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Abstract

Let R = C[x1, . . . , xN ] and let F = {f1, . . . , ft} ⊂ R be a set of generators for an
ideal I. Let Y = {y1, . . . , y`} ⊂ CN be a subset of the set of isolated solutions of the
zero-locus of F . Let myi

denote the maximal ideal of yi and let Pyi
denote the myi

-
primary component of I. Let J = ∩l

i=1Pyi
and let Z denote the corresponding zero

dimensional subscheme supported on Y . This article presents a numeric-symbolic
algorithm for computing the Hilbert function of Z. The input for the algorithm is
the polynomial system F and a numerical approximation of each element in Y .
Keywords. regularity, Hilbert function, homotopy continuation, multiplicity, nu-
merical algebraic geometry, polynomial system, dual basis
AMS Subject Classification. 65H10, 68W30

Introduction

Homotopy continuation can be used to determine a numerical approximation for each
isolated solution of the zero locus of a multivariate polynomial system. By utilizing
a deflation method for isolated solutions, such as described in [4, 7, 8], each isolated
solution can be computed to arbitrary accuracy using a quadratically convergent New-
ton’s method. This article uses a numerical approximation of each isolated point in the
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support of a zero scheme to compute the Hilbert function, standard monomials, and
index of regularity of the zero scheme. The underlying theory supporting the approach
is based on Macaulay’s inverse systems [9].

The first section of the paper provides background information regarding dual bases,
standard monomials, Hilbert functions, and the index of regularity along with an exam-
ple to illustrate these ideas. Section 2 presents the underlying theory and the resulting
algorithm to compute the standard monomials, Hilbert function, and the index of reg-
ularity. Section 3 discusses implementation details. Section 4 consists of two examples
applying the algorithm. The final section consists of concluding comments, and a brief
discussion of an extension of the algorithm to subschemes of zero-schemes together with
practical limitations.

1 Background

This section consists of background information on dual bases, standard monomials,
Hilbert functions, and the index of regularity. The section concludes with an example
to illustrate these ideas.

1.1 Dual bases

Following the notation of [1, 4], for α = (α1, . . . , αN ) ∈ (Z≥0)N , define

|α| = α1 + · · ·+ αN , α! = α1!α2! · · ·αN !, and ∂α = 1
α!
∂|α|

∂xα .

Let R = C[x1, . . . , xN ], let y ∈ CN and let α ∈ (Z≥0)N . Viewing R as a complex vector
space, the linear functional, ∂α[y] : R→ C, is defined by

∂α[y](g) = (∂αg)(y).

When it is clear from context, ∂α[y] may be written as ∂α.
Let y ∈ CN and let Sy =

{
∂α[y] | α ∈ (Z≥0)N

}
. For each y ∈ CN , one can associate

the (infinite dimensional) complex vector space, Dy, consisting of all finite C-linear
combinations of elements from Sy. It is clear that Dy is a subspace of the vector space,
HomC(R,C), of linear functionals on R. If I ⊂ C[x1, . . . , xN ] is an ideal, the dual space
of I at y is the set of all elements of Dy that vanish on I, namely

Dy[I] = {∂ ∈ Dy

∣∣ ∂(g) = 0 for all g ∈ I}.

For a set of points Y = {y1, . . . , y`}, define DY to be the vector space of all finite C-
linear combinations of elements from Sy1 ∪ · · · ∪Sy` and define the dual space of I at Y
by

DY [I] = {∂ ∈ DY

∣∣ ∂(g) = 0 for all g ∈ I}.

A dual basis for a dual space is a subset of elements in the dual space that forms a
C-basis for the space.
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Let V(I) = {z ∈ CN | g(z) = 0 for all g ∈ I}, let y ∈ V(I), and let my denote the
maximal ideal of y. If y is an isolated element of V(I), then my is a non-embedded
associated prime of I. In other words, in an irredundant primary decomposition of I,
my is a minimal associated prime. As a minimal associated prime, my has a well defined
multiplicity, multI(y), in I. In fact, if Py denotes the my-primary component in an
irredundant primary decomposition of I, then y being an isolated point implies that
multI(y) is the same as the degree of the scheme associated to Py which, in turn, is the
same as dimCR/Py. The following theorem of Macaulay makes an explicit connection
between multI(y) and the dimension of Dy[I] as a complex vector space.

Theorem 1. Let I ⊂ C[x1, . . . , xN ] be an ideal and let y ∈ V(I). Then

i) dimCDy[I] <∞ if and only if y is an isolated point in V(I).

ii) If y is an isolated point in V(I) then dimCDy[I] = multI(y).

