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Abstract. For a square system of analytic equations, a Newton-invariant subspace is
a set which contains the resulting point of a Newton iteration applied to each point in
the subspace. For example, if the equations have real coefficients, then the set of real
points form a Newton-invariant subspace. Starting with any point for which Newton’s
method quadratically converges to a solution, this article uses Smale’s α-theory to certi-
fiably determine if the corresponding solution lies in a given Newton-invariant subspace
or its complement. This approach generalizes the method developed in collaboration with
F. Sottile for deciding the reality of the solution in the special case that the Newton
iteration defines a real map. A description of the implementation in alphaCertified is
presented along with examples.
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1 Introduction

The increased computing capability has lead to a wide-spread use of computers to study and
solve a variety of problems in algebraic geometry and related areas. One topic of particular
interest in computational algebraic geometry, especially when numerical computations are uti-
lized, is the ability to develop certificates of the computed result. Smale’s α-theory [17] provides
a method for certifying the quadratic convergence of Newton’s method using data computed
at one point. Since Newton’s method is a foundational tool for numerically solving polynomial
systems, the α-theoretic certificates provide a way to rigorously prove results following numer-
ical computations. For example, the implementation of α-theory in alphaCertified [9,10] has
been used to prove results in various applications, such as enumerative geometry [4,7,9] and
potential energy landscapes arising in a physical or chemical system [13]. In these applications,
which is common in many applications, one is interested in certifying the reality or nonreality
of solutions. It was shown in [9] that certifying reality or nonreality is possible when the map
corresponding to a Newton iteration is a real map, that is, maps real points to real points.

Two open problems related to α-theory are the ability to certify that an overdetermined
system of analytic equations has a solution and to certify a singular solution for a square system
of analytic equations. One can prove quadratic convergence of overdetermined Newton’s method
to critical points of the nonlinear least squares problem [5], some of which need need not be
solutions. By randomizing down to square systems, points which do not solve the overdetermined
system can be certifiably identified [9]. For singular solutions, the behavior of Newton’s method
nearby can vary drastically (e.g., convergence, repulsion, and attracting cycles). Theorem 4 and
Corollary 1 make progress towards these open problems via Newton-invariant subspaces.
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Fig. 1. Plots for (a) f(x, y), (b) G(x, y), and (c) GS(x, y) in (1)

To illustrate the results presented in Theorem 4 and Corollary 1 with Lemma 1, consider

f(x, y) =

[
x2 + y2 − 1
x+ y2 − 1

]
, G(x, y) =

[
f(x, y)
x− y − 1

]
, and GS(x, y) =

[
1 0 3
0 1 2

]
·G(x, y) (1)

which are plotted in Figure 1. Example 1 shows that the set defined by y = x − 1 is Newton-
invariant with respect to f . That is, if the input of Newton’s method applied to f is a point
on the line y = x − 1, the resulting point will also be on the line y = x − 1. Even though GS

is a randomized square system, G is overdetermined, and one of the two solutions of G = 0 is
singular with respect to f , Theorem 4 and Corollary 1 together with Lemma 1 show that GS

and G can be used to prove the quadratic convergence of Newton’s method to solutions of f = 0.
Newton-invariant sets can be considered as “side conditions.” The algorithm Certify de-

scribed in Section 3 certifiably decides if a point ξ which is a solution of a square system f = 0
is contained in a Newton-invariant set V or in its complement Cn \ V using α-theory applied
to a given numerical approximation of ξ. The “side conditions” could be defined via analytic
equations, such as y = x− 1. Another naturally arising case is deciding “reality” of solutions in
various coordinate systems. As mentioned above, the approach of [9] focuses on reality of solu-
tions in Cartesian coordinates. When the map defined by a Newton iteration is a real map, the
set of real points is a Newton-invariant subspace that is not defined by analytic equations. For
Cartesian coordinates, Remark 1 shows that Certify reduces to the real certification approach
of [9]. However, even though the two approaches may appear similar, the use of certifying “side
conditions” as well as certifying “reality” in other coordinate systems show that this general-
ization is useful in a wide variety of applications. For example, consider a harmonic univariate
polynomial h(z) [12]. That is, h(z) = p(z)+q(conj(z)) where p and q are univariate polynomials
and conj(z) is the complex conjugate of z. One can compute the solutions of h = 0 by letting z
and z be independent variables and solving the system

