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Abstract

The algebraic operations of addition, intersection, elimination, and
quotient are fundamental to computational algebraic geometry. This
article describes how to perform these operations on homogeneous ide-
als using Macaulay dual spaces. If F is a polynomial system with
finitely many solutions, these operations are used to compute the ho-
mogenization of the ideal generated by F which, in particular, yields
the number of solutions, counting multiplicity, of F . These computa-
tions can be performed either using exact or floating point arithmetic
and are naturally parallelizable.
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1 Introduction

If I, J ⊂ C[x0, x1, . . . , xN ] are homogeneous ideals and 1 ≤ ` ≤ N , four basic
algebraic computations are I+J , I∩J , I∩C[x0, x1, . . . , x`], and I : J . When
the coefficients of the generators of I and J are known exactly, standard
methods based on Gröbner bases can be used to perform these computations.
If the generators are only known approximately, which is common in many
applications, additional steps are needed in order to maintain numerical
integrity when performing these algebraic computations [11, 13].

This article uses Macaulay dual spaces, which are the modern form of
inverse systems [7], to perform these algebraic computations. This approach
is amenable to numerical approximations. In particular, this article com-
putes (I + J)d, (I ∩ J)d, (I ∩ C[x0, x1, . . . , x`])d, and (I : J)d using dual
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spaces where Kd is the vector space of the homogeneous elements of degree
d in K. Under mild assumptions, these algorithms are polynomial in N .

To compute the solutions to a polynomial system F ⊂ C[x1, . . . , xN ]
using numerical algebraic geometry, one typically homogenizes each polyno-
mial in F and solves the resulting homogenized system on a random coordi-
nate patch. This is done to avoid tracking solution paths which have infinite
length [8]. By saturating this resulting homogenized system with respect to
the homogenizing variable, the number of solutions of F , counting multi-
plicity, can be computed. Saturation is performed by repeatedly computing
quotient ideals. The ascending chain condition yields that this sequence
of quotient ideals can only have finitely many strict containments. A dual
space termination criterion is presented to determine when the saturation
has been computed.

The rest of this section provides the necessary background information
regarding algebra and Macaulay dual spaces. Section 2 describes the com-
putation of (I + J)d, (I ∩ J)d, (I ∩ C[x0, x1, . . . , x`])d, and (I : J)d using
dual spaces while Section 3 describes an algorithm which counts the num-
ber of solutions of zero-dimensional polynomial systems. Section 4 presents
examples to demonstrate the algorithms developed in this article.

1.1 Algebra overview

This section, which follows [5], presents an overview of the required con-
cepts from algebra. The following definition describes common operations
performed on ideals.

Definition 1. Let I, J ⊂ C[x1, . . . , xN ] be ideals and f ∈ C[x1, . . . , xN ].
Define the following ideals

1. (sum) I + J = {a+ b | a ∈ I, b ∈ J},

2. (intersection) I ∩ J = {a | a ∈ I, a ∈ J},

3. (product) IJ =
{∑k

i=1 aibi

∣∣∣ ai ∈ I, bi ∈ J, k > 0
}

,

4. (quotient) I : f = {a | af ∈ I},

5. (quotient) I : J = {a | aJ ⊂ I},

6. (saturation) I : f∞ = {a | afm ∈ I for some m > 0}, and

7. (saturation) I : J∞ = {a | aJm ⊂ I for some m > 0}.
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The following proposition describes one way to compute quotients and
saturations.

Proposition 2. Let I, J ⊂ C[x1, . . . , xN ] be ideals.

1. If J = 〈g1, . . . , gk〉, then I : J =
⋂k
i=1(I : gi).

2. For any ` > 0, I : J `+1 = (I : J `) : J .

3. There exists p > 0 such that I : Jp = I : J ` for all ` ≥ p.

4. For any p ≥ 0, I : Jp = I : Jp+1 if and only if I : Jp = I : J∞.

This proposition is the basis of an algorithm for computing saturations.
In particular, Items 3 and 4 show that such an algorithm must terminate
and provide a stopping criterion.

Let k ≥ 0 and C[x1, . . . , xN ]≤k be the vector space of polynomials of
degree at most k. For any ideal I ⊂ C[x1, . . . , xN ], define

I≤k = I ∩ C[x1, . . . , xN ]≤k.

The affine Hilbert function of I is the function HI : Z≥0 → Z≥0 defined by

HI(k) = dimC C[x1, . . . , xN ]≤k − dimC I≤k.

Similarly, denote C[x0, x1, . . . , xN ]k as the space of homogeneous poly-
nomials of degree k. For a homogeneous ideal J ⊂ C[x0, x1, . . . , xN ], define

Jk = J ∩ C[x0, x1, . . . , xN ]k.

The projective Hilbert function of J is the function Hp
J : Z≥0 → Z≥0 defined

by
Hp
J(k) = dimC C[x0, x1, . . . , xN ]k − dimC Jk.

The following proposition relates the Hilbert function of two ideals.

Proposition 3. If I, J ⊂ C[x1, . . . , xN ] are ideals and k ≥ 0,

HI∩J(k) = HI(k) +HJ(k)−HI+J(k).

Similarly, if I, J ⊂ C[x0, x1, . . . , xN ] are homogeneous ideals and k ≥ 0,

Hp
I∩J(k) = Hp

I (k) +Hp
J(k)−Hp

I+J(k).
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If I ⊂ C[x1, . . . , xN ] is an ideal and J ⊂ C[x0, x1, . . . , xN ] is a homoge-
neous ideal, the functions HI and Hp

J eventually become a polynomial. That
is, there exists polynomials HPI and HP pJ , called the affine Hilbert polyno-
mial of I and the projective Hilbert polynomial of J , respectively, such that
HI(k) = HPI(k) and Hp

J(k) = HP pJ (k) for k � 0. The index of regularity is
the minimum k0 ≥ 0 such that the Hilbert function and Hilbert polynomial
agree for all k ≥ k0.

If I is a zero-dimensional ideal and k0 is the index of regularity, then
HI(k0) = HI(k) = HPI(k) for all k ≥ k0. In particular, the Hilbert poly-
nomial is constant and is equal to the number of solutions of I, counting
multiplicity. Conversely, if there exists k ≥ 0 such that HI(k) = HI(k + 1),
then I is a zero-dimensional ideal with HI(k) = HI(`) = HPI(`) for all
` ≥ k. Similarly statements hold for homogeneous ideals as well. The fol-
lowing proposition relates the index of regularity to generators of the ideal.

Proposition 4. 1. If I ⊂ C[x1, . . . , xN ] is a zero-dimensional ideal and
r is the index of regularity of I, then 〈I≤r+1〉 = I.