When y is an isolated point in V(I), numerical algorithms can be used to compute
dimCDy[I] and hence multI(y) [4, 13]. Additionally, the local dimension test of [1] is
based on Theorem 1.

The following proposition about linear independence in HomC(R,C) leads to a
stronger formulation of Macaulay’s theorem.

Proposition 2. Let Y1 and Y2 be finite sets of points in CN . Then Y1 ∩ Y2 = ∅ if and
only if DY1 ∩DY2 = 0.

Proof. It is clear that DY1∩Y2 ⊂ DY1 ∩DY2 . Therefore, Y1 ∩ Y2 6= ∅ implies DY1∩Y2 6= 0
yielding DY1 ∩DY2 6= 0.

Now suppose that Y1 ∩ Y2 = ∅. The statement that DY1 ∩DY2 = 0 is equivalent to
the statement that, for any non-zero elements ∂1 ∈ DY1 and ∂2 ∈ DY2 , there exists an
element g ∈ R such that ∂1(g) 6= ∂2(g). We will construct a g ∈ R such that ∂1(g) = 0
but ∂2(g) 6= 0. Let Y1 = {p1, . . . , pr} and Y2 = {q1, . . . , qs}. There exists a number B
such that

∂1 =
∑

{α | |α|≤B}

r∑
i=1

bα,i∂α[pi] and ∂2 =
∑

{α | |α|≤B}

s∑
i=1

cα,i∂α[qi].

Let mp denote the maximal ideal of p. By reindexing the elements in Y2, if necessary,
we can assume there exists an α such that cα,s 6= 0. Now choose an element g ∈
(∩ri=1m

B+1
pi )

⋂
(∩s−1

i=1mB+1
qi ) such that ∂2(g) 6= 0 (due to the contribution from qs). By

construction, ∂1(g) = 0.

Corollary 3. Let I ⊂ C[x1, . . . , xN ] be an ideal and Y = {y1, . . . , y`} ⊂ V(I). Then

i) dimCDY [I] <∞ if and only if every element of Y is an isolated point in V(I).

ii) If every element of Y is an isolated point in V(I) then dimCDY [I] =
∑`

i=1 multI(yi).
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Proof. Part i) is an immediate corollary of Theorem 1. To prove part ii), note that
dimCDY [I] ≤

∑`
i=1 multI(yi) by Theorem 1. The equality of dimCDY [I] and

∑`
i=1 multI(yi)

follows from Proposition 2 by inducting on the number of points in Y and noting that
DY ′ [I] is a subspace of DY ′ for any Y ′ ⊆ Y .

A graded monomial order is a monomial ordering that satisfies

• |α| > |β| =⇒ xα > xβ

• xα > xβ =⇒ xγxα > xγxβ

A reverse graded monomial order is a monomial ordering that satisfies

• |α| < |β| =⇒ xα > xβ

• xα > xβ =⇒ xγxα > xγxβ

Let > be a reverse graded monomial order. For any k ≥ 0, we can create an ordered
list, with respect to the monomial ordering, of the q =

(
N+k
k

)
monomials of degree ≤ k,

namely
1 = xα1 > · · · > xαq .

By Corollary 3, the dual space of the ideal of a zero-scheme, S, is a finite dimen-
sional vector space over C whose dimension is equal to the degree of S. It will be
convenient to represent the dual space as the row space of a matrix. To that end, let
I ⊂ C[x1, . . . , xN ] be an ideal, let Y = {y1, . . . , y`} ⊂ V(I) be a set of isolated solutions,
and let m = dimCDY [I]. Suppose that B = {∂1, . . . , ∂m} is a basis for DY [I]. Given
z = (z1, . . . , zN ) ∈ CN and αj = (αj,1, . . . , αj,N ), let (x − z)αj =

∏N
i=1(xi − zi)αj,i and

let Ak(z) be the m× q matrix where

Ak(z)i,j = ∂i((x− z)αj ). (1)

The linear independence of B immediately yields that rank(Ak(z)) = m for k � 0.
This matrix will be used in Section 2 to compute the Hilbert function, index of

regularity, and standard monomials. As a function of k, the number of monomials of
degree ≤ k displays rapid growth. Due to this rapid growth in the number of monomials
and the notorious ill-conditioning of a monomial basis, numerical computations with the
matrix Ak(z) may be difficult. These issues are addressed in Section 3.

1.2 Standard monomials

If g is a nonzero polynomial, let in>(g) denote the initial monomial of g with respect
to a graded monomial order >. That is, if g =

∑k
j=1 ajx

αj , where each aj 6= 0 and
xα1 > xα2 > · · ·xαk , then in>(g) = xα1 .

