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Abstract

The approximate path synthesis of four-bar linkages with symmetric coupler curves is presented. This
includes the formulation of a polynomial optimization problem, a characterization of the maximum number
of critical points, a complete numerical solution by homotopy continuation, and application to the design of
straight line generators. Our approach specifies a desired curve and finds several optimal four-bar linkages
with a coupler trace that approximates it. The objective posed simultaneously enforces kinematic accuracy,
loop closure, and leads to polynomial first order necessary conditions with a structure that remains the same
for any desired trace leading to a generalized result. Ground pivot locations are set as chosen parameters,
and it is shown that the objective has a maximum of 73 critical points. The theoretical work is applied to
the design of straight line paths. Parameter homotopy runs are executed for 1440 different choices of ground
pivots for a thorough exploration. These computations found the expected linkages, namely, Watt, Evans,
Roberts, Chebyshev, and other previously unreported linkages which are organized into a 2D atlas using the
UMAP algorithm.

Key words: Optimization, Homotopy continuation, Straight line generators, Four-bar mechanisms

1. Introduction

The synthesis of a point path by a four-bar linkage has been addressed in [2] for the exact case, and
in [3, 4] for the approximate case. Here we address a subcase, that is the synthesis of symmetric coupler
curves. A four-bar produces a symmetric coupler only if certain constraints are placed on its dimensions,
which have been outlined in [5, 6, 7]. We are motivated to study symmetric curves as we note that many
of the special straight line generators found over time produce symmetric curves, e.g., the Watt linkage, the
Evans linkage, the Roberts linkage, the Chebyshev linkage, and the Chebyshev lambda linkage [8]. In search
of more such interesting geometries, symmetry constraints are installed. This reduces the well known nine
dimensional design space of four-bar linkages down to seven dimensions. In addition, to aid in computational
tractability, the positions of ground pivots were set, reducing the design space to three dimensions. The rel-
evant kinematic constraints were formulated into an optimization problem which was solved completely for
all minima using polynomial homotopy continuation [9]. The result is used to search for straight line gener-
ators by systematically varying ground pivot locations and computing several parameter homotopies. Our
computational search found the well-known straight line generators as well as several unreported geometries.
The resulting linkage designs are organized into an atlas using the UMAP unsupervised manifold learning
algorithm [10].

2. Mathematical formulation of four-bars

Consider a planar four-bar linkage as shown in Fig. 1 in the complex plane. Let A and B represent
the two fixed pivots, respectively. For representing vector variables such as the fixed pivots, isotropic co-
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Figure 1: Schematic of a four-bar linkage in the complex plane

ordinates [11] are used here. Hence, additional variables A∗ and B∗ denoting the conjugate variables of A
and B, respectively, are introduced. This is an alternative approach to the Cartesian framework in order to
gain certain advantages [11] during the mathematical formulation stage as well as in the implementation of
numerical continuation solution technique that follows. Let l1, l2, and l3 be the real variables which denote
the lengths of the three moving links as shown. Let ϕ1, ϕ2, and ϕ3 be the respective angular displacements
of these links measured counter-clockwise from the positive x-axis. The coupler trace point (normalized
by the coupler base length l2) is represented in the local frame of the coupler as Q and its conjugate
counterpart Q∗. In other words, Q is a stretch-rotation that transforms real length l2 into local complex
coordinates of the trace point. The design architecture variables of the four-bar linkage are summarized
as d = {A,A∗, B,B∗, l1, l2, l3, Q,Q∗}. Let X and its conjugate X∗ denote the locus of the trace point of
interest in the global frame.

We introduce rotation operators in 2D, namely, Φk = eiϕk for k = 1, 2, 3. The vector loop equations are
formulated via the left and right dyads, respectively, as

A+ l1Φ1 + l2QΦ2 = X, (1)

B + l3Φ3 + l2(Q− 1)Φ2 = X. (2)

The rotation operators are not design specifications for path synthesis applications, hence it is desirable to
eliminate them early in the formulation. In order to eliminate them, the complex conjugate equations must
also be considered in the isotropic coordinates framework, namely,

A∗ + l1
1

Φ1
+ l2Q

∗ 1

Φ2
= X∗, (3)

