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Abstract. In 2013, Abo and Wan studied Waring’s problem for systems of skew-symmetric
forms and identified several defective systems. The cases of particular interest occur when
a certain secant variety of a Segre-Grassmann variety is expected to fill the natural ambient
space, but is actually a hypersurface. In these cases, one aims to obtain both a defin-
ing polynomial for these hypersurfaces along with a representation theoretic description of
the defectivity. In this note, we combine numerical algebraic geometry with representation
theory to accomplish this task. In particular, numerical algebraic geometric algorithms im-
plemented in Bertini [BHSW06] are used to determine the degrees of several hypersurfaces
with representation theory using this data as input to understand the hypersurface.

This approach allows us to answer [AW13, Problem 6.5] and show that each member of an
infinite family of hypersurfaces is minimally defined by a (known) determinantal equation.
While led by numerical evidence, we provide non-numerical proofs for all of our results.

1. Introduction

Secant varieties, while a classical topic in algebraic geometry, have received much attention
over the past several years largely due to the vast number of applications to many fields such
as Geometric Complexity Theory and Signal Processing (e.g., see [Lan14a] and [SC14]).

Suppose X is an algebraic variety in PN , and for simplicity, assume that X is not contained
in any linear subspace. The X-rank of a point [p] ∈ PN is the minimum number r such
that p =

∑r
i=1 xi with [xi] ∈ X. The Zariski closure of the points of X-rank r is the

r-secant variety to X, denoted σr(X).1 We say that the points of σr(X) have X-border
rank r. For tensors and related algebraic varieties, X-rank and X-border rank provide a
useful perspective; see [BL13]. The reader may find the recent lecture notes [CGOar] to be
useful for general background on secant varieties, as well as an extensive list of references
contained therein.

The first question one asks about X-rank for X ⊂ PN is which X-border rank fills the
ambient space PN . Indeed, the famous Alexander-Hirschowitz Theorem [AH92] answered
this question when X is the Veronese embedding of projective space (see also [BO08,Pos12]
for modern accounts). The analogous question for the Segre embedding of the Cartesian
product of projective spaces into the projectivization of a tensor product of vector spaces
was addressed in [AOP09]. Many cases were settled, but this problem is not yet completely
solved (see [COV14] for recent progress). The skew-symmetric version of this question was
addressed in [AOP12,BDdG07], again with some cases solved and some cases remaining.
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Another question one may ask regarding X-border rank is to describe the defining equa-
tions of σr(X). From such equations, one can easily decide the X-border rank of any given
point in PN . Versions of this test are extremely important, for instance, in algebraic com-
plexity theory [Lan08,HIL13].

The purpose of this paper is twofold. The first objective is to find equations for secant
varieties of certain Segre-Grassmann varieties. We focus on two cases where the secant variety
in question is a hypersurface. One of these cases solves a problem left open in [AW13], while
the other case, which is actually an entire family of hypersurfaces, confirms a guess in Abo and
Wan’s work that an Ottaviani-type construction gives the requisite equations. The second
objective is to demonstrate the power and use of combining tools from numerical algebraic
geometry and representation theory, which we hope will be used to address many other
problems in the future. While partially skew-symmetric tensors are certainly less studied
than the fully symmetric and non-symmetric cases, it is often the case that methods for
finding equations for border rank in one symmetry class inform techniques for another. For
instance, Ottaviani’s approach to Aronhold’s invariant for symmetric tensors as a Pfaffian
led to a new construction of Strassen’s invariant for non-symmetric tensors [Ott09,LO11a].

Here is an outline of the rest of this paper. In Section 2, we provide notation along with
more background information. Section 3 summarizes the construction of the hypersurface
whose defining equation is left open in [AW13, Problem 6.5]. Sections 4 and 5 describe the
algorithms used from numerical algebraic geometry and representation theory, respectively,
with Theorem 5.1 answering [AW13, Problem 6.5]. In Section 6 we consider an infinite
family of hypersurfaces, and show that the known determinantal equations define them
(Theorem 6.3). In Section 7 we study the irreducibility of a determinant of the tenor product
of two skew symmetric matrices, which we use in the proof of Theorem 6.3.

2. Notation and preliminaries

Let
∧k+1Cn+1 denote the vector space of alternating k + 1 forms on an n + 1 dimen-

sional (complex) vector space, whose natural basis is given by the pure wedge products
ej1 ∧ · · · ∧ ejk+1

, with 1 ≤ j1 < · · · < jk+1 ≤ n+ 1 and {ej} a basis of Cn+1.

Now consider the following space of partially skew-symmetric tensors Cm+1 ⊗
∧k+1Cn+1.

We will write {xi,j1,...,jk} for coordinates on Cm+1 ⊗
∧k+1Cn+1, where 1 ≤ i ≤ m + 1 and

1 ≤ j1 < · · · < jk ≤ n + 1. By slicing in the first tensor mode, a point in this space may
be thought of as an m+ 1-dimensional system of alternating k+ 1 forms on n+ 1 variables.
It is natural to consider the points of rank 1 to be those points which are “pure tensors” or
“indecomposable tensors” with the required symmetry.