If I is an ideal, then in>(I) = {in>(f)|f ∈ I} is the set of initial monomials of I. A
monomial xα is a standard monomial of I with respect to > if xα /∈ in>(I).
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If y ∈ V(I), then monomial orders can naturally be extended to Dy[I]. In particular,
set ∂α > ∂β if xα > xβ and

in>(Dy[I]) = {in>(∂) | ∂ ∈ Dy[I]}.

If y is isolated with multI(y) = m and if > is a reverse graded monomial order then, by
the first part of Theorem 3.1 of [8], we have | in>(Dy[I])| = dimC(Dy[I]) = m.

If B = {∂1, . . . , ∂m} is a basis for Dy[I], we say that B is a reduced dual basis with
respect to > if no two basis elements have the same initial terms, that is, in>(∂i) 6=
in>(∂j) for i 6= j. It is easy to see that given a monomial ordering >, any dual basis can
be made into a reduced dual basis with respect to >. In particular, if B is a reduced
dual basis, then in>(B) = {in>(∂i) | i = 1, . . . ,m} consists of m differential functionals
and in>(Dy[I]) = in>(B).

The standard monomials relate to the initial terms of a dual space. The opposite
monomial ordering of >, denoted �, is defined by

xα � xβ if and only if xβ > xα.

The second part of Theorem 3.1 of [8] provides the following relationship.

Proposition 4 (Theorem 3.1 of [8]). Let I be an ideal such that V(I) = {y}. If > and
� are opposite monomial orderings, then the initial terms of Dy[I] with respect to � is
the set of standard monomials for I with respect to >. That is,

in�(Dy[I]) = {∂α[y] | xα /∈ in>(I)}.

1.3 Hilbert functions

The following information contains only the necessary information regarding Hilbert
functions and the index of regularity for this article. This information, along with
expanded details, can be found in [3].

Recall that a graded monomial order is a monomial order, >, that respects monomial
multiplication and satisfies |α| > |β| =⇒ xα > xβ. Its opposite ordering, �, is a
reverse graded monomial ordering (i.e. a monomial order, �, that respects monomial
multiplication and satisfies |β| > |α| =⇒ xα � xβ). Unless otherwise stated, for
the rest of this article, when dealing with polynomials, we will only consider graded
monomial orderings and when dealing with differentials, we will only consider reverse
graded monomial orderings.

The degree of a polynomial with respect to a monomial ordering is the total degree
of its initial monomial. Over the set of graded monomial orderings, the degree of a
polynomial is invariant. That is, if >1 and >2 are any two graded monomial orderings,
then for any polynomial f , deg(in>1(f)) = deg(in>2(f)).

Let R = C[x1, . . . , xN ]. For t ∈ Z≥0, let R≤t denote the finite-dimensional C-vector
space of polynomials of degree ≤ t. For an ideal I ⊂ R, define

I≤t = I ∩R≤t.
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The affine Hilbert function of I is HI(t) = dimC I≤t and the affine Hilbert function of
R/I is

HR/I(t) = dimC C[x1, . . . , xN ]≤t − dimC I≤t.

The following proposition of Macaulay [9] provides a relationship between standard
monomials and the Hilbert function for a graded monomial ordering.

Proposition 5. Let I ⊂ R be an ideal and let > be a graded monomial ordering. Then
for all t, HR/I(t) = HR/〈in>(I)〉(t). In particular, HR/I(t) is the number of standard
monomials of I that are of degree ≤ t.

For any ideal I, HR/I(t) agrees with a polynomial function in t for t� 0. The (affine)
Hilbert polynomial of R/I is the polynomial HPR/I where, for t � 0, HPR/I(t) =
HR/I(t). The index of regularity of R/I is the minimum t0 ≥ 0 such that HR/I(t) =
HPR/I(t) for all t ≥ t0.

Suppose that V(I) is zero dimensional and t0 is the index of regularity of R/I. Let
ht = HR/I(t). Then

1 = h0 < h1 < · · · < ht0 = ht0+1 = ht0+2 = · · · .

In particular, the index of regularity of R/I is the minimum t0 ≥ 0 such that ht0 = ht0+1.
Since ht is the number of standard monomials of I that are of degree at most t, the
index of regularity of R/I is the maximum degree of the standard monomials. When
R/I is a finite dimensional vector space, we can characterize its Hilbert function by its
values HR/I = {h0, h1, h2, . . .} remembering that ht0 = ht0+1 =⇒ ht0+1 = ht0+2.