2. If J ⊂ C[x0, x1, . . . , xN ] is a zero-dimensional homogeneous ideal and
r is the index of regularity of J , then 〈J≤r+1〉 = J .

There is a natural relationship between ideals on C[x1, . . . , xN ] and ho-
mogeneous ideals on C[x0, x1, . . . , xN ]. The following definition and propo-
sition emphasize the relevant parts of this relationship.

Definition 5. Let f ∈ C[x1, . . . , xN ] be a polynomial of degree d. The
homogenization of f is the polynomial fh ∈ C[x0, x1, . . . , xN ] where

fh(x0, x1, . . . , xN ) = xd0f

(
x1

x0
, . . . ,

xN
x0

)
.

The homogenization of an ideal I ⊂ C[x1, . . . , xN ] is the homogeneous ideal
Ih ⊂ C[x0, x1, . . . , xN ] where

Ih = 〈fh | f ∈ I〉.

Proposition 6. For any k ≥ 0, HI(k) = Hp
Ih

(k).

In general, the ideal generated by homogenizing the generators of I may
be smaller than Ih. That is, if I = 〈f1, . . . , fn〉, it is possible to have

〈fh1 , . . . , fhn 〉 ( Ih.

The following proposition shows Ih can be computed via saturations.

Proposition 7. Let I = 〈f1, . . . , fn〉 ⊂ C[x1, . . . , xN ] be an ideal. If J =
〈fh1 , . . . , fhn 〉 ⊂ C[x0, x1, . . . , xN ], then Ih = J : x∞0 .

4



1.2 Macaulay dual space overview

Following the notation of [1, 6], for α ∈ (Z≥0)N , define

|α| = α1 + · · ·+ αN , α! = α1!α2! · · ·αN !, and ∂α = 1
α!
∂|α|

∂xα .

For y ∈ CN and g ∈ C[x1, . . . , xN ], the differential functional ∂α[y] is defined
by

∂α[y](g) = (∂αg)(y).

When it is clear from the context, ∂α[y] may be written as ∂α.
For y ∈ CN , define Dy = spanC

{
∂α[y] | α ∈ (Z≥0)N

}
as the vector

space of differential functionals at y. If I ⊂ C[x1, . . . , xN ] is an ideal, the
Macaulay dual space, or simply dual space, of I at y is the set of all differential
functionals at y that vanish on I, namely

Dy(I) = {∂ ∈ Dy | ∂(g) = 0 for all g ∈ I}. (1)

A dual basis is a subset of a dual space that forms a C-basis.
For j = 1, . . . , N , Stetter and Thallinger [12, 15] construct Φj : Dy → Dy

to be the linear operator defined by

Φj(∂α) =

{
0 if αj = 0,
∂α−ej otherwise,

(2)

where ej is the jth standard basis vector. The following proposition uses
these linear operators to compute dual spaces.

Proposition 8. Let I = 〈f1, . . . , fn〉 be an ideal in C[x1, . . . , xN ], y ∈ CN ,
and ∂ ∈ Dy. Then, ∂ ∈ Dy(I) if and only if ∂(fi) = 0 for i = 1, . . . , n and
Φj(∂) ∈ Dy(I) for j = 1, . . . , N .

The dual space can be used for a basic ideal membership test. We state
this basic membership test for dual spaces of homogeneous ideals at 0 ∈
CN+1 which will be used to generate a truncated membership in Lemma 11.

Proposition 9. If I ⊂ C[x0, x1, . . . , xN ] is a homogeneous ideal and f ∈
C[x0, x1, . . . , xN ] is a polynomial, then f ∈ I if and only if ∂(f) = 0 for all
∂ ∈ D0(I).

We can extend the natural grading of homogeneous polynomials to dual
spaces. Let I ⊂ C[x0, x1, . . . , xN ] be a homogeneous ideal and, for j ≥ 0,
define

Dj
0 = spanC{∂α[0] | α ∈ (Z≥0)N+1, |α| = j} and Dj

0(I) = Dj
0 ∩D0(I).
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The vector space Dj
0(I) is called the jth order dual space of I. The following

lemma shows that the dual space of homogeneous ideals is generated by the
union of the jth order dual spaces.

Lemma 10. If I ⊂ C[x0, x1 . . . , xN ] is a homogeneous ideal, then

D0(I) = spanC


∞⋃
j=0

Dj
0(I)

 .

Proof. Let ∂ ∈ D0(I) and suppose that f ∈ I is a polynomial of degree d.
We can write ∂ =

∑∞
j=0 ∂j where each ∂j ∈ Dj

0 and f =
∑d

j=0 fj where
each fj ∈ C[x0, x1, . . . , xN ]j . Since I is homogeneous, each fj ∈ I. For any
k ≥ 0, homogeneity yields

∂k(f) = ∂k(fk) = ∂(fk) = 0.

This shows that each ∂j ∈ Dj
0(I) and so D0(I) ⊂ spanC

{⋃∞
j=0D

j
0(I)

}
. The

other inclusion is trivial.

Dual spaces of homogeneous ideals yield a truncated membership test.

Lemma 11. Let I ⊂ C[x0, x1 . . . , xN ] be a homogeneous ideal and f ∈
C[x0, x1, . . . , xN ] be a homogeneous polynomial of degree d. Then, f ∈ I if
and only if ∂(f) = 0 for all ∂ ∈ Dd

0(I).

Proof. Assume that ∂(f) = 0 for all ∂ ∈ Dd
0(I) and let δ ∈ D0(I). By

Lemma 10, we can write δ =
∑∞

j=0 δj where δj ∈ Dj
0(I). Thus, δd(f) = 0

and, for j 6= d, we trivially have δj(f) = 0. Hence, δ(f) = 0 and so f ∈ I
by Proposition 9. The other direction is trivial.

For a homogeneous ideal I ⊂ C[x0, x1, . . . , xN ] and k ≥ 0, define

Annk(Dk
0(I)) = {f ∈ C[x0, x1, . . . , xN ]k | ∂(f) = 0 for all ∂ ∈ Dk

0(I)}.

Lemma 11 shows that Ik = Annk(Dk
0(I)) which immediately yields

Hp
I (k) = dimCD

k
0(I). (3)

Given D ⊂ Dk
0 , the following algorithm computes a C-basis for

Annk(spanCD) ⊂ C[x0, x1, . . . , xN ]k.

Procedure F = Annihilator(k,N,D)
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Input Integers k,N ≥ 0 and a set D ⊂ Dk
0 .

Output A C-basis for Annk(spanCD) ⊂ C[x0, x1, . . . , xN ].

