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Abstract

We introduce numerical algebraic geometry methods for computing lower bounds on
the reach, local feature size, and the weak feature size of the real part of an equidimen-
sional and smooth algebraic variety using the variety’s defining polynomials as input.
For the weak feature size, we also show that non-quadratic complete intersections
generically have finitely many geometric bottlenecks, and describe how to compute the
weak feature size directly rather than a lower bound in this case. In all other cases,
we describe additional computations that can be used to determine feature size values
rather than lower bounds.
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1 Introduction

Exploring the geometry of a given data set has proven to be a powerful tool in data analysis.
For example, topological data analysis (TDA) aims to recover topological information of a
data set such as connectedness or holes in its shape [18, 23, 35] and has been successfully
applied to problems in a wide range of fields [36, 44, 60]. If the data set lies on a manifold
that is algebraic, namely it lies on a geometric shape defined by algebraic equations, a more
direct approach using computational algebraic geometry can be applied. In this case, the
data set can be viewed as a sampling of the algebraic manifold, as shown in Figure 1, where
it is important to find guarantees that the topology of the sample, i.e., the topology of
the Vietoris-Rips complex defined by the data set correctly estimates the topology of the
underlying algebraic manifold.
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Figure 1: Dense sample from a quartic surface.

Topological and geometric data analysis algorithms frequently supply some form of the
following guarantee: given a “dense enough” point sample from a space X ⊆ Rn as input,
the algorithm correctly computes some geometric or topological property of X. The required
density can be expressed in terms of certain invariants of the space X. The two most studied
invariants are the reach, introduced by Federer [31], and the weak feature size, introduced
by Grove and Shiohama in the context of Riemannian geometry [37, 38] and significantly
expanded upon by Chazal and Lieutier for use in sampling and other computational geometry
applications [20, 21]. These invariants are of considerable importance for persistent homology
and reconstruction methods [4, 16, 21, 22, 25, 26, 47, 53].

In most settings, geometric feature sizes can only be estimated since a full specification
of the space X is not available. As a result, few examples of fully specified spaces with
explicitly computed weak feature size have previously appeared. Algorithms computing these
invariants and thus geometrical theories for efficient computations are an important area of
study in applied geometry. This paper aims at providing some answers in this direction
using numerical algebraic geometric methods, e.g. see [10, 56].

Throughout this paper, nonempty and compact algebraic manifolds X = V (F ) ∩ Rn are
considered, where F = {f1, f2, . . . , fm} is a system consisting of polynomials in R[x1, . . . , xn]
and V (F ) = {x ∈ Cn | F (x) = 0}. Section 2 presents necessary background on feature
sizes. The distance-to-X function dX : Rn → R, defined as dX(z) = infx∈X ‖x − z‖, is not
differentiable everywhere in Rn for most spaces X. Grove [37] constructed an analog of
Morse theory defining critical points of dX or geometric bottlenecks of X as those points
z ∈ Rn \X which are in the convex hull of their closest points on X. The weak feature size is
the infimum of all the critical values of dX . The critical values of dX are those values dX(z)
where z is a geometric bottleneck (see Definition 2.3).

Example. Consider the ellipsoid X ⊆ R3 defined by x21 + x22 + x23/2 = 1 as depicted in
Figure 2. It has a single geometric bottleneck at the origin (red point).

We will see in Section 4 that the number of convex hulls of closest points which contain a
geometric bottleneck crucially impacts computations. The ellipsoid in Figure 2 is an example
that poses difficulties, as it has a one-dimensional locus of convex hulls along the (x1, x2)-
plane which contain the origin. They are depicted with black segments connecting green
antipodal points on the unit circle in the (x1, x2)-plane.
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Figure 2: Ellipsoid

Algebraic conditions also detect that the origin is contained in the convex hull of its
furthest points on X, which lies along the x3-axis with blue segments connecting the magenta
points at

(
0, 0,±

√
2
)

in Figure 2.

Using a combination of geometric arguments, the Tarski-Seidenberg Theorem, and Sard’s
Theorem, Fu proved that the set of critical values of dX is finite when X is semi-algebraic [33].
This implies that the weak feature size is always positive. In the ellipsoid example, the weak
feature size is 1. This theorem strongly motivates studying the weak feature size as it applies
even when X is not smooth nor equidimensional. The proof, however, does not suggest a
feasible algorithm for computing the critical values of dX .

In Section 3, we describe a method to compute the reach of X as well as the local feature
size [3] of X at a point w ∈ Rn given the defining polynomials F as input. Numerical com-
putations can compute these quantities to arbitrary precision via our approach. Moreover,
if the input depends on rational numbers, exactness recovery methods such as [8] can refine
the numerical results to extract exact information. For example, we use exactness recovery
methods in Example 2.4 to determine exact expressions for the reach of a particular space.

Theorem (3.10, 3.11). For both the reach and the local feature size, one can utilize the
finite set of points computed via a single parameter homotopy [50] on a polynomial system
constructed using first-order critical conditions to obtain a nontrivial lower bound. Using
additional reality testing, one can determine the value of the reach and the local feature size.

To the best of our knowledge, these provide the first algorithms that can compute these
quantities for algebraic manifolds of arbitrary codimension.

Section 4 is dedicated to constructing a theory and algorithms for computing the weak
feature size. We apply a wholly algebraic framework to this problem when X is the real part
of a smooth and equidimensional algebraic variety. The resulting theory yields an alternative
proof of Fu’s Theorem in this setting as well as a method for computing bounds on the weak
feature size.

Theorem (4.8, 4.10). A lower bound on the weak feature size can be obtained using the
union of the finite set of points computed via n parameter homotopies [50]. Using additional
reality testing, one can determine the value of the weak feature size.

Example. The ellipsoid example above has a geometric bottleneck with infinitely many
closest points. Although the previous theorem applies to that case, it is often more desir-
able from a numerical conditioning standpoint to consider nonsingular isolated solutions to
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well-constrained systems. Consider the perturbation defined by x2 + y2 + z2/2 + xz/7 = 1,
illustrated in Figure 3. In this case, only three convex hulls containing the geometric bottle-
neck at the origin contribute to algebraic computations. Black segments connect the origin
to green points, which are distance minimizers.

Figure 3: Perturbation of ellipsoid

This example’s behavior is the typical result of a perturbation in a rigorous sense. By
applying the celebrated Alexander-Hirschowitz Theorem [2] on the expected dimension of the
secant variety of the Veronese embedding, one obtains a description of the generic behavior
of geometric bottlenecks as summarized in the following.

Theorem (4.14). Non-quadratic generic complete intersections have finitely many critical
points, i.e., finitely many geometric bottlenecks.

As a consequence, we construct algorithms using homotopy continuation to compute the
weak feature size with arbitrary precision. Examples are presented in Section 5. A Julia pack-
age which implements these algorithms for general use via HomotopyContinuation.jl [15] is
available at https://github.com/P-Edwards/HomologyInferenceWithWeakFeatureSize.
jl. We also use Bertini [11] implementations. Data, scripts, and input files for all examples
are available at https://github.com/P-Edwards/wfs-and-reach-examples.