1.4 Basic example

Consider the ideal I = 〈x1 − x2
2, x

2
1〉 where V(I) = {(0, 0)}. The set

B = {∂(0,0)[0], ∂(0,1)[0], ∂(1,0)[0] + ∂(0,2)[0], ∂(1,1)[0] + ∂(0,3)[0]}

is a basis for D0[I]. Written more explicitly,

B = {∂1[0], ∂x2 [0], ∂x1 [0] + ∂x2
2
[0], ∂x1x2 [0] + ∂x3

2
[0]}.

Let > be the graded lexicographic monomial ordering defined by x2 > x1 and � be
the opposite monomial ordering. That is, for the monomials of degree ≤ 3, we have

x3
2 > x2

2x1 > x2x
2
1 > x3

1 > x2
2 > x2x1 > x2

1 > x2 > x1 > 1 and
1 � x1 � x2 � x2

1 � x1x2 � x2
2 � x3

1 � x2
1x2 � x1x

2
2 � x3

2.

It is easy to verify that S = {1, x1, x2, x1x2} is the set of standard monomials of I
with respect to >. In particular, HR/I = {1, 3, 4, 4, . . . } and the index of regularity is
2. Since B is a reduced dual basis with respect to �, we have

in�(D0[I]) = in�(B) = {∂1[0], ∂x1 [0], ∂x2 [0], ∂x1x2 [0]}
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which corresponds to S, as required by Proposition 4.
Consider the array

1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

∂1[0] 1 0 0 0 0 0 0 0 0 0
∂x2 [0] 0 0 1 0 0 0 0 0 0 0

∂x1 [0] + ∂x2
2
[0] 0 1 0 0 0 1 0 0 0 0

∂x1x2 [0] + ∂x3
2
[0] 0 0 0 0 1 0 0 0 0 1

.

The matrices A0(0), A1(0), A2(0), and A3(0) correspond to the first, the first 3 columns,
the first 6 columns, and all 10 columns of this array, respectively, which have rank 1, 3, 4,
and 4, respectively. Moreover, the pivot columns of Ak(0) correspond to the monomials
in S of degree at most k. Section 2 shows that this is not a coincidence.

2 The algorithm

Let I ⊂ C[x1, . . . , xN ] be an ideal and Y = {y1, . . . , y`} ⊂ V(I) be a collection of isolated
points. Let myi be the maximal ideal of yi. Let Pyi be the myi-primary component of I
and define

J =
⋂̀
i=1

Pyi . (2)

Clearly, DY [I] = DY [J ]. The remainder of this section describes an algorithm and the
underlying theory for computing the Hilbert function, standard monomials, and index
of regularity for J . The input for the algorithm is a numerical approximation for each
yi and generators for the ideal I.

Theorem 7 is a key result which supports the computations performed in the algo-
rithm isolatedHilbertFunction. Before stating and proving Theorem 7, we will need
the following lemma.

Lemma 6. Let R = C[x1, . . . , xN ]. Let I ⊂ R be an ideal and let Y = {y1, . . . , y`} ⊂
V(I) be a collection of isolated points in the variety defined by I. Let J be the ideal
consisting of the intersection of the myi-primary components of I (as in Equation 2).
Let g ∈ R. If ∂(g) = 0 for all ∂ ∈ DY [I] = DY [J ], then g ∈ J .

Proof. Let Pyi denote the myi-primary component of I and let J = ∩`i=1Pyi . If g /∈ J ,
then there exists an i ∈ {1, . . . , `} such that g /∈ Pyi . Let > be any graded monomial
ordering and � be its opposite monomial ordering. The standard monomials of Pyi are
a basis for the C-vector space R/Pyi . Since g /∈ Ii, the image h of g in R/Pyi is non-zero
and can be expressed in terms of the standard monomials of Pyi . In this way, we can
write g = h+F where F ∈ Pyi and every monomial of h is a standard monomial of Pyi .
In particular, we can assume in>(h) /∈ in>(Pyi).

Let xα = in>(h). By Proposition 4, there exists a ∂ ∈ Dyi [Pyi ] such that in�(∂) =
∂α[yi]. Since g = h+ F , F ∈ Pyi , and ∂ ∈ Dyi [Pyi ], we can conclude that ∂(g) = ∂(h).
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Let cα be the coefficient of xα in h and let dα be the coefficient of ∂α[yi] in ∂. Since >
and � are opposite orderings, ∂(h) = cαdα 6= 0. We conclude that ∂(g) 6= 0.

Since yi ⊂ Y and J ⊂ Pyi , we have that Dyi [Pyi ] ⊂ DY [J ]. Therefore, ∂ ∈ DY [J ]
with ∂(g) 6= 0.

We are now ready to prove the main theorem regarding the standard monomials,
Hilbert function, and index of regularity of J .