Begin 1. Letm :=
(
N+k
k

)
, and {α1, . . . , αm} = {β ∈ (Z≥0)N+1 | |β| = k}.

2. Let d := dim spanCD, ∂1, . . . , ∂d be a basis for spanCD, and write
∂i =

∑m
j=1 ai,j∂αj .

3. Construct A ∈ Cd×m where Ai,j = ai,j .

4. Let v1, . . . , vm−d be a basis for nullA.

5. For i = 1, . . . ,m− d, define fi :=
∑m

j=1 vi,jx
αj .

Return F := {f1, . . . , fm−d}.

Remark 12. Since ∂1, . . . , ∂d are linearly independent and d ≤ m, A is a
rank d matrix. In particular, the null space of A has dimension m− d.

Proposition 8 implicitly defines a vector space called the closedness sub-
space of I, namely

C0(I) = {∂ ∈ D0 | Φj(∂) ∈ D0(I) for j = 0, . . . , N}.

For j ≥ 0, the vector space Cj0(I) = C0(I) ∩ Dj
0 is called the jth order

closedness subspace of I.
Let I = 〈f1, . . . , fn〉 ⊂ C[x0, x1, . . . , xN ] be a homogeneous ideal. Let

di = deg fi, and upon reordering, we can assume that d1 ≤ d2 ≤ · · · ≤ dn.
For any j ≥ 0, Proposition 8 yields

Dj
0(I) = Cj0(I) ∩ {∂ ∈ Dj

0 | ∂(fi) = 0 for i = 1, . . . , n}
= Cj0(I) ∩ {∂ ∈ Dj

0 | ∂(fi) = 0 if di = j}.

For j < d1, we have Dj
0(I) = Dj

0 = Cj0(I) and, for j > dn, we have Dj
0(I) =

Cj0(I). Under the assumption that min ∅ = max ∅ = 0, define

dmin(I) = min{j ≥ 0 | Dj
0(I) ( Cj0(I)} and

dmax(I) = max{j ≥ 0 | Dj
0(I) ( Cj0(I)}.

Then, I is minimally generated by homogeneous polynomials of degree at
least dmin(I) and at most dmax(I). In particular, in the nondegenerate case,
namely n ≥ 1 and d1 > 0, dmin(I) = d1 and dmax(I) ≤ dn.

This yields the following representation for homogeneous ideals.
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Definition 13. Let I be a homogeneous ideal. For dmin(I) ≤ k ≤ dmax(I),
let Dk be a basis of Dk

0(I). A dual basis representation for I is

ID =
{
dmin(I), dmax(I), Ddmin(I), . . . , Ddmax(I)

}
. (4)

If I and J are homogeneous ideals, it is easy to verify that dmax(I+J) =
max{dmax(I), dmax(J)}. Unfortunately, the degree of the largest generator
for I ∩ J and I : J is not as well behaved.

2 Operations on dual spaces

2.1 Inclusion, sums, and intersections

The following lemma describes the relationships of the dual spaces under
inclusion, sums, and intersections of homogeneous ideals. By Lemma 10, it
is enough to describe the relationship using jth order dual spaces.

Lemma 14. Let I, J ⊂ C[x0, x1, . . . , xN ] be homogeneous ideals.

1. I ⊂ J if and only if, for every j ≥ 0, Dj
0(I) ⊃ Dj

0(J).

2. Dj
0(I + J) = Dj

0(I) ∩Dj
0(J) for every j ≥ 0.

3. Dj
0(I ∩ J) = Dj

0(I) +Dj
0(J) for every j ≥ 0.

Proof. Item 1 follows from Lemma 11 and Item 2 follows from Item 1.
For Item 3, since I∩J ⊂ I, J , we have Dj

0(I)+Dj
0(J) ⊂ Dj

0(I∩J). Since

dimCD
j
0(I ∩ J) = Hp

I∩J(j)
= Hp

I (j) +Hp
J(j)−Hp

I+J(j)

= dimCD
j
0(I) + dimCD

j
0(J)− dimC

(
Dj

0(I) ∩Dj
0(J)

)
= dimC

(
Dj

0(I) +Dj
0(J)

)
,

we know that Dj
0(I) +Dj

0(J) = Dj
0(I ∩ J).

2.2 Elimination

Elimination is a basic operation in algebra which is used in many algorithms
in computational algebra such as solving and implicitization algorithms.
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Given a homogeneous ideal I ⊂ C[x0, x1, . . . , xN ] and 1 ≤ ` ≤ N , we define
the `th eliminant ideal of I as

J` = I ∩ C[x0, x1, . . . , x`] ⊂ C[x0, x1, . . . , x`].

For each j ≥ 0, one may consider (J`)j , that is, the vector space consisting of
the homogeneous polynomials of degree j in J`, as either a vector subspace
of C[x0, x1, . . . , x`]j or C[x0, x1, . . . , xN ]j . The following defines the dual
basis elimination operator and then uses it to show the relationship between
these vector spaces.

Definition 15. For 1 ≤ ` ≤ N and α = (α0, . . . , αN ), define Π` : (Z≥0)N+1 →
(Z≥0)`+1 by

Π`(α) =
{

(α0, . . . , α`) if αi = 0 for i > `,
0 otherwise.

Define the dual basis elimination operator Π` by

Π`

(∑
α

aα∂α

)
=
∑
α

aα∂Π`(α).

Lemma 16. Let I ⊂ C[x0, x1, . . . , xN ] be a homogeneous ideal, 1 ≤ ` ≤ N ,

J` = I ∩ C[x0, x1, . . . , x`] ⊂ C[x0, x1, . . . , x`].

For each j ≥ 0, Dj
0(J`) computed by considering (J`)j as a vector subspace

of C[x0, x1, . . . , x`]j is equal to Π`(D
j
0(J`)) computed by considering (J`)j as

a vector subspace of C[x0, x1, . . . , xN ]j.

Proof. Let D` = Dj
0(J`) where (J`)j ⊂ C[x0, x1, . . . , x`]j and DN = Dj

0(J`)
where (J`)j ⊂ C[x0, x1, . . . , xN ]j .

If ∂ =
∑
|α|=j

aα∂α ∈ D`, clearly δ =
∑
|α|=j

aα∂(α,0) ∈ DN with Π`(δ) = ∂.

If ∂ =
∑
|β|=j

aβ∂β ∈ DN , let

∂1 =
∑
|β|=j

Π`(β)6=0

aβ∂β and ∂2 =
∑
|β|=j

Π`(β)=0

aβ∂β.

