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Abstract

Tropical varieties capture combinatorial information about how coordinates of points
in a classical variety approach zero or infinity. We present algorithms for computing
the rays of a complex and real tropical curve defined by polynomials with constant
coefficients. These algorithms rely on homotopy continuation, monodromy loops, and
Cauchy integrals. Several examples are presented which are computed using an imple-
mentation that builds on the numerical algebraic geometry software Bertini.

2010 Mathematics Subject Classification: 14T05, 14Q05, 14P05

Introduction

Tropical geometry is a field of mathematics that uses combinatorial structures to study prob-
lems in algebraic geometry. It has proven to be a powerful tool for understanding real and
complex varieties. Computations with tropical varieties can extract delicate combinatorial
properties of algebraic varieties, and tropical methods can be used to construct finely-tuned
examples of varieties with desired properties, e.g., [2, 30].

Most of the current algorithms for computing tropical varieties are symbolic and involve
the computation of Gröbner bases. The past few years have seen the development of new
techniques based on numerical algebraic geometry for computing complex tropical varieties
in the case of hypersurfaces [16] and curves [20]. In this paper, we present a new algorithm for
computing complex tropical curves which we then enhance to compute real tropical curves.
We have implemented these algorithms using a combination of Matlab and Bertini [7]
available at [10].

We anticipate that the numerical computation of tropical curves represents a first step
towards the numerical computations of higher-dimensional tropical varieties. Another reason
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to focus on curves, as mentioned in [20], is that the computation of tropical curves is an
internal step in the computation of other tropical varieties. Moreover, to the best of our
knowledge, no other computational techniques exist for real tropical curves. We hope to
extend this to higher-dimensional real tropical varieties as well.

The remainder of the paper is organized as follows. In the first section, we summarize
the necessary background and notation for tropical varieties. Cauchy’s integral formula and
projectivization are discussed in Section 2. In Section 3, we present our algorithms for
computing complex and real tropical curves and prove their correctness. Implementation of
these algorithms is discussed in Section 4. Finally, we conclude in Section 5 with examples.

1 Background on tropical geometry

Let k be a field and I be an ideal in the polynomial ring k[x1, . . . , xn]. For any subset S of
the field k, we denote VS(I) as zero set in Sn of the polynomials in I. The usual cases are
S = k and the set of non-zero elements S = k

∗.
The set of Puiseux series over a field k, denoted k{{t}}, is the union over all positive

integers n of the formal Laurent series in t1/n, namely

k{{t}} =
⋃
n≥1

k((t1/n)) =
⋃
n≥1

{
∞∑
j=k

cjt
j/n

∣∣∣∣∣ k ∈ Z, cj ∈ k

}
. (1)

The field C{{t}} is algebraically closed and R{{t}} is real closed. The field of Puiseux series
has a valuation, val : k{{t}}∗ → Q, and coefficient map, coeff : k{{t}}∗ → k

∗, given by

val

(∑
q

cqt
q

)
= min{q | cq 6= 0} and coeff(y) = cval(y).

If a Puiseux series y converges for t in a neighborhood of zero then coeff(y)tval(y) gives its order
of growth around t = 0. Both maps val(·) and coeff(·) extend to (k{{t}}∗)n coordinate-wise.

Given an ideal I ⊂ k[x1, . . . , xn], consider the zeros of the polynomials in I over k{{t}}n
and their valuations in Qn. For technical reasons, we actually consider the negative of the
valuation map, corresponding to the “max” convention. Letting this run over all solutions
and taking the Euclidean closure in Rn yields the tropical variety over k of the ideal I.

Definition 1. Given an ideal I ⊂ k[x1, . . . , xn], the tropical variety over k, denoted
Trop

k
(I) ⊂ Rn, is the closure of the image of its variety over k{{t}}∗ under the negative

valuation map,
Trop

k
(I) = −val(Vk{{t}}∗(I)).

We call TropC(I) the tropical variety of I and TropR(I) the real tropical variety of I.
As Trop

k
(I) only depends on the variety Vk∗(I), we will also use the notation Trop

k
(V(I)).

In this paper, we will be particularly interested in locally convergent Puiseux series. For
k = R or C, replacing k{{t}} with locally convergent Puiseux series k{{t}}conv does not change
the image of a variety under the valuation map. That is, Trop

k
(I) = −val(Vk{{t}}conv(I)).
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The tropical variety TropC(I) is closely related to the initial ideals of the ideal I as follows.
For α ∈ Nn, let xα denote xα1

1 x
α2
2 · · ·xαn

n . Given w ∈ Rn and a polynomial f(x) =
∑

α fαx
α,

the initial form of f with respect to w, denoted inw(f), is the sum of the terms fαx
α which

maximize w · α. For an ideal I ⊂ C[x1, . . . , xn], the initial ideal of I with respect to w,
denoted inw(I), is the ideal generated by the initial forms of elements of I, namely

inw(I) = 〈inw(f) | f ∈ I〉.

Suppose y ∈ k{{t}}n is an n-tuple of non-zero Puiseux series with valuation val(y) ∈ Qn

and leading coefficients coeff(y) ∈ (k∗)n. If y lies in the variety Vk{{t}}(I) for some ideal
I ⊂ k[x1, . . . , xn], then w = − val(y) belongs to the tropical variety Trop

k
(I), and coeff(y)

belongs to the variety of the initial ideal Vk(inw(I)). In particular, Vk(inw(I)) ∩ (k∗)n is
non-empty which implies that inw(I) cannot contain a monomial. Over C, the converse
holds and is known as the fundamental theorem of tropical geometry. Indeed, for k = C,
tropical varieties have very specific combinatorial structure, which we summarize from [21,
Theorems 3.2.3 and 3.3.8]:

Theorem 2. Let I ⊂ C[x1, . . . , xn] be a prime ideal that defines a d-dimensional vari-
ety VC∗(I). Then, the tropical variety TropC(I) is the support of a pure d-dimensional ra-
tional polyhedral fan. It is the set of weights for which the initial ideal of I contains no
monomials: TropC(I) = {w ∈ Rn | inw(I) does not contain a monomial}.
Remark 3. One can associate a multiplicity to each maximal cone in the tropical variety
TropC(I). Each irreducible component of the variety VC∗(inw(I)) contributes to the mul-
tiplicity of the ray w by the multiplicity of the corresponding minimal primes in inw(I).
See [21, §3.4] for details. With multiplicities, the tropical complex variety is balanced, i.e., if
the tropical variety is a union of rays ~r1, . . . , ~rs with multiplicities m1, . . . ,ms and ri is the
primitive integer point on the ray ~ri, the weighted sum m1r1 + . . .+msrs ∈ Rn is zero.

As in classical algebraic geometry, real varieties provide subtle challenges for tropicaliza-
tion. There are some similarities to the complex case. In particular, Alessandrini [1] showed
that TropR(I) is a rational polyhedral fan related to the real variety VR∗(I).

Theorem 4 ([1]). For an ideal I ∈ R[x1, . . . , xn], the real tropical variety TropR(I) is a
rational polyhedral fan in Rn whose dimension is at most the dimension of the variety VR∗(I).

In general, we only know that TropR(I) ⊆ TropC(I). In fact, TropR(I) is not necessarily
a subfan of the Gröbner fan of I. For examples, see [1, Fig. 7] or [28, Section 2]. The real
tropical variety TropR(I) need not have the same dimension as VR(I), it need not satisfy any
balancing conditions, and it may not be pure of any dimension.

Example 5. Consider the sextic polynomial f = x6 − x3 + y2. The complex tropical
variety TropC(f) consists of the rays spanned by (−2,−3), (1, 3), and (0,−1), with multi-
plicities 1, 2, and 3, respectively, as shown in Figure 1. In this case, we can use power series
expansions to explicitly find solutions to f = 0 over C{{t}} with these valuations, e.g.:

(x, y) =
(
t2, t3 − t9

2
− t15

8
− t21

16
+ . . .