1.1 Related work

Recent work on computing feature sizes in the algebraic setting mostly focused on computing
lower bounds for the reach, motivated by a result of Amari et al. [1, Thm. 3.4] which shows the
reach of a compact manifold is determined by two distinct types of geometric behavior: re-
gions of high curvature and “bottleneck structures,” which we call “geometric 2-bottlenecks”
(Definition 4.1). Breiding and Timme [14] observed that a straightforward computation can
find the maximal curvature of an implicitly defined plane curve and Horobeţ [45] studied the
problem in greater generality by investigating an algebraic variety’s critical curvature degree.
Horobeţ and Weinstein [46] studied related theoretical problems in the context of “offset fil-
trations” and, in particular, showed that the reach is algebraic over Q for real algebraic
manifolds defined by polynomials with rational coefficients. The third author [30] studied
computing 2-bottlenecks with numerical algebraic geometry while Weinstein together with
the first and third authors [28] developed formulas for the number of algebraic 2-bottlenecks
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of a smooth algebraic variety in terms of polar and Chern classes. Moreover, in [27] a special
case of Theorem 4.14 for 2-bottlenecks is shown using a different approach.

Lowering the theoretical complexity of computing the Betti numbers and related invari-
ants of semi-algebraic sets from a list of defining polynomials comprises a rich and ongoing
topic of study in real algebraic geometry, e.g., the references [5, 6, 16] more extensively
characterize recent progress in this area. The resulting algorithms are challenging to imple-
ment efficiently and, to the best of our knowledge, no general implementations are available.
We take a distinct approach to homology inference that is complementary by focusing on
producing efficient implementations rather than lowering complexity bounds.

2 Background and Preliminaries

The following summarizes the elements from the theory of distance functions and geometric
feature sizes, particularly for semi-algebraic sets, necessary to state our results. In this paper,
the distance between two points x, z ∈ Rn is the Euclidean distance:

d(x, z) = ‖x− z‖ =

√√√√ n∑
i=1

(xi − zi)2.

For any nonempty subset S ⊆ Rn, let dS : Rn → R denote the distance-to-S function,
namely dS(z) = infs∈S ‖s − z‖. For any non-negative ε, let Sε = d−1S [0, ε]. For a nonempty
and compact subset X ⊆ Rn and for any z ∈ Rn, let πX(z) = {x ∈ X | dX(z) = d(x, z)} be
the set of points in X with minimal distance to z.

Definition 2.1. The medial axis of X is

MX = {z ∈ Rn | #πX(z) > 1}.

Equivalently, MX is the (Euclidean) closure of the set of points in Rn that have at least 2
closest points in X.

Naturally, one can consider subsets of the medial axis based on the number of closest
points. That is, for k ≥ 2, MX,k = {z ∈ Rn | #πX(z) ≥ k} is the k-medial axis where
MX =MX,2.

Definition 2.2. The function dMX
: Rn → R ∪ {∞} is also called the local feature size

function of X [3], denoted lfs. For w ∈ Rn, lfs(w) is the local feature size at w. The function
lfs takes value ∞ if MX = ∅, e.g., if X is convex. The reach of X [31] is defined as

τX = min
x∈X

lfs(x).

Definition 2.3. A point z ∈ Rn\X is a critical point of dX [37, 38] or a geometric bottleneck 1

of X if z is in the convex hull of πX(z). The weak feature size [21] of X is defined as:

wfs(X) = inf
z∈crit(dX)

dX(z)

1This term is new and agrees with that used in recent work on this subject in the algebraic con-
text [1, 14, 27, 28, 30]. It additionally distinguishes these points from other types of critical points which
arise in this setting.
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where crit(dX) denotes the set of critical points of dX .

Notice that crit(dX) is a subset ofMX , so that τX ≤ wfs(X). Also notice that the above
condition can be phrased in terms of well-centered simplices. The convex hull of a set of at
most n+1 affinely independent points in Rn is a well-centered simplex if its circumcenter lies
in its interior [57]. A point z ∈ Rn \X is a geometric bottleneck of X if it is the circumcenter
of a well-centered simplex with vertices in πX(z).

Example 2.4. To illustrate the previous definitions, consider the plane curve C ⊆ R2

defined by d(x, p1)
2 ·d(x, p2)

2 = 2 where p1 = (1, 0) and p2 = (−1, 0). The curve C is called a
Cassini oval with 2 foci and shown in Figure 4(a) along with its medial axis (cyan curve) and
bottlenecks (red points). These types of curves, with a concentration on examples bearing
more resemblance to an ellipse than the one we consider, were proposed by Cassini in the
late 17th century as candidates for planetary orbits [19, p. 36].2 The medial axisMC consists
of three segments along the coordinate axes, namely

(a, 0) for a ∈
[
−
√

2
√

2− 2,
√

2
√

2− 2
]

and

(0, b) for b ∈
(
−∞,−

√
2
√

2 + 2
]
∪
[√

2
√

2 + 2,∞
)
.

The reach is τC =
√√

2− 1 ≈ 0.6436 attained at the origin and
(
±
√

2
√

2− 2, 0
)

. There are

three bottlenecks, namely the origin and (±
√

1/2, 0) each with two closest points in C, with

the weak feature size being wfs(C) =
√√

2− 1 attained at the origin. Hence, τC = wfs(C).
Similarly, consider the plane curve C ′ ⊆ R2 defined by d(x, r1)

2 · d(x, r2)
2 · d(x, r3)

2 = 2
where r1 = (1, 0), r2 = (−1/2,

√
3/2), and r3 = (−1/2,−

√
3/2). The curve C ′ is called a

Cassini oval with 3 foci and is shown in Figure 4(b) along with its medial axis (cyan curve)
and bottleneck (red point) at the origin which has three closest points in C ′. The reach is

τC′ =
3
√

64− 26
√

2

7
≈ 0.4298

attained at the three points on the end of the medial axis in the interior of C ′. The weak

feature size is wfs(C ′) =
3
√√

2− 1 ≈ 0.7454 attained at the origin. Hence, τC′ < wfs(C ′).
We note that the exact values for the reach were computed by using the results of the

numerical computation in Example 3.12 together with the exactness recovery method in [8]
yielding minimal polynomials of x4+2x2−1 and 343x6−128x3+8 for τC and τC′ , respectively.
Hence, the algebraic degree of the reach is 4 and 6, respectively.

Distance functions dX : Rn → R enjoy some properties similar to Morse functions in
Morse theory [52] and justify studying the weak feature size in the algebraic setting. For the
sake of analogy, recall that if f : M → R is a Morse function on a compact manifold M with
critical points Cf then, by a theorem of A. P. Morse [51] and Sard [54], f(Cf ) is finite. By a
fundamental theorem of Morse theory (see, e.g., [49, Thm. 3.1]), if f(Cf ) ∩ [r1, r2] = ∅ then

2This 1693 publication of Cassini’s is the earliest to which we could trace this example, but, e.g., Yates [61]
dates Cassini’s study of these ovals to the earlier date of 1680 without citation.
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(a) (b)

Figure 4: Black curve is the Cassini oval with (a) 2 foci and (b) 3 foci. The red points are
geometric bottlenecks and the union of the cyan curves form the medial axis.

f−1(−∞, r1] is a deformation retract of f−1(−∞, r2]. Analogously, if X ⊆ Rn is nonempty,
semi-algebraic, and compact with set of geometric bottlenecks B, dX(B) is finite [33] and
wfs(X) > 0. If dX(B)∩ [r1, r2] = ∅ with r1 ≥ 0 then Xr1 is a deformation retract of Xr2 [37].

The Morse Lemma implies that the set of critical points of a Morse function on a compact
manifold is finite (see, e.g., [49, Cor. 2.3]). Nonetheless, the distance-to-X function dX need
not always have finitely many geometric bottlenecks even if X is smooth, compact, and an
algebraic subset of Rn (see, e.g., Example 3.14). More details are given in Section 4.

3 Algebraic medial axis, reach, and local feature size

The geometric definition of the medial axis and hence the reach and local feature size in
Section 2 utilize a semi-algebraic condition via closest points. By replacing closest points
with a criticality condition, the following provides an algebraic relaxation that is amenable
to computational algebraic geometry over C. As before, we assume that X = V (F ) ∩ Rn is
nonempty and compact where F is a polynomial system with real coefficients.