Let X = Seg(Pm × G(k, n)) be a Segre-Grassmann variety, which is the Segre product
of a projective m-plane and the Grassmann variety of k-dimensional projective subspaces
of an n dimensional projective space. The natural embedding of X is by a Segre-Plücker

embedding into P
(
Cm+1 ⊗

∧k+1Cn+1
)

. A general point on Seg(Pm×G(k, n)) is (a pure ten-

sor) of the form

[v ⊗ (w0 ∧ · · · ∧ wk)],

where [v] ∈ Pm, and w0, . . . , wk form a basis of a k-dimensional (projective) linear subspace
of Pn. Let σs(Seg(Pm × G(k, n))) denote the s-th secant variety of the Segre-Grassmann
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variety. A general point on this variety is of the form

(2.1)

[
s∑
i=1

vi ⊗ (wi0 ∧ · · · ∧ wik)

]
,

where the superscripts are just formal placeholders, and the other terms have the same
interpretation as before. Thus, the points of X-rank s in Cm+1 ⊗

∧k+1Cn+1 may be thought
of as those points which have the interpretation as a formal linear combination of s terms,
each term being an (m+ 1)-dimensional system of k-planes in Pn.

Here is a straightforward way to use this description to obtain coordinates for the points
(and hence a parametrization of the variety). Let v = (v0, . . . , vm), and let E = (ei,j) be a
(k+1)×(n+1) matrix. One obtains an (m+1)×

(
n+1
k+1

)
vector for a point on Seg(Pm×G(k, n))

as

(vi ·∆I(E))i,I ,

where ∆I is the maximal minor of E described by the columns of I = (i1, . . . , ik+1).
Moreover, one may generate pseudo-random points on σs(Seg(Pm × G(k, n))) by letting v
and E be (respectively) a random vector and a random matrix, and summing s pseudo-
random points of Seg(Pm ×G(k, n)).

The main tool for determining the dimension of a secant variety is the well-known Terracini

lemma. For an algebraic variety X ⊂ PN , let X̂ denote the cone over X in CN+1, and if

[x] ∈ X is a smooth point, let T̂xX denote the cone over the tangent space of X at [x].

Lemma 2.1 (Terracini). Let X ⊂ PN be an algebraic variety, and let [x1], . . . , [xk] be general

points of X, set p =
∑k

i=1 xi and suppose that [p] ∈ σk(X) is a general point. Then the
tangent space of the secant variety is the sum of tangent spaces to the original variety:

T̂pσk(X) = T̂x1X + · · ·+ T̂xkX.

2.1. Symmetry. Let V ∼= Cm+1 and W ∼= Cn+1. Notice that all of our definitions have the
feature that they display the natural symmetry. The Segre-Grassmann variety Seg(PV ×
G(k,PW )) is left invariant under the action of GL(V )×GL(W ). Its secant variety inherits
the same symmetry. Moreover, the graded coordinate ring

C[V ⊗
∧k+1W ] =

⊕
d≥0

Sd(V ⊗
∧k+1W )∗

also inherits this symmetry. A consequence of Schur-Weyl duality is that each degree d piece
decomposes as

(2.2) Sd(V ⊗
∧k+1W )∗ =

⊕
λ`d, π`(k+1)d

SλV
∗⊗SπW ∗ ⊗ C[λ,π],

where SλV
∗ and SπW

∗ are Schur modules and C[λ,π] is the multiplicity space associated to
the partitions λ, π.

This decomposition may be obtained via a character computation. This computation is
conveniently carried out in the program LiE [vLCL92] (see Section 5 for an example). An
explicit basis of C[λ,π] may be obtained by a careful application of Young symmetrizers. We
will explain this construction in the example in Section 5.
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3. The Abo-Wan hypersurface σ5(Seg(P2 ×G(2, 5)))

Abo and Wan [AW13] classified many cases of defective Segre-Grassmann varieties. One
of the sporadic cases of defectively was σ5(Seg(P2×G(2, 5))), which is a hypersurface in P59,
even though the naive dimension count implies that one expects this variety to fill the ambient
space. Here is a summary of their method applied to this specific case.

In order to show that σ5(Seg(P2 × G(2, 5))) is a hypersurface, Abo and Wan bounded
the dimension of σ5(Seg(P2×G(2, 5))) from above by using a geometric argument and from
below using a so-called “randomized algorithm.” Since both the upper and lower bounds
were 58, they determined dimσ5(Seg(P2 ×G(2, 5))) = 58.

More specifically, to prove that σ5(Seg(P2 ×G(2, 5))) has dimension at most 58, Abo and
Wan first showed the existence of a rational normal curve C of degree 8 in Seg(P2×G(2, 5))
that passes through five generic points p1, . . . p5 of Seg(P2×G(2, 5)). For each i ∈ {1, . . . , 5},
the affine cone T̂piC is a subspace of the affine cone T̂piSeg(P2×G(2, 5)), so we may choose a
complement, denoted Li, forming a direct sum. Then it follows from Terracini’s lemma that
the affine cone over the projectivized tangent space of σ5(Seg(P2 × G(2, 5))) at the generic
point q of the linear span of p1, . . . , p5 is

5∑
i=1

T̂piSeg(P2 ×G(2, 5)) =
5∑
i=1

(Li ⊕ T̂piC)

=
5∑
i=1

Li +
5∑
i=1

T̂piC.