B∗ + l3
1

Φ3
+ l2(Q

∗ − 1)
1

Φ2
= X∗. (4)

The conjugate of a rotation operator is its reciprocal from its definition. From Eqns. (1-4), all three rotation
operators can be eliminated via polynomial resultants sequentially in order to obtain a scalar coupler trace
equation f(X,X∗;d) = 0 given by:∣∣∣∣∣∣∣∣

Q∗(A−X) g(X,X∗;d) l2Q(A∗ −X∗) 0
0 l2Q

∗(A−X) g(X,X∗;d) Q(A∗ −X∗)
(Q∗ − 1)(B −X) h(X,X∗;d) l2(Q− 1)(B∗ −X∗) 0

0 l2(Q
∗ − 1)(B −X) h(X,X∗;d) (Q− 1)(B∗ −X∗)

∣∣∣∣∣∣∣∣ = 0, (5)

where

g(X,X∗;d) = l22QQ∗ − l21 + (A−X)(A∗ −X∗) and

h(X,X∗;d) = l22(Q− 1)(Q∗ − 1)− l23 + (B −X)(B∗ −X∗).
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As is well known for four-bar linkages, Eq. (5) is a sextic equation with circularity 3. It comprises of 16
distinct monomial terms in X,X∗, namely,{

X3X∗3, X3X∗2, X3X∗, X3, X2X∗3, X2X∗2,

X2X∗, X2, XX∗3, XX∗2, XX∗, X,X∗3, X∗2, X∗, 1

}
in which the coefficient of the leading term X3X∗3 is equal to 1. The coefficient expressions are explicitly
provided in A for the interested reader.

Four-bar linkages that share an identical coupler locus occur as Roberts cognate triplets2 in the four-bar
design space (see [5, pp. 168-176]). For a design d1 = {A,A∗, B,B∗, l1, l2, l3, Q,Q∗}, its other two cognates
can be expressed as:

d2 =
{
B,B∗, A+Q(B −A), A∗ +Q∗(B∗ −A∗), l2

√
(1−Q)(1−Q∗) ,

l3
√
(1−Q)(1−Q∗), l1

√
(1−Q)(1−Q∗),

1

1−Q
,

1

1−Q∗

}
,

d3 =
{
A+Q(B −A), A∗ +Q∗(B∗ −A∗), A,A∗, l3

√
QQ∗,

l1
√

QQ∗, l2
√
QQ∗,

Q− 1

Q
,
Q∗ − 1

Q∗

}
. (6)

In our computational experiment, we restrict the model to four-bars that generate symmetric coupler curves.
We do this for two reasons. First, much of the straight line linkages reported in the literature [8] such as Watt,
Evans, Roberts, and Chebyshev linkages generate symmetric coupler curves about some axis of symmetry
in the plane. Second, the inclusion of additional conditions on the design variables to this effect simplifies
the model significantly and enables faster computations.

2.1. Symmetric coupler curves

The following derives the necessary and sufficient conditions for a four-bar linkage to generate symmetric
coupler curves. While some of these conditions can be found in the literature, we present a direct proof here
via analytical geometry and symbolic algebraic analysis.

Since we are working with isotropic coordinates, the first step is to derive the equation of axis of symmetry
in isotropic coordinates. Following the isotropic coordinates convention P = p+ iq, where i is the imaginary
unity, points (P, P ∗) on a generic line (axis of symmetry) in the complex plane satisfy:

L(P, P ∗) = K∗P +KP ∗ + c = 0. (7)

Note thatK denotes any vector represented in isotropic coordinates along the normal to the axis of symmetry,
and c is a real parameter such that c = −K∗D−KD∗ for any point D on the symmetric axis. If (X,X∗) is
any point in the plane, then its symmetric reflection about the axis given by Eq. (7) is

(Xm, X∗
m) =

(
−c+KX∗

K∗ ,−c+K∗X

K

)
. (8)

It follows that for a four-bar coupler curve to be symmetric about an axis L(P, P ∗) = 0, (Xm, X∗
m) given by