F (z, z) =

[
p(z) + q(z)
p(z) + q(z)

]
= 0

where p and q are univariate polynomials obtained by conjugating each coefficient of p and q,
respectively. In particular, the solutions of h = 0 correspond to the solutions of F = 0 lying on
the Newton-invariant set {(t, conj(t)) | t ∈ C}. Such isotropic coordinates also arise naturally in
algebraic kinematics [19].

The remainder of this section summarizes Smale’s α-theory. Section 2 considers Newton
invariant sets with Section 3 describing the algorithm Certify. The main theoretical results are



presented in Section 4 with Section 5 describing the implementation in alphaCertified along
with examples.

1.1 Smale’s α-theory

For an analytic map f : Cn → Cn, the map Nf : Cn → Cn defined by

Nf (x) :=

{
x−Df(x)−1f(x) if Df(x) is invertible,
x otherwise,

is a Newton iteration of f at x where Df(x) is the Jacobian matrix of f at x. With this definition,
Nf is globally defined with the set of fixed points being

{x ∈ Cn | f(x) = 0 or rank Df(x) < n}.

Therefore, if Df(x) is invertible, Nf (x) = x if and only if f(x) = 0.
For each k ≥ 1, define

Nk
f (x) := Nf ◦ · · · ◦Nf︸ ︷︷ ︸

k times

(x).

A point x ∈ Cn is said to be an approximate solution of f = 0 if there is a point ξ ∈ Cn such
that f(ξ) = 0 and

‖Nk
f (x)− ξ‖ ≤

(
1

2

)2k−1

‖x− ξ‖ (2)

for each k ≥ 1 where ‖ · ‖ is the Euclidean norm on Cn. In this case, the point ξ is called the
associated solution to x and the sequence {Nk

f (x)}k≥1 converges quadratically to ξ.
Smale’s α-theory describes sufficient conditions using data computable from f and x for

certifying that x is an approximate solution of f = 0. The algorithm presented in Section 3 will
be based on the following theorem, which follows from results presented in [3, Ch. 8].

Theorem 1. Let f : Cn → Cn be analytic and x, y ∈ Cn such that Df(x) and Df(y) are
invertible. Define

α(f, x) := β(f, x) · γ(f, x),

β(f, x) := ‖x−Nf (x)‖ = ‖Df(x)−1f(x)‖, and

γ(f, x) := supk≥2

∥∥∥Df(x)−1Dkf(x)
k!

∥∥∥ 1
k−1

.

1. If x is an approximate solution of f = 0 with associated solution ξ, then Nf (x) is also an
approximate solution with associated solution ξ and ‖x− ξ‖ ≤ 2β(f, x) = 2‖x−Nf (x)‖.

2. If 4 · α(f, x) < 13− 3
√

17, then x is an approximate solution of f = 0.
3. If α(f, x) < 0.03 and ‖x − y‖ · γ(f, x) < 0.05, then x and y are approximate solutions of

f = 0 with the same associated solution.

The value β(f, x) is called the Newton residual. In the definition of γ(f, x), Dkf(x) is the kth

derivative of f [11, Ch. 5]. That is, Dkf(x) is a symmetric tensor that one may view as a linear
map from SkCn, the k-fold symmetric power of Cn, to Cn whose entries are all of the partial
derivatives of f of order k. When restricting to polynomial systems,Dkf(x) = 0 for all sufficiently
large k so that γ(f, x) is a maximum over finitely many terms. That is, γ(f, x) could be computed
algorithmically. However, due to the possibly large-scale nature of this computation, a commonly
used upper bound for γ(f, x) for a polynomial system f is described in [16]. A similar upper
bound for polynomial-exponential systems is presented in [8].