)
→ − val(x, y) = (−2,−3)

(x, y) =
(

1
t
, − i

t3
+ i

2
+ it3

8
+ it6

16
+ . . .

)
→ − val(x, y) = (1, 3)

(x, y) =
(

1− t2

3
− 4t4

9
− 77t6

81
+ . . . , t

)
→ − val(x, y) = (0,−1).
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Here, the Puiseux series x, y ∈ C{{t}} are locally convergent near t = 0 meaning that these
tuples locally parametrize a path in VC∗(I). The first and last actually belong to R{{t}}, and
therefore contribute to rays in TropR(f). On the other hand, if there was a point in VR{{t}}(f)
where the negative of the valuation was (1, 3), then the negative exponents of the leading
terms would create an unbounded path in the real variety VR(f). Hence, the compactness
of the real variety VR(f) shows that (1, 3) is not contained in TropR(f).
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Figure 1: The real points of a sextic plane curve, its complex tropical variety with multiplicities
listed when > 1, and its real tropical variety.

Remark 6. In this paper, we avoid assigning multiplicities to rays in the real tropical variety
as it is not clear to us what the correct notion of multiplicity should be in this case. As the
following example shows, it is not enough to count the multiplicity of real minimal primes
associated to the initial ideal of a ray. However, in the process of computing a real tropical
curve, one can compute the number of real Puiseux series with a given valuation w that
define different germs of a function around a point p ∈ VR∗(inw(I)), which may provide some
notion of multiplicity in this case.

Example 7. Consider the polynomial f = ((x − 1)2 + y2) · ((x − 1)2 − y2). Its variety is
the union of four lines, one real pair and one complex conjugate pair. The ray spanned by
the vector w = (0,−1) lies in both the real and complex tropical variety. The corresponding
initial form is inw(f) = (x− 1)4 so this ray has multiplicity four in TropC(f). Even though
all four roots of inw(f) are real, the contribution to the multiplicity from the real points is
only two, with the other contribution of two to the multiplicity arising from nonreal points.
An irreducible polynomial with the same local behavior is f + y6.

Remark 8. The real part of the complex torus (C∗)n naturally breaks up into orthants with
a given sign pattern. Paths in (R∗)n approaching 0 or ∞ do so from within some orthant.
In order to keep track of this data, consider the signed valuation map

sval : R{{t}}∗ → Q× {+,−} given by sval(x) =

{
(val(x),+) if coeff(x) > 0

(val(x),−) if coeff(x) < 0,

as in [3, 22, 26, 30]. The map sval extends coordinate-wise to (R{{t}}∗)n. For an ideal
I ⊂ R[x1, . . . , xn], the signed real tropical variety sTropR(I) is the image of the vari-
ety VR{{t}}∗(I) under the map −sval, where the negation only acts on the vector in Qn and
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fixes the sign pattern in {±}n. The signed tropical variety lies in the disjoint union of 2n

copies of Qn. The positive tropical variety Trop+(I) is the part of the signed tropical
variety lying in the positive copy, Qn×(+, . . . ,+), and has appeared in [4, 25], among others.

Example 9. Consider the quartic polynomial f = x4 + y4 − (x − y)2(x + y). The real
tropical variety TropR(f) consists of the rays spanned by the vectors (0,−1), (−1, 0), and
(−1,−1). For example, the Puiseux series (x, y) = (1− t− 2t2 + . . . , t) lies the variety of f
whose image under −sval is ((0,−1), (+,+)). Replacing t with −t in both coordinates yields
a point in R{{t}}2 that is still in the variety of f with −sval(x, y) = ((0,−1), (+,−)). The
real variety of f along with its signed tropical variety is shown in Figure 2. We will return
to this in Example 19.
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Figure 2: The real points of a quartic plane curve with its signed tropical variety.

2 Cauchy’s integral formula and projectivization

2.1 Monodromy and Cauchy’s integral formula

Monodromy is the action resulting from tracking paths obtained by walking around in a
loop. In this paper, the loops will be circles in C around the origin and the observed action
is the permutation of solutions.

Suppose that C ⊂ Cn is a curve not contained in a hyperplane and j ∈ {1, . . . , n}.
Hence, there exists k > 0 such that the map πj : C → C projecting onto the jth coordinate
is dominant and generically k-to-one. The set of critical values of πj, i.e., t ∈ C where π−1j (t)
does not intersect C transversely in k distinct points, is finite. Let r > 0 be the minimum of
the absolute value of the nonzero critical values, 0 < τ < r, and {p1, . . . , pk} = C∩VC(xj−τ).
For each m = 1, . . . , k, there exists a path Pm : C → C defined by Pm(1) = pm and
Pm(s) ∈ C ∩VC(xj − τs) which is smooth for 0 < |s| ≤ 1. With this setup, each path Pm(s)
is an n-tuple of locally convergent Puiseux series with radius of convergence at least r and
the jth coordinate is τs.

We aim to compute the action resulting from tracking the paths P1(s), . . . , Pk(s) over
the loop {|s| = 1} ⊂ C. That is, there is a permutation σ ∈ Sk such that the path Pm(e2πiθ)
for 0 ≤ θ ≤ 1 connects pm (at θ = 0) to pσ(m) (at θ = 1). In fact, each path Pm(e2πiθ) for
θ ≥ 0 is periodic and the period is called the cycle number.
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Definition 10. The cycle number for a path P (s) is the minimum positive integer c such
that P (e2πic) = P (1).

In relation to the permutation σ described above, the cycle number cm for the path Pm(s)
is the minimum positive integer q such that

σ ◦ · · · ◦ σ︸ ︷︷ ︸
q times

(m) = m.

In terms of Puiseux series, cm is the minimum positive integer q such that every coordinate
of Pm(s) lies in C((s1/q)). In particular, if lims→0 Pm(s) ∈ Cn, then Pm(sc) is an n-tuple
of locally convergent power series via the local uniformization of complex curves, e.g. [24,
Thm. A.3.2] where each coordinate of Pm(sc) is analytic on |s| ≤ 1.

Suppose a function f : C→ C is analytic on the unit disk in C, specifically on and inside
the closed loop γ given by {eiθ | 0 ≤ θ ≤ 2π}. For ` ∈ Z≥0, Cauchy’s integral formula yields

f (`)(0)

`!
=

1

2πi

∫
γ

f(s)

s`+1
ds =

1

2π

∫ 2π

0

f(eiθ)

(eiθ)`
dθ. (2)

In particular, f has a power series expansion around s = 0 and its valuation is the smallest `
for which f (`)(0) is non-zero. Hence, when Pm(sc) is analytic on |s| ≤ 1, one can apply
Cauchy’s integral formula to each coordinate of Pm(sc) to obtain its valuation.

2.2 Projectivization and affine patches

In addition to using monodromy described above, another key idea in our algorithm is to
work on an affine patch for which the valuation of each point of interest is nonnegative.
This corresponds with finite length solution paths that limit to a coordinate hyperplane.
These paths can be parametrized by tuples of Puiseux series with nonnegative valuations
and therefore correspond to points in the tropical variety with nonpositive coordinates.

To that end, suppose that C ⊂ (C∗)n is a curve defined by an ideal I ⊂ C[x1, . . . , xn]. In
order to simplify the computations, we will first consider the closure of C in Pn, namely

C = {[1 : y1 : . . . : yn] | (y1, . . . , yn) ∈ C} ⊂ Pn.

The finitely many points in the boundary ∂C = C\C are contained in the coordinate hy-
perplanes in Pn. The “hyperplane at infinity” in (C∗)n becomes one of these coordinate
hyperplanes, namely {x0 = 0}.