Definition 3.1. Let F = {f1, . . . , fm} be a system of polynomials in n variables with real
coefficients such that V (F ) is equidimensional and smooth of codimension c. The medial
axis correspondence of F , denoted M(F ), is the algebraic subset of Cn ×Cn ×Cn given by:(x1, x2, z) ∈ Cn × Cn × Cn

∣∣∣∣∣∣
F (x1) = F (x2) = 0,
d(x1, z)

2 = d(x2, z)
2,

rank[xi − z | JF (xi)
T ] ≤ c for i = 1, 2


where JF (p) is the Jacobian matrix of F evaluated at p and [xi−z | JF (xi)

T ] is the n×(m+1)
matrix obtained by appending the indicated first column. If ∆ is the algebraic set of points
(x1, x2, z) ∈ Cn × Cn × Cn where any two of the entries are equal and π3 : (Cn)3 → Cn is
projection onto the third factor, the algebraic medial axis of F is π3(M(F ) \∆), the Zariski
closure of the image of the projection.

Remark 3.2. Let z ∈ MX , the medial axis of X. By definition, MX = {z ∈ Rn | ∃(x1, x2 ∈
X) d(z, x1) = d(z, x2), x1 6= x2 6= z}. The conditions rank[xi − z | JF (xi)

T ] ≤ c defining
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M(F ) enforce that for any (x1, x2, z) ∈M(F ) the value d(xi, z)
2 is a critical value of the func-

tion dX(•, z) : Rn → R and that xi ∈ V (F ). Therefore, it is clear thatMX ⊆ π3(M(F ) \∆).

Remark 3.3. While the equations defining M(F ) in Definition 3.1 are sufficient for a general
definition, the standard equations for the determinantal component rank[xi−z|JF (xi)

T ] ≤ c
do not present M(F ) as a complete intersection and are correspondingly more challenging to
work with computationally. In practice, we perform computations for the case m = c. In this
case, we may consider an alternative algebraic correspondence M ′(F ) ⊆ Cn×Cn×Cn×(Cc)2

using a null space approach, e.g., see [9]. Let (x1, x2, z) ∈ M(F ). Since V (F ) is smooth of
codimension c, for i = 1, 2, rank[xi − z | JF (xi)

T ] ≤ c is true if and only if

xi − z + JF (xi)
Tλi = 0

for some λi ∈ Cc. Define M ′(F ) by(x1, x2, z, λ1, λ2) ∈ Cn × Cn × Cn × (Cc)2

∣∣∣∣∣∣
F (x1) = F (x2) = 0,
d(x1, z)

2 = d(x2, z)
2,

xi − z + JF (xi)
Tλi for i = 1, 2

 .

Denote by π′3 the projection of Cn × Cn × Cn × (Cc)2 onto the third factor and set ∆′ =
∆×(Cc)2. Then it is direct that π′3(M

′(F ) \∆′) = π3(M(F ) \∆). In following results where
M(F ) appears, one can instead substitute M ′(F ). There are 2c+2n+1 equations in 3n+2c
variables which define M ′(F ). One expects the algebraic medial axis π′3(M

′(F ) \∆′) to be
a hypersurface in Cn.

Remark 3.4. As with the medial axis, one can consider subsets of the algebraic medial
axis based on the number of equidistant critical points. That is, for k ≥ 2, the k-medial
axis correspondence of F , denoted Mk(F ), is the algebraic subset of (Cn)k × Cn of points
(x1, . . . , xk, z) which satisfy the equations:

F (xi) = 0
for i = 1, . . . , k

rank[xi − z | JF (xi)
T ] ≤ c

and d(x1, z)
2 = d(xj, z)

2 for j = 2, . . . , k.

If ∆k is the subset of points (x1, . . . , xk, z) ∈ (Cn)k×Cn where any two of the entries are equal,
the algebraic k-medial axis of F is the closure of the image of the projection of Mk(F ) \∆
onto its last factor. In particular, the algebraic medial axis is the algebraic 2-medial axis.

Example 3.5. For the Cassini oval with 2-foci in Example 2.4, the algebraic medial axis is
the union of the coordinate axes. Moreover, for both the Cassini oval with 2- and 3-foci in
Figure 4, the cyan curves form the medial axis and the union of the blue and cyan curves
form the algebraic medial axis.

Example 3.6. The algebraic medial axis of a general plane curve of degree d ≥ 2 is also
a plane curve. After randomly selecting coefficients, we used Bertini [11] to compute the
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degree of the algebraic medial axis for 2 ≤ d ≤ 9 as shown in the following table:

d degree of algebraic medial axis
2 2
3 30
4 120
5 320
6 690
7 1302
8 2240
9 3600

In particular, for 2 ≤ d ≤ 9, the degree of the algebraic medial axis for a general plane curve
of degree d is (

d

2

)
(d2 + 3d− 8) =

d(d− 1)(d2 + 3d− 8)

2

and we conjecture that this formula holds for all d ≥ 2.

We can investigate the reach and local feature size by considering optimization problems
on M(F ). The solution to min{d(x1, z)

2 | (x1, x2, z) ∈ M(F ) \ ∆, d(x1, z)
2 > 0}, for in-

stance, is a lower bound on the reach. By using first-order critical conditions on M(F ), i.e.
Lagrange multipliers, we can define critical conditions for the reach and and local feature
size. Note that, for instance, the first-order critical conditions for optimizing the function
DM : M(F ) → C defined by DM(x1, x2, z) = d(x1, z)

2 are defined by equations in the vari-
ables (x1, x2, z) ∈ (Cn)3 derived from rank-vanishing conditions for matrices constructed
from the Jacobians both of the equations defining M(F) and the function DM .

Definition 3.7. Let F = {f1, . . . , fm} be a system of polynomials in n variables with real
coefficients such that V (F ) is equidimensional and smooth of codimension c. The critical
reach correspondence of F , denoted C(F ), is the algebraic subset of M(F ) defined by first-
order critical conditions of DM .

Additionally, for w ∈ Cn, the critical local feature size correspondence of F with re-
spect to w, denoted L(F,w), is the algebraic subset of M(F ) defined by first-order critical
conditions of the function Dw : M(F )→ C defined by Dw(x1, x2, z) = d(w, z)2.

Remark 3.8. Note that C(F ), L(F,w) ⊆ M(F ). Since the reach and local feature size
are defined as solutions to optimization problems restricted to the medial axis, they are
captured in the critical reach and critical local feature size correspondences, respectively.
More precisely, τX ∈ DM(C(F ) \∆) and lfs(w) ∈ Dw(L(F,w) \∆).

Remark 3.9. As in Remark 3.3, it is more straightforward to specify and compute with
equations for C(F ) and L(F,w) in the case m = c. In that case we can define an alterna-
tive correspondence C ′(F ) ⊆ M ′(F ) × P2n+2c+1 for C(F ) (a similar construction works for
L(F,w)). Let FM : (Cn)3×(Cc)2 → C2n+2c+1 be the system of polynomial equations defining
M ′(F ). Then, denoting elements of P2n+2c+1 by [δ0, δ1] with δ0 ∈ C and δ1 ∈ C2n+2c+1, C ′(F )
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is defined by(x1, x2, z, λ1, λ2, [δ0, δ1])

∣∣∣∣∣∣∣∣
F (x1) = F (x2) = 0,
d(x1, z)

2 = d(x2, z)
2,

xi − z + JF (xi)
Tλi for i = 1, 2

∇ (d(x1, z)
2)
T
δ0 + (J(FM)(x1, x2, z, λ1, λ2))

T δ1 = 0

 .

