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Abstract. Globally, the solution set of a system of polynomial equations
with complex coefficients can be decomposed into irreducible compo-
nents. Using numerical algebraic geometry, each irreducible component
is represented using a witness set thereby yielding a numerical irreducible
decomposition of the solution set. Locally, the irreducible decomposition
can be refined to produce a local irreducible decomposition. We define
local witness sets and describe a numerical algebraic geometric approach
for computing a numerical local irreducible decomposition for polyno-
mial systems. Several examples are presented.
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1 Introduction

For a polynomial system f : CN → Cn, the algebraic set defined by f is the
set V(f) =

{
x ∈ CN | f(x) = 0

}
. An algebraic set V is reducible if there exist

nonempty algebraic sets V1, V2 ( V such that V = V1 ∪ V2 and for i 6= j,
Vi 6⊂ Vj . If V is not reducible, it is irreducible. For V(f), there exist irreducible

algebraic sets V1, . . . , Vk, called irreducible components, such that V(f) =
⋃k
i=1 Vi

and Vj 6⊂
⋃
i6=j Vi. The irreducible components V1, . . . , Vk are said to form the

irreducible decomposition of V(f).
A fundamental computation in numerical algebraic geometry is the numerical

irreducible decomposition (NID), that is, computing a witness set for each of the
irreducible components; e.g., see [2, Chap. 10]. For an irreducible component
V ⊂ V(f) ⊂ CN of dimension d and degree r, a witness set for V is the triple
{f,L,W} where L ⊂ CN , called a witness slice, is a general linear space of
codimension d and W = V ∩ L, called a witness point set, is a set of r points.

One can naturally extend the global notions of reducibility, irreducible com-
ponents, and irreducible decomposition to the local case (e.g., see [5, Chap. B]).
Moreover, one can locally extend to the case that f is holomorphic in an open
neighborhood. Our main contribution is to extend the numerical algebraic geo-
metric notions to the local case via local witness sets and a numerical local irre-
ducible decomposition, defined in Sect. 2, the computation of which is described
in Sect. 3, and demonstrated on several examples in Sect. 4 using Bertini [1].
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2 Local witness sets

Let f : CN → Cn be a polynomial system, V1, . . . , Vk be the irreducible com-
ponents of V(f), and x∗ ∈ V(f). If x∗ ∈ Vi, then Vi localized at x∗ can be
decomposed uniquely, up to reordering, into a finite union of locally irreducible
components Ti,1, . . . , Ti,mi , e.g., see Theorem 7 of [5, Chap. B]. If x∗ 6∈ Vi, then Vi
localized at x∗ is empty, i.e., mi = 0. Hence, the local irreducible decomposition
of V(f) at x∗ is

⋃k
i=1

⋃mi

j=1 Ti,j .

Example 1. Consider the irreducible polynomial f(x) = x21−x22 +x42. Hence, for
a general x∗ ∈ V(f) ⊂ C2, the irreducible curve V(f) is locally irreducible at x∗.
The origin arises as a self-crossing of the curve V(f) and hence decomposes into
two locally irreducible components at the origin, say

T1,1, T1,2 =

{(
x1,±

√
1−

√
1− 4x2

1

/√
2

) ∣∣∣∣∣ x1 near 0

}
.

As with the global case, where witness sets form the key data structure in
formulating a NID, local witness sets will be used to formulate a numerical local
irreducible decomposition (NLID). The two key differences between a witness set
and a local witness set, which we formally define below, are:

1. a local witness set is only well-defined on a neighborhood of x∗; and
2. all points in the local witness point set converge to x∗ as the witness slice

deforms to slice through x∗.

The key to understanding the local structure of an analytic set is the local pa-
rameterization theorem (see [5, Chap. C, D, E] and [6]). For a pure d-dimensional
reduced analytic set V ⊂ CN containing x∗, the local parameterization theorem
implies (among other things) that there is an open ball U ⊂ CN centered at x∗

such that given a general linear projection π : CN → Cd and any open ball
Bε(π(x∗)) with ε > 0 small enough, the map πV̂ is a proper branched covering

from V̂ := V ∩π−1(Bε(π(x∗)))∩U onto Bε(π(x∗)). Moreover, the sheet number
is the multiplicity of the point x∗ on V , denoted µx∗ .