Eq. (8) must also satisfy Eq. (5), that is, f(Xm, X∗
m;d) = 0. This equation must be a constant multiple of

the original four-bar coupler curve, f(X,X∗;d) = 0 for a four-bar linkage to generate a symmetric coupler
curve about any axis in plane. Hence,

f(Xm, X∗
m;d) = λf(X,X∗;d), (9)

where λ = 1
K3K∗3 is a constant that balances the leading term X3X∗3 on both sides. This constant arises due

to the presence ofK andK∗ in the denominator terms ofX∗
m and Xm, respectively, in Eq. (8). Subsequently,

2These are different from Roberts straight line linkage which is a specific four-bar linkage attributed to the same person.
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Figure 2: Two classes of four-bar linkages which generate symmetric coupler curves

the coefficients of the 16 monomial terms in X,X∗ can be equated element-wise for consistency to arrive at 15
conditions (disregarding the leading termX3X∗3) on the design variables d and the axis parametersK,K∗, c.
As the symmetric behavior is unaffected by scaling, rotation, and translation, the fixed pivots can be chosen
as A = A∗ = 0 and B = B∗ = 1 which further simplifies the conditions. Note that this choice of fixed pivots
is made only for enabling the derivation of the conditions of symmetry and is not a global choice for the
latter sections on numerical results.

Of the 15 consistency conditions, the conditions corresponding to the monomials X3, X3X∗, X3X∗2 are
the easiest to manipulate algebraically. These are described, respectively, as follows:

c (c+K) (c+KQ∗) = 0. (10)

−3c2 − 2cK∗ − 2cK∗Q−K∗2Q+K2Q∗ = 0, (11)

3c+K +K∗ +K∗Q+KQ∗ = 0, (12)

The conjugate of these conditions also occur corresponding to the monomials X∗3, XX∗3, X2X∗3. Note that
these three conditions and their conjugate counterparts are only dependent on c,K,K∗, Q and Q∗.

Equation (10) shows that either c = 0, c = −K, or c = −KQ∗. In the following, these three conditional
branches are analyzed separately with Eqs. (11,12), and then with the other 12 coefficient conditions, which
are not all independent.

2.1.1. Case 1: c = 0

If c = 0, Eqs. (11,12) simplify into the following, respectively:

−K∗2Q+K2Q∗ = 0, (13)

K +K∗ +K∗Q+KQ∗ = 0. (14)

This system of two linear equations in Q,Q∗ further bifurcates into the following cases depending on whether
the system is rank-deficient or well-determined.

• If the above system is rank-deficient, then the consistency conditions are K = −K∗, Q = Q∗ along
with c = 0. We note that for these conditions, all the 15 consistency conditions given by Eq. (9) vanish.
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Upon interpretation of these conditions geometrically, these correspond to four-bars whose trace point
lie along the line connecting the two floating pivots as shown in Fig. 2a, termed Class A linkages.
The reflections of these linkages about their ground link in any given configuration are also part of
their configuration space, thus enabling the occurrence of symmetric coupler curves. The cognates of
such four-bars also meet these conditions with the ground-pivots of all three cognates lying along the
axis of symmetry.

• On the other hand, if the system is well-determined, then the variables Q and Q∗ can be solved
as: Q = − K

K∗ , Q
∗ = −K∗

K . Under these, all the other conditions given by Eq. (9) are met only
when l1 = l2. These linkages are termed as Class B linkages. To be more precise, these conditions
correspond to one of the three Roberts cognate sub-classes of Class B, as will be made evident from
subsequent derivations.

2.1.2. Case 2: c = −K = −K∗

In this case, Eqs. (11,12) are consistent if and only if Q∗ = 1 − Q. Further analysis of Eq. (9) shows
that l1 = l3 must also hold for all the conditions to be met. These linkages are the Roberts cognates of
the Class B linkages in the earlier step. An example of a linkage that meets these conditions is shown as
cognate #2 in Fig. 2b.

2.1.3. Case 3: c = −KQ∗ = −K∗Q

Upon similar analysis, it can be shown that the consistency conditions are Q∗ = Q
Q−1 and l2 = l3. As

expected, these are the third Roberts cognates of Class B.

