x1, . . . , xN ] then, for each k, Jk = J ∩C[xk, . . . , xN ] will have
a minimal generating set lying in Q[xk, . . . , xN ]. See [12], for example, for
more details about elimination ideals and elimination theory. If V (J) is an
irreducible variety, then the radical of Jk can be found by determining the
set of integer relations on the last N−k+1 coordinates of a generic point of
V (J). For general J , we can recover generators for the radical of Jk by using
projections of generic points of V (J) combined with the approach described
in §3.2 for radical ideals.

As a concrete example, consider the ideal

J =<− 5z2w − 2z2y − 4zwx− 8wyz − zxy + 8wxy + 8w3,

− 4z2 + 10wx, 6z + 3w > .

Since we are unsure of the degree and coefficient bounds, we use higher
settings of 780-digit precision and D = 7. Projecting generic points to the
last two coordinates before running the algorithm, we obtain:

Component 1: −87zy + 278z2

This suggests the radical of J ∩ Q[y, z] is
〈
−87zy + 278z2

〉
. Projecting

instead onto the last three coordinates gives us:

Component 1: 5zx+ z2

−70zx− 87zy + 264z2

From which we deduce the radical of J∩Q[x, y, z] is
〈
5zx+ z2,−70zx− 87zy + 264z2

〉
.
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Actually using our method to find elimination ideals with the intent
of solving a polynomial system would be rather redundant given that we
must solve the system first to get witness points. However, elimination does
come up in other symbolic computations. In the next few examples we
will see instances that are typically carried out, in a symbolic setting, with
elimination theory.

3.4 Join and Secant Varieties

If U and W are irreducible varieties, then their join is the Zariski closure
of the union of all lines which intersect both U and W . The secant variety
of U is the join of U with itself. It is the Zariski closure of the union of all
secant lines of U .

Given a point on U and one on W , any linear combination of these
points is in the join. To get a generic point in the join, we can choose generic
points on U and W and take a random linear combination of the two generic
points. Using numerical algebraic geometry methods and random number
generators, this is a simple procedure. There is no fundamental difference
when we want to compute a secant variety, as long as we are careful to
choose two distinct generic points. Depending on the degree of the variety,
however, we may only require one homotopy run to do so, since the witness
set of an irreducible component in fact contains points equal in number to
the degree of the component.

We will consider a classical example of a secant variety. Let U be the
variety given by the image of the Veronese embedding v2

2 : P2 ↪→ P5,
a cousin of the twisted cubic. It is equivalently defined as V (J), where
J =

〈
UX − V 2, UY − VW,UZ −W 2, V Y −WX,V Z −WY,XZ − Y 2

〉
⊆

C[U, V,W,X, Y, Z]. Like in the example of the twisted cubic, we could have
determined J from a generic point on V (J). A generic point on V (J) can
be created by evaluating [x2 : xy : xz : y2 : yz : z2] at a generic value of x, y
and z. A general point on the secant variety to the Veronese surface can be
found by generating two general points on the surface then taking a general
linear combination of these two points. Without knowing what to expect for
coefficient size and degree, we might choose to pick relatively large bounds.
We chose 700 digits and D = 4 then passed a general point on the secant
variety to Algorithm 1. The result is:

Component 1: −XZU + Y 2U + V 2Z − 2WY V +W 2X

Once again, we can draw a close comparison to the symbolic method
for computing the same kind of results. Briefly, suppose I and J are ideals
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in P5. Points in the join variety of V (I) and V (J) will have the form
[sx0 + ty0 : sx1 + ty1 : · · · : sx5 + ty5] with s and t free parameters, with
[x0 : x1 : · · · : x5] satisfying the relations of I and [y0 : y1 : · · · : y5] satisfying
those of J . We pick new variables z0, z1, . . . , z5 to represent the coordinates
points in the join, which implicitly requires that zi = sxi + tyi for each i.
Then we define a new ideal H generated by all of the polynomials zi−sxi−tyi
(our constraints on each zi), and the relations on the xi’s and yi’s (in essence
the generators of I and J). Finally, we saturate H with respect to the ideal
(s, t) (since s and t can’t both be zero at the same time) and compute the
elimination ideal (H : (s, t)∞) ∩ C[z0 : z1 : · · · : z5].

When using our numerical approach, we effectively bypass the explicit
introduction of variables s, t, xi, and yi by picking generic values for each;
homotopy methods give us generic xi and yi, and our random linear combi-
nation of the points defines s and t. Also, the elimination step is once again
only implicitly done. Consequently, we are able avoid more than tripling
the number of variables as occurs in the symbolic case. In our approach,
the cost is incurred in the precision requirements and in the use of the LLL
algorithm.

3.5 Desingularization through blowing up

Let V be a singular variety (i.e. a variety containing at least one singular
point). In 1964, Hironaka proved in a celebrated paper [22] that every
singular projective variety defined over a field of characteristic zero has a
resolution. In other words, a non-singular variety X with a proper birational
map X → V . In this section, we show how to remove a simple singularity
on a curve by applying Algorithm 1 to a generic point on the blow-up. We
will give a concrete example of the process here without going into great
detail about the underlying theory.

Consider the variety V = V (J), where J is the ideal

< x4 + 15x3y + 31x2y2 + 5xy3 + 4y4 + 3x3z + 26x2yz + 16xyz2

+ 15y3z + 11x2z2 + 2xyz2 + y2z2 > .

Notice that V has a singularity at [0 : 0 : 1], since all the partial derivatives
of its defining equation vanish whenever x = y = 0. We define new variables
A, B, C, D, and E to correspond to the degree two monomials in Q[x, y, z]
which vanish at the singular point. More specifically, we set A = x2, B = xy,
C = xz, D = y2, and E = yz (the remaining monomial, z2, does not vanish
at the singular point). The idea is to find the set of relations which the new
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coordinates must satisfy, given the implicit relations on the corresponding
monomials induced by the generator of J .