Theorem 7. Let R = C[x1, . . . , xN ], let I ⊂ R be an ideal, let Y = {y1, . . . , y`} ⊂ V(I)
where each yi is isolated, and let J be the ideal defined by Equation 2. Let > be a graded
monomial ordering and � be its opposite monomial ordering. Let B be a basis of DY [I].
For each k ≥ 0, let Ak(0) be the matrix defined by Equation 1 with respect to B and
�. Then, the pivot columns of Ak(0) correspond to the standard monomials of J , with
respect to >, of degree at most k. In particular, HR/J(k) = rank(Ak(0)) and the index
of regularity of R/J is the minimum k0 ≥ 0 such that rank(Ak0(0)) = rank(Ak0+1(0)).

Proof. Fix k ≥ 0 and order the q =
(
N+k
k

)
monomials of degree ≤ k with respect to �,

that is,
1 = xα1 � xα2 � · · · � xαq .

Suppose that the jth column of Ak(0) is a pivot column. This means that there
exists a ∂ ∈ DY [I] = DY [J ] such that ∂(xβ) = 0 when xβ � xαj and ∂(xαj ) 6= 0.
For any g ∈ J with in>(g) = xαj , since > and � are opposite orderings, ∂(g) can be
computed using the leading terms of ∂ and g. In particular, ∂(g) 6= 0 which is not
possible. Thus, xαj is a standard monomial of J with respect to >.

Suppose that xαj is a standard monomial of J with respect to >. If the jth column
of Ak(0) is not a pivot column, then this column is the linear span of the first j − 1
columns. That is, there exists c1, . . . , cj−1 ∈ C such that

Ak(0)j =
j−1∑
p=1

cpAk(0)p

where Ak(0)r is the rth column of Ak(0). Define g = xαj −
∑j−1

p=1 bpx
αp . By construc-

tion, ∂(g) = 0 for all ∂ ∈ DY [J ]. Lemma 6 yields g ∈ J which is not possible since
in>(g) = xαj .

The last statement of the theorem follows directly from the first statement and
Proposition 5.

The following algorithm to compute the standard monomials, Hilbert function, and
index of regularity is justified by Theorem 7. A numerical dual basis may be computed
using either [4] or [13].

Procedure (S, reg,H) = isolatedHilbertFunction(f, Y,>)
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Input A finite set of polynomials f ⊂ C[x1, . . . , xN ], a set Y = {y1, . . . , y`} of numer-
ical approximations of distinct isolated solutions of f , and a graded monomial
ordering >.

Output The set of standard monomials S with respect to > for the ideal J as defined
in Equation 2 where I = (f), the index of regularity reg, and the vector H
corresponding to the Hilbert function of R/J up to order reg.

Begin

1. Construct the opposite monomial ordering � from >.

2. Construct a basis Bi for each Dyi [I].

3. Set B :=
⋃
iBi, a basis of DY [I] = DY [J ], and P := |B|.

4. Set H0 := 1 and k := 0.

5. do

(a) Set k := k + 1.
(b) Construct Ak(0) from B and �.
(c) Set Hk := rank(Ak(0)).

while Hk < P .

6. Set reg := k and S := set of monomials corresponding to the pivot columns
of Ak(0).

Remark 8. The Hilbert function, index of regularity, and standard monomials for
√
J

can be computed using isolatedHilbertFunction by only utilizing the identity differ-
ential functionals at each yi rather than a basis for Dyi [I]. This simplification reduces
the matrix Ak(0) to the degree k Veronese embedding of the points.

3 Implementation details

Since the numerical computation of a dual basis at an isolated point was discussed in
detail in [1, 4, 13], we will focus on the computations regarding the matrix Ak(0) defined
in Equation 1. The two main concerns regarding Ak(0) is the ill-conditioning arising
from the use of a monomial basis and the growth in the number of columns, which are
addressed in Sections 3.1 and 3.2, respectively.

The ideas presented in the following sections are demonstrated using the polynomial
system arising from the nine-point path synthesis problem [10]. We setup the polynomial
system F9 using the nine points of Problem 3 listed in Table 2 of [10] (see also [6, § 5.2])
which has 8652 isolated nonsingular solutions. We took Y9 to be 8652 points in C12,
each being an approximation within 10−75 of a distinct isolated nonsingular solution.
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k size of Ak(0) σmax(Ak(0))
After preconditioning

σmax rank σrank σrank+1

1 8652× 13 7.8 · 104 60.4 13 10.1 −−
2 8652× 91 2.9 · 109 46.6 87 0.58 2.2 · 10−14