2.2. Summary of four-bar linkages that generate symmetric coupler curves

Four-bar linkages that generate coupler curves symmetric about an axis in the plane are of the following
two classes:
Class A: Q = Q∗. These four-bars generate symmetric coupler curves only due to the special choice of
trace point along its coupler base, leading to a mirror symmetry of the coupler curves about their respective
ground links. This class of four-bars does not require any special conditions on the link lengths l1, l2 and l3.
The cognates of such four-bars also adhere to the same conditions.
Class B: The other class of four-bars generating symmetric coupler curves can be split into three sub-classes
which constitute a Roberts cognate triplet.

1. Q = 1
Q∗ , l1 = l2

2. Q∗ = 1−Q, l1 = l3
3. Q∗ = Q

Q−1 , l2 = l3

Arguably, four-bars of Class B are more interesting because, unlike Class A, the symmetric curves generated
by them are not mere reflections about the axis defined by their respective ground links. The axis of symmetry
in the four-bars of Class B is the perpendicular bisector of the fixed link corresponding to cognate #2. It also
passes through the ground pivot shared between the cognates #1 and #3 as shown in Fig. 2b. For further
description of the four-bars of Class B and their geometry, refer to [5, 7]. Roberts linkage is a well-known
symmetric straight line linkage, which is of Class B. The two classes of four-bars can also overlap in the
design space with two mutually perpendicular axes of symmetry in their coupler curves as exhibited in some
notable cases in literature such as Evans, Chebyshev and Watt straight line linkages, see Fig. 3.

In the following, we generate an atlas of straight line generating four-bar mechanisms using an optimiza-
tion approach based in polynomial homotopy continuation. We limit the investigation to the four-bars of
Class B. Our initial investigation into Class A four-bars were underwhelming for this application as the best
straight line generating four-bars of Class A appear to also belong to Class B as shown in Fig. 3. Hence, we
solve for cognate #2 of Class B and compute cognates #1 and #3 based on the transformations presented
in Eq. (6).
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Figure 3: Categorization of Evans, Chebyshev, Watt, and Roberts straight line linkages as either Class A or
Class B symmetric four-bars.

3. Optimization model for approximating desired curves using symmetric four-bar coupler
curves

A generic four-bar design is represented as d = {A,A∗, B,B∗, l1, l2, l3, Q,Q∗} by our earlier convention.
Note that l1 = l3 = l and Q∗ = 1 − Q based on the architecture conditions derived for cognate #2 of
Class B. This simplifies the coupler equation in terms of {A,A∗, B,B∗, l, l2, Q}. Further, since Q+Q∗ = 1,
the variable Q can be represented using 1

2 + iqy, where qy is a real variable and i the imaginary unit. As the

variables l and l2 occur only in the form of squares, modified real variables l2s = l22 and ls = l2− l2s
4 (1+4q2y)

are introduced based on careful observation of the polynomial structure to simplify the equation further
and to reduce the total degree. At this stage, a decision is made to treat A,A∗, B,B∗ as specified design
parameters instead of treating them as variables. This brings down the number of variables, all real, to 3,
namely, ls, l2s and qy, as opposed to being 7 which would be a more difficult problem outside the scope of
this work.

As mentioned earlier, the coupler curve of a four-bar linkage is degree six. Hence, if the exact synthesis
approach is taken, a maximum of only six design positions along a straight line can be specified. Approximate
synthesis process allows for as many design specifications as desired. The optimization problem is one of
minimizing the error residue of the coupler equation over all the design positions. We chose the L2-norm
to retain the polynomial nature of the objective function, thus allowing the use of a polynomial homotopy
continuation approach to solve any resulting polynomial system.

The objective of the optimization problem is a sum of squares of the residue of the coupler equation over
all the design positions, j = 1, 2, ..., N :

N∑
j=1

η2j , (15)

where ηj = f(Xj , X
∗
j ;A,A∗, B,B∗, ls, l2s, qy). The design positions are Xj , X

∗
j , the design parameters are

A,A∗, B,B∗, the design variables are ls, l2s, qy, and the number N can be arbitrarily large. As N increases
to infinity, if the desired curve segment can be represented in a continuous parametric form, say X(t), X∗(t)
for t ∈ [ti, tf ], then the objective function can also be written as a definite integral:

ξ =

∫ tf

ti

η2dt. (16)

The integrand is a polynomial in the design variables ls, l2s, qy of 55 distinct monomials including the unit
monomial 1. The coefficients of these monomials are parametric functions of A,A∗, B,B∗, X(t), X∗(t) and
can be integrated with respect to t to obtain numerical values. Hence, one can view these numerical values
as functions of A,A∗, B,B∗ and moments of the curve, which is a generalization of moments of continuous
random variables e.g., see [12, Chap. 4]. In particular, the 49 moments of the curve arising are Mj,k for
0 ≤ j, k ≤ 6 where

Mj,k =

∫ tf

ti

X(t)jX∗(t)kdt.