2 Newton-invariant sets

A set V ⊂ Cn is Newton-invariant with respect to an analytic system f : Cn → Cn if

1. Nf (x) ⊂ V for every x ∈ V and
2. limk→∞Nk

f (x) ∈ V for every x ∈ V such that limk→∞Nk
f (x) exists.

Clearly, if Nf (x) ∈ Rn for every x ∈ Rn, then Rn is Newton-invariant with respect to f .
Additionally, the set of solutions of f = 0 is also Newton-invariant. The following two examples
show other cases of Newton-invariant sets.

Example 1. Let f : C2 → C2 be the system defined in (1). Since f has real coefficients, Nf is a
real map so that V1 := R2 is trivially a Newton-invariant set for f . Consider the sets

V2 := {(0, y) | y ∈ C}, V3 := V2 ∩ R2, V4 := {(1, y) | y ∈ C}, V5 := V4 ∩ R2,

V6 := {(x, x− 1) | x ∈ C}, V7 := V6 ∩ R2, V8 := {(x, 1− x) | x ∈ C}, and V9 := V8 ∩ R2.

One can show that V2, . . . , V9 are also Newton-invariant sets for f as follows. Symbolically,
Nf (x, y) = (x+∆x, y +∆y) where

∆x =
x(x− 1)

2x− 1
and ∆y =

y

2
+

(x− 1)2

2y(2x− 1)
(3)

assuming that x 6= 1/2 and y 6= 0. For these special cases, ∆x = ∆y = 0 so they are not a
concern when showing Newton-invariance. The Newton-invariance of V2, . . . , V5 follows directly
from the fact that ∆x = 0 when either x = 0 and x = 1, and that Nf is a real map. If y = x−1,
it is easy to verify that ∆x = ∆y which yields the Newton-invariance of V6 and V7. Finally, the
Newton-invariance of V8 and V9 follows from the fact that ∆x = −∆y when y = 1− x.

Example 2. The inverse kinematics problem of an RR dyad is the computation of the re-
quired angles θ1 and θ2 of the revolute joints needed to position the end effector at the point
(px, py) ∈ R2 given that the RR dyad is anchored at (0, 0) with fixed leg lengths `1 > 0 and
`2 > 0. In short, this corresponds to solving the equations

`1 cos θ1 + `2 cos θ2 − px = `1 sin θ1 + `2 sin θ2 − py = 0. (4)

Following a commonly used technique in algebraic kinematics [19], we will transform these
equations into a polynomial system based on isotropic coordinates. Let i =

√
−1 and define

zj := cos θj + i · sin θj , zj := cos θj − i · sin θj , and p = px + i · py.

After substitution into (4), simplification, and addition of Pythagorean identities, the resulting
polynomial system is

F (z1, z1, z2, z2) =


`1z1 + `2z2 − p

`1z1 + `2z2 − conj(p)
z1z1 − 1
z2z2 − 1


where conj() denotes complex conjugation. In the isotropic coordinates (z1, z1, z2, z2), the cor-
responding set of “real” points is

V := {(z1, conj(z1), z2, conj(z2)) | zj ∈ C}.

Since each `j > 0, it is easy to verify that V is Newton-invariant with respect to F .



2.1 Finding Newton-invariant sets

In Example 1, Newton-invariant sets where determined by performing a Newton iteration in-
volving f : Cn → Cn. That is, one first symbolically performs a Newton iteration for f to
compute ∆x = Df(x)−1f(x). Then, for example, the linear Newton-invariant spaces are found
by computing matrices A and vectors b such that Ax + b = 0 and A∆x = 0. One may also
parameterize the linear space and find the parameterizations which hold for x and x+∆x. The
following reconsiders Example 1 to highlight this procedure followed by a polynomial system
considered by Griewank and Osborne [6].

Example 3. Consider lines in C2 which are invariant with respect to (3). That is, we aim to find
(m1,m2) ∈ P1 and b ∈ C such that m1∆x = m2∆y whenever m2y = m1x+ b.