This is a well-constrained system consisting of 4c+5n+1 equations. Similarly, we can define
L′(F,w) with

∇
(
d(w, z)2

)T
δ0 + (J(FM)(x1, x2, z, λ1, λ2))

T δ1 = 0, FM(x1, x2, z, λ1, λ2) = 0.

The correspondences C ′(F ) and L′(F,w) may be substituted for C(F ) and L(F,w) in the
following results with minor modifications.

Theorem 3.10. Let F be a polynomial system such that V (F ) is smooth and equidimen-
sional of codimension c.

(a) Let DM : M(F ) → C be defined by (x1, x2, z) 7→ d(x1, z)
2. Then, DM is constant on

every connected component C of C(F ) with C 6⊆ ∆.

(b) Fix w ∈ Cn and let Dw : M(F )→ C be defined by (x1, x2, z) 7→ d(w, z)2. Then, Dw is
constant on every connected component Cw of L(F,w) with Cw 6⊆ ∆.

Proof. We prove (a) and omit a similar proof of statement (b). Let I be an irreducible
component of M(F ) with I 6⊆ ∆. Then DM is constant when restricted to I, which follows
directly from the construction and the algebraic version of Sard’s Theorem, e.g., see [56,
Thm A.4.10]. Since irreducible components are connected, each connected component C
of M(F ) with C 6⊆ ∆ must be the union of irreducible components not contained in ∆.
Furthermore, any irreducible component which is not a connected component must intersect
at least one other distinct irreducible component. Thus, the constancy of D can be extended
to connected components yielding (a).

Let C(F ) denote the union of connected components of C(F ) not contained in ∆ and
similarly for L(F,w). By Remark 3.8 the reach is a value of DM on C(F ). In fact, it
is the minimum positive critical value of d(x1, z)

2 on C(F ) for which there is a real point
that attains that critical value. Since there can only be finitely many critical values, this
immediately provides an approach to compute the reach as follows. First, one computes a
finite set of points that contains at least one point in each connected component of C. Then,
one evaluates d(x1, z)

2 on the finite set of points to obtain the finite set of critical values.
Immediately from this algebraic computation, one has that the minimum of the positive
critical values is a lower bound on the reach. To obtain the actual value of the reach, one
would need to employ an additional reality test, e.g., [40], to test for the existence of real
points on the corresponding connected components. By searching in an increasing order
starting with the minimum positive critical value, the reach is determined when a real point
exists on the corresponding connected components.

Using numerical algebraic geometry, e.g., see [10, 56], there are several approaches using
homotopy continuation that can be used to compute a finite set of points containing at
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least one on each connected component. For example, parameter homotopies [50] can be
used to provide such a set. By looking at a finer decomposition based on irreducibility
rather than connectedness, one can compute a finite set of points containing at least one on
each irreducible component using a first-order general homotopy [7]. Another approach is to
utilize a sequence of homotopies based on using linear slicing via a cascade [55] or regenerative
cascade [43]. This last approach actually computes witness point sets (see [10, 56] for more
details) which can then be used directly for reality testing via [40] when one expects positive-
dimensional components. When the set of critical points is finite, all approaches yield the
entire set of critical points and reality testing simply decides the reality of each critical point.

A similar argument follows for the local feature size as well. Moreover, one can treat w as
a parameter and utilize a parameter homotopy [50] to perform this computation efficiently
at many different points. We summarize this in the following.

Corollary 3.11. Let F be a polynomial system in n variables with real coefficients such
that V (F ) is smooth and equidimensional of codimension c and X = V (F )∩Rn is nonempty
and compact. Fix w ∈ Rn and let DM and Dw be as in Theorem 3.10.

(a) Using a parameter homotopy [50], one can compute a finite set of points S which
contains at least one point in each connected component of C(F ). Then,

0 < min
s∈S with DM (s)>0

√
DM(s) ≤ τX . (1)

(b) Using a parameter homotopy [50], one can compute a finite set of points Sw which
contains at least one point in each connected component of L(F,w). Then,

0 < min
s∈Sw with Dw(s)>0

√
Dw(s) ≤ lfs(w). (2)

Since these inequalities can be strict when a corresponding connected component contains
no real points, additional reality testing can be used to identify and ignore such components
to yield τX and lfs(w).

This section concludes with some illustrative examples. In particular, the Cassini oval
with 3 foci in the following shows a strict inequality in which additional reality testing yields
the correct value.

Example 3.12. Consider computing the reach for the Cassini ovals with 2 and 3 foci from
Example 2.4. We utilized a parameter homotopy in the corresponding space of multihomo-
geneous systems. For the Cassini oval with 2 foci, the lower bound in (1) is approximately
0.6436 which is attained at three different critical points computed by the homotopy. As
shown in Figure 5(a), all three are real and thus the lower bound in (1) is equal to the reach.

For the Cassini oval with 3 foci, the lower bound in (1) is approximately 0.3611. Since
this arises from nonreal isolated solutions to the critical point system, this can easily be
discarded as not being equal to the reach. The next two smallest positive critical values
are approximately 0.3674 and 0.3868 which also arise from nonreal isolated solutions to the
critical point system and thus can be discarded as not being equal to the reach. Finally,

11



(a) (b) (c)

Figure 5: Reach attaining points for the Cassini oval with (a) 2 foci and (b) 3 foci. (c) Critical
points arising from the algebraic closure of the reach for the Cassini oval with 3 foci.

the fourth smallest positive critical value is approximately 0.4298 which does arise from real
solutions to the critical point system and is thus equal to the reach. The reach attaining
points are shown in Figure 5(b).

As remarked in Example 2.4, the minimal polynomial for the reach of the Cassini oval
with 3 foci is 343x6 − 128x3 + 8. Since the critical reach correspondence is defined over the
rational numbers, each root of this minimal polynomial is also a critical value. Figure 5(c)
shows the critical points associated with the other real root which is approximately 0.6648.

Example 3.13. The medial axis of the unit circle defined by x21+x
2
2 = 1 is the origin and thus

the reach of 1 is attained at the origin. However, this reach attaining point is not isolated with
respect to the critical reach correspondence since there are infinitely-many points on the unit
circle where the reach is attained. Hence, the corresponding points computed via homotopy
continuation need not be real. For example, using a multihomogeneous homotopy, 1 is the
unique positive critical value arising from 78 distinct endpoints, none of which correspond
with real points on the unit circle. Since 1 is the only positive critical value, it is the reach.

Example 3.14. The medial axis of the union of two concentric circles defined by

(x21 + x22 − 1)(x21 + x22 − 9) = 0

is the union of the origin and the circle centered at the origin of radius 2. Thus, the reach
is 1 which is attained at every point on the medial axis as shown in Figure 6. For example,
using a multihomogeneous homotopy, the minimum positive critical value is 1 which arises
from 184 distinct endpoints. Of these, 168 correspond with the origin while the other 16
correspond with distinct points in C2 satisfying x21 + x22 = 4. From (1), this one homotopy
shows that the reach is at least 1. For this example, it is easy to verify that there exist real
critical points that yield a critical value of 1 which shows that the reach is indeed equal to 1.

4 Bottlenecks and weak feature size

The following expands upon the definition of geometric bottlenecks from Definition 2.3 and
considers successive approximations of the weak feature size using higher order bottlenecks.
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Figure 6: Reach obtained on a curve and a point for two concentric circles

Definition 4.1. Let X be a compact subset of Rn. A geometric bottleneck z in crit(dX)
has order k ≥ 2 if z is a convex combination of k affinely independent points in πX(z) and
is not a convex combination of any fewer number of points in πX(z). We will often refer to
such a point z as a geometric k-bottleneck of X.