We next restrict to an affine coordinate patch. That is, for a nonzero vector v ∈ Cn+1,
let Ĉ be the intersection of the affine cone over C with the hyperplane defined by v · x = 1.
Since the set of points of interest on C are its points of intersection with the coordinate
hyperplanes, we require that each of these finitely-many points correspond to a finite point
in the coordinate patch defined by v · x = 1, i.e.,

{x ∈ Pn | v · x = 0} ∩ {x ∈ C | some coordinate xi is zero } = ∅. (3)

If d = degC, there are at most (n+ 1)d points in the intersection of C with the union of the
coordinate hyperplanes. Hence, we must select v ∈ Cn+1 outside of a hypersurface of degree
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at most (n + 1)d. In practice, we select the vector v ∈ Cn+1 randomly. When computing
TropR(C), the entries of the vector v should be real to maintain a relationship between the

real points of C and the real points of Ĉ. Under these hypotheses, the complex and real
tropical varieties of C can be recovered from those of Ĉ.

Proposition 11. If v ∈ (k∗)n+1 satisfies (3) where k = R or C, then the function

(w0, . . . , wn) ∈ Rn+1 7→ (w1 − w0, . . . , wn − w0) ∈ Rn (4)

maps Trop
k
(Ĉ) ∩ (R≤0)n+1 bijectively onto Trop

k
(C). For k = R, w ∈ Rn+1 appears in

the signed tropical variety sTropR(Ĉ) with sign vector σ ∈ {±1}n+1 if and only if its image
under (4) appears in sTropR(C) with sign vector (σ0σ1, . . . , σ0σn). For k = C, this bijection

preserves the multiplicities of corresponding rays in TropC(Ĉ) ∩ (R≤0)n+1 and TropC(C).

Our proof of this proposition below needs the following two consequences of condition (3).

Lemma 12. Let ` = v · x ∈ C[x0, . . . , xn]1 where v ∈ (C∗)n+1 satisfies (3), and suppose that
w ∈ TropC(C) ∩ (R≤0)n+1 with wj = 0 for some j and wk 6= 0 for some k. The initial form
inw(`) does not vanish at any point a ∈ (C∗)n+1 in the variety of the initial ideal inw(I(C)).
In particular, inw(`) is not a zero-divisor modulo the ideal inw(I(C)) ⊂ C[x±10 , . . . , x±1n ].

Proof. Let J denote the homogeneous ideal I(C). To reach a contradiction, suppose that
inw(`) vanishes at some point a = (a0, . . . , an) ∈ V(inw(J))∩ (C∗)n+1. Since each coordinate
of w is non-positive and some coordinate is zero, the initial form of ` is the sum

∑
i∈A vixi

where A = {i | wi = 0} is nonempty. Taking ei to be the ith coordinate vector, we see that
`(
∑

i∈A aiei) = inw(`)(a) = 0.
On the other hand, by [21, Prop. 3.2.11], there exists a point y ∈ VC{{t}}conv(J) with

− val(y) = w and coeff(y) = a. The leading terms of y are then (a0t
−w0 , . . . , ant

−wn), and
the Puiseux series yi(t) converges for small enough t. Since each exponent−wi is nonnegative,
the coordinates yi(t) converge for t = 0. Thus y(0) =

∑
i∈A aiei belongs to C.

Consider the point p =
∑

i∈A aiei. Since wj = 0 and wk 6= 0, the point p has jth

coordinate aj 6= 0 and kth coordinate zero. Also `(p) = 0 and p ∈ C. Thus p belongs to the
intersection in (3) and v does not satisfy condition (3).

Lemma 13. Suppose that J ⊂ C[x0, . . . , xn] is homogeneous ideal, ` ∈ C[x0, . . . , xn]1, and
w ∈ Rn+1. If inw(`) is not a zero-divisor modulo inw(J), then

inw(J + 〈`− 1〉) = inw(J) + inw(〈`− 1〉). (5)

Proof. The containment ⊇ is clear. To show the other containment, consider the set

S = {(g, h) | inw(g + (`− 1)h) 6∈ inw(J) + inw(〈`− 1〉)} ⊂ J × C[x0, . . . , xn].

Clearly, for all (g, h) ∈ S, h 6= 0. For the sake of contradiction, suppose that S is non-
empty and take (g, h) ∈ S with deg(h) minimal. Since inw(g + (` − 1)h) is not equal
to inw(g) + inw((` − 1)h), the sum of these leading terms must be zero. Taking further
initial forms with respect to 1 = (1, . . . , 1) yields − in1(inw(g)) = in1(inw((` − 1)h)) =
in1(inw(`− 1)) · in1(inw(h)).

7



If inw(` − 1) = 1, then the ideals on both sides of (5) are the ideal 〈1〉 and thus equal.
Therefore we may assume that inw(`) 6= 1, in which case in1(inw(` − 1)) = inw(`). Putting
this together with the arguments above, we see that the product inw(`) · in1(inw(h)) belongs
to in1(inw(J)). Because J is homogeneous, the ideal inw(J) is also homogeneous, e.g., [21,
Lemma 2.4.2]. Hence in1(inw(J)) = inw(J). Thus, inw(`) · in1(inw(h)) belongs to the ideal
inw(J). By assumption, inw(`) is not a zero-divisor modulo inw(J), so in1(inw(h)) must
belong to inw(J). Therefore we can take f ∈ J with inw(f) = in1(inw(h)).

Now consider (g′, h′) = (g+ (`−1)f, h−f). Since f ∈ J , g+ (`−1)f belongs to J . Also,
the sums g′+(`−1)h′ and g+(`−1)h are equal, and therefore have equal initial forms. This
shows that (g′, h′) belongs to the set S. On the other hand, because inw(f) = in1(inw(h)),
h′ = h− f has strictly smaller degree than h, which contradicts our choice of (g, h).

Proof of Proposition 11. We first prove the set-wise statement for k = R,C. Let K = k{{t}},
I = I(C), I = I(C), ` = v · x, and Î = I + 〈`− 1〉 = I(Ĉ). Since all of the rays are defined
over Q, it suffices to show that the map (4) gives a bijection between the rational points of

Trop
k
(Ĉ) ∩ (R≤0)n+1 and Trop

k
(C). For 1 = (1, . . . , 1), we first note that the maps

w 7→ (w1 − w0, . . . , wn − w0) and u 7→ (0, u)−max{0, u1, . . . , un}1

give a bijection between {w ∈ Qn+1 : maxi{wi} = 0} and Qn. Since Trop
k
(Ĉ) ∩ (Q≤0)n+1 is

contained in Trop
k
(Ĉ)∩ (R≤0)n+1, it suffices to show that the image of Trop

k
(Ĉ)∩ (Q≤0)n+1

under (4) and Trop
k
(C) ∩Qn coincide.

(⊆) Suppose w ∈ Trop
k
(Ĉ) ∩ (Q≤0)n+1. Then, there exists y = (y0, . . . , yn) ∈ VK∗(Î)

with val(y) = −w. By homogeneity, the point (1, y1/y0, . . . , yn/y0) belongs to VK∗(I) so
that (y1/y0, . . . , yn/y0) belongs to VK∗(I). The negative of the valuation of this point is
(w1 − w0, . . . , wn − w0) and belongs to Trop

k
(C) ∩Qn.

(⊇) Suppose u ∈ Trop
k
(C) ∩ Qn with u 6= 0 and let w = (0, u) − max{0, u1, . . . , un}1.

Hence, w ∈ Trop(C)∩(Q≤0)n+1 where w has some coordinate which is zero from the attained
maximum and some other coordinate which is nonzero since u 6= 0. Lemma 12 implies that
inw(`) = in(0,u)(`) does not vanish any point in V(inw(I)) ∩ (C∗)n+1.

Let y ∈ VK∗(I) with − val(y) = u. Then, (1, y) belongs to VK∗(I) with − val(1, y) = (0, u)
and coeff(1, y) = (1, a) for some a ∈ (C∗)n. In particular, (1, a) belongs to the variety of
the initial ideal in(0,u)(I), meaning that in(0,u)(`)(1, a) is not zero. It follows that `(1, y)
equals ctq + higher order terms, with leading coefficient c = in(0,u)(`)(1, a) and valuation
q = min{0, val(y1), . . . , val(yn)} = −max{0, u1, . . . , un}.