Clearly, ∂ = ∂1 + ∂2 and Π`(∂) = Π`(∂1). If f ∈ (J`)j ⊂ C[x0, x1, . . . , x`]j ,
define g(x0, . . . , xN ) = f(x0, . . . , x`). By construction, ∂2(g) = 0 yielding

Π`(∂)(f) = Π`(∂1)(f) = ∂1(g) = ∂(g) = 0.
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The following theorem relates the dual spaces of J` and I.

Theorem 17. If I ⊂ C[x0, x1, . . . , xN ] is a homogeneous ideal, 1 ≤ ` ≤ N ,
and J` = I ∩ C[x0, x1, . . . , x`] ⊂ C[x0, x1, . . . , x`]. Then, for all j ≥ 0,

Dj
0(J`) = Π`(D

j
0(I)).

Proof. Consider (J`)j as a vector subspace of C[x0, x1, . . . , xN ]j . Then,

(J`)j = (I ∩ C[x0, x1, . . . , x`])j = Ij ∩ C[x0, x1, . . . , x`]j .

Since the proof of Lemma 14 only depends upon the vector space structure
rather than the ideal structure, we know that

Dj
0(J`) = Dj

0(I ∩ C[x0, x1, . . . , x`]) = Dj
0(I) +Dj

0(C[x0, x1, . . . , x`]).

Clearly, Π`(D
j
0(C[x0, x1, . . . , x`])) = {0} and thus

Π`(D
j
0(J`)) = Π`(D

j
0(I)).

Lemma 16 completes the proof.

We note that if B is a basis for Dj
0(I), then Π`(B) is a spanning set for

Π`(D
j
0(I)) which could be used to compute a basis if one is needed.

2.3 Quotients

In order to compute the dual space of a quotient ideal, we need to gener-
alize the linear operator Φj defined by Equation 2. For any homogeneous
polynomial g ∈ C[x0, x1, . . . , xN ] and ∂ ∈ D0, let Φg(∂) be the differential
functional in D0 defined by

Φg(∂)(f) = ∂(gf) for every f ∈ C[x0, x1, . . . , xN ]. (5)

Clearly, if a ∈ C, Φa(∂) = a · ∂. Also, if g = g1 + g2 = h1h2, then

Φg = Φg1+g2 = Φg1 + Φg2 and Φg = Φh1h2 = Φh1 ◦ Φh2 = Φh2 ◦ Φh1 .

If g has degree d and j ≥ 0, then Φg

(
Dj+d

0

)
⊂ Dj

0. Additionally, if
|α| = j + d, Leibniz rule yields

Φg(∂α) =
∑
γ≤α
|γ|=d

∂γ(g)∂α−γ . (6)

Equation 6 immediately yields that Φxj is the same map as Φj defined by
Equation 2.

The following lemma relates the dual spaces of I and I ∩ 〈g〉 under Φg.
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Lemma 18. Let I ⊂ C[x0, x1, . . . , xN ] be a homogeneous ideal and g ∈
C[x0, x1, . . . , xN ] be a homogeneous polynomial. Then, for every j ≥ 0,

Φg(D
j
0(〈g〉)) = {0} and Φg(D

j
0(I)) = Φg(D

j
0(I ∩ 〈g〉)).

Proof. Let ∂ ∈ Dj
0(〈g〉). For every f ∈ C[x0, x1, . . . , xN ], gf ∈ 〈g〉 so that

Φg(∂)(f) = ∂(gf) = 0 Hence, Φg(∂) = 0.
Lemma 14 yields

Φg(D
j
0(I ∩ 〈g〉)) = Φg(D

j
0(I) +Dj

0(〈g〉))
= Φg(D

j
0(I)) + Φg(D

j
0(〈g〉))

= Φg(D
j
0(I)).

In order to prove the main theorem regarding dual spaces for quotient
ideals, the existence of a one-sided inverse for Φg is needed when g is a
nonzero homogeneous polynomial. For each j, a one-sided inverse of Φj =
Φxj was constructed by Zeng [16] as the linear operator defined by Ψj(∂β) =
∂β+ej . In particular, Φj ◦Ψj is the identity operator. The following technical
definition constructs such an operator with the remark after the proof of the
lemma showing that this construction generalizes this Ψj operator.

Definition 19. Let g ∈ C[x0, x1, . . . , xN ] be a nonzero homogeneous polyno-
mial of degree d. Define the linear operator Ψg : D0 → D0 as follows. Write
g =

∑
|α|=d gαx

α and let ≺ be the lexicographic ordering on (Z≥0)N+1. Let

α0 = min
≺
{α | |α| = d and gα 6= 0}.

For any β, γ ∈ (Z≥0)N+1 with |γ| − |β| = d, define

G(β, γ) =

{
gγ−β if γ ≥ β,
0 otherwise.

For any n ≥ 0 and β ∈ (Z≥0)N+1 with |β| = n, define

Ψg(∂β) =
∑

|α|=n+d

cα(β)∂α

where

cα(β) =

 1
gα0

(
δ(α− α0, β)−

∑
|γ|=|α|
γ�α

G(α− α0, γ)cγ(β)
)

α ≥ α0,

0 otherwise,

and δ(ζ, ε) is Kronecker’s delta.
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Lemma 20. If g ∈ C[x0, x1, . . . , xN ] is a nonzero homogeneous polynomial,
then Φg ◦ Ψg is the identity operator. In particular, for any n ≥ 0 and
∂ ∈ Dn

0 , Ψg(∂) ∈ Dn+d
0 with Φg(Ψg(∂)) = ∂.

Proof. Fix n ≥ 0 and β ∈ (Z≥0)N+1 with |β| = n. Utilizing the notation
from Definition 19, for any γ ∈ (Z≥0)N+1 with |γ| = n, we claim

δ(γ, β) =
∑

|α|=n+d

G(γ, α)cα(β). (7)

To prove this equation, split the summation as∑
|α|=n+d

G(γ, α)cα(β) =
∑

|α|=n+d
α≺γ+α0

G(γ, α)cα(β)

+G(γ, γ + α0)cγ+α0(β) +
∑

|α|=n+d
α�γ+α0

G(γ, α)cα(β).

Let α be such that |α| = n + d and α ≺ γ + α0. If α 6≥ α0, cα(β) = 0.
Otherwise, we must have G(γ, α) = 0 by construction of α0. In particular,∑

|α|=n+d
α≺γ+α0

G(γ, α)cα(β) = 0.

Since G(γ, γ + α0) = gα0 , the definition of cγ+α0(β) yields

G(γ, γ + α0)cγ+α0(β) = δ(γ, β)−
∑

|α|=n+d
α�γ+α0

G(γ, α)cα(β).