Remark 4.2. Definition 4.1 resembles a generalization of the index of critical points of a Morse
function introduced by Gershokovich and Rubinstein [34]. The treatment by Bobrowski and
Adler renders this connection clearer for distance functions [12, Def. 2.1], albeit for the
case where X is a finite point set. A geometric k-bottleneck of X is a critical point of dX
with index k − 1 using that terminology. When X is a finite set of points, this notion of
index yields a decomposition similar to the classic cellular decomposition theorem of Morse
theory (see, e.g., [49, Thm. 3.5] and [12, §4.2]). This does not extend to the case when X
is not finite. In particular, the Cassini oval with 2 foci in Example 2.4 and the unit circle
in Example 3.13 are both counter examples. We use the term order rather than index to
clarify that a Morse-type result does not apply in our setting.

Before considering the algebraic setting, the following highlights the relationship between
geometric k-bottlenecks and weak feature size from Definition 2.3.

Proposition 4.3. If X is a compact subset of Rn, then every geometric bottleneck has order
at most n+ 1 and

wfs(X) = inf
z geom. k-bottleneck, 2≤k≤n+1

dX(z).

Proof. Suppose that z is a geometric bottleneck of X. Then, by definition, z ∈ conv(πX(z)).
By Carathéodory’s Theorem [17], z is a convex combination of at most n+1 points in πX(z)
which shows that the order of z is at most n+ 1.

Remark 4.4. From Proposition 4.3, it is natural to ask, for algebraic manifolds, if one must
use all possible orders of geometric bottlenecks to determine the weak feature size or if
one could use less, e.g., use only geometric 2-bottlenecks. The Cassini oval with 3 foci in
Example 2.4 lies in R2 and has no geometric 2-bottlenecks. In particular, the weak feature
size is attained at the origin, which is a geometric bottleneck of maximal order 3. Similar
Cassini oval constructions generalize to higher dimensions and also generalize [27, Ex 3.4].

Following a similar approach as in Section 3, one can relax the conditions of a geometric
k-bottleneck to obtain algebraic conditions amenable to computational algebraic geometry
over C. As before, we assume that X = V (F ) ∩ Rn is nonempty and compact where F is a
polynomial system with real coefficients.
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Definition 4.5. Let F = {f1, . . . , fm} be a system of polynomials in n variables with real
coefficients such that V (F ) is equidimensional and smooth of codimension c and k ≥ 2. The
kth bottleneck correspondence of F , denoted Bk(F ), is(x1, . . . , xk, t1, . . . , tk) ∈ (Cn)k × Ck

∣∣∣∣∣∣∣∣∣∣

∑k
i=1 ti = 1,

z =
∑k

i=1 tixi,
d(x1, z)

2 = d(xj, z)
2 for j = 2, . . . , k

F (xi) = 0
for i = 1, . . . , k.

rank[xi − z | JF (xi)
T ] ≤ c

 .

Let Γk ⊂ (Cn)k × Ck consist be the algebraic set defined by(x1, . . . , xk, t1, . . . , tk) ∈ (Cn)k × Ck

∣∣∣∣∣∣
Any ti = 0 for i = 1, . . . , k
or
{x1, . . . , xk} is affinely dependent

 .

Consider the map ρk : (Cn)k × Ck → Cn defined by ρk(x1, . . . , xk, t1, . . . , tk) =
∑k

i=1 tixi. A
point z ∈ Cn is an algebraic k-bottleneck of V (F ) if z ∈ ρk(Bk(F ) \ Γk). A real algebraic
k-bottleneck of V (F ) is a point in Rn which is an algebraic k-bottleneck. Let X = V (F )∩Rn

and RX,k = Xk × (0, 1)k ⊂ (Rn)k × Rk. A real algebraic k-bottleneck of X is a point in Rn

in the image of ρk((Bk(F ) ∩RX,k) \ Γk).

Remark 4.6. Following the notation of Definition 4.5, every geometric k-bottleneck of X is
a real algebraic k-bottleneck of X. In particular, one has the following relationship:

{geometric k-bottlenecks of X} ⊆ {real algebraic k-bottlenecks of X} ⊆
{real algebraic k-bottlenecks of V (F )} ⊆ {algebraic k-bottlenecks of V (F )} = ρ(Bk(F ) \ Γk).

Typically, these inclusions are strict as the examples in Section 5 exhibit. In particular, for
the second inclusion, it is possible for the image of ρk to be real for nonreal input.

Example 4.7. Consider computing the algebraic 2-bottlenecks for the perturbed ellip-
soid X ⊆ R3 from the Introduction defined by F = x21 + x22 + x23/2 + x1x3/7− 1. The set
B2(F ) \ Γ2 consists of three points up to symmetry, which are depicted in Figure 3 with the
black segments corresponding to the geometric 2-bottleneck of X while the blue segments
correspond with real algebraic 2-bottlenecks of X that are not geometric 2-bottlenecks of X.

4.1 Critical values

The following exhibits a result similar to Theorem 3.10.

Theorem 4.8. Let F be a polynomial system such that V (F ) is smooth and equidimensional
of codimension c. Let k ≥ 2 and Dk : Bk(F )→ C be defined by

(x1, . . . , xk, t1, . . . , tk) 7→
1

k

k∑
i=1

d (xi, ρk(x1, . . . , xk, t1, . . . , tk))
2 .

Then, Dk is constant on every connected component of Bk(F ) \ Γk.
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Proof. Similarly to Theorem 3.10, it suffices to show constancy for an irreducible compo-
nent C not contained in Γk.

The following shows that every point in Bk(F ) \ Γk is a critical point of Dk. Since Dk|C
is an algebraic map of irreducible quasiprojective algebraic sets, it follows by the algebraic
version of Sard’s Theorem, e.g., [56, Thm A.4.10], that Dk is not dominant, and therefore
Dk(C) is a single point because otherwise C is not irreducible. Note that the critical points
of Dk are the same as those of k ·Dk so we will consider k ·Dk for simplicity.

Let Ak(F ) ⊂ (Cn)k × Cn be the set of (x1, . . . , xk, z) satisfying

F (xi) = 0 for i = 1, . . . , k,
d(x1, z)

2 = d(xj, z)
2 for 2 ≤ j ≤ k.

Clearly, there is an inclusion map i : (Bk(F ) \ Γk)→ Ak(F ) given by

(x1, . . . , xk, t1, . . . , tk) 7→

(
x1, . . . , xk,

k∑
i=1

tixi

)
.

By the chain rule, we need only prove that any point in the image of i is a critical point
of the map D′k : Ak(F ) → C defined by (x1, x2, . . . , xk, z) 7→

∑k
i=1 d(xi, z)

2. Since V (F ) is
smooth and equidimensional, one may check directly that Ak(F ) has codimension kc+k−1.
By elementary row operations, one reduces the problem to showing that (x1, . . . , xk, z) is a
critical point of D′k if the (km+ k)× (kn+ n) matrix

JF (x1) 0 0 0 0 . . . 0
0 JF (x2) 0 0 0 . . . 0

...
0 0 0 . . . 0 JF (xk) 0
0 −(x2 − z)T 0 . . . 0 0 (x2 − x1)T
0 0 −(x3 − z)T 0 . . . 0 (x3 − x1)T

...
0 0 0 . . . 0 −(xk − z)T (xk − x1)T

(x1 − z)T 0 0 0 . . . 0 (z − x1)T


has rank at most kc + k − 1 where m is the number of polynomials in F . Suppose that
(x1, . . . , xk, z) ∈ im(i). Then the first kn columns of this matrix contribute at most kc to
the dimension of the column space and the final n columns contribute at most by k − 1
since x2 − x1, . . . , xk − x1 span the affine hull of x1, . . . , xk and z − x1 is in that affine hull.
Altogether the rank of the matrix is at most kc+ k − 1.