For every λ ∈ K∗, the point (λ, λy) belongs to VK(I). In particular, for λ = 1/`(1, y),

the point (λ, λy) satisfies `(λ, λy) = 1 and belongs to VK(Î). Furthermore

− val(λ, λy) = − val(1, y)− val(λ)1 = (0, u) + val(`(1, y))1 = (0, u)−max{0, u1, . . . , un}1 = w.

Thus, w ∈ Trop
k
(Ĉ) ∩ (Q≤0)n+1. Note that u is the image of w under (4).

For k = R, we note that (y0, . . . , yn) ∈ VK∗(Î) has sign vector (σ0, . . . , σn) ∈ Rn+1 if and
only if (y1/y0, . . . , yn/y0) ∈ VK∗(I) has sign vector (σ0σ1, . . . , σ0σn).

For k = C, we aim to show that the multiplicity of w in TropC(Ĉ)∩ (R≤0)n+1 equals the
multiplicity of (w1−w0, . . . , wn−w0) in TropC(C). It is a general commutative algebra fact
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that if P is a minimal prime of a homogeneous ideal J with multiplicity mult(P, J) = m and
l(X) ∈ C[x0, . . . , xn]1 is not a zero-divisor modulo J , then P + 〈l(x)− 1〉 is a minimal prime
of J + 〈l(x)− 1〉 with the same multiplicity m.

Applying this with J = inw(I) and l(x) = x0 shows that the multiplicity of a ray ~u in
TropC(I) equals the multiplicity of the cone R+(0, u) +R1 in TropC(I). On the other hand,
by Lemmas 12 and 13, we can also apply this with l(x) = inw(`). Note that since w belongs
to (R≤0)n+1 ∩ TropC(` − 1), we have that inw(` − 1) = inw(`) − 1. This shows that the

multiplicity of a ray ~w ∈ Trop(Ĉ) is the same as the multiplicity of ~w + R1 in TropC(I).

Putting these together, a ray w ∈ TropC(Î) ∩ (R≤0)n+1 has the same multiplicity as the ray
of (w1 − w0, . . . , wn − w0) in TropC(I).

Proposition 11 allows us to compute Trop
k
(C) by computing Trop

k
(Ĉ)∩ (R≤0)n+1. The

benefit of rays with nonpositive valuations is that they correspond to convergent paths.

3 Algorithms

The following describes algorithms for computing complex and real tropical curves. These
algorithms use local uniformization of complex curves, e.g. [24, Thm. A.3.2], to transform
Puiseux series into power series, which allows us to compute valuations and multiplicities
using Cauchy integrals. Given a curve C ⊂ Cn with corresponding curve Ĉ ⊂ Cn+1 which
is the intersection of the cone over the closure of C in Pn and an affine coordinate patch
satisfying (3), a rough outline of our strategy for computing its tropicalization is as follows:

1. For each j = 0, . . . , n, compute a value τj > 0 so that the VC(xj − τjs) intersects Ĉ
transversely for all 0 < |s| < 1 (Section 3.1.1).

2. For each j = 0, . . . , n, p ∈ Ĉ ∩ VC(xj), and path P (s) ⊂ Ĉ with P (0) = p and
Pj(s) = τjs, compute the valuation of P (s) using an analytic reparameterization and
Cauchy’s integral formula (Section 3.1.2).

3. Collect all valuations with appropriate multiplicities to obtain TropC(C).

The algorithms for computing TropC(C) (Section 3.2) and TropR(C) (Section 3.3) rely on
computations that are common to both. For ease of exposition, we break these into separate
algorithms, which are discussed in Section 3.1.

3.1 Algorithms common to C and R
There are two sub-algorithms which are common to both the complex and real algorithms.
First, we describe how to ensure that we are inside the radius of convergence of the Puiseux
series, which is often called the endgame operating zone, e.g., see [24, §10.3.1]. Once in-
side the endgame operating zone, we next describe computing valuations and multiplicities
via Cauchy’s integral formula after computing a uniformization. These two algorithms are
essential in our approach for computing complex and real tropical curves.
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3.1.1 Finding the endgame operating zone

A main tool in the computations below is the parametrization of a curve X ⊂ Cn+1 in a
neighborhood of a point p ∈ X. One can parametrize a branch of the curve around this point
by the value of some variable, say xj = s. Each of the other coordinates are then locally
functions of s that can be expressed as Puiseux series. To be meaningful, the computations
below must take place in the radius of convergence of these Puiseux series. The domain of
convergence of all the Puiseux series of the coordinates of a curve around a point is called
the endgame operating zone. This zone is calculated by computing the critical points
with respect to the parameterizing variable xj. Explicitly, suppose that X is an irreducible
curve not contained in any coordinate hyperplane and f = (f1, . . . , fn) ∈ (k[x0, . . . , xn])n is
a polynomial system such that X is an irreducible component of the solution set of f = 0
which has multiplicity 1 with respect to f . The set of critical points of X with respect to xj
and f is the set of x ∈ X for which Jf(x)ĵ has a nonzero null vector where Jf(x)ĵ denotes

the Jacobian matrix of f evaluated at x with the jth column removed.
In Algorithm 1, we actually compute a smaller threshold to simplify the computation of

the real tropical curve, as we will see in Section 3.3.

Input : An irreducible curve X ⊂ Cn+1 not contained in a coordinate hyperplane
and a polynomial system f such that X is an irreducible component of the
solution set of f = 0 of multiplicity 1; the set Λ ⊂ Cn+1 consisting of points
X ∩ V(x0 · · ·xn); index j ∈ {0, . . . , n}.

Output: τj ∈ R>0 such that the disk of radius τj centered at the origin is contained
in the endgame operating zone for any point in Λ with respect to xj.

1 Compute the set S of critical points of X with respect to xj and f , i.e.,
S = {x ∈ X | Jf(x)ĵ has a nonzero null vector};

2 Compute Tj = {abs(πj(S))} ∪ {abs(πj(Λ))} ⊂ R≥0 where πj(y0, . . . , yn) = yj ;
3 Set T ∗j = Tj \ {0} ;

4 return 0 < τj < min(T ∗j ), or some arbitrary positive number if T ∗j is empty ;

Algorithm 1: Computing τj inside the endgame operating zone of X with respect to xj.

The following is immediate from the definition of the endgame operating zone.

Proposition 14. Algorithm 1 returns τj > 0 which is inside the endgame operating zone
with respect to xj.

3.1.2 Computing valuations and multiplicities

Once inside the endgame operating zone, one can use path tracking to compute valuations
of a Puiseux series expansion. In Algorithm 2, we compute the primitive integer vector on
the ray spanned by the valuation of this Puiseux series. For a curve X, the input consists of
a point p ∈ X such that pj = τj where τj is computed as in Algorithm 1. Then, we consider
the path P (s) ⊂ X parametrized by Pj(s) = τjs for s ∈ [0, 1] with P (1) = p. In particular,
this path P (s) is a function of s which corresponds with a convergent Puiseux series.
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Input : An irreducible curve X ⊂ Cn+1 not contained in a coordinate hyperplane;
j ∈ {0, . . . , n}; τ 6= 0 inside of the endgame operating zone of X with
respect to j; and a point p ∈ X such that pj = τ which defines the path
P (s) ∈ X ∩ V(xj − τs) for s ∈ [0, 1] where P (1) = p.

Output: The primitive vector in Zn+1
≥0 of the ray spanned by the valuation of P (s).

1 Compute cycle number c of the path P (s) ;
2 for k from 0 to n do
3 Initialize with uk = −1 and a = 0 ;

while a = 0 do
4 Update uk ← uk + 1 ;

5 Update a←
∫ 2π

0
Pk(e

c·iθ)/(eiθ)ukdθ ;

6 Set u = (u0, . . . , un) ∈ Zn+1
≥0 ;

7 Compute g = gcd(u) ;
8 return Primitive vector r = u/g ∈ Zn+1

≥0 ;

Algorithm 2: Computing the primitive vector corresponding to a path valuation.

The following shows that the path P (s) is parametrized by a Puiseux series and that
Algorithm 2 correctly computes its valuation.