To do this symbolically, we would construct a new ideal J ′ = (J,A −
x2, B − xy,C − xz,D − y2, E − yz) ⊂ Q[x, y, z, A,B,C,D,E], which derive
from the above equations. We would then compute the elimination ideal
J ′ ∩Q[A,B,C,D,E].

We will use the symbolic setup to guide our attack on the problem using
numerical techniques. The main issue is producing a generic point on V (J ′∩
Q[A,B,C,D,E]). Since A, B, C, D, and E are defined in terms of x, y,
and z, we need generic values for these variables, which are only constrained
to come from the coordinates of a point [x : y : z] ∈ V . In other words,
our strategy is to first find a witness point of V , then explicitly compute
a generic point [A : B : C : D : E] using the equations A = x2, B = xy,
C = xz, D = y2, and E = yz.

Since A, B, C, D, and E are computed from degree two monomials and
the original variety is generated by a degree four polynomial, it turns out
we can set D = 2. Coefficient size, as usual, is more difficult to predict, so
we will use a precision of 600 digits to start.

Component 1: −DA+B2

−EA+ CB
−EB +DC

A2 + 15BA+ 3CA+ 4D2 + 14EA+ 17B2 + 12CB
. . .+ 5DB + 11C2 + 18EC + 14DA+ 15ED + E2

It can be checked that these equations determine a smooth curve in P4.

3.6 Extensions of the approach

A feature of numerical homotopy methods is the ability to produce arbi-
trarily many witness points of prescribed precision on any given irreducible
component of a variety V . The entire collection of witness points on the
irreducible component can be used in the LLL algorithm in a single run.
The computational advantages of this approach are unclear. However, both
experimentation and intuition suggest that utilizing many witness points of
lower precision should carry similar information to a single witness point
of higher precision. This leads to the possibility of obtaining exact equa-
tions by considering very large sets of very low precision witness points and
utilizing the main algorithm of this paper.
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A second feature of numerical homotopy methods is the ability to pro-
duce witness points on every irreducible component of a variety. This allows
for a potentially nice interaction between numeric and symbolic methods.
For instance, let V be a variety in a high dimensional projective space whose
irreducible components (over C) have a wide range of dimensions. Assume
further that the homogeneous ideal of V has a generating set with ratio-
nal coefficients. A typical such problem may initially be too complicated
for a Gröbner basis algorithm to handle. Numerical methods can produce
witness points on every irreducible component of V and can realistically
hope to identify exact low degree equations (if they exist) in the ideal of
each irreducible component of V (over Q). This additional information can
sometimes be used to quotient away (using symbolic methods) some of the
irreducible components leading to a simpler pair of problems that are within
reach of a Gröbner basis algorithm. In addition, symbolic methods can be
used to provide a certificate for the data produced by the LLL algorithm.
Thus, one can envision problems where the identification of some of the
components in a prime decomposition of JQ through a numerical homo-
topy over the complex numbers combined with the LLL algorithm provides
enough simplification to allow a Gröbner basis algorithm to complete the
prime decomposition where it was initially stymied.

A third feature of numerical homotopy methods is the ability to access
generic points of a variety in a concrete manner. As we already saw in Sec-
tion 3.5, simple manipulations of generic points can correspond to relatively
intricate operations. For instance, consider a collection of 3 curves meeting
transversely at the point [0 : 0 : 0 : 1] in P3. Blow up the three curves at
this point of intersection through a map to P8. The join of these 3 blown
up curves will be a 5-fold in P8. It is a simple matter to produce a witness
point on this 5-fold with arbitrary precision. One starts with three generic
points, one on each curve in P3, follows them to P8 to get three generic
points on the blown up curves, then takes a general linear combination of
the three generic points on the blown up curves to get a generic point on
the join variety.

4 Conclusions

This article presents a set of novel numeric-symbolic methods for carrying
out an array of computational problems in algebraic geometry that were
previously outside the realm of numerical computation. These methods
marry numerical techniques in the field of numerical algebraic geometry
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to exactness recovery techniques such as LLL or PSLQ. Post processing
and further certification can be provided with Gröbner basis techniques.
Several applications were presented, including the prime decomposition of
the radical of an ideal, elimination, the computation of defining equations
for the join of two varieties, and desingularization of a singular curve.

Much work remains in this direction; indeed, this article is intended to
be the first in a series of articles aimed at the recovery of exactness after
an application of numerical methods. At a fundamental level, one direc-
tion of research to consider is that LLL and PSLQ both require very high
precision. While numerical algebraic geometry methods can produce any
necessary level of accuracy, their use in the LLL algorithm can lead to a
time-consuming computation. Similarly, the post processing via Gröbner
basis computations is certainly valid, but can also be time-consuming. It
is hoped that the vector space (numerical rank computation) method for
checking for algebraic independence will ultimately save considerable com-
putational resources. It has also been suggested to the authors that charac-
teristic sets or triangular sets would be a more efficient symbolic means for
checking for independence of a set of generators for an ideal.

This project is part of a larger series of projects aimed at providing nu-
merical alternatives and augmentations to common symbolic computations
in algebraic geometry and at providing tools that extend the range of appli-
cability of symbolic methods. For example, it is known how to numerically
compute the dimension of a linear series on a curve, the multiplicity struc-
ture of a zero-scheme, intersection numbers of Chern classes, and progress
has been made on a numerical primary decomposition [21, 8, 13, 4, 24]. With
1000-10000 core machines on the horizon, it is hoped that numerical meth-
ods will play a growing role in extending the applicability of computational
algebraic geometry to settings that were unimaginable a decade ago.
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