Remark 1. Since πV̂ is proper, the Remmert proper mapping theorem implies
that there is an analytic set R ⊂ Bε(π(x∗)) with dimR < d such that πV̂ \π−1(R)

is an unbranched µx∗ -sheeted cover from V̂ \π−1(R) onto Bε(π(x∗)) \R. Hence,

if V is locally irreducible at x∗, then V̂ \π−1(R) is connected and the monodromy
action on any fiber of πV̂ \π−1(R) is transitive.

The local parameterization theorem is a local version of the Noether Normal-
ization Theorem. For a pure d-dimensional algebraic set V ⊂ CN , the Noether
Normalization Theorem states that the restriction πV to V of a general linear
projection π : CN → Cd is a proper deg V -to-one map of V onto Cd. Given a
general codimension d linear space L containing x∗, it follows that L∩V consists
of x∗ and deg V − µx∗ smooth points. Given a preassigned open set O around



L∩V , the intersection of any d codimensional linear space L′ sufficiently near L
will have L′∩V ⊂ O. By choosing O as the intersection of V with deg V −µx∗+1
disjoint small open balls, we see that the L′∩V has precisely µx∗ points near x∗.

Definition 1. Let f : CN → Cn be a system of functions which are holomorphic
in a neighborhood of x∗ ∈ CN with f(x∗) = 0. Let V ⊂ CN be a locally irreducible
component of V(f) at x∗ of dimension d and `1, . . . , `d : CN → C be general
linear polynomials such that `i(x

∗) = 0. For u ∈ Cd, let Lu ⊂ CN be the linear
space defined by `i(x) = ui for i = 1, . . . , d. A local witness set for V is the triple
{f,Lu∗ ,W} defined in a neighborhood U ⊂ Cd of the origin for general u∗ ∈ U
and W is the finite subset of points in V ∩ Lu∗ which are the start points of the
paths defined by V ∩ Lu(t) where u : [0, 1] → U is any path with u(0) = 0 and
u(1) = u∗ which converge to x∗ as t→ 0.

Remark 2. The choice of points W inside of V ∩ Lu∗ is well-defined and equal
to the multiplicity µx∗ of V at x∗. We call µx∗ the local degree of V at x∗.

Remark 3. When V is a curve, the neighborhood U is often referred to as the
endgame operating zone, e.g., see [2, § 3.3.1]. For all cases, we will call U the
generalized endgame operating zone.

As Remark 1 suggests, one can perform monodromy loops using local witness
sets similarly to classical witness sets. Local witness sets can also be used to
sample components and to perform local membership testing.

In particular, a numerical local irreducible decomposition consists of a formal
union of local witness sets, one for each local irreducible component.

Example 2. Reconsider f from Ex. 1 with x∗ = (0, 0). For simplicity, we take
`1(x) = x1 which then defines the neighborhood U = {u ∈ C | |u| < 1/2}. We
arbitrarily select u∗ = 1/6 which implies that

V(f) ∩ Lu∗ =

{(
1
6 ,±

√
1
2 −

√
2

3

)
,

(
1
6 ,±

√
1
2 +

√
2

3

)}
.

As u (and hence x1) deforms to 0, the first two points in V(f) ∩ Lu∗ converge
to x∗ while the last two converge to (0,±1), respectively. For local irreducible
components T1,1 and T1,2 of V(f) at x∗, local witness sets are

W1 =

{
f,Lu∗ ,

{(
1
6 ,

√
1
2 −

√
2

3

)}}
and W2 =

{
f,Lu∗ ,

{(
1
6 ,−

√
1
2 −

√
2

3

)}}
,

with each T1,i having local degree 1. Since T1,1 ∪ T1,2 form a local irreducible
decomposition of V(f) at x∗, the formal union W1 ∪W2 is a NLID.

3 Computing numerical local irreducible decompositions

When decomposing a pure-dimensional set into its irreducible components, one
simplification is to reduce down to the curve case. That is, if V ⊂ CN is pure
d-dimensional andM⊂ CN is a general linear space of codimension d− 1, then
the irreducible components of V correspond with the irreducible components
of V ∩M. Unfortunately, this need not hold for the local case.



Example 3. Consider V = V(x21 + x22 + x23) ⊂ C3 which is irreducible at the
origin. For a general complex plane L = V(a1x1 +a2x2−x3) through the origin,
it is easy to check that V ∩ L consists of two lines through the origin.