Since each T̂piC is contained in the linear space 〈C〉 of C, we obtain

dimTqσ5(Seg(P2 ×G(2, 5))) =
5∑
i=1

dimLi +
5∑
i=1

dim T̂piC − 1

≤
5∑
i=1

dimLi +
5∑
i=1

dim〈C〉

= 5
(
dim Seg(P2 ×G(2, 5))− dimC

)
+ degC

≤ 5(2 + 9− 1) + 8

= 58.

To prove that the dimension of σ5(Seg(P2 × G(2, 5))) is at least 58, Abo and Wan chose
five random points of Seg(P2 × G(2, 5)), and then they determined that the dimension of
the linear subspace spanned by the projectivized tangent spaces of Seg(P2 × G(2, 5)) at
these five points is 58. By semi-continuity, the dimension of the linear subspace spanned
by the projectivized tangent spaces of Seg(P2 × G(2, 5)) at five generic points is therefore
greater than or equal to 58. Thus, an application of Terracini’s lemma shows the inequality
dimσ5(Seg(P2 ×G(2, 5))) ≥ 58.

The follow section uses numerical algebraic geometric algorithms to determine the degree
of this hypersurface and several other related ones. These degrees are used as input to
determine an equation defining each hypersurface, using representation theory in Section 5
and careful multi-linear algebra in Sections 6,7.
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Figure 1. The trace test

Let H be an irreducible hypersurface and L be a line so that degH = |H ∩ L|.
(1) Generate a point x ∈ H ∩ L. Initialize W := {x}.
(2) Perform a random monodromy loop starting at the points in W :

(a) Pick a random loop M(t) in the space of lines so that M(0) =M(1) = L.
(b) Trace the curves H∩M(t) starting at the points in W at t = 0 to compute

the endpoints E at t = 1. (Hence, E ⊂ H ∩ L).
(c) Update W :=W ∪ E .

(3) Repeat (2) until the trace test verifies that W = H ∩ L.

4. Using Bertini to determine the degree of a parametrized hypersurface

Computing the degree and defining equation for a parametrized hypersurface is a classical
problem in elimination theory (e.g., see [CLO07, Chap. 3]). Since classical techniques have
thus far failed to produce information regarding the Abo-Wan hypersurfaces, we turn to
numerical algebraic geometry, namely techniques in numerical elimination theory [HS10,
HS13] summarized in [BHSW13, Chap. 16]. For the applications here, we will use such
numerical techniques to compute the degree of each hypersurface under consideration. Once
the degree is known, we then use representation theory and linear algebra, described in the
next sections, to compute a defining equation for each hypersurface.

Before describing in detail the computation involving σ5(Seg(P2×G(2, 5))), we first sum-
marize the procedure from a geometric point of view. Suppose that H ⊂ Pn is an irreducible
hypersurface. Since degH = |H ∩ L| for a general line L ∈ G(1, n), one simply needs to
compute the finite set of points W = H ∩ L, called a witness point set for H. More details
regarding witness sets are provided in [SW05, Chap. 13].

To compute W , one needs to first generate a point in W . In the cases of interest here,
we have a parametrization of H so it is trivial to compute a smooth point x ∈ H. One may
then pick L to be a general line passing through x where x ∈ W = H ∩ L.

Starting from one point inW , we then use random monodromy loops [SVW02] to attempt
to generate additional points in W . We first select a random pathM : [0, 1]→ G(1, n) with
M(0) = M(1) = L. Then, for each w ∈ W , we trace the path pw(t) ∈ H ∩M(t) with
pw(0) = w to compute the point pw(1) ∈ W .

As stated, such random monodromy loops allow one to potentially generate additional
points in W without a definitive criterion for when we have computed all points in W . A
heuristic criterion is when several of such loops fail to generate new points. The definitive
criterion we will use is the trace test [SVW02]. Let P : R → G(1, n) define a family of
parallel lines with P(0) = L and W ′ ⊂ W . Then, W ′ =W if and only if

every coordinate of
∑
w∈W ′

pw(t) is linear in t,

where pw(t) ∈ H ∩ P(t) with pw(0) = w. In practice, this linearity condition is verified by
testing at three values of t, typically −1, 0, and 1. The trace test procedure is summarized
Figure 1.

For the problems at hand, we need to modify this procedure for irreducible hypersurfaces
that arise as the closure of the image of an irreducible algebraic set, say H = π(Y ). This
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results in a problem in numerical elimination theory in which computations are performed
on Y and witness sets are simply replaced by pseudowitness sets [HS10].

This approach facilitated by path tracking using Bertini [BHSW06] yielded the following.

Theorem 4.1. The following hold.

(1) The hypersurface σ5(Seg(P2 ×G(2, 5))) ⊂ P59 has degree 6.
(2) The hypersurface σ5(Seg(P2 ×G(1, 6))) ⊂ P62 has degree 21.
(3) The hypersurface σ8(Seg(P2 ×G(1, 10))) ⊂ P164 has degree 33.
(4) The hypersurface σ11(Seg(P2 ×G(1, 14))) ⊂ P314 has degree 45.

In our execution of the procedure for the hypersurface H = σ5(Seg(P2×G(2, 5))), it took 6
random monodromy loops to compute the six points in H ∩ L. The total procedure lasted
50 seconds using a single 2.3 GHz core of an AMD Opteron 6376 processor.