3 8652× 455 1.1 · 1014 38.7 403 0.052 1.3 · 10−14

4 8652× 1820 3.9 · 1018 33.4 1454 0.025 1.2 · 10−14

5 8652× 6188 1.3 · 1023 29.6 4342 5.3 · 10−5 2.4 · 10−14

6 8652× 18564 4.1 · 1027 26.8 8652 7.2 · 10−9 −−
7 8652× 50338 1.3 · 1032 24.8 8652 1.4 · 10−7 −−

Table 1: Data for the nine-point path synthesis problem

3.1 Numerical concerns

There are two main numerical concerns with isolatedHilbertFunction, namely the
accuracy of the input data and the ill-conditioning of using a monomial basis in Ak(0).
We note that if the set of points Y used in isolatedHilbertFunction are exact so-
lutions, then all of the computations can be performed exactly. When the points are
numerical approximations, care must be taken to maintain numerical integrity. Since
each yi is an approximation of an isolated solution, using an approximate dual basis
with a simple modification of the deflation algorithm of [8], one can create a polynomial
system which has a nonsingular isolated solution corresponding to yi and a basis for
Dyi [I]. By using Newton’s method on this deflated system, the point yi and a basis for
Dyi [I] can be computed to arbitrary accuracy. One can then rerun isolatedHilbert-
Function using the more accurate solutions and higher precision to increase the security
of the numerical methods.

Due to the ill-conditioning arising from using a monomial basis, the precision one
must use to properly determine the rank of Ak(0) may be prohibitively large. For
example, the third column of Table 1 presents the largest singular value (i.e., 2-norm)
of the matrix Ak(0) for the polynomial system F9 and points Y9. In particular, reliable
rank determination, especially for k ≥ 3, would require the use of higher precision.

We can overcome much of the ill-conditioning by using a preconditioner, namely
scaling each row to have unit norm. By interpreting each row of Ak(0) as a vector in a
projective space, this preconditioner is equivalent to choosing a different representative
of the same point in projective space. The last four columns of Table 1 show that after
preconditioning, we can now reliably use double precision to determine the ranks.

3.2 Efficiency improvements

The number of columns of the matrix Ak(0) is the dimension of C[x1, . . . , xN ]≤k, namely(
N+k
k

)
, which grows rapidly as k increases. For k ≥ 2, we can use information already

computed from Ak−1(0) to control the growth on the number of columns of Ak(0).
Let Bk(0) be the columns of Ak(0) which correspond to the monomials of degree k,
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that is, we can write
Ak(0) =

[
Ak−1(0) Bk(0)

]
.

Since the pivot columns of Ak−1(0) have already been computed, the first reduction
is the removal of the nonpivot columns of Ak−1(0). Instead of simply removing the
nonpivot columns from Ak−1(0), for improved numerics, one can replace Ak−1(0) with
a matrix, say Âk−1(0), whose columns form an orthonormal basis of the linear span of
the columns of Ak−1(0), which is the linear span of the pivot columns of Ak−1(0).

The second reduction is based on algebra. In particular, if xα is not a standard
monomial, then, for any β ∈ (Z≥0)N , xα+β is also not a standard monomial. Let Sj
denote the set of standard monomials of degree at most j and suppose xα ∈ Sk. For
every β ∈ (Z≥0)N such that βi ≤ αi, we must have xβ ∈ S|β| ⊂ Sk. That is, given Sk,
one can easily determine a set Ŝk+1 such that Sk+1 ⊂ Ŝk+1. Let B̂k(0) consist of the
columns of Bk(0) which correspond to the monomials in Ŝk ordered with respect to �.
We know that the pivot columns of Ak(0) are the pivot columns of Ak−1(0) and the
columns of B̂k(0) which are pivot columns of the matrix[

Âk−1(0) B̂k(0)
]
.

For example, consider the four nonpivot columns of A2(0) for the polynomial system
F9 and points Y9. These columns correspond to the monomials ax̂, âx, bŷ, and b̂y which
arise from the four quadratic polynomials in F9, namely

n− ax̂, n̂− âx, m− bŷ, and m̂− b̂y.

Using only these four monomials, we can immediately remove 13% (48 out of 364) of
the columns of B3(0), 22% (306 out of 1365) of the columns of B4(0), 32% (1384 out of
4368) of the columns of B5(0), 40% (4996 out of 12376) of the columns of B6(0), and
48% (15336 out of 31824) of the columns of B7(0).