The following outlines a procedure for computing a NID that follows from
Sect. 2. We assume that we are given a polynomial system f : CN → Cn and a
point x∗ ∈ V(f). Since we can loop over the irreducible components of V(f), the
key computation is to compute the NLID for an irreducible component V ⊂ V(f)
given a witness set {f,L,W} for V with d = dimV .

1. Select random linear polynomials `i : CN → C with `i(x
∗) = 0.

2. Pick random u∗ ∈ Cd in the generalized endgame operating zone. Construct
the linear spaces Lu∗ and L0 defined by `i = u∗i and `i = 0, respectively.
Compute W ′ = V ∩Lu∗ via the homotopy defined by V ∩(t ·L+(1−t) ·Lu∗).

3. Compute Wx∗ consisting of points w ∈ W ′ such that the path defined by
the homotopy V ∩ Lt·u∗ starting at w at t = 1 limit to x∗ as t→ 0.

4. Use monodromy loops inside the generalized endgame operating zone to
compute the local monodromy group which partitions Wx∗ = W1t · · · tWs.
The NLID for V at x∗ is defined by the formal union

⋃s
i=1{f,Lu∗ ,Wi}.

Remark 4. The key to performing the same computation in the holomorphic
case is to compute the finite set Wx∗ in Item 3. The number of such points
in Wx∗ can be computed via a local multiplicity computation using Macaulay
dual spaces [3,9] in certain cases. For example, if x∗ ∈ CN and f : CN → CN−d
is a system of holomorphic functions at x∗ such that the local dimension of V(f)
at x∗ is d, it follows from [4, pg. 158] that the multiplicity of {f, `1, . . . , `d} at x∗

is equal to the number of points in Wx∗ .

4 Examples

4.1 Illustrative example

Consider the irreducible curve V = V(x51 + 2x52− 3x1x2(x1−x2)(x2−x21)) ⊂ C2

with Fig. 1(a) plotting the real points of V and x∗ = (0, 0). For simplicity, we
take `1(x) = 2x1 + 3x2, u∗ = 1/8, and Lu defined by `1(x) = u. Hence, V ∩Lu∗
consists of five points, with four of the paths defined by the homotopy V ∩Lt·u∗
limiting to x∗ as t→ 0. Therefore, Wx∗ in Item 3 consists of 4 points.

We now perform monodromy loops which, in the curve case, means looping
around 0. We observe that this loop breaks into 3 distinct cycles, two remain on
their own branch and two interchange. Therefore, there are 3 local irreducible
components as shown in Fig. 1(b), two of local degree 1 and one of local degree 2.

4.2 Local irreducibility and real solutions

If the polynomial system f has real coefficients, the complex conjugate, conj(V ),
of an irreducible component V ⊂ V(f) is also an irreducible component. If
V 6= conj(V ), then then all real points on V must be contained in V ∩ conj(V )



(a) (b)

Fig. 1. Plot of (a) the real points of an irreducible quintic curve and (b) the real points
near the origin, which locally decomposes into three components.

where dimV > dim(V ∩ conj(V )). For example, the “home” position of a cubic-
center 12-bar mechanism [11], as presented in [10, Fig. 3], can be shown to
be rigid, i.e., isolated over the real numbers, by observing that the only two
irreducible components containing the “home” position are two sextic curves
which are conjugates of each other [7].

The NID is not always sufficient to reveal structure at singularities. Consider
the Whitney umbrella V = V(x21 − x22x3) ⊂ C3, which is an irreducible surface.
For a random point on the “handle,” i.e., x∗ = (0, 0, α) for random α ∈ C, the
NLID reveals that V at x∗ has two local irreducible components, each of local
degree 1. At the origin, the NLID reveals that it is irreducible of local degree 2.
When α < 0, say x∗ = (0, 0,−1), global information is not enough to observe that
the real local dimension is smaller than the complex local dimension. However,
the local viewpoint does indeed reveal that the two local irreducible components
are complex conjugates of each other showing a smaller real local dimension.

4.3 Foldable Griffis-Duffy platform

In our last example, we consider the “folded” pose, as shown in [8, Fig. 3], of
a foldable Griffis-Duffy platform with the polynomial system available at [1]
(see also [2, Chap. 8]). Our local approach verifies that the local irreducible
decomposition of the “folded” pose consists of three double lines and a self-
crossing of a quartic curve as mentioned in [8,10].
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