The last 3 hypersurfaces come from [AW13] and are part of an infinite family that will
be considered in Section 6. In our execution for these hypersurfaces, it took 13, 12, and 13
random monodromy loops to yield the degree many points for each case, respectively. Using
a total of sixteen 2.3 GHz cores, the total procedure lasted 2.5 minutes, 32 minutes, and 5.5
hours, respectively.

Remark 4.2. All 4 cases of Theorem 4.1 have numerical proofs via the method presented
in this section. One may object that the results hold only up to the numerical precision
of our calculations. However, we have used these computations as strong evidence and
motivation to search for, and eventually find, non-numerical proofs of these results as well
as generalizations. These proofs are provided in Sections 5 and 6.

5. Using Young symmetrizers to construct polynomial invariants

By Theorem 4.1(1), we know that we are looking for a degree 6 equation for σ5(Seg(P2 ×
G(2, 5))). Moreover, by the symmetry of the variety, we know that we are looking for a degree
6 polynomial invariant for SL(3)×SL(6) acting on C3⊗

∧3C6. Using [vLCL92], we computed
the entire isotopic decomposition of the degree 6 part of the coordinate ring C[C3⊗

∧3C6] in
(2.2) above via the LiE command sym_tensor(6,[1,0]^[0,0,1,0,0],A2A5) (which does
the appropriate character computation necessary to determine the dimensions of the multi-
plicity spaces).

The output is a long polynomial, but the occurrence of 1X[0,0,0,0,0,0,0] tells us, in
particular, that the trivial representation occurs with multiplicity one. Now that we know
that there is only one non-trivial degree 6 invariant (up to trivial rescaling), we can apply
a Young symmetrizer construction to produce the invariant as follows. We will describe
the entire process with the degree 6 Abo-Wan example. The algorithm we present here is a
modification of the Landsberg-Manivel algorithm [LM04], and uses ideas from [FH91,GW98,
Ott13a] and [Lan12]. See [BO11] for an example using this algorithm for 3-tensors.

First, we start with the partitions (2, 2, 2) and (3, 3, 3, 3, 3, 3) associated (respectively) to
the trivial representations of GL(3) and GL(6) in degrees 6 and 18, respectively. Then,
we must find fillings of the associated tableaux so that the associated Young symmetrizer
produces a non-zero image.



COMPUTATIONS AND EQUATIONS FOR SEGRE-GRASSMANN HYPERSURFACES 7

After an exhaustive search, we found that the following pair of fillings will produce a
non-zero image.

a c
b e
d f
⊗

a b c
a b d
a d e
b d f
c e f
c e f

,

where, in the second filling, we use each letter three times indicating that we are parametriz-
ing an invariant of degree 6 on

∧3(W ) ⊂ W⊗3. We will use this filling to show how to
construct the associated Young symmetrizer and compute its image.

Using this filling we construct a generic polynomial in terms of auxiliary variables associ-
ated to the letters in the fillings by constructing matrices associated to the columns. For

a c
b e
d f

,

we associate the product of determinants

pV =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
d1 d2 d3

∣∣∣∣∣∣
∣∣∣∣∣∣
c1 c2 c3
e1 e2 e3
f1 f2 f3

∣∣∣∣∣∣ .
Similarly, for the filling

a b c
a b d
a d e
b d f
c e f
c e f

,

we associate the product of determinants pW =∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
b31 b32 b33 b34 b35 b36
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36
e21 e22 e23 e24 e25 e26
e31 e32 e33 e34 e35 e36

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

c11 c12 c13 c14 c15 c16
d11 d12 d13 d14 d15 d16
e11 e12 e13 e14 e15 e16
f11 f12 f13 f14 f15 f16
f21 f22 f23 f24 f25 f26
f31 f32 f33 f34 f35 f36

∣∣∣∣∣∣∣∣∣∣∣∣
.

The next step is to extract the terms of the polynomial pV pW one at a time and replace parts
of the monomials with our target variables xi,j,k,l, where 1 ≤ i ≤ 3 and 1 ≤ j < k < l ≤ 6.

Let the symbol y denote the contraction performed by “taking the coefficient.” For exam-
ple, if we have a polynomial

p = a1b2d3c1e3f3a11a22a33b34c25c36 · q,
where q does not depend on the variables a, then we can contract:

(a1a11a22a33)yp = b2d3c1e3f3b34c25c36 · q.
We perform contractions to produce a polynomial in the xi,j,k,l that is in the image of the
Young Symmetrizer associated to our initial fillings the algorithm in Figure 2.

To test whether this algorithm will produce a non-zero result, it is crucial to recognize
that the procedure has a built-in evaluation option. That is, at each step (a-f) in the
algorithm in Figure 2, one may evaluate the partial result at a fixed pre-determined point.
The intermediate steps will become much less memory consuming and the evaluation will



8 NOAH S. DALEO, JONATHAN D. HAUENSTEIN, AND LUKE OEDING

Figure 2. Evaluating Young symmetrizers

input: F = pV pW constructed as above.
(a) Replace F with

∑
1≤i≤3 1≤j<k<l≤6 xi,j,k,l · (ai · (a1j ∧ a2k ∧ a3l))yF , where the

wedge notation indicates that we take the alternating sum over the permuted
indices:

(a1j ∧ a2k ∧ a3l) :=
∑
σ∈S3

sgn(σ)a1σ(j)a2σ(k)a3σ(l).