Equation 7 now follows immediately.
The following computation using Equations 6 and 7 completes the lemma:

Φg(Ψg(∂β)) =
∑

|α|=n+d

cα(β)Φg(∂α) =
∑

|α|=n+d

cα(β)
∑
γ≤α

∂α−γ(g)∂γ

=
∑

|α|=n+d

cα(β)
∑
|γ|=n

G(γ, α)∂γ

=
∑
|γ|=n

 ∑
|α|=n+d

G(γ, α)cα(β)

 ∂γ

=
∑
|γ|=n

δ(γ, β)∂γ = ∂β.
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Remark 21. Consider the linear operator Ψxj . We have α0 = ej and
gα = δ(α, ej). Fix α, β ∈ (Z≥0)N+1 with |α| = n + 1 and |β| = n. Since
α 6≥ ej implies cα(β) = 0, we assume that α ≥ ej. For any γ ∈ (Z≥0)N+1

with |γ| = n+ 1, we have G(α− ej , γ) = δ(α, γ). Hence,∑
|γ|=|α|
γ�α

G(α− ej , γ)cγ(β) = 0.

Thus, cα(β) = δ(α − ej , β) which yields cβ+ej (β) = 1 and cα(β) = 0 other-
wise. In particular, Ψxj (∂β) = ∂β+ej .

The following theorem describes the dual space of the quotient of two
homogeneous ideals.

Theorem 22. Let I ⊂ C[x0, x1, . . . , xN ] be a homogeneous ideal.

1. If g ∈ C[x0, x1, . . . , xN ] is a homogeneous polynomial of degree d, then,
for each j ≥ 0,

Dj
0(I : g) = Φg

(
Dj+d

0 (I)
)

= Φg

(
Dj+d

0 (I ∩ 〈g〉)
)
. (8)

2. If g1, . . . , gk ∈ C[x0, x1, . . . , xN ] are homogeneous polynomials with
di = deg gi and J = 〈g1, . . . , gk〉, then, for each j ≥ 0,

Dj
0(I : J) =

k∑
i=1

Dj
0(I : gi) =

k∑
i=1

Φgi

(
Dj+di

0 (I)
)
.

Proof. Since I : 0 = C[x0, x1, . . . , xN ] and Φ0 = 0, we know that

D0(I : 0) = Φg(D0(I)) = Φg(D0(I ∩ 〈g〉)) = {0}.

Thus, we can assume that g 6= 0.
Let ∂ ∈ Dj+d

0 (I). For any f ∈ I : g, we know Φg(∂)(f) = ∂(gf) = 0
since gf ∈ I. Hence, Φg(∂) ∈ Dj

0(I : g) yielding Φg(D
j+d
0 (I)) ⊂ Dj

0(I : g).
Let ∂ ∈ Dj

0(I : g). Suppose that f ∈ I ∩ 〈g〉. Then, h = f
g ∈ I : g and

Ψg(∂)(f) = Ψg(∂)(gh) = Φg(Ψg(∂))(h) = ∂(h) = 0.

Thus, Ψg(∂) ∈ Dj+d
0 (I ∩ 〈g〉) and ∂ = Φg(Ψg(∂)) ∈ Φg(D

j+d
0 (I ∩ 〈g〉)). In

particular, Dj
0(I : g) ⊂ Φg(D

j+d
0 (I ∩ 〈g〉)).

Lemma 18 yields Equation 8 since

Φg(D
j+d
0 (I)) ⊂ Dj

0(I : g) ⊂ Φg(D
j+d
0 (I ∩ 〈g〉)) = Φg(D

j+d
0 (I)).

The remaining statement follows from Lemma 14 and Proposition 2.
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Theorem 22 together with an induction argument immediately yields the
following corollary.

Corollary 23. Let I ⊂ C[x0, x1, . . . , xN ] be a homogeneous ideal. For any
j ≥ 0 and m ≥ 1,

Dj
0 (I : xm0 ) = Φxm0

(Dj+m
0 (I)) = Φx0 ◦ · · · ◦ Φx0︸ ︷︷ ︸

m times

(Dj+m
0 (I)).

If S ⊂ Dj
0 is a vector subspace, the support of S is

supp S =

α
∣∣∣∣∣∣ there exists

∑
|β|=j

aβ∂β ∈ S such that aα 6= 0

 .

The following corollary is the weak nullstellensatz.

Corollary 24. Let I = 〈f1, . . . , fn〉 ⊂ C[x1, . . . , xN ] and J = 〈fh1 , . . . , fhn 〉 ⊂
C[x0, x1, . . . , xN ] where fhi is the homogenization of fi with respect to x0.
The following statements are equivalent.

1. V(I) = V(f1, . . . , fn) = {z ∈ CN | fi(z) = 0 for i = 1, . . . , n} = ∅.

2. There exists m ≥ 0 such that (m, 0) /∈ supp Dm
0 (J).

Proof. This immediately follows from the fact that, for m ≥ 0, (m, 0) ∈
supp Dm

0 (J) if and only if D0
0(J : xm0 ) = Φm

x0
(Dm

0 (J)) 6= {0} which occurs if
and only if 1 /∈ J : xm0 .

2.4 Algorithms

For homogeneous ideals I, J ⊂ C[x0, x1, . . . , xN ] and d, ` ≥ 0, the following
algorithms computes a C-basis for (I+J)d, (I ∩J)d, (I ∩C[x0, x1, . . . , x`])d,
and (I : J)d. These algorithms first compute the dth order dual space for
the resulting ideal and then utilize Annihilator.

The first algorithm computes a basis for (I + J)d and (I ∩ J)d.

Procedure (K+,K∩) = SumIntersection(FI , FJ , d)

Input Two finite sets FI , FJ ⊂ C[x0, x1, . . . , xN ] of homogeneous polyno-
mials and integer d ≥ 0.

Output A C-basis K+ and K∩ for (I+J)d and (I∩J)d, respectively, where
I = 〈FI〉 and J = 〈FJ〉.

14



Return (K+,K∩) := (Annihilator(d,N,BI+J),Annihilator(d,N,BI ∪BJ))
where BI+J , BI , and BJ are bases for Dd

0(〈FI , FJ〉), Dd
0(〈FI〉), and

Dd
0(〈FJ〉), respectively.

The second algorithm computes a basis for (I ∩C[x0, x1, . . . , x`])d which
is considered as a subspace of C[x0, x1, . . . , x`]d.

Procedure K = Eliminate(F, `, d)

Input A finite set F ⊂ C[x0, x1, . . . , xN ] of homogeneous polynomials and
integers `, d ≥ 0.

Output A C-basis K ⊂ C[x0, x1, . . . , x`] for (I ∩ C[x0, x1, . . . , x`])d where
I = 〈F 〉.