Proposition 15. Let p ∈ X ⊂ Cn+1, j, and τ be the input of Algorithm 2 and r ∈ Zn+1
≥0

be the output. Then, there is a point y ∈ (C{{t}})n+1 in VC{{t}}(I(X)) that converges for
t ∈ [0, 1] and satisfies y(s) = P (s) for all s ∈ [0, 1]. The valuation of y is (1/rj) · r ∈ Qn+1

≥0 .

Proof. Since c > 0 is the cycle number, local uniformization, e.g., [24, Thm. A.3.2], yields
that s 7→ P (sc) is analytic with respect to s on a neighborhood of s = 0. Because τ was
chosen inside the endgame operating zone of C with respect to xj, this neighborhood contains
the unit disk {z ∈ C | |z| ≤ 1}. Taking power series expansions of each coordinate gives
ỹ ∈ (k[[t]]conv)

n+1 with ỹ(s) = P (sc) for all |s| ≤ 1.
We claim that u is the valuation of ỹ. To see this, write the kth coordinate as ỹk(t) =∑
` a`t

` where a` ∈ C. Then, for any ` ∈ Z≥0, the integral
∫ 2π

0
Pk(e

c·iθ)/ei`θdθ equals the

integral
∫ 2π

0
ỹk(e

iθ)/ei`θdθ. By the Cauchy integral formula, this integral equals a`/2π. Al-
gorithm 2 computes uk = val(ỹk) as the minimum ` for which this integral is nonzero.

For y(t) = ỹ(t1/c) ∈ C{{t}}n+1, val(y) = (1/c) val(ỹ) = (1/c)u. Since ỹ converges for
t ∈ [0, 1], so does y. Furthermore, for s ∈ [0, 1], we have y(s) = ỹ(s1/c) = P (s). In
particular, the jth coordinate of y is yj = τt and val(yj) = 1. The valuation of y is a multiple
of u with jth coordinate 1, meaning that val(y) = (1/rj) · r.

Furthermore, any Puiseux series y ∈ Vk{{t}}conv(I(X)) with non-negative valuations and jth

coordinate yj = τt parametrizes such a path in X.

Proposition 16. If y ∈ Vk{{t}}conv(I(X)+〈xj−τt〉) and val(y) ∈ (Q≥0)n+1, then y converges
for t ∈ [0, 1] and p = y(1) defines a viable input to Algorithm 2.

Proof. Since y is convergent in a neighborhood of t = 0 and τ was chosen inside the endgame
operating zone of X with respect to xj, we know y converges for s ∈ (0, 1]. We see imme-
diately that p = y(1) has jth coordinate pj = yj(1) = τ . Since each coordinate yk has
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nonnegative valuation, it has a well-defined value at t = 0. Therefore P (s) = y(s) defines a
continuous path in X ∩ V(〈xj − τs〉) for s ∈ [0, 1].

3.2 Computing complex tropical curves

By using Algorithms 1 and 2, we now present an approach for computing TropC(C) for an
irreducible curve C ⊂ (C∗)n, namely Algorithm 3. We assume that we are given a polynomial
system f such that C is an irreducible component of the solution set of f = 0 which has
multiplicity 1 with respect to f . As discussed in Section 2.2, we also start with the irreducible
curve Ĉ ⊂ Cn+1 with corresponding polynomial system f̂ , i.e., Ĉ is an irreducible component
of the solution set of f̂ = 0 which has multiplicity 1 with respect to f̂ .

Input : An irreducible curve C ⊂ (C∗)n; a polynomial system f such that C is an
irreducible component of multiplicity one of the solution set f = 0; and a
vector v ∈ (C∗)n+1 satisfying condition (3).

Output: TropC(C), a collection of primitive vectors in Zn with multiplicity.

1 Initialize TropC(C) = ∅ ;

2 Define Ĉ = C ∩ V(v · x− 1) and f̂ = f ∪ {v · x− 1} ;

3 Set Λ = Ĉ ∩ V(x0 · x1 · · · xn);
4 Partition Λ = tj Λj, where Λj = {x ∈ Λ | x0, . . . , xj−1 6= 0, xj = 0} ;
5 for j from 0 to n do
6 if Λj = ∅ then
7 Continue ;

8 Call Algorithm 1 using Ĉ, f̂ , Λ, and j yielding τj > 0 ;

9 Compute Cτ
j = Ĉ ∩ V(xj − τj) ⊂ Cn+1 ;

10 Compute Λτ
j which consists of p ∈ Cτ

j such that the path starting, with s = 1, at p

defined by Ĉ ∩ V(xj − τjs) for s ∈ [0, 1] ends at a point in Λj ;
11 for each p ∈ Λτ

j do

12 Call Algorithm 2 using Ĉ, j, τj, and p yielding r ∈ Zn+1
≥0 ;

13 Add (r0 − r1, . . . , r0 − rn) to TropC(C) with multiplicity contribution 1/rj;

14 return TropC(C) ;

Algorithm 3: Computation of TropC

Before proving that Algorithm 3 computes TropC(C), we consider an illustrative example
that demonstrates the steps of the algorithm.

Example 17. Consider the quartic curve C ⊂ C2 defined by f = x31x2−x1x32 +x31−x22 = 0,
shown in Figure 3. Its homogenization f = x31x2−x1x32+x0x

3
1−x20x22 defines a curve C ⊂ P2,

and the vector v = (1, 1, 2) satisfies the condition (3). Thus, Ĉ ⊂ C3 is the curve defined by

f = 0 and x0 + x1 + 2x2 = 1. The set Λ consists of the five intersection points of Ĉ with
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Figure 3: Affine patches C and Ĉ of the quartic curve in Example 17 and TropC(C).

V(x0x1x2). We partition the points by their first zero coordinate:

Λ0 = {(0, 1, 0), (0, 1/3, 1/3), (0, 0, 1/2), (0,−1, 1)}, Λ1 = {(1, 0, 0)}, and Λ2 = ∅.

For each j = 0, 1, 2, Algorithm 1 computes τj > 0 inside the endgame operating zone by
calculating the projections of the points Λ onto each coordinate and the values t ∈ C at
which the plane xj − t is tangent to the curve Ĉ. For j = 0 the minimum of non-zero
absolute value of these numbers is min(T ∗0 ) ≈ 0.2162. Indeed, as seen in Figure 3, the plane

x0 = −min(T ∗0 ) is tangent to Ĉ. For j = 1, we find min(T ∗1 ) ≈ 0.2483, which is attained by
a complex tangency. We take τj to be any positive number less that min(T ∗j ), for example

τ0 = τ1 = 0.1. Then, the paths defined by the intersection of Ĉ and a disk of radius τj
around each point in Λj correspond with convergent Puiseux series.

For each j = 0, 1, 2, we track points limiting to the points in Λj ⊂ V(xj). For example,

for j = 0, we compute Cτ
0 = Ĉ ∩ V(x0 − 0.1), which consists of four points in C3, each of

which tracks to a unique point in Λ0. Therefore Cτ
0 = Λτ

0. We apply Algorithm 2 to each

point p ∈ Λτ
0. The point p ≈ (0.1,−0.022, 0.461) ∈ Λτ

0 defines a path P (s) ∈ Ĉ∩V(x0−0.1s)
with P (1) = p and P (0) = (0, 0, 1/2). The cycle number of this path is c = 1, meaning that
the map z 7→ P (z) is analytic for |z| ≤ 1. In particular, each coordinate gj(z) = Pj(z)
has a power series expansion in z. Using Cauchy’s integral formula, we can find the leading
term in this power series. By definition g0(z) = 0.1z. For g1(z) = P1(z), we use numerical
integration to calculate that

g
(k)
1 (0)

k!
=

1

2π

∫ 2π

0

g1(0.1e
iθ)

(0.1eiθ)k
dθ = 0 for k = 0, 1, and

g
(2)
1 (0)

2!
=

1

2π

∫ 2π

0

g1(0.1e
iθ)

(0.1eiθ)2
dθ = −0.02.