(b) Replace F with ∑
1≤i≤3

1≤j<k<l≤6

xi,j,k,l · (bi · (b1j ∧ b2k ∧ b3l))yF.

...
(f) Replace F with ∑

1≤i≤3
1≤j<k<l≤6

xi,j,k,l · (fi · (f1j ∧ f2k ∧ f3l))yF.

output: F , now a polynomial in xi,j,k,l in the image of the Young symmetrizer given by
the Young tableaux

happen much more quickly than producing the polynomial and then evaluating it. We used
this method to find a filling that would produce a non-zero result and then, knowing that
the filling we found would produce a non-zero polynomial, we applied the full algorithm
to the filling we have recorded above. We then check that the polynomial we produced is
both non-zero (because it evaluates non-zero at at least one point of the ambient space) and
vanishes on σ5(P2×G(2, 5)) (because it vanishes on all parametrized points, i.e. on a Zariski
open set).

Theorem 5.1. The prime ideal of the hypersurface σ5(P2 × G(2, 5)) is generated by the
single degree 6 polynomial (up to scale) constructed via the image of the Young symmetrizer
associated to the filling

a c
b e
d f
⊗

a b c
a b d
a d e
b d f
c e f
c e f

.

Proof. Let F denote the polynomial resulting from the recipe given in the statement above.
In particular, F has precisely 10080 monomials, 5040 of which have coefficient +1 and 5040
of which have coefficient −1. It can be downloaded from the ancillary files associated to the
arXiv version of this paper. One can check that F vanishes on the irreducible Abo-Wan
hypersurface σ5(P2 ×G(2, 5)). The proof is complete if we can show that F is irreducible.

We know that F is non-zero, has degree 6, and is invariant under the SL(3)×SL(6) action.
It is easy to check, in LiE for instance, that there are no non-trivial invariants of degree less
than 6, and there is only one (up to scale) invariant in degree 6. If F were to factor into
factors of positive degree, the individual factors would define invariant hypersurfaces of lower
degree. Since this can’t happen, F is irreducible. Note this solves [AW13, Problem 6.5]. �
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Remark 5.2. We suppose that this equation may have an expression as a root of a determinant
of a special matrix, similar to Ottaviani’s degree 15 equation in [Ott09], however our initial
attempts at finding such an expression were unsuccessful. A natural guess is to start with
T ∈ V ⊗∧3W and use it to produce the 18×36 matrix AT : W ⊗W → (V ⊗W )∗, which has
rank 3 when T has rank 1 and rank ≤ 3r when T has rank r. However, this map actually
factors through a map ∧2W → (V ⊗W )∗ but this matrix is 18×15 with maximum rank of 15.
This means that this construction cannot distinguish rank 5 tensors from rank 6 tensors.

6. The Abo-Wan hypersurfaces σ3`+2(Seg(P2 ×G(1, 4`+ 2)))

Abo and Wan also studied the following family of secant varieties that are hypersurfaces

(6.1) σ3`+2(Seg(P2 ×G(1, 4`+ 2))) ⊂ P
(
V⊗
∧2W

)
= P3(4`+3

2 )−1

for ` ≥ 1, [AW13, Sec. 4]. For these secant varieties, an Ottaviani-type flattening construc-
tion produces an equation that vanishes on them and shows that they are defective. This
approach, which was adapted from a construction by Ottaviani [Ott09], was used by [AW13]
to prove that this secant variety (and an entire class of varieties similar to it) is defective.
Namely, the dimension of each of these secant varieties is less than expected (it is expected
to fill the ambient space) because of the existence of a non-trivial polynomial in the ideal.
In particular, for the 3 · (4`+ 3)× 3 · (4`+ 3) “flattening” matrix ϕT associated to a general
T ∈ C3⊗

∧2C3·(4`+3), they showed that detϕT is both nontrivial and vanishes on (6.1).
It remains, however, an open problem to show that such polynomials are irreducible. This

is the missing ingredient to describing the generator of the corresponding prime ideal.

Remark 6.1. This flattening construction and its variants have also been used successfully
to find equations for other secant varieties in a wide array of cases in [LO11a], and led to
new results in complexity [Lan14b,LO11b]. An analogous construction was used for partially
symmetric tensors in [CEO12], and for arbitrary tensors for the so-called “salmon problem”
in [Fri13,BO11,FG12].

We consider the construction of this equation in the case when ` = 1. Here, V = C3,
(so

∧2V ∼= V ∗) and W = C7. For a tensor T ∈ V⊗
∧2W we can view T as an element in∧2V ∗⊗

∧2W , and associate to T the natural linear map it induces:

ϕT : V⊗W ∗ → V ∗⊗W,

which is skew-symmetric in W and (separately) skew-symmetric in V . The following provides
an explicit construction of ϕT in coordinates.