Return K := Annihilator(d, `,Π`(B)) where B is a basis for Dd
0(〈F 〉).

The third algorithm computes a basis for (I : J)d.

Procedure K = Quotient(FI , FJ , d)

Input Two finite sets FI , FJ ⊂ C[x0, x1, . . . , xN ] of homogeneous polyno-
mials and integer d ≥ 0.

Output A C-basis K for (I : J)d where I = 〈FI〉 and J = 〈FJ〉.

Begin 1. Write FJ = {g1, . . . , g`}.
2. For i = 1, . . . , `

(a) Compute a basis Bi for Dd+deg gi
0 (〈FI〉).

(b) Compute Ei := Φgi(Bi).

Return K := Annihilator(d,N,E1 ∪ · · · ∪ E`).

Since all of the linear algebra computations used in these algorithms
are parallelizable, these algorithms are naturally parallelizable. If the coef-
ficients of all the polynomials are exact, then these algorithms yield exact
results. For numerically approximated coefficients, we utilize numerical lin-
ear algebra routines to yield approximate results.

Suppose that we fix d and consider Rd = C[x0, x1, . . . , xN ]≤d. Since
the dimension of Rd is polynomial in N , namely p(N) =

(
N+d+1

d

)
, without

loss of generality, we may assume that |FI ∩ Rd|, |FJ ∩ Rd| ≤ p(N). Then,
SumIntersection is polynomial in N by using the method of Dayton and

15



Zeng[6] for computing dual bases. In particular, sinceDd
0(FI∩Rd) = Dd

0(FI),
the method of [6] identifies the dual space Dd

0(FI ∩ Rd) as the null space
of the dth order Macaulay matrix which has size |FI ∩ Rd| ·

(
N+d
d−1

)
× p(N).

That is, the number of rows and columns is polynomial in N . The same
statements holds for the matrix A setup in Annihilator which is of size
(dimDd

0(FI))×
(
N+d
d

)
.

Under the assumption that |F ∩ Rd| ≤ p(N), a similar argument yields
that Eliminate is polynomial in N . If we assume that each element in FJ
has degree at most, say, e and that |FI ∩ Rd+e| and |FJ | are polynomial in
N , then Quotient is also polynomial in N by a similar argument.

2.5 Illustrative examples

2.5.1 Sum, intersection, and quotient

Consider computing I + J , I ∩ J , and I : J for the homogeneous ideals
I = 〈y, x2〉 and J = 〈x, z2〉 in C[x, y, z]. It is easy to verify that

D0(I) = spanC{∂xzn , ∂zn | n ≥ 0} and D0(J) = spanC{∂yn , ∂ynz | n ≥ 0}.

Clearly, D0(I + J) = D0(I) ∩D0(J) = spanC{∂1, ∂z} and

D0(I ∩ J) = D0(I) +D0(J) = spanC{∂xzn , ∂yn , ∂ynz, ∂zn | n ≥ 0}.

This yields Hp
I+J = {1, 1, 0, 0, . . . } and I + J = 〈x, y, z2〉 as well as Hp

I∩J =
{1, 3, 4, 4, . . . } and I ∩ J = 〈x2, xy, yz2〉.

For any n ≥ 0,

Φx(∂xzn) = ∂zn and Φx(∂zn) = 0,

and, for any n ≥ 2,

Φz2(∂xzn) = ∂xzn−2 and Φz2(∂zn) = ∂zn−2 .

This yields D0(I : x) = spanC{∂zn | n ≥ 0} and D0(I : z2) = D0(I). In
particular, Hp

I:x = {1, 1, . . . }, Hp
I:z2

= {1, 2, 2, . . . },

I : x = 〈x, y〉, and I : z2 = I = 〈y, x2〉.

Since D0(I : J) = D0(I : x) +D0(I : z2) = D0(I), we have I : J = I.
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j Basis for Dj
0(I) Image under Π2

0 ∂1 ∂1

1
∂x ∂x
∂y ∂y
∂z 0

2

∂x2 + ∂yz ∂x2

∂xy ∂xy
∂xz 0
∂y2 ∂y2

3

∂x3 + ∂xyz ∂x3

∂x2y + ∂y2z ∂x2y

∂xy2 ∂xy2
∂y3 ∂y3

4

∂x3y + ∂xy2z ∂x3y

∂x2y2 + ∂y3z ∂x2y2

∂xy3 ∂xy3
∂y4 ∂y4

Table 1: Applying Π2 to a basis of Dj
0(I)

2.5.2 Elimination

Consider computing J = I ∩ C[x, y] ⊂ C[x, y] where I = 〈x2 − yz, z2〉 ⊂
C[x, y, z]. Let Π2 be the elimination operator defined by the projection map
(α0, α1, α2) 7→ (α0, α1). For 0 ≤ j ≤ 4, Table 1 presents a dual basis for
Dj

0(I) as well as Π2 applied to each element in this dual basis.
We see that J is a zero-dimensional ideal since its projective Hilbert

function is {1, 2, 3, 4, 4, . . . , } with the index of regularity being 3. Since
Annj(D

j
0(J)) = {0} for 0 ≤ j ≤ 3 and Ann4(D4

0(J)) = spanC{x4}, Proposi-
tion 4 yields

J = 〈x4〉.

3 Counting solutions

Let I = 〈f1, . . . , fn〉 ⊂ C[x1, . . . , xN ] be a zero-dimensional ideal. That is,
V(I) = V(f1, . . . , fn) = {z ∈ CN | fi(z) = 0 for i = 1, . . . , n} consists of
finitely many points. A basis operation is to count the number of solutions
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of I with multiplicity, that is, to compute

Z(I) =
∑

z∈V(f)

multI(z).

Since I is zero-dimensional, its affine Hilbert polynomial HPI is constant
with HPI ≡ Z(I).

Let Ih ⊂ C[x0, x1, . . . , xN ] and fhi ∈ C[x0, x1, . . . , xN ] be the homoge-
nization of I and fi with respect to x0, respectively, and J = 〈fh1 , . . . , fhn 〉.
We know that Ih = J : x∞0 and the projective Hilbert polynomial of Ih is
the same as the affine Hilbert polynomial of I. This provides the underlying
approach for using dual bases to compute Z(I).

Even though I is zero-dimensional, the homogeneous ideal J may be
positive-dimensional. That is, J may have positive-dimensional components
which must be contained in V(x0) and are removed via saturation. The
following theorem provides a stopping criterion for computing Ih from J .