Since the columns of Âk−1(0) are orthonormal, the third reduction constructs a
matrix Qk−1 such that

[
Âk−1(0) Qk−1

]
is unitary. We then have

rankAk(0) = rank Âk−1(0) + rankQ∗k−1 · B̂k(0) = rankAk−1(0) + rankQ∗k−1 · B̂k(0)

where Q∗k−1 is the Hermitian adjoint, i.e., conjugate transpose, of Qk−1. Due to the
added cost of computing Qk−1, this reduction is only beneficial when the number of
columns of Qk−1, which is the difference between the number of rows and the rank of
Âk−1(0), is small.

4 Examples

The following examples discussed in this section were run on an Opteron 250 processor
running 64-bit Linux. We used the graded lexicographic monomial ordering > defined
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Hilbert function index of reg. standard monomials
Ŷ1 1, 2, 2, . . . 1 1, x1

Ŷ2 1, 3, 4, 4, . . . 2 1, x1, x3, x1x3

Ŷ3 1, 4, 6, 6, . . . 2 1, x1, x2, x3, x1x2, x1x3

Ŷ4 1, 4, 7, 7, . . . 2 1, x1, x2, x3, x1x2, x1x3, x2x3

Ŷ5 1, 4, 7, 8, 8, . . . 3 1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3

Table 2: Computing the Hilbert function, index of regularity, and standard monomials
for I at Ŷi

by xN > xN−1 > · · · > x1 so that its opposite monomial ordering � has

1 � x1 � x2 � · · · � xN � x2
1 � x1x2 � . . . .

Though exact solutions are known for the following examples (either by hand or using
symbolic software), these examples utilized numerical approximations of the solutions
generated by Bertini [2] with the matrix computations performed using Matlab.

4.1 A collection of isolated solutions

Consider I = 〈x2
1 + x2 + x3 − 1, x1 + x2

2 + x3 − 1, x1 + x2 + x2
3 − 1〉 ⊂ C[x1, x2, x3] from

[11]. This ideal has the following 5 isolated solutions:

y1 = (1, 0, 0) , y2 = (0, 1, 0) , y3 = (0, 0, 1) ,

y4 =
(
−1−

√
2,−1−

√
2,−1−

√
2
)
, and y5 =

(√
2− 1,

√
2− 1,

√
2− 1

)
.

Solutions y1, y2, and y3 have multiplicity 2 while y4 and y5 have multiplicity 1. The
points ŷi that were used approximated yi to 10 digits. Table 2 displays the Hilbert
function, index of regularity, and standard monomials using isolatedHilbertFunc-
tion with Ŷi = {ŷ1, . . . , ŷi}, i = 1, . . . , 5. All of these computations, including the
computation of Ŷi, took less than a second.

4.2 A system with isolated and positive-dimensional solution compo-
nents

Consider

I = 〈(x2 − x2
1)(x1 − 2)2, (x1x2 − x3)(x2 − 2)2, (x2

2 − x1x3)(x3 − 2)〉 ⊂ C[x1, x2, x3].

This ideal has a one-dimensional solution component, namely the twisted cubic C =
{(t, t2, t3) | t ∈ C}, and the following 5 isolated solutions:

a1 = (2, 1, 2) , a2 =
(√

2, 2, 2
)
, a3 =

(
−
√

2, 2, 2
)
,

a4 = (2, 0, 0) , and a5 = (2, 2, 2) .
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Hilbert function index of reg.
ideal 1, 4, 10, 15, 16, 16, . . . 4

radical ideal 1, 4, 5, 5 . . . 2

Table 3: Computing the Hilbert function and index of regularity for the ideal and its
radical for I at Â

n Hilbert function index of reg. time
3 1, 4, 9, 12, 12, . . . 3 < 1s
4 1, 5, 15, 31, 45, 48, 48, . . . 5 13s
5 1, 6, 20, 45, 70, 80, 80, . . . 5 1m10s
6 1, 7, 27, 71, 131, 177, 192, 192, . . . 6 32m48s

Table 4: Computing the Hilbert function and index of regularity for In at Ŷn

Solutions a1, . . . , a4 have multiplicity 2 and a5 has multiplicity 8. Let Â = {â1, . . . , â5}
where âi is a 10 digit approximation to ai. Table 3 displays the Hilbert function and
index of regularity using isolatedHilbertFunction using the generators for the ideal
I with Â as well as its radical. All of these computations, including the computation of
Â, took less than a second.

4.3 A sequence of systems

For each n ≥ 3, consider a generalization of the mth191 system of Bernd Sturmfels
presented in [4, 7], namely In = 〈f1, . . . , fn〉 ⊂ C[x1, . . . , xn] where

fi = x3
i − x2

i +
n∑
j=1

x2
j − 1.