Choose a basis a, b, c of V , and a basis ei,j of
∧2W . Then ϕT is constructed from the

21× 21 Kronecker product of two matrices:

ϕT =

 0 a −b
−a 0 c
b −c 0

⊗


0 e12 e13 e14 e15 e16 e17
−e12 0 e23 e24 e25 e26 e27
−e13 −e23 0 e34 e35 e36 e37
−e14 −e24 −e34 0 e45 e46 e47
−e15 −e25 −e35 −e45 0 e56 e57
−e16 −e26 −e36 −e46 −e56 0 e67
−e17 −e27 −e37 −e47 −e57 −e67 0


.
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By replacing a⊗ejk with ajk (similarly for b⊗ejk and c⊗ejk), we obtain the (symmetric)
matrix ϕT =

0 0 0 0 0 0 0 0 a12 a13 a14 a15 a16 a17 0 −b12 −b13 −b14 −b15 −b16 −b17
0 0 0 0 0 0 0 −a12 0 a23 a24 a25 a26 a27 b12 0 −b23 −b24 −b25 −b26 −b27
0 0 0 0 0 0 0 −a13 −a23 0 a34 a35 a36 a37 b13 b23 0 −b34 −b35 −b36 −b37
0 0 0 0 0 0 0 −a14 −a24 −a34 0 a45 a46 a47 b14 b24 b34 0 −b45 −b46 −b47
0 0 0 0 0 0 0 −a15 −a25 −a35 −a45 0 a56 a57 b15 b25 b35 b45 0 −b56 −b57
0 0 0 0 0 0 0 −a16 −a26 −a36 −a46 −a56 0 a67 b16 b26 b36 b46 b56 0 −b67
0 0 0 0 0 0 0 −a17 −a27 −a37 −a47 −a57 −a67 0 b17 b27 b37 b47 b57 b67 0
0 −a12 −a13 −a14 −a15 −a16 −a17 0 0 0 0 0 0 0 0 c12 c13 c14 c15 c16 c17

a12 0 −a23 −a24 −a25 −a26 −a27 0 0 0 0 0 0 0 −c12 0 c23 c24 c25 c26 c27
a13 a23 0 −a34 −a35 −a36 −a37 0 0 0 0 0 0 0 −c13 −c23 0 c34 c35 c36 c37
a14 a24 a34 0 −a45 −a46 −a47 0 0 0 0 0 0 0 −c14 −c24 −c34 0 c45 c46 c47
a15 a25 a35 a45 0 −a56 −a57 0 0 0 0 0 0 0 −c15 −c25 −c35 −c45 0 c56 c57
a16 a26 a36 a46 a56 0 −a67 0 0 0 0 0 0 0 −c16 −c26 −c36 −c46 −c56 0 c67
a17 a27 a37 a47 a57 a67 0 0 0 0 0 0 0 0 −c17 −c27 −c37 −c47 −c57 −c67 0
0 b12 b13 b14 b15 b16 b17 0 −c12 −c13 −c14 −c15 −c16 −c17 0 0 0 0 0 0 0
−b12 0 b23 b24 b25 b26 b27 c12 0 −c23 −c24 −c25 −c26 −c27 0 0 0 0 0 0 0
−b13 −b23 0 b34 b35 b36 b37 c13 c23 0 −c34 −c35 −c36 −c37 0 0 0 0 0 0 0
−b14 −b24 −b34 0 b45 b46 b47 c14 c24 c34 0 −c45 −c46 −c47 0 0 0 0 0 0 0
−b15 −b25 −b35 −b45 0 b56 b57 c15 c25 c35 c45 0 −c56 −c57 0 0 0 0 0 0 0
−b16 −b26 −b36 −b46 −b56 0 b67 c16 c26 c36 c46 c56 0 −c67 0 0 0 0 0 0 0
−b17 −b27 −b37 −b47 −b57 −b67 0 c17 c27 c37 c47 c57 c67 0 0 0 0 0 0 0 0



.

If T has rank 1 as a tensor (up to the action of GL(3) × GL(7)), we may assume that
T112 = 1 and all other coordinates are zero. In this case, ϕT has rank 4. The construction is
linear in T , so if T has rank r then ϕT has rank ≤ 4r (because matrix rank is sub-additive).
In particular if T has rank 5, then ϕT has rank ≤ 20, so the determinant of ϕT must vanish.

One checks that for random T , ϕT has rank 21 so the 21× 21 determinant of ϕT is non-
trivial and produces the equation of σ5(Seg(P2 ×G(1, 6))). We verified these computations
using Macaulay2 [GS13].

The Bertini computation described above that is summarized in Theorem 4.1 indicates
that (with high probability) this polynomial is irreducible. Indeed, since the degree found
by this computation and the degree of determinant of ϕT are both 21, we know that the
determinant of ϕT is irreducible. A similar argument holds for the cases ` = 2, 3 as well.
For the first three non-trivial cases, ` = 1, 2, 3, our numerical computation implies that the
following results hold with high probability.

Theorem 6.2. With high probability the prime ideal of each hypersurface

(1) σ5(Seg(P2 ×G(1, 6))) ⊂ P
(
V⊗
∧2W

)
= P62, for W = C7,

(2) σ8(Seg(P2 ×G(1, 10))) ⊂ P
(
V⊗
∧2W

)
= P164, for W = C11,

(3) σ11(Seg(P2 ×G(1, 14))) ⊂ P
(
V⊗
∧2W

)
= P314, for W = C15,

is minimally generated by the determinant of the matrix

ϕT : V⊗W ∗ → V ∗⊗W,

which has size 21× 21 when W = C7, 33× 33 when W = C11, and 45× 45 when W = C45.