Theorem 25. Let I = 〈f1, . . . , fn〉 ⊂ C[x1, . . . , xN ] be a zero-dimensional
ideal, J = 〈fh1 , . . . , fhn 〉 ⊂ C[x0, x1, . . . , xN ], and m ≥ 0. Then, Ih = J : xm0
if and only if there exists k ≥ 0 such that

1. dimDk
0(J : xm0 ) = dimDk+1

0 (J : xm0 ), and

2. for 0 ≤ ` ≤ k + 1, dimD`
0(J : xm0 ) = dimD`

0(J : xm+1
0 ).

In this case, Z(I) = dimDk
0(J : xm0 ) = dim Φxm0

(Dk+m
0 (J)).

Proof. Suppose that Ih = J : xm0 and k is the index of regularity of Ih. We
know that

dimDk
0(J : xm0 ) = dimDk

0(Ih) = Hp
Ih

(k)
= Hp

Ih
(k + 1) = dimDk+1

0 (Ih)
= dimDk+1

0 (J : xm0 ).

Item 2 holds since Ih = J : xm0 = J : xm+1
0 .

Suppose that Items 1 and 2 hold. Since J : xm0 ⊂ J : xm+1
0 , Item 2 yields

(J : xm0 )` = (J : xm+1
0 )` for 0 ≤ ` ≤ k + 1.

Item 1 yields that J : xm0 is zero dimensional with index of regularity at
most k. In particular, we know that J : xm0 is generated in degree at most
k+ 1 which yields J : xm0 = J : xm+1

0 . Therefore, J : xm0 = J : x∞0 = Ih.
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3.1 Algorithm

The following algorithm computes the number of solutions, counting multi-
plicity, for a given polynomial system under the assumption that the poly-
nomial system has finitely many solutions.

Procedure Z = CountSolutions(F )

Input A finite set F ⊂ C[x1, . . . , xN ] of polynomials such that |V(F )| <∞.

Output The number of solutions, counting multiplicity, of F , namely Z(〈F 〉).

Begin 1. Write F = {f1, . . . , fn} and compute fhi . Define J := 〈fh1 , . . . , fhn 〉.
2. For j = 0, 1, 2, . . .

(a) Compute a basis Bj for Dj
0(J).

(b) For 0 ≤ m ≤ j, compute H(m, j−m) := dim spanCΦxm0
(Bj).

(c) For m = 0, 1, . . . , j − 2,
i. If H(m, `) = H(m + 1, `) for 0 ≤ ` ≤ j − m − 1 and
H(m, j − m − 2) = H(m, j − m − 1), then Return
Z := H(m, j −m− 2).

3.2 Illustrative example for counting solutions

Consider the ideals I = 〈F 〉 ⊂ C[x, y] and J = 〈F h〉 ⊂ C[x, y, z] where

F (x, y) =
[

x
xy − 1

]
and F h(x, y, z) =

[
x

xy − z2

]
.

It is clear that Z(I) = 0 and we will show this using dual bases.
Table 2 lists a dual basis for Dj

0(J) and its image under Φzm . This com-
putation shows that Hp

Ih
= {0, 0, . . . } which yields Z(I) = 0. In particular,

we know that J : z = 〈x, z〉 and Ih = J : z2 = 〈1〉.

4 Examples

4.1 A dense polynomial system

Consider the ideal I = 〈F 〉 ⊂ C[x, y, z] where

F (x, y, z) =

[
x2 + 6xy + 4xz + 9y2 + 12yz + 4z2 − 9
4x2 + 10xy + 9xz − 6y2 − yz + 2z2 − 1

5x2 + 12xy + 9xz − 15x− 9y2 − 9yz + 9y − 2z2 + 3z − 1

]
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j Basis for Dj
0(J) Φz Φz2 Φz3 Φz4

0 ∂1

1
∂y 0
∂z ∂1

2
∂y2 0 0
∂yz ∂y 0

3
∂y3 0 0 0
∂y2z ∂y2 0 0

4
∂y4 0 0 0 0
∂y3z ∂y3 0 0 0

Table 2: Applying Φzm to a basis of Dj
0(J)

and the homogeneous ideal J ⊂ C[w, x, y, z] generated by homogenizing F
with respect to w. If Z(I) < ∞, we know that Z(I) ≤ 23 = 8 since each
polynomial in F is quadratic. Based on the dense nature of F in terms
of the monomials which appear, the Bézout count is equal to the mixed
volume. Due to the relationships between the polynomials, the following
computation shows that Z(I) = 1.

Table 3 shows the projective Hilbert functions for J : wm until the
stopping criterion described in Theorem 25 is satisfied. One result of this
computation is that J is a positive-dimensional homogeneous ideal since
Hp
J(4) = 9 > 8. This computation also shows that Ih = J : w3 with

Hp
Ih

= {1, 1, . . . } and Z(I) = 1.

k 0 1 2 3 4 5
J 1 4 7 8 9 10

J : w 1 4 4 4 4
J : w2 1 2 2 2
J : w3 1 1 1
J : w4 1 1
J : w5 1

Table 3: Projective Hilbert functions for J : wm

One can verify that D1
0(J : w3) is spanned by

13∂x + 21∂y − 2∂z − 24∂w.

which yields

Ih = J : w3 = 〈(J : w3)1〉 = 〈24x+ 13w, 24y + 21w, 24z − 2w〉.
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In particular, the unique point in V(I) is

(x, y, z) =
(
−13
24

,
−21
24

,
2
24

)
=
(
−13
24

,
−7
8
,

1
12

)
.

4.2 Inverse kinematics of an RR dyad

Consider the inverse kinematic problem of an RR dyad. As shown in Fig-
ure 1, the RR dyad consists of two legs of length `1 and `2 together with
two pin joints. The mechanism is anchored at point O which, without loss
of generality, we may assume is the origin. Given a point P = (px, py), the
problem is to find the angles θ1 and θ2 so that the end of the second leg is
located at P . This problem is described by the equations

`1 cos(θ1) + `2 cos(θ2)− px = `1 sin(θ1) + `2 sin(θ2)− py = 0.

In [14], these equations are transformed into a polynomial system by sub-
stituting in the above equations

sin(θj) =
2tj

1 + t2j
and cos(θj) =

1− t2j
1 + t2j

and clearing denominators. The approach we will consider is to treat sin(θj)
and cos(θj) as indeterminants, namely, sj and cj , together with s2

j + c2
j = 1.