Remark 4.9. For k = 2, this proof shows that the algebraic 2-bottlenecks of V (F ) correspond
with a subset of the Zariski closure C(F ) \ ∆ where C(F ) is the critical reach correspon-
dence. In contrast to C(F ), however, the correspondence B2(F ) does not contain functions
corresponding to the gradients of rank conditions. This is illustrated in Figure 5(a) for the
Cassini oval with 2 foci.

As with Theorem 3.10 yielding Corollary 3.11, Theorem 4.8 provides the following.
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Figure 7: Real solutions of x2y2 = 1 with its geometric bottlenecks

Corollary 4.10. Let F be a polynomial system in n variables with real coefficients such
that V (F ) is smooth and equidimensional of codimension c and X = V (F )∩Rn is nonempty
and compact. For each k = 2, . . . , n+ 1, one can use a parameter homotopy [50] to compute
a finite set of points Ek which contains at least one point in each connected component of
Bk(F ) \ Γk. Then,

0 < min
k=2,...,n+1

(
min

e∈Ek with Dk(e)>0

√
Dk(e)

)
≤ wfs(X). (3)

Since this inequality can be strict when a corresponding connected component contains no
real points, additional reality testing can be used to identify and ignore such components to
yield wfs(X).

Remark 4.11. Compactness may be removed as a requirement in Theorem 4.8 and Corol-
lary 4.10, but some care is necessary when X = V (F )∩Rn is not compact. If X is compact,
then X is a deformation retract of Xε for some sufficiently small ε > 0 since it is an abso-
lute neighborhood retract [39, Cor 3.5], [48, Thm. 3]. As a non-compact example, consider
F = x2y2 − 1 with X shown in Figure 7. Theorem 4.8 shows that the weak feature size
of X = V (F ) ∩ R2 inside any closed Euclidean ball of finite radius centered at the origin
that intersects X in R2 must be positive. By an explicit computation, one can see that the
only contributors to the weak feature size in B2(F ) \ Γ2 are isolated solutions as shown in
Figure 7. The subtlety is that the manifold V (F )∩R2 is not homotopy equivalent to any of
its thickenings and thus it is not an absolute neighborhood retract.

Example 4.12. Consider the ellipsoid X ⊆ R3 defined by F = x21 + x22 + x23/2− 1 from the
Introduction that is depicted in Figure 2. We consider computing the algebraic 2-bottlenecks
using Corollary 4.10 in two different ways: using a parameter homotopy in the corresponding
space of multihomogeneous systems and using a parameter homotopy from the perturbed
ellipsoid computed in Example 4.7.

For the first approach, one obtains 6 points in B2(F ) \ Γ2. Two of these points are
real and equal up to symmetry. They correspond with the blue segments connecting the
magenta points in Figure 2 at a distance of

√
2 from the origin, i.e., D2 = 2. The other

4 points are nonreal and have D2 = 1. These lie on a positive-dimensional component in
B2(F ) \Γ2 containing the set {(x,−x, 1/2, 1/2)}x∈V (x21+x

2
2−1,x3) arising from antipodal points
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on the unit circle in the (x1, x2)-plane whose real points are shown in Figure 2. For this
example, it is easy to verify that there exist real points on this component which are also
geometric 2-bottlenecks.

For the second approach, we can consider the family of algebraic 2-bottlenecks for

Ft = x21 + x22 + x23/2 + tx1x2 − 1.

Example 4.7 shows that, at the generic parameter value t = 1/7, V (Ft) has three algebraic
2-bottlenecks. We then used a parameter homotopy to track these three solutions along the
sufficiently general path defined by

t(s) =
1

7
· γs

1− s+ γs
where γ = 2 + 3

√
−1

as s goes from 1 to 0. This yielded three real solutions which lie along the three coordinate
axes. The two lying along the x1 and x2 coordinate axes have D2 = 1 while the third that
lies along the x3 coordinate axis has D2 = 2.

4.2 Critical points

The remainder of this section considers the finiteness of algebraic k-bottlenecks for general
complete intersections of codimension c in Cn. Of course, we naturally assume that n ≥ 1
and 1 ≤ c ≤ n. Let (d1, . . . , dc) ∈ Nc and consider Pi = PNi where Ni =

(
di+n
di

)
− 1 which

is the parameter space of hypersurfaces in Cn of degree at most di. Furthermore, complete
intersections in Cn of codimension c and degree type (d1, . . . , dc) are parameterized by an
open subset U ⊆

∏c
i=1 Pi. Let Xu denote the complete intersection in Cn corresponding to

u ∈ U and Fu be the system of c polynomials in n variables that defines Xu.

Definition 4.13. For k ≥ 2, the k-bottleneck correspondence for degree pattern (d1, . . . , dc),
denoted Sk, is the set of points (u, x1, . . . , xk, t1, . . . , tk) ∈ U × (Cn)k × Ck such that

(x1, . . . , xk, t1, . . . , tk) ∈ Bk(Fu).

We will analyze Sk via projections onto its factors. In particular, let π : Sk → (Cn)k×Ck

and η : Sk → U be the projection maps. For any u ∈ U , the fiber η−1(u) is {u} ×Bk(Fu).
The following provides a finiteness condition for algebraic k-bottlenecks. Since geometric

k-bottlenecks are algebraic k-bottlenecks, this immediately implies a finiteness condition for
geometric k-bottlenecks as well.

Theorem 4.14. Let k ≥ 2 and (d1, . . . , dc) ∈ Nc such that each di 6= 2. For general u ∈ U ,
the set of algebraic k-bottlenecks for V (Fu) is finite. In particular, for general u ∈ U ,
η−1(u) \ Γk is finite.

The proof of this theorem is provided at the end of this section and follows from the
Alexander-Hirschowitz Theorem [2], which is a result for homogeneous hypersurfaces. Thus,
we need to move from affine space to projective space. In particular, PN parameterizes
homogeneous polynomials in n+ 1 variables of degree d where N =

(
d+n
d

)
− 1. For a ∈ PN ,

let Fa(x0, . . . , xn) denote the corresponding homogeneous polynomial of degree d.
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Let p1, . . . , pk ∈ Pn be general. The Alexander-Hirschowitz Theorem considers the di-
mension of the interpolation space of polynomials of degree d having at least a double point
at pi, namely

In,k =

{
a ∈ PN

∣∣∣∣ Fa(pi) =
∂Fa
∂xj

(pi) = 0 for j = 1, . . . , n and i = 1, . . . , k

}
.

Theorem 4.15 (Alexander-Hirschowitz [2]). The interpolation space In,k has the expected
dimension, i.e., dim(In,k) = min{(n+ 1)k − 1, N}, except for the following cases

• d = 2, 2 ≤ k ≤ n;

• n = 2, d = 4, k = 5;

• n = 3, d = 4, k = 9;

• n = 4, d = 3, k = 7;

• n = 4, d = 4, k = 14.

An equivalent statement of this theorem is that the k-secant variety of the dth Veronese
embedding of Pn, which we will call the (n, d)-Veronese variety Vn,d, has the expected di-
mension except for the listed exceptions.