Therefore, the leading term of the power series expansion of g1(z) is
g
(2)
1 (0)

2!
z2 = −0.02z2.

Similarly, we see that g2(z) = 1/2 + higher degree terms. Therefore Algorithm 2 outputs
r = (1, 2, 0). This contributes (r0 − r1, r0 − r2) = (−1, 1) to TropC(C) with multiplicity 1.

On the other hand, for j = 1, Cτ
1 = Ĉ ∩ V(x1 − 0.1) consists of four points in C3, two

of which are complex and limit to the point (0, 0, 1/2) ∈ Λ0, two of which are real and
track to (1, 0, 0) ∈ Λ1. The latter two are Λτ

1. The point p ≈ (0.8293, 0.1, 0.0354) ∈ Λτ
1

defines a path P (s) ∈ Ĉ ∩ V(x1 − 0.1s) with P (1) = p and P (0) = (1, 0, 0). The cycle
number of this path is c = 2, meaning that the map z 7→ P (z2) is analytic for |z2| ≤ 1.
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As above we use Cauchy’s integral formula to compute power series expansions of each
coordinate gj(z) = Pj(z

2), to find P (z2) = (1, 0.1z2, (0.1)3/2z3) + higher degree terms, giving
r = (0, 2, 3). This contributes (r0 − r1, r0 − r2) = (−2,−3) to TropC(C) with multiplicity
1/r1 = 1/2. Repeating this process for the second point p ≈ (0.9635, 0.1,−0.0317) ∈ Λτ

1 also
gives the ray (−2,−3) with multiplicity 1/2, for total multiplicity of 1. The other rays in
TropC(C) are computed similarly, giving the tropical curve in Figure 3.

Theorem 18. Algorithm 3 computes the primitive vectors with multiplicities of TropC(C).

Proof. Let T be the set of vectors with multiplicities computed by Algorithm 3. Suppose
that u is a primitive vector of TropC(C) with multiplicity m. By Proposition 11, we know

w = (0, u)−max{0, u1, . . . , un}1 is a primitive vector of TropC(Ĉ) with multiplicity m. Let j

be the first index for which wj < 0 and let τj be the output of Algorithm 1 with X = Ĉ.
The ray ~w and tropical hyperplane TropC(〈xj− τjt〉) meet transversely at the point |1/wj|w.

By [21, Def. 3.6.11], the multiplicity of |1/wj|w in TropC(Î + 〈xj − τjt〉) equals m · |wj|.
Let K = C{{t}}conv. Note that by our choice of τj, the ideal Î + 〈xj − τjs〉 is reduced for

any s ∈ (0, 1]. It follows that the ideal Î + 〈xj − τjt〉 in K[x1, . . . , xn] is also reduced. Then

by [21, Prop. 3.4.8], the multiplicity of |1/wj|w in the tropical variety of Î+ 〈xj− τjt〉 equals
the number of points in its variety over K with this valuation,

Vw =
{
y ∈ VK(Î + 〈xj − τjt〉)

∣∣∣ | val(y) = −|1/wj|w
}
.

By Proposition 16, any y ∈ Vw converges for t ∈ [0, 1] and p = y(1) defines a viable input for

Algorithm 2. Since yj = τjt, we see that p ∈ Cτ
j = Ĉ ∩ V(xj − τj). Furthermore, since j is

the smallest index for which val(yj) > 0, j is the smallest zero coordinate of y(0). Therefore
y(0) belongs to Λj and p belongs to Λτ

j . By Proposition 15, Algorithm 2 returns primitive
vector r, where (1/rj)r = −|1/wj|w is the valuation of y. Thus, each point in Vw contributes
the vector u = (r0−r1, . . . , r0−rn) to T with multiplicity 1/rj = 1/|wj|. As #Vw = m · |wj|,
the vector u appears in T with multiplicity at least m. By Proposition 15, every path used
in Algorithm 2 comes from some tuple of Puiseux series, giving us equality.

Example 19. The curve from Example 9 displayed in Figure 2 demonstrates some of the
subtlety in computing the multiplicities of rays in the tropical variety. The cusp at the origin
contributes to the ray (−1,−1) in TropC(f) with multiplicity 2.

There are two points in V(f)∩{x = τj} that track to the origin along this cusp, and each of
these paths has cycle number c = 2. Re-parametrizing by x = t2 and using Cauchy’s integral
formula, we find the initial terms of the two corresponding Puiseux series in VR{{t}}(f):

(x, y) =

(
t2, t2 ± t3 +

3

4
t4 ± 45

32
t5 + . . .

)
,

each with u = val(1, x, y) = (0, 2, 2). Thus, g = gcd(u) = 2. For each of these two paths,
Algorithm 2 returns primitive vector r = u/g = (0, 1, 1). In Algorithm 3, each of these paths
contributes (−1,−1), each with multiplicity 1, thereby yielding a total contribution of 2.
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Remark 20. We highlight some of the key differences between Algorithm 3 and the approach
presented [20]. Both rely on numerical computations to approximate locally convergent
Puiseux series. While Algorithm 3 uses monodromy to compute valuations, the authors
in [20] take coordinate-wise logarithms of paths and use lattice recovery techniques to recover
the valuation. We believe that one advantage of our approach is that it avoids the need
of tracking paths as some coordinate approaches zero or ∞, which requires successively
increasing precision. The techniques of [20] could possibly be adapted to compute real
tropical curves, but that is not pursued by the authors.

Remark 21. Although our implementation as described in Section 4 performs computations
which are not certified, these computations are amendable to certification. In our approach,
inside the endgame operating zone, we first compute the cycle number. Since this can be
performed using a Newton homotopy, this computation can be certifiably computed using [12,
13]. Then, Cauchy’s integral theorem is used to compute the valuation. When the Cauchy
integral cannot be computed exactly, the use of the trapezoid rule produces an exponentially
convergent numerical method [27] for computing the Cauchy integral.

3.3 Computing real tropical curves

Computing the real tropical curves is similar to that of complex tropical curves except that
only paths starting at real points are considered, as presented in Algorithm 4 below.

Before proving that Algorithm 4 computes the real tropical curve of C, we consider an
illustrative example that demonstrates the steps of the algorithm.

Example 22. Consider the quartic curve C of Example 17. The computation of TropR(C)
largely follows that of TropC(C). We now must check both sides of the coordinate hyper-

planes V(xj) for real points. For example, intersecting Ĉ with V(x1 − 0.1) gives two points

that limited to the point (1, 0, 0). However there are no real points in Ĉ ∩ V(x1 + 0.1) that
limit to (1, 0, 0), so C−1 is empty. Indeed, tracking the point p ≈ (0.8293, 0.1, 0.0354) ∈ Λτ

1

along the path Ĉ ∩V(x1− 0.1eiθ) for θ ∈ [0, π] yields a complex point in Ĉ ∩V(x1 + 0.1). As
in Example 17, applying Algorithm 2 to the point p gives ray r = (0, 2, 3). Every coordinate
of p is positive, so we add the ray (r0 − r1, r0 − r2) = (−2,−3) to TropR(I) with sign vector
(+,+). The other point point p ≈ (0.9635, 0.1,−0.0317) ∈ Λτ

1 gives (−2,−3) ∈ TropR(I)
with sign vector (+,−). Repeating this process for the points in Λτ

0, gives the signed real
tropical variety TropR(C) in Figure 4.

Theorem 23. Algorithm 4 computes the primitive vectors with signs of TropR(C).

Proof. Let T be the set of vectors with signs computed by Algorithm 4. Suppose that u
is a primitive vector of TropR(C) with sign σ ∈ {±1}n. By Proposition 11, we have that

w = (0, u)−max{0, u1, . . . , un}1 is a primitive vector of TropR(Ĉ) with sign vector (λ, λσ)
for some λ ∈ {±1}. Let j be the first index for which wj < 0 and let τj be the output of

Algorithm 1 with X = Ĉ.
Let K = R{{t}}conv. Then there is some point y ∈ VK(Î + 〈xj ± τjt〉) with valuation

−|1/wj|w and sign (λ, λσ). In particular, yj = λσj · τjt. By Proposition 16, y converges for
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Figure 4: Affine curves C and Ĉ of the real quartic in Example 22 and the signed real tropical
variety TropR(C) contained in reflected copies of TropC(C).