Motivated by these results, we prove a more general statement without the “with high
probability”qualifier.

Theorem 6.3. For each ` ≥ 1 the prime ideal of the irreducible hypersurface

σ3`+2(Seg(P2 ×G(1, 4`+ 2))) ⊂ P
(
V⊗
∧2W

)
= P3(4`+3

2 )−1

is generated by the determinant of the 3(4`+ 3)× 3(4`+ 3) matrix ϕT : V⊗W ∗ → V ∗⊗W .

Proof. We first explain how to construct the matrix ϕT in general. To that end, choose a basis
v1, v2, v3 of V , and a basis ei,j of

∧2W and write E = (ei,j) ∈
∧2W which is a (4`+3)×(4`+3)

skew symmetric matrix, i.e., E = (ei,j) = −Et. Then, ϕT is the 3(4`+ 3)× 3(4`+ 3) matrix
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constructed via a � product (see Section 7). Namely, we take the usual Kronecker product
of matrices  0 v1 −v2

−v1 0 v3
v2 −v3 0

⊗ E,
and replace each viej,k with the variable xijk (as explained in Section 7). The resulting

matrix ϕT represents a point T ∈ V⊗
∧2W ∼=

∧2V ∗⊗
∧2W . Note, this variable replacement

is crucial, because the identity (7.1) implies that before our replacement of viej,k with xijk,
the determinant of the matrix we construct is zero. On the other hand, Lemma 4.1 of [AW13]
constructs a tensor T for which ϕT has full rank. In particular, det(ϕT ) 6= 0. Abo and Wan
also explained why detϕT vanishes on the appropriate secant variety, which is a consequence
of the flattening construction.

We will prove that the ideal generated by detϕT is prime by showing that detϕT is
irreducible, which will be a consequence of Theorem 7.1 below. �

Remark 6.4. The case ` = 0 is the well-known 3× 3 determinantal hypersurface since

σ2(Seg(P2 ×G(1, 2))) ∼= σ2(Seg(P2 × (P2)∗)).

7. Tensor products of matrices

Let P = (pi,j) ∈ A∗⊗B and Q = (qk,l) ∈ C∗⊗D be 1-generic matrices and consider their
tensor product

P �Q ∈ A∗⊗B⊗C∗⊗D,
which we view as a 4-dimensional tensor. One flattening is to view P�Q in (A⊗C)∗⊗(B⊗D).
In this flattening we see P � Q as a matrix with rows indexed by the double index (i, k)
and columns indexed by the double index (j, l), and the entry in position ((i, k), (j, l)) is the
tensor product of variables pi,j⊗qk,l.

Note the usual Kronecker product of matrices (unfortunately denoted by the tensor prod-
uct symbol ⊗) would put the symmetric product pi,jqk,l in that position, so we use the
symbol � to make this distinction.

The usual Kronecker product satisfies the well-known property that if P and Q are square
matrices of size m and n respectively, then

(7.1) det(P⊗Q) = det(P )n det(Q)m.

The question we are led to by our study of the equations of Abo-Wan hypersurfaces is
whether the determinant of the � product is irreducible or not.

As we will see, introducing the non-commutative feature in this tensor product causes
interesting behavior of determinants.

For our purposes, we are interested in the case that P and Q are skew-symmetric, and P is
a 3×3 matrix. In this case, the usual tensor product will always have vanishing determinant
because of (7.1). On the other hand, the initial cases of the � product behave as follows.

Theorem 7.1. Let P and Q be respectively 3×3 and s×s skew-symmetric 1-generic matrices.

(1) If s = 1 or s = 2, then det(P �Q) = 0.
(2) If s = 3, then det(P �Q) factors as the cube of a cubic polynomial.
(3) If s = 4, then det(P �Q) factors as the square of a sextic polynomial.
(4) If s ≥ 5, then det(P �Q) is irreducible.
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Proof. The case s = 1 is trivial because the determinant is just the determinant of P in
renamed variables. The cases s = 2, 3, 4 are easy to verify in Macaulay2 directly by con-
structing the usual tensor product matrix, substituting new variables for each product pi,jqk,l,
and using the factor command. As s grows, this computation becomes much more difficult.

For s = 5, 6, . . . , 15 we specialized the variables in the matrix P � Q to a random line,
computed the determinant, and checked that the resulting homogeneous polynomial in 2
variables had the same degree and did not factor over Q. This provides a certificate that
the original polynomial is irreducible. (Note, if the specialized polynomial factors, this test
is inconclusive but gives evidence that the original polynomial probably factors.)

For s ≥ 8 we proceed by induction from the case s− 3 to the case s. Our proof for each
case is the same building on the base cases s = 3, . . . , 7 which were computed directly as
described above.

Summary of proof: Our induction step is somewhat lengthy, but the idea is straight-
forward. Specifically, we will show that if det(P � Q) has a factorization as a product of
non-trivial invariants this will force a non-trivial factorization of a P�Q of smaller size, which
can’t happen by induction. The rest of the proof is a careful study of why this phenomenon
occurs.