Let Yn = {e1, . . . , en} ⊂ Cn be the set of standard basis vectors of Cn and Ŷn =
{ê1, . . . , ên} where each êi is a 12 digit approximation to ei. For n = 3, 4, 5, 6, the
multiplicity of each ei is 4, 12, 16, and 32, respectively. Table 4 displays the Hilbert
function and index of regularity using isolatedHilbertFunction for the ideal In at Ŷn
for 3 ≤ n ≤ 6. We note that less than one percent of the time was spent actually
performing rank computations. In particular, for n = 6, approximately 22% of the time
was spent computing dual bases using an implementation of [4] and approximately 77%
of the time was spent by Matlab constructing the matrices Ak(0) from the points and
dual bases.

Table 5 displays the Hilbert function and index of regularity using isolatedHilbert-
Function for

√
In for 3 ≤ n ≤ 6 using the points in V(In) computed by Bertini to 12

digits. For n = 6, Bertini took 27 seconds to compute the points with isolated-
HilbertFunction taking 85 seconds. Of this 85 seconds, roughly 60 seconds was used
to construct the matrices Ak(0) and roughly 25 seconds was used to perform the rank
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n Hilbert function index of reg. time
3 1, 4, 10, 16, 18, 18, . . . 4 1s
4 1, 5, 15, 28, 36, 37, 37, . . . 5 4s
5 1, 6, 21, 51, 96, 141, 162, 167, 168, 168, . . . 8 11s
6 1, 7, 28, 78, 168, 294, 425, 506, 536, 542, 543, 543, . . . 10 1m52s

Table 5: Computing the Hilbert function and index of regularity for
√
In

computations. We note that using Macualay2 v1.3.1 [5], both the primaryDecompo-
sition and radical algorithms working over Q failed to terminate within 24 hours for
both I5 and I6.

5 Concluding remarks

As before, let Y = {y1, . . . , y`} ⊂ CN , let myi denote the maximal ideal of yi and
let Pyi denote an myi-primary ideal. Let J = ∩li=1Pyi , let L be an ideal such that
V(L) ∩ V(J) = ∅, and let I = J ∩ L. This paper presents an algorithm, isolated-
HilbertFunction, to compute the Hilbert function of R/J from a set of generators for
I and a set of numerical approximations Ŷ = {ŷ1, . . . , ŷl} ⊂ CN to the elements in Y .
There are several algorithms that follow, in a natural manner, from isolatedHilbert-
Function (and modifications).

One of the more immediate applications is a direct algorithm to determine if a set
of points satisfies the Uniform Position Property. A set of points Y = {y1, . . . , y`} ⊂
CN has the Uniform Position Property if the Hilbert function of any subset Y ′ of
Y only depends on the cardinality of Y ′. This property can be checked by iterating
isolatedHilbertFunction over the power set of Y . While the power set of Y has
cardinality 2l, the ability to parallelize the computation suggests it is feasible on sets
consisting of fewer than 30 points.

Examples were presented involving the Hilbert function of R/J and of R/
√
J . The

approach for computing the Hilbert function of R/
√
J can be generalized as follows. Let

v = (v1, . . . , vl) ∈ (Z≥0)l and let J(v) = ∩li=1(Pyi ,mvi
yi). The Hilbert function of R/

√
J

was computed by utilizing only the identity differential functionals at each yi rather
than a basis for Dyi [I]. This corresponds to computing R/J(v) when v = (1, 1, . . . , 1).
In general, by utilizing a subset, dependent on vi, of the differential functionals at each
yi, the Hilbert function of R/J(v) can be computed for any v. When all the entries
of v are sufficiently large, then J(v) = J . When some of the entries of v are equal
to zero, then the corresponding points are excluded. The scheme defined by J(v) is
a subscheme of the scheme defined by J . The ability to make such a broad range of
direct computations on subschemes of zero-schemes is due to the ability to numerically
decompose varieties over C, a feature which is often difficult in an exact setting.

Finally, it is important to note the limits of such computations. As part of isolat-
edHilbertFunction, reliable rank computations must be made on the matrices Ak(0).
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These matrices can become very large and have numerical entries. The limit of reliable
rank computations on such matrices is not completely clear. Such a limit must depend
on the minimum of the number of rows and columns as well as the relationship between
the nonzero singular values and singular values which should be zero. Since the number
of rows of Ak(0) is constant, we have a constant bound on the minimum of the number
of rows and columns. For example, Table 1 shows that successful computations can
be made on a matrix with approximately 8,600 rows and 50,000 columns. Computa-
tions involving a matrix where the minimum of the number of rows and columns is
30,000 would require a tremendous amount of patience and memory. Matrices where
the minimum is more than 100,000 are currently out of reach.
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