Irrespective of the desired curve, the optimization objective is of a certain polynomial structure with 55 linear
coefficient parameters thereby presenting a unified framework to solve path synthesis problems of this kind.
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The first-order necessary conditions of optimality are then derived symbolically as:
∂ξ
∂ls

∂ξ
∂l2s

∂ξ
∂qy

 = 0. (17)

This system of 3 equations in 3 unknowns has a polynomial structure that is invariant to the desired curve
being specified following the same reasoning as before. In particular, the total degree of this polynomial
system is 648, which forms a trivial upper bound of the number of critical points of the objective function.
One can compute tighter bounds such as a 2-homogeneous Bézout bound [11] of 186 and the BKK bound [11]
of 73. This is confirmed by explicitly solving a randomly chosen ab initio system using the numerical
continuation solver Bertini [9, 13] via a 2-homogeneous homotopy of 186 startpoints. Such a start system is
usually constructed by forming a polynomial system respecting the same multi-homogeneous structure using
linear expressions which are easily solved to form the startpoints [2, 14]. Then, using a predictor-corrector
numerical path tracking, the startpoints are deformed continuously to the target points of the ab initio
system. Solving this ab initio system yielded 73 solutions matching the BKK bound, while the rest diverged
off to infinity as expected. Thus, one can use a parameter homotopy [9] and track 73 solution paths to solve
any other system with this polynomial structure.

4. Design of experiments for approximating a straight line segment

Parameter homotopy runs are carried out for the design of approximate straight line generating four-bar
linkages with cognate #2 symmetric four-bars of Class B being the primary focus. The design specification
is chosen as a unit segment along the x-axis in the range [−0.5, 0.5]. This can be written in the parametric
form X(t) = X∗(t) = t, t ∈ [−0.5, 0.5]. In order to explore the design space, the locations of ground pivots,
which appear in our formulation as specifications, were systematically varied. The ground link is described
by four parameters, two for each fixed pivot. We add a constraint that restricts the ground link such that the
axis of symmetry passing through either the mid-point, referred as Specification I, or at the end of the desired
segment, referred as Specification II, as shown in Fig. 4a and 4b, respectively, parameterized via r, θ, and s
as illustrated. These two specifications types lead to noticeably different four-bar linkage designs because
of the relative positioning of the symmetric axis vis-à-vis the specified line segment. The parameter θ was
restricted to be within [0◦, 90◦] in the case of Specification I and [0◦, 180◦] in the case of Specification II

s

r

1

θ

A

B

x

iy

O

(a) Specification I

s

r

1

θ

A

B

x

iy

O

(b) Specification II

Figure 4: Design specification for approximate straight line generating four-bar linkages. In both the sce-
narios, the line segment is of the parametric form X(t) = X∗(t) = t, t ∈ [−0.5, 0.5]. In the first scenario, the
axis of symmetry passes through the mid-point of the desired segment while in the second, it passes through
the end.
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as extending these ranges any further leads to mirror specifications. We sample the space by employing a
discretization scheme as follows:

Specification I: r ∈ {0.25i}8i=0 θ ∈ {15◦j}6j=0 s ∈ {0.25k}8k=1, (18)

Specification II: r ∈ {0.25i}8i=0 θ ∈ {15◦j}1j=02 s ∈ {0.25k}8k=1, (19)

which yields a total of 9 · 7 · 8 = 504 problems for Specification I and 9 · 13 · 8 = 936 for Specification II,
respectively, totalling3 1440.