Input : A real irreducible curve C ⊂ (C∗)n with C ∩ (R∗)n 6= ∅; a polynomial system
f such that C is an irreducible component of multiplicity one of the solution
set f = 0; and a vector v ∈ (R∗)n+1 satisfying condition (3).

Output: TropR(C), a collection of primitive vectors in Zn with signs {±1}n.

1 Define Ĉ = C ∩ V(v · x− 1) and f̂ = f ∪ {v · x− 1} ;

2 Set Λ = Ĉ ∩ V(x0 · x1 · · · xn);
3 if Λ = ∅ then
4 return TropR(C) = {0} ;

5 Initialize TropR(C) = ∅ ;
6 Partition Λ = tj Λj, where Λj = {x ∈ Λ | x0, . . . , xj−1 6= 0, xj = 0} ;
7 for j from 0 to n do
8 if Λj = ∅ then
9 Continue ;

10 Call Algorithm 1 using Ĉ, f̂ , Λ, and j yielding τj > 0 ;

11 Compute C+
j = Ĉ ∩ V(xj − τj) ∩ Rn+1 and C−j = Ĉ ∩ V(xj + τj) ∩ Rn+1 ;

12 Compute Λ+
j which consists of p ∈ C+

j such that the path starting with s = 1

at p defined by Ĉ ∩ V(xj − τjs) for s ∈ [0, 1] ends at a point in Λj ;
13 for each p ∈ Λ+

j do

14 Call Algorithm 2 using Ĉ, j, τj, and p yielding r ∈ (Z≥0)n+1;
15 Add (r0 − r1, . . . , r0 − rn) to TropR(C) with sign (sign(p0p1), . . . , sign(p0pn))

16 Compute Λ−j which consists of p ∈ C−j such that the path starting with s = 1

at p defined by Ĉ ∩ V(xj + τjs) for s ∈ [0, 1] ends at a point in Λj ;
17 for each p ∈ Λ−j do

18 Call Algorithm 2 using Ĉ, j, −τj, and p yielding r ∈ (Z≥0)n+1 ;
19 Add (r0 − r1, . . . , r0 − rn) to TropR(C) with sign (sign(p0p1), . . . , sign(p0pn))

20 return TropR(C) ;

Algorithm 4: Computation of TropR.
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t ∈ [0, 1] and p = y(1) and τ = λσj ·τj defines a viable input for Algorithm 2. As in the proof
of Theorem 18, p belongs to C+

j and Λ+
j if λσj = 1, and p belongs to C−j and Λ−j if λσj = 1.

By Proposition 15, Algorithm 2 returns primitive vector r, where (1/rj)r = −|1/wj|w is
the valuation of y. Thus the vector u = (r0 − r1, . . . , r0 − rn) is added to T with sign
vector sign(p0p1, . . . , p0pn). To see that sign(p0p1, . . . , p0pn) = sign(y0y1, . . . , y0yn) = σ, note
that for all s ∈ (0, 1] and any k = 0, . . . , n, the coordinate function yk(s) is non-zero and
therefore has constant sign. If not, then yk(s) = 0 for some 0 < s ≤ 1, then y(s) ∈ Λ and
τjs = |yj(s)| ∈ abs(πj(Λ)), which contradicts our choice of τj < abs(πj(Λ)) computed by
Algorithm 1. Therefore TropR(C) is contained in T . By Proposition 15, every path used in
Algorithm 2 comes from some tuple of Puiseux series yielding equality.

4 Implementation

We have implemented the algorithms from Section 3 using a combination of Matlab and
Bertini [7], which is available at [10]. This section briefly summarizes the key steps with
respect to implementing the algorithms in Section 3.

4.1 Witness sets

The input, namely an irreducible curve C ⊂ (C∗)n, is represented by a witness set (see, e.g.,
[24, Chap. 13] for more details). A witness set for the curve C is a triple {f,L,W} where:

1. f is a polynomial system such that C is an irreducible component of the zero set of f ,

2. H is a general hyperplane in Cn, and

3. W = C ∩H.

In this context, a general hyperplane H is a hyperplane that intersects C transversely and
away from the coordinate hyperplanes, i.e., C ∩H ⊂ (C∗)n consists of deg(C) distinct points.

The use of witness sets allows for the restriction of computations to the irreducible curve
inside the zero set of f of interest. Moreover, one can easily produce a witness set for
Ĉ ⊂ Cn+1 as described in Section 2.2 from a witness set for C.

If C has multiplicity > 1 with respect to f , then one can utilize deflation techniques
for positive-dimensional components which do not add auxiliary variables, e.g., [14, 18], to
reduce to the multiplicity 1 case.

4.2 Implementation of Algorithm 1

The key to Algorithm 1 is in the computation of the set S consisting of critical points.
Following the notation of Section 3.1.1, we first compute the set R ⊂ X ×Pn−1 which solves[

f(x)
Jf(x)ĵ · ν

]
= 0 (6)
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Recall that Jf(x)ĵ denotes the Jacobian matrix of f evaluated at x with the jth column
removed. In particular, since X has multiplicity 1 with respect to f , the set S = π(R) is a
finite set where π(x, ν) = x.

By starting with a witness set for X, regeneration [15, 19] can be used to compute R.
Moreover, the returned value of Algorithm 1 in our implementation is τj = min(T ∗j )/2 when
T ∗j 6= ∅ and τj = 1/10 otherwise.

4.3 Implementation of Algorithm 2

The two key steps in Algorithm 2 are computing the cycle number and the Cauchy integral.
Once inside the endgame operating zone, the cycle number the number of loops around

xj = 0 (parametrized by xj = τeiθ) necessary to return to the starting point p. The cycle
number is therefore at most the degree of curve. By using loops based on regular polygons,
this results in tracking using a sequence of so-called Newton homotopies, in which only the
value of xj depends explicitly on the path tracking parameter. These computations can be
performed certifiably [12, 13]. By using regular polygons, the data from this computation is
reused for the computation of the Cauchy integral which is described next.

By uniformizing via the cycle number, we reduce to power series computations and the co-
efficients are computed using Cauchy integrals where the integrand is periodic with period 2π.
Hence, the trapezoidal rule, which is computed using the data from the regular polygonal
paths described above, is exponentially convergent [27]. Due to the exponential convergence,
the challenge of deciding if the integral is zero or nonzero is greatly reduced. That is, the ex-
ponential convergence allows one to validate this decision by recomputing using the trapezoid
rule with more sample points computed more accurately using higher precision arithmetic.

4.4 Implementation of Algorithm 3

The computations performed in Algorithm 3 reduce to tracking solution paths as the hy-
perplane H in the witness set for Ĉ is deformed. To calculate Ĉ ∩ V(x0 · · ·xn), we actually

compute Ĉ ∩ V(xj) for j = 0, . . . , n and take their union. Each of these is obtained by

tracking the solution paths defined by Ĉ ∩ (t · H + (1− t) · V(xj)) from t = 1 to t = 0. The
computations in Step 10 and Step 11 follow similarly.

4.5 Implementation of Algorithm 4

One key difference between Algorithm 3 and Algorithm 4 is that only real points are retained
in Algorithm 4. In our implementation, the determination of reality is based on a user-
determined numerical threshold. By recomputing the points more accurately, the imaginary
parts should limit to 0 at a commensurate rate. One could also certify reality by using [17].