Remark 4.16. Suppose that p1, . . . , pk, q1, . . . , qk ∈ Pn where k ≤ n+1 are such that p1, . . . , pk
and q1, . . . , qk each span a (k− 1)-dimensional space. Let Ip and Iq denote the interpolation
space In,k ⊆ PN as defined above, respectively. Then, Ip and Iq have the same dimension.
To see this, first note that there is a full rank linear map L : Pn → Pn such that Lqi = pi for
all i. More explicitly, complete p1, . . . , pk to a spanning set p1, . . . , pn+1 of Pn and similarly
for q1, . . . , qk. Let P = (p1 · · · pn+1) and Q = (q1 · · · qn+1) be (n + 1) × (n + 1)-matrices
whose columns are the homogeneous coordinates of p1, . . . , pn+1 and q1, . . . , qn+1. Then L is
represented by PQ−1.

The group PGLn acts on the parameter space of hyper surfaces PN as follows: for
T ∈ PGLn, Ta is given by the polynomial Fa ◦ T−1. Using this action and with L as above,
LIq = Ip. In particular, by the chain rule J(Fa ◦ L)(qi) = JFa(pi)L for all i and a ∈ PN .
This action and the Alexander-Hirschowitz Theorem yield a straightforward proof of the
following.

Lemma 4.17. Let p1, . . . , pk ∈ Pn with k ≤ n + 1 and suppose that p1, . . . , pk span a
(k− 1)-dimensional subspace of Pn. With notation as above, the interpolation space has the
expected dimension except if d = 2 and 2 ≤ k ≤ n.

Proposition 4.18. If the k-secant variety of the (n, d)-Veronese variety Vn,d has the expected
dimension for generic p1, . . . , pk ∈ Pn, then the k(n + 1) linear forms in (a0, . . . , aN) which
comprise the entries of JFa(p1), . . . , JFa(pk) are independent.

Proof. Let ν(p) = νd,n(p) = (pj){j} ∈ Vn,d. Then, the projective tangent space to Vn,d at ν(p)
is spanned by νx0(p), . . . , νxn(p) where νxi = ∂ν

∂xi
. The coefficients of the linear form ∂Fa

∂xi
(p)

are the elements of the (N + 1)-vector νxi(p).
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In order to show that a general complete intersection has a finite number of algebraic k-
bottlenecks, we need to show that the generic fiber of the projection η : Sk → U is finite. We
do this by first studying the dimension of the fibers of the projection π : Sk → (

∏k
i=1 Cn)×Ck.

Lemma 4.19. Let k ≥ 2 and (d1, . . . , dc) ∈ Nc such that each di > 2. If (x1, . . . , xk, t1, . . . , tk) ∈
π(Sk) \ Γk then codimU(π−1(x1, . . . , xk, t1, . . . , tk)) = kn.

Proof. By assumption, the equations

k∑
i=1

ti = 1, z =
k∑
i=1

tixi, d(x1, z)
2 = d(xj, z)

2, 2 ≤ j ≤ k

are satisfied. The fiber π−1(x1, . . . , xk, t1, . . . , tk) is the algebraic subset of U defined by the
conditions

xi ∈ Xu and rank[xi − z | JFu(xi)T ] ≤ c for 1 ≤ i ≤ k.

First note that xi − z =
∑k

j=1,j 6=i tj(xi − xj) for all i. In particular, xi − z 6= 0 because

{xi − xj}kj=1,j 6=i is linearly independent by assumption and none of t1, . . . , tk is 0. For all i,
there subsequently exists a full rank n×n matrix Mi such that Mi(xi− z) = e1, with e1 the
standard basis vector for Cn. The fiber π−1(x1, . . . , xk, t1, . . . , tk) is equivalently defined by
the conditions

Fu(xi) = 0 and rank


1 0 . . . 0
0
... (Mi(JFu(xi)

T ))′

0

 ≤ c for 1 ≤ i ≤ k

where for any matrix M , M ′ denotes M with the first row deleted.
We claim that the collection of forms in u comprising the entries of Fu(xi) and JFu(xi)

across all i, 1 ≤ i ≤ k, is independent. Forms arising from different components of Fu
involve disjoint subsets of the coefficients in u, so it suffices to consider the case where Fu is
a single polynomial f of degree d > 2. Let f denote the homogenization of f and xi denote
the point in Pn with projective coordinates [xi; 1]. Note that since the vectors x1, . . . , xk
are affinely independent, the points x1, . . . , xk span a (k − 1)-dimensional subspace of Pn
as in the statement of Lemma 4.17. Suppose to the contrary that a relation of the form∑k

i=1 αif(xi) =
∑

1≤i≤k,1≤j≤n βij
∂f
∂yj

(xi) holds. Then the same relation holds substituting f

for f and xi for xi. By Euler’s formula, df(xi) =
∑n+1

j=1 (xi)j
∂f
∂yj

(xi). So we obtain a relation

which contradicts Lemma 4.17 and Proposition 4.18.
We see that π−1(x1, . . . , xk, t1, . . . , tk) is a proper intersection of k determinantal varieties

which, by standard results, have codimension n− c and a linear space defined by the linear
forms Fu(xi) for 1 ≤ i ≤ k. Altogether, the codimension of the fiber is k(n−c+c) = kn.

Lemma 4.20. Let k ≥ 2 and (d1, . . . , dc) ∈ Nc such that each di > 2 and let Sk and Γk be
as in Definition 4.13. Then dim(Sk \ π−1(Γk)) = dim(U).
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Proof. Consider the image of π : (Sk \ π−1(Γk)) → (
∏k

i=1 Cn) × Ck, V = π(Sk \ π−1(Γk)).
One can easily see that V is the open algebraic subset comprised of all (x1, . . . , xk, t1, . . . , tk)
where

k∑
i=1

ti = 1, z =
k∑
i=1

tixi, d(x1, z)
2 = d(xj, z)

2, 2 ≤ j ≤ k,

the x1, . . . , xk are affinely independent, and none of the ti are 0. We claim that V has codi-
mension k, i.e., dimension kn. In fact, the V is birationally equivalent to

∏k
i=1 Cn. The for-

ward morphism is given by the projection map g : V →
∏k

i=1Cn where g(x1, . . . , xk, t1, . . . , tk) =
(x1, . . . , xk). Setting P to be the n × k matrix whose columns are the vectors with coor-
dinates x1, . . . , xk, the inverse h :

∏k
i=1Cn → V is given by taking h(x1, . . . , xk) to be

(x1, . . . , xk, t1(P ), t2(P ), . . . , tk(P )) where the functions ti(P ) are rational functions yielding
the barycentric coordinates of the circumcenter of the simplex whose vertices are the columns
of P (see, e.g., [32, Thm. 2.1.1] and [57, pp. 707–708]).

By Lemma 4.19, the fiber of π−1(z) has codimension kn for any z ∈ V . It follows that
dim(Sk \ π−1(Γk)) = dim(V ) + dim(π−1(z)) = kn+ (dim(U)− kn) = dim(U).

Building on these results, we now present the proof of Theorem 4.14.

Proof of Theorem 4.14. If c = n, the complete intersection Xu itself is finite and Theo-
rem 4.14 is immediate, so assume that c < n. We may reduce to the case where none of
the equations defining Xu are linear. Indeed, for a generic hyperplane H ⊆ Cn there is a
linear map which preserves algebraic k-bottlenecks of Xu while eliminating a variable. After
repeatedly removing linear equations we have by assumption that di > 2 for all i.

Let S be an irreducible component of Sk \ π−1(Γk). By Lemma 4.20, dimS ≤ dimU .
If η|S does not dominate U , then S ∩ η−1(u) is empty for general u ∈ U . However, if η|S
dominates U , then dimS = dimU and η−1(u) is finite for general u ∈ U .

5 Computational experiments for feature sizes

This Section contains results from computing the reach, bottlenecks, and weak feature size
of examples of co-dimension 1 in R2 and co-dimensions 1 and 2 in R3. Data results and
code for reproducing these computations are available at https://github.com/P-Edwards/
wfs-and-reach-examples.