The computation time required for solving a single parameter homotopy run of 73 paths is about 15s on
average. Most of these runs were 100% successful with 73 endpoints. For some special parameter sets such
as when r = 0 and/or θ = 0◦, 90◦ or 180◦, some of the 73 paths, diverged to infinity. This can be explained
by the special nature of these parameters which can result in certain monomials vanishing to zero identically.
Among the successful endpoints of the parameter homotopy runs, only the solutions that correspond to
physical linkages are retained and the rest are discarded. The physical linkages include local minima as
well as saddle points of the respective optimization objective. From prior experience in solving optimization
problems in mechanism synthesis [15], some saddle points have been known to meet the design requirements
quite well. Thus, at this stage all physical linkages are retained irrespective of whether they correspond to
minima or saddle points. Consolidating the physical solutions resulting from all 1440 parameter homotopy
runs yields 16,904 linkages. This set is then further pruned based on an allowable structural error tolerance
of 1

100 of unity in the y direction of the desired segment. This results in 190 linkages of which cognates #1
and #3 are computed based on Eq. (6), totalling 3 · 190 = 570. A further rejection of linkages with any link
length greater than 2 resulted in 274 distinct approximate straight line generating four-bars.

For exhibiting these 274 linkages, we used the manifold learning technique UMAP [10], a nonlinear
dimensional reduction tool to allow us to visualize higher dimensional data in 2D. Using the ground-pivots
and the link dimensions to represent each four-bar linkage and setting the hyper-parameters of UMAP,
namely, min_dist=0.05 and n_neighbors=10, Fig. 5 is produced as a lower dimensional embedding. It
shows bunches of coupler curves which are organized into bins, colored and labelled distinctly, by inspection
based on the results of UMAP. The coupler curves within each bin are plotted on the same axis to scale. Some
of these coupler curves correspond to popular straight line generating four-bars such as Watt, Evans, Roberts
and Chebyshev linkages and their cognates. Additionally, we found a lot of variants of these popular linkages
as well as other previously unreported linkages as shown in Fig. 6 with representative examples colored and
labelled according to the bin to which they belong in Fig. 5. Our computational approach produced hundreds
of linkages that serve as a useful atlas for designers4.

5. Conclusion

In this paper, the synthesis equations were formulated, characterized, and solved for a four-bar linkage
with ground pivots specified to produce a desired symmetric coupler curve approximately. The solution
is applied to search for four-bar approximate straight line generators by solving an optimization problem.
The mathematical model is restricted to one particular class of four-bars which generate symmetric coupler
curves to reduce the computational challenges associated with solving a generic four-bar linkage system.
The validity of our approach is affirmed by rediscovering the classical approximate straight line generators
by solving an easier system. In addition, we found more approximate straight line generators which are
substantially different from the classical linkages. Using the UMAP algorithm, our results are organized into
a 2D atlas, which could be a useful reference for mechanical designers in need of more straight line options.
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tinuation enabled optimization. All the linkages are shown to the same scale with the approximate straight
line segment marked by pointers at its extremities and the axis of symmetry by a dashed line.
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A. Four-bar coupler trace equation

The following are the monomial terms in X,X∗ and their corresponding coefficient expressions in Eq. (5).

X3X∗3 : 1

X3X∗2 : A∗(−2 +Q∗)−B∗(1 +Q∗)

X3X∗ : 2A∗B∗ −A∗2(−1 +Q∗) +B∗2Q∗

X3 : A∗B∗(A∗(−1 +Q∗)−B∗Q∗)

X2X∗2 : BB∗ − 2l21 +BB∗Q+ l21Q+ l22Q− l23Q−A∗B(1 +Q)(−2 +Q∗) + (l21 + l22 − l23 − 2l22Q

+BB∗(1 +Q))Q∗ +A(−2 +Q)(A∗(−2 +Q∗)−B∗(1 +Q∗))

X2X∗ : A∗2B(1 +Q)(−1 +Q∗)−A(−2 +Q)(−2A∗B∗ +A∗2(−1 +Q∗)−B∗2Q∗)

−A∗(2(l2 − l3)(l2 + l3)Q+ 2BB∗(1 +Q)− l21(−2 +Q)(−1 +Q∗) + l22(1− 4Q)Q∗ + l23(−1 +Q)Q∗

+ l22(−1 + 2Q)Q∗2)−B∗(l21(−2 +Q+QQ∗) +Q∗(BB∗(1 +Q)− l23(1 +Q) + l22(1 +Q∗ − 2QQ∗)))