We partially compute det(P �Q) via Laplace expansion. Let Q′ be the first 3×3 principal
submatrix of Q and let Q′c denote the principal minor of Q with complementary indices,
which is necessarily the last (s− 3)× (s− 3) principal minor of Q.

Now P �Q′ and P �Q′c are complementary principal minors of P �Q, which are respec-
tively of size 9× 9 and 3(s− 3)× 3(s− 3). Note that the term

H := det(P �Q′) · det(P �Q′c)

occurs in det(P � Q). We know that H is non-zero by cases 3 (a base case) and s − 3 (by
the induction hypothesis).

Recall [Stu08, Ch.4] that we can assign a weight or multi-degree to a polynomial in

Sd(
∧2(C3)∗⊗

∧2Cs) ∼= Sd(C3⊗
∧2Cs)

as follows. Let e1, e2, e3 be the standard basis of Z3 and let f1, . . . , fs denote the standard
basis on Zs. To the variable pi,j⊗qk,l we assign the weight eh + fk + fl, where h is such
that {i, j, h} = {1, 2, 3}, and write this as wt(pi,j⊗qk,l) = eh + fk + fl. We assign weights to
monomials by declaring that the weight function wt() is additive over products of variables.
A polynomial in Sd(C3⊗

∧2Cs) is called isobaric if every term has weight

a(e1 + e2 + e3) + b(f1 + . . . fs)

and must satisfy the condition that a = d/3 and b = 2d/s are integers. Note that all
SL(3)× SL(s)-invariant polynomials must be isobaric.

Now we compute

wt(det(P �Q′)) = 3(e1 + e2 + e3) + 6(f1 + f2 + f3),

and
wt(det(P �Q′c)) = (s− 3)(e1 + e2 + e3) + 6(f4 + · · ·+ fs).

The weights reflect the fact that H is a bi-homogeneous polynomial in two disjoint sets of
variables (those appearing in P�Q′c and those in P�Q′). Since H contains the monomials of
highest possible degree among the variables appearing in each matrix, H cannot be canceled
by other terms in the block Laplace expansion of detϕT . A trivial, but necessary, remark is
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that det(P �Q) is not equal to H. One way to see this is that det(P �Q) is SL(3)× SL(s)-
invariant, but H is not.

Let M denote Newton polytope of H, which is the convex hull of all the exponent vectors
of H. By the above discussion, M consists of all exponent vectors of monomials arising as a
product of monomials of weight 3(e1 + e2 + e3) + 6(f1 + f2 + f3) with monomials of weight
(s− 3)(e1 + e2 + e3) + 6(f4 + · · ·+ fs).

Let NP⊗Q′ (respectively NP�Q′c) denote the Newton polytope of det(P �Q′) (respectively
of det(P � Q′c)). Then M is the Minkowski sum M = NP�Q′ ⊕ NP�Q′c , where the direct
sum is due to the fact that det(P �Q′) and det(P �Q′c)) use disjoint sets of variables.

Now we claim that H cannot have a non-trivial isobaric factorization. For contradiction,
suppose det(P �Q) = f · g with both f and g isobaric, which means that the weights of f
and g must be of the form:

a(e1 + e2 + e3) + b(f1 + . . . fs),

with a = d/3 and b = 2d/s both integers, and d < 3s.
The possible (a, b) satisfying these conditions are (at most):

(s/6, 1), (s/3, 2), (s/2, 3), (2s/3, 4), (5s/6, 5),

and we don’t need to consider the pairs (a, b) 6∈ Z2.
We have

(7.2) f · g = det(P �Q′) · det(P �Q′c) + (l. o. t.),

where by “l. o. t.” we mean terms using monomials not supported in M .
We can delete the lower order terms by setting to zero those variables that don’t occur

in P � Q′ or P � Q′c. Further, we know that det(P � Q′) is non-zero, so we may partially
evaluate P � Q by assigning scalar values ci,j,k to each xi,j,k appearing in P � Q′ so that
det(P �Q′) evaluates to a non-zero scalar C. After this evaluation, (7.2) becomes

f̃ · g̃ =

 ∑
(α,β)∈NP�Q′⊕NP�Q′c

fα,βc
αxβ

 ·
 ∑

(α,β)∈NP�Q′⊕NP�Q′c

gα,βc
αxβ

 = C det(P �Q′c),

where f̃ and g̃ are respectively the images of f and g under this evaluation, and the equation
is non-trivial and supported on NP�Q′c . Finally, the degrees of f and g must be integers in

{s/2, s, 3s/2, 2s, 5s/2},

such that their sum is 3s (if there are no such pair for our particular value of s then we could

end the proof earlier). So the smallest possible degree of each of f̃ or g̃ is s/2− 3 ≥ 1 for all

s ≥ 7, in particular, neither f̃ nor g̃ are constant.
Thus we have produced a non-trivial isobaric factorization of det(P⊗Q′c), which is impos-

sible when the size of Q′c is at least 5× 5, i.e. s− 3 ≥ 5 which surely happens when s ≥ 8.
This provides the contradiction that ends the proof. �

Remark 7.2. If one reinterprets Theorem 7.1 in light of projective duality, it gives some
hints to Ottaviani’s open question #3 in [Ott13b], which is the skew-symmetric version of a
problem on hyperdeterminants considered in [Oed12].
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