Example 5.1. Consider the “butterfly curve” in R2, which is the real part of the algebraic
variety defined as V (F )∩R2 where F = x4−x2y2 +y4−4x2−2y2−x−4y+1. This example
has been considered before, e.g., by Brandt and Weinstein [13].

The algebraic medial axis for the butterfly curve was computed using numerical algebraic
geometry and found to be irreducible of degree 120. The real part of this curve is shown in
Figure 8(a) with the pieces in cyan forming the geometric medial axis. A lower bound of 0.103
on the reach was estimated with a homotopy continuation method based on Corollary 3.11
in agreement with [13, Ex. 6.1]. The points computed via Corollary 3.11 on the geometric
medial axis are shown in red in Figure 8(b).

To compute the weak feature size of V (F )∩R2, we used the numerical algebraic geometry
method in Corollary 4.10. For both k = 2 and k = 3, the results indicate that the irreducible
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components of Bk(F ) not contained in Γk are all isolated points, i.e., V (F ) has finitely many
algebraic bottlenecks. The following table provides a summary of the outputs. Using a
24-CPU computer with just a standard 2-homogeneous homotopy, these computations took
about 3 seconds for k = 2 and about 2.5 minutes for k = 3. In particular, the weak feature
size of V (F )∩R2 was determined to be approximately 0.251 and is attained by a geometric
2-bottleneck (cf., [13, Ex. 6.1]). Figures 9 and 10 show various types of bottlenecks for the
butterfly curve.

k = 2 k = 3
Number of paths tracked using a 2-homogeneous homotopy 1024 16384

Number of points on Bk(F ) computed 392 2817
Number of computed points in Γk 200 1089
Algebraic k-bottlenecks of V (F ) 96 288

Real algebraic k-bottlenecks of V (F ) 26 28
Real algebraic k-bottlenecks of V (F ) ∩ R2 22 17

Geometric k-bottlenecks of V (F ) ∩ R2 3 2

Example 5.2. As an example of a non-quadratic complete intersection where Theorem 4.14
holds, consider the intersection of a torus and Clebsch surface in R3 defined by

F =

[
(R2 − r2 + x2 + y2 + z2)2 − 4R2(x2 + y2)
x3 + y3 + z3 + 1− (x+ y + z + 1)3

]
with R = 3

2
and r = 1. In particular, the second equation is an algebraic surface with all 27

exceptional lines contained in R3 [24]. This curve is illustrated in Figure 11.
We computed the weak feature size for this curve by using homotopy continuation to

compute Bk(F ) for k = 2, 3, 4. The computations indicated that the irreducible components
of Bk(G) not contained in Γk are all isolated points. The weak feature size is approximately
0.405, which is attained at a geometric 2-bottleneck. In particular, this example of computing

(a) (b)

Figure 8: For butterfly curve: (a) algebraic and geometric medial axis; (b) geometric medial
axis with critical points.
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Figure 9: Geometric 2-bottlenecks (dark blue circles) and 3-bottlenecks (dark blue diamonds)
of the butterfly curve. Orange dots are distance minimizers and connect to bottlenecks with
light orange lines.

Figure 10: Algebraic 2-bottlenecks (left) and 3-bottlenecks (right) of the butterfly curve.
Algebraic bottlenecks are blue and real algebraic bottlenecks of the butterfly curve are pink.
For an illustrative subset, orange distance-critical points are connected to their corresponding
bottleneck by orange lines.
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Figure 11: Curve (red) at the intersection of a torus (blue) and Clebsch surface (green).

the weak feature size is the most complicated we will consider in terms of computational cost.
The cost of computing bottlenecks increases substantially with higher bottleneck order, both
due to increasing the ambient dimension of Bk(F ) and because there are k! solutions in Bk(F )
for each algebraic k-bottleneck. Regeneration methods [42] were used to make computations
for this example more tractable. In particular, the 4-bottlenecks required approximately one
week of computation on a 24-CPU computer. The table below summarizes the results.

k = 2 k = 3 k = 4
Number of points on Bk(F ) computed 2736 94548 1431936

Number of computed points in Γk 576 2424 0
Algebraic k-bottlenecks of V (F ) 1080 15354 59664

Real algebraic k-bottlenecks of V (F ) 68 324 586
Real algebraic k-bottlenecks of V (F ) ∩ R3 50 134 86

Geometric k-bottlenecks of V (F ) ∩ R3 22 6 0

Example 5.3. We conclude this collection of examples with the quartic surface in R3

from [29, §5.2] illustrated in Figure 12 and defined by

F = 4x4 + 7y4 + 3z4 − 3− 8x3 + 2x2y − 4x2 − 8xy2 − 5xy + 8x− 6y3 + 8y2 + 4y.

As in the previous examples, we computed that V (F ) has finitely many algebraic bottlenecks
of orders 2 and 3. Since computing 4-bottlenecks proved similarly expensive to Example 5.2,
they were not computed for this example.

This surface exhibits interesting behavior from an algebraic viewpoint. A point p approx-
imated by (0.458,−0.97, 0) was computed to be the only geometric 2-bottleneck of V (F )∩R3

as shown in Figure 12. The two corresponding points in ρ−12 (p) ⊆ B2(F ) are isolated in the
bottleneck correspondence but are singular, i.e., have multiplicity higher than 1. The weak
feature size of approximately 0.354 is attained at p with Figure 12 also showing the two
geometric 3-bottlenecks. The following table summarizes this computation.
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Figure 12: Quartic surface with geometric 2- and 3-bottlenecks

k = 2 k = 3
Number of points on Bk(F ) computed 2220 40672

Number of computed points in Γk 0 8191
Geometric k-bottlenecks of V (F ) ∩ R3 1 2

6 Conclusion

In this paper, we developed theoretical foundations and numerical algebraic geometry meth-
ods for computing geometric feature sizes of algebraic manifolds. This study is not intended
to be exhaustive, so some further questions both in terms of theory and applications follow.
Real algebraic spaces with singularities. It is natural to ask how the results presented
here may generalize to singular spaces. Since isolated singularities can contribute additional
irreducible components to Bk(F ), the impact of singularities must be analyzed.
Counting algebraic bottlenecks. A direct consequence of Theorem 4.14, which will be
familiar to readers who have worked with parameter homotopies, is that, for a fixed degree
pattern, there exist upper bounds on the number of algebraic (and so geometric) bottlenecks
that apply for any generic algebraic manifold with that degree pattern. Computing sharp
upper bounds, however, is an open problem of more than intrinsic interest. As an example
of the geometric meaning of these bounds, consider a compact algebraic hypersurface H ⊆
Rn, not necessarily smooth, e.g., the discriminant locus of a parameterized family. Thus,
Rn \H decomposes into a finite number of disconnected n-cells and the number of geometric
bottlenecks of H is an upper bound on the number of cells. Altogether, having good bounds
on this number both for algebraic manifolds and for singular algebraic spaces could be useful
for geometric algorithms which look to estimate the number and size of these cells.
Reducing redundant computations. For any polynomial system F , there is an action
of the symmetric group on k elements on the bottleneck correspondence Bk(F ). Namely, a
permutation acts on an element (x1, . . . , xk, t1, . . . , tk) by permuting both the xi and ti. In
the generic case when all non-degenerate solutions are isolated, standard homotopy contin-
uation methods whose results we saw in this manuscript compute k! solutions in Bk(F ) for
each algebraic bottleneck. Is there a natural approach, e.g., building on methods utilized
in [41, 58, 59], that takes advantage of the symmetry to reduce these redundancies?
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