X2 : A∗2(−(BB∗(1 +Q)) +Q(l23 + l22(−1 +Q∗)))(−1 +Q∗) +AA∗B∗(−2 +Q)(A∗(−1 +Q∗)−B∗Q∗)

+B∗2(−1 +Q)Q∗(l21 − l22Q
∗) +A∗B∗(−(l21(−2 +Q)(−1 +Q∗)) + (BB∗(1 +Q)− l23(1 +Q)

− l22(−1 +Q∗))Q∗)

XX∗ : l21(−2BB∗ − l21(−1 +Q) + (l23 + l22(−1 +Q))Q) + 2A∗B(Q(BB∗ − l23 + l22(−1 +Q(−1 +Q∗))(−1 +Q∗))

+ l21(−1 +Q∗))−A∗2B2Q(−1 +Q∗) + (B2B∗2Q+ (l21 + l22 − l23)(l
2
1(−1 +Q) + 2BB∗Q− (l23

+ l22(−1 +Q))Q))Q∗ + l22(−(l21(−1 +Q)) +Q(l23 + l22(−1 +Q)− 2BB∗Q))Q∗2 +A2(−1 +Q)

(−2A∗B∗ +A∗2(−1 +Q∗)−B∗2Q∗) + 2A(2A∗BB∗ +B∗l21(−1 +Q)−A∗(−l23 + l22(−1 +Q)(−1 +Q∗))

(Q(−1 +Q∗)−Q∗) +A∗2(B −BQ∗) +A∗l21(−1 +Q+Q∗ −QQ∗) +B∗Q∗(BB∗ − l23 + l22(−1 +Q)

(−1 + (−1 +Q)Q∗)))

X : A∗2BQ(BB∗ − l23 − l22(1 +Q)(−1 +Q∗))(−1 +Q∗)−A2A∗B∗(−1 +Q)(A∗(−1 +Q∗)−B∗Q∗)

+B∗(−1 +Q)(−l21 + l22QQ∗)(l21(−1 +Q∗) +BB∗Q∗ − (l23 + l22(−1 +Q∗))Q∗) +A∗(−(B2B∗2QQ∗)

+Q(−l23 + l22(−1 +Q)(−1 +Q∗))(−(l21(−1 +Q∗)) + (l23 + l22(−1 +Q∗))Q∗) + 2BB∗(−(l21(−1 +Q∗))

+Q(l23 + l22(−1 +Q∗))Q∗)) +A(A∗2(2BB∗ − l23Q+ l22(−1 +Q)Q(−1 +Q∗))(−1 +Q∗)−B∗2(−1 +Q)

Q∗(l21 + l22(−2 +Q)Q∗) + 2A∗B∗(l21(−1 +Q)(−1 +Q∗) +Q∗(−(BB∗) + l23 + l22(−1 +Q+Q∗ −QQ∗))))

1 : A2B∗(−1 +Q)(A∗2B(−1 +Q∗) +B∗l22(−1 +Q)Q∗2 +A∗Q∗(−(BB∗) + l23 + l22(−1 +Q+Q∗ −QQ∗)))

+B(−1 +Q∗)(B∗(l21 − l22QQ∗)(A∗BQ+ (−1 +Q)(l21 − l22QQ∗)) +A∗Q(l21(−l23 + l22(−1 +Q)(−1 +Q∗))

+ l22Q(A∗B(−1 +Q∗) +Q∗(l23 + l22(−1 +Q+Q∗ −QQ∗))))) +A(−(A∗2BQ(BB∗ − l23 + l22(−1 +Q)

(−1 +Q∗))(−1 +Q∗)) +B∗(−1 +Q)(BB∗ − l23 + l22(−1 +Q)(−1 +Q∗))Q∗(l21 − l22QQ∗)

+A∗(B2B∗2QQ∗ +QQ∗(l23 + l22(−1 +Q+Q∗ −QQ∗))2 − 2BB∗(l21(−1 +Q)(−1 +Q∗)

+QQ∗(l23 + l22(−1 +Q+Q∗ −QQ∗)))))

The coefficients for the remaining monomials, namely, X2X∗3, XX∗3, XX∗2, X∗3, X∗2, X∗, are simply com-
plex conjugates of the coefficients of their conjugate monomials.
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