4.6 Incomplete intersections

When the polynomial system f in a witness set for the curve C ⊂ (C∗)n consists of more than
n−1 polynomials, the standard approach in numerical algebraic geometry is to replace f by
a randomization of the form A · f . For example, the twisted cubic curve C ⊂ C3 is defined
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by the polynomial system f = {y − x2, z − xy, y2 − xz}. The zeros set of the sufficiently
general randomization, say g = {y− x2 + 2(y2− xz), z− xy+ 3(y2− xz)}, consists of C and
a line. In particular, one virtue of working with witness sets is that one can replace f by g
in a witness set for C. Our implementation relies upon the user to provide a randomization.

4.7 Computational challenges

In our experience, the majority of the computational time in computing TropC and TropR
using Algorithm 3 and Algorithm 4, respectively, is in the computation of τj via Algorithm 1.

Another issue is that endpoints that lie on a coordinate axis are frequently singular, as
noted in [20]. By using endgame methods, such as Cauchy’s endgame [23], with adaptive
precision computations [6], one is able to accurately compute such endpoints. This can be
computationally expensive due to the numerical ill-conditioning near singular solutions.

5 Non-planar examples

In this section, we compute the tropicalizations of real and complex curves in more than two
dimensions. In our first example, we replicate the main example from [20] and extend it to
the real numbers. Our second example is the central curve of a linear program that formed
part of the recent counterexample to the continuous Hirsch conjecture [2].

5.1 A-polynomial of a knot

First, we consider the real and complex tropical varieties of a curve whose image under a
monomial map is the plane curve defined by the A-polynomial for the knot 81. This curve
is the main example of [20] and is a component of the reducible variety defined by the ideal

I = 〈 z1 + w1 − 1, z2 + w2 − 1, z3 + w3 − 1, z4 + w4 − 1, z5 + w5 − 1,

w2w4 − z2z4w1w5, z2z4z
2
5w

2
1 − z21w2w3w4w5, w

2
3 − z23w1, w

2
5 − z2z4z25 〉.

(7)

The set VC∗(I) consists of a degree 22 curve C of interest. We note that VC(I) also contains 4
additional curves, each having degree 3 and multiplicity greater than one. Algorithms 3
and 4 compute the complex and real tropical varieties of C, consisting of eight and seven
rays, respectively, as summarized below:

complex real contribution to
multiplicity complex multiplicity primitive element of ray in Trop(I)

3 3 ( 0, 1, 0, −1, 1, 0, 1, 0, 0, 1)
4 2 (−1, 1, 0, 1, −1, 0, 1, 0, 1, 0)
3 3 ( 0, −1, 0, 1, 1, 0, 0, 0, 1, 1)
1 1 ( 0, 0, 0, −2, 0, −4, −7, −2, 0, −1)
1 1 ( 0, −2, 0, 0, 0, −4, 0, −2, −7, −1)
2 2 ( 2, −2, −1, 0, 0, 2, 0, 0, −1, −1)
2 2 ( 2, 0, −1, −2, 0, 2, −1, 0, 0, −1)
2 0 (−2, 1, 2, 1, −1, 0, 1, 2, 1, 0)
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The complex tropical variety replicates Example 4.1 in [20]. Of the fourteen intersec-

tion points of the corresponding curve Ĉ with the union of the coordinate hyperplanes,
twelve are real. Two of these points have the form (h, z, w) = (0, 0,−1, 0,−a, 0, 0, 1, 0, a, 0),
where h is the added homogenzing variable and a satisfies a4 − 2a3 − 5a2 − 2a + 1 = 0.
Both of these real points contribute one towards the multiplicity of the ray val(h, z, w) =
(1, 2, 0, 1, 0, 2, 1, 0, 1, 0, 1), which corresponds to the second ray listed in the table above. The
two complex values of a solving the quartic equation above also contribute one each to the
complex multiplicity of this ray, giving a total complex multiplicity of four.

5.2 The central curve of a linear program

In a recent series of papers, Allamigeon, Benchimol, Gaubert, and Joswig [2, 3] develop a
theory of tropical linear programming. Among other things, this enabled them to produce
a counterexample to the continuous Hirsch conjecture regarding the total curvature of the
central path of a linear program.

The central path of a linear program is a segment of an algebraic curve, called the central
curve, which joins the analytic center of the feasible polytope and its optimal vertex [8, 11].
A family of linear programs was presented in [2] whose central paths have total curvature
that grows exponentially. We compute the real tropical curve of the central curve of one
member of this family, specifically, the linear program from [2, §4] with r = 1, t = 4:

minimize v0 subject to − u0 + t ≥ 0, −v0 + t2 ≥ 0, u1 ≥ 0, v1 ≥ 0,

t1/2(u0 + v0)− v1 ≥ 0, tu0 − u1 ≥ 0, tv0 − u1 ≥ 0.

The central curve of this linear program is the projection of a curve in R18 with 14 auxiliary
variables (x, s) = (x1, . . . , x7, s1, . . . , s7) defined by the ideal

I =〈x1s1 − x2s2, x1s1 − x3s3, x1s1 − x4s4, x1s1 − x5s5, x1s1 − x6s6, x1s1 − x7s7,
− u0 + t− x1, −v0 + t2 − x2, u1 − x3, v1 − x4, t1/2(u0 + v0)− v1 − x5, tu0 − u1 − x6,
tv0 − u1 − x7, s1 − t1/2s5 − ts6, s2 − t1/2s5 − ts7 − 1, s3 − s6 − s7, s4 − s5〉. (8)

The system consists of 18 variables and 17 equations. The algebraic variety of this ideal
consists of two linear 3-spaces, five planes, four lines, and a degree 10 curve, say C. The
linear components belong to the disjoint support variety described in [11, §7].

Let Ĉ be the curve corresponding to C as in Section 2.2. The total number of points
contained in the intersection of Ĉ with the union of the coordinate hyperplanes is 22, all of
which are real. There is a distinct path through each of these 22 points with cycle number
one and each point gives a single contribution to the multiplicity of a ray in the complex
tropical curve. In particular, the real and complex tropical curves are equal:
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Figure 5: Left: The projection of the degree 10 central curve defined by (8) in Example 5.2
onto the coordinates (u0, u1, v0). Right: Corresponding signed real tropical variety.

multiplicity primitive element of ray in Trop(I) in (x, s, u0, v0, u1, v1)

6 ( 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)
3 ( 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)
1 ( 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1)
1 (−1, 0, 0, 0, 0,−1,−1, 0,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0)
2 (−1, 0, 0,−1,−1, 0, 0, 0,−1,−1, 0, 0,−1,−1, 0, 0, 0,−1)
4 ( 0,−1, 0, 0, 0, 0, 0,−1, 0,−1,−1,−1,−1,−1, 0, 0, 0, 0)
2 ( 0, 0,−1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0,−1,−1,−1,−1)
1 ( 0, 0,−1, 0, 0, 0,−1,−1,−1, 0,−1,−1,−1, 0, 0,−1,−1, 0)
1 ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0)
1 ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0)

Figure 5 shows a projection of the real points in C and the corresponding signed real
tropical curve onto coordinates (u0, u1, v0). The colors of the real curve indicate the image
of connected components. There is an intersection between the green and red segments, but
the magenta and blue segments do not intersect.

Generally, the signed real tropical variety of the central curve of a linear program should
be closely related to the oriented matroid associated with the input data [5].

6 Conclusion

This paper and its predecessors [16, 20] demonstrate the potential for using the tools of
numerical algebraic geometry to compute tropical varieties. The recent expansion of numer-
ical tools for real varieties makes numerical algebraic geometric methods particular effective
for computing real tropical varieties. The next natural step for the development of these
techniques is to compute tropicalizations of real and complex surfaces.

One important motivation for computing tropical surfaces is that it would enable the
computation of tropical curves defined by polynomials with non-constant coefficients, which
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are of interest for many of the applications mentioned earlier, e.g., [2, 29]. Real tropical
surfaces also provide significantly more subtleties than curves. For example, the real tropical
variety of a surface may not be pure-dimensional and may not be a sub-fan of the complex
tropical variety. With recent developments related to numerically decomposing real surfaces
in any dimension, e.g., [9], we are optimistic that a few new ideas building on the ability to
compute real tropical curves will be enough to compute real tropical surfaces.
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