This yields the polynomial system

f(c1, c2, s1, s2) =


`1c1 + `2c2 − px
`1s1 + `2s2 − py
s2

1 + c2
1 − 1

s2
2 + c2

2 − 1

 .
Consider the homogenization of f with respect to z, namely

fh(c1, c2, s1, s2, z) =


`1c1 + `2c2 − pxz
`1s1 + `2s2 − pyz
s2

1 + c2
1 − z2

s2
2 + c2

2 − z2

 .
The first objective is count the number of solutions of f for a general

set of parameters. Let I = 〈f〉 and J = 〈fh〉. Table 4 shows the projec-
tive Hilbert functions for J : zm until the stopping criterion described in
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O

`1

θ1

θ2

`2

P

Figure 1: RR dyad

k 0 1 2 3 4
J 1 3 4 4 4

J : z 1 2 2 2
J : z2 1 2 2
J : z3 1 2
J : z4 1

Table 4: Projective Hilbert functions for J : zm

Theorem 25 is satisfied. This computation also shows that Ih = J : z with
Hp
Ih

= {1, 2, 2, . . . } and Z(I) = 2. In particular, we know

Ih =
〈
`1c1 + `2c2 − pxz, `1s1 + `2s2 − pyz, s2

2 + c2
2 − z2,

2`2pxc2 + 2`2pys2 + (`21 − `22 − p2
x − p2

y)z

〉
.

The second objective is to describe the reality of the solutions of I for
generic mechanically meaningful values of the parameters. In particular,
we will assume that the parameters `1, `2, px, py ∈ R are general such that
`1, `2 > 0. Consider K = I ∩ C[c1] and Kh = Ih ∩ C[c1, z]. Using the dual
space for Ih = J : z, we computed Kh = 〈Ac2

1 + Bc1z + Cz2〉 and hence
K = 〈Ac2

1 +Bc1 + C〉 where

A = 4`21(p2
x + p2

y),
B = −4`1px(`21 − `22 + p2

x + p2
y),

C = (`21 + 2`1py − `22 + p2
x + p2

y)(`
2
1 − 2`1py − `22 + p2

x + p2
y).

Clearly, A 6= 0. By the Shape Lemma [4], the solutions of I and K are real
if and only if

0 ≤ B2 − 4AC = −16`21p
2
y((`1 − `2)2 − p2

x − p2
y)((`1 + `2)2 − p2

x − p2
y).

The assumptions on the parameters yield

((`1 − `2)2 − p2
x − p2

y)((`1 + `2)2 − p2
x − p2

y) ≤ 0.

Since `1, `2 > 0, we know (`1 − `2)2 < (`1 + `2)2. Therefore, the solutions of
I are real if and only if

(`1 − `2)2 ≤ p2
x + p2

y ≤ (`1 + `2)2.
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Since ‖P‖ =
√
p2
x + p2

y, this simplifies to

|`1 − `2| ≤ ‖P‖ ≤ `1 + `2.

The third objective is to describe the parameter values for which V(I)
is positive dimensional. We could utilize the fiber product method of [10]
to compute such values. However, the approach we will utilize is based on
Hilbert functions.

Suppose that the parameter values are chosen so that (Ih)1 is three
dimensional. If c2

2 + s2
2 − z2 /∈ 〈(Ih)1〉, then Hp

Ih
= {1, 2, 2, . . . }. It is easy

to verify that c2
2 + s2

2 − z2 ∈ 〈(Ih)1〉 implies l1 = px = py = 0. In order for
V(I) to be nonempty, we must also have l2 = 0 yielding that (Ih)1 = 〈0〉.
Therefore, the only case we need to consider is when dim(Ih)1 < 3 meaning
that Hp

Ih
(1) > 2.

We know that Hp
Ih

(1) is equal to the null space of the Jacobian matrix
of the generators of Ih evaluated at 0. Thus, V(I) is positive dimensional if
and only if dim nullM > 2 where

M =

 `1 `2 0 0 −px
0 0 `1 `2 −py
0 2`2px 0 2`2py `21 − `22 − p2

x − p2
y


which occurs if and only rankM < 3. We could utilize the method of [2]
to determine the parameter values where dim nullM > 2. However, based
on the simplicity of the problem, we will use the classical determinantal
approach. That is, rankM < 3 if and only if the ten 3×3 minors of M van-
ish. Solving this polynomial system using Bertini [3] yields five irreducible
components which correspond to

C1 = {`1 = 0, `22 − p2
x − p2

y = 0},
C2 = {`2 = 0, `21 − p2

x − p2
y = 0},

C3 = {`1 = `2, px = py = 0},
C4 = {`1 = −`2, px = py = 0}, and
C5 = {`1 = 0, `2 = 0}.

If `1 = `2 = 0, then V(I) is nonempty if and only if px = py = 0. Since
`1 = `2 = px = py = 0 is an point in each Cj , this computation yields that
V(I) is positive dimensional if and only if the parameters lie in

⋃4
j=1Cj .

4.3 Counting solutions for a robotics problem

Consider the polynomial system, denoted F , for the inverse kinematics prob-
lem of a general six-revolute serial-link robot presented in [9]. The polyno-
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mial system is available at [3] where the coefficients are computed to 300
digits. This polynomial system consists of 8 quadratic polynomials in the
8 variables x1, . . . , x8. Let I = 〈F 〉 and J = 〈F h〉 where F h is the homog-
enization of F with respect to x0. Assuming Z(I) < ∞, the Bézout count
yields Z(I) ≤ 28 = 256. In fact, the 2-homogeneous Bézout count is 96
while the mixed volume is 64. We will utilize CountSolutions to show the
well-known result that Z(I) = 32 for a general set of parameters.

Table 5 shows the projective Hilbert functions for J : wm until the
stopping criterion described in Theorem 25 is satisfied. One result of this
computation is that J is a positive-dimensional homogeneous ideal since
Hp
J(7) = 296 > 256. This computation also shows that Ih = J : w4 with

Hp
Ih

= {1, 9, 31, 32, 32, . . . } and Z(I) = 32.

k 0 1 2 3 4 5 6 7 8 9
J 1 9 37 93 163 219 256 296 336 376

J : w 1 9 37 82 115 128 144 160 176
J : w2 1 9 36 57 56 56 56 56
J : w3 1 9 34 32 32 32 32
J : w4 1 9 31 32 32 32
J : w5 1 9 31 32 32
J : w6 1 9 31 32
J : w7 1 9 31
J : w8 1 9
J : w9 1

Table 5: Projective Hilbert functions for J : wm

5 Conclusion

We have shown that many basic algebraic operations performed on homoge-
neous ideals can be translated into operations performed on Macaulay dual
spaces. These new algorithms can either utilize exact or floating point arith-
metic and can be parallelized by utilizing parallel linear algebra routines.
With an efficient method for computing the closedness subspace Cj+1

0 (I)
from the dual space Dj

0(I), these parallelizable algorithms may be com-
petitive against the inherently serial Gröbner based algorithms for zero-
dimensional ideals and for positive-dimensional ideals when one only wants
to compute the resulting ideal in certain degrees.
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