If m2 = 0, then we take m1 = −1 and aim to find b ∈ C such that ∆x = 0 whenever x = b.
From (3), it is clear that b = 0 or b = 1. These lines correspond with V2, . . . , V5 in Ex. 1.

If m2 6= 0, then we take m2 = 1 and aim to find m1, b ∈ C such that ∆y = m1∆x whenever
y = m1x+ b. Upon substitution and simplification, this requirement is equivalent to solving

m2
1 + 2bm1 + 1 = b2 − 1 = 0

which yields (m1, b) = (1,−1) or (−1, 1). These lines correspond with V6, . . . , V9 in Ex. 1.

Example 4. Consider computing all linear Newton-invariant sets of a polynomial system first
considered in [6], namely

G(x, y) =

[
29x3/16− 2xy

y − x2
]
. (5)

For this system, which has a multiplicity 3 root at the origin, Griewank and Osborne showed
that Newton’s method diverges to infinity for almost all initial points. We have

∆x =
3x3

32y − 23x2
and ∆y =

29x4 − 55x2y + 32y2

32y − 23x2
. (6)

From (6), it is easy to verify that the vertical line x = 0 (over C and over R) defines the only
linear Newton-invariant set for G. We revisit this example in Section 5.3.

For larger polynomial systems f , it may be challenging to symbolically perform a Newton
iteration for f , e.g., computing ∆x = Df(x)−1f(x), thereby making it difficult to find all
(linear) Newton-invariant sets for f . However, for particular applications, one often knows which
Newton-invariant sets are of interest. Moreover, one can construct systems having a particular
Newton-invariant set, as shown in the following.

Theorem 2. Let n1 and n2 be positive integers with n = n1 + n2. Let g : Cn1 → Cn such that
g(0) = 0, A : Cn1 → Cn×n2 , and h : Cn2 → Cn2 all be analytic. Then, V := {0} × Cn2 ⊂ Cn is
a Newton-invariant set with respect to the square analytic system F : Cn → Cn defined by

F (x, y) = g(x) +A(x) · h(y).

Moreover, if Nh is a real map, then VR := V ∩ Rn is Newton-invariant with respect to F .

Proof. Suppose that y∗ ∈ Cn2 such that DF (0, y∗) is invertible. Thus, A(0) · Dh(y∗) is an
n × n2 matrix of rank n2 so that Dh(y∗) is invertible. It is easy to verify that ∆x = 0 and
∆y = Dh(y∗)−1h(y∗) is the unique solution of

DF (0, y∗)

[
∆x
∆y

]
= F (0, y∗)



showing that V is Newton-invariant with respect to F . The remaining statement follows imme-
diately from the fact that ∆y is real whenever Nh is a real map.

By using a change of coordinates, it follows that every linear subspace of Cn and Rn is a
Newton-invariant set for some square system.

3 Certification algorithm for square systems

Let f : Cn → Cn be analytic and V ⊂ Cn be Newton-invariant with respect to f . Given an
approximate solution x ∈ Cn of f = 0, this section develops an algorithm which certifiably
decides if ξ ∈ V or ξ ∈ Cn \V where ξ is the associated solution of x. This algorithm depends on
a function which measures the distance between a given point and V , say δV : Cn → R where

δV (z) = inf
v∈V
‖z − v‖. (7)

For example, δRn(z) = ‖z − conj(z)‖/2 with Remark 1 showing how the following algorithm
generalizes the test for determining if ξ ∈ Rn proposed in [9] when Nf is a real map. Additionally,
if computing δV (z) exactly is difficult, note that the following algorithm can be easily modified to
use upper and lower bounds on δV (z) such that the upper bound limits to zero as z approaches V
and the lower bound becomes positive as z limits to a solution ρ of f = 0 provided δV (ρ) > 0.

The following procedure is shown to be a correct algorithm by Theorem 3.

Procedure b = Certify(f, x, δV )
Input A square analytic system f : Cn → Cn such that γ(f, ·) can be computed (or bounded

above) algorithmically, a point x ∈ Cn which is an approximate solution of f = 0 with
associated solution ξ such that Df(ξ)−1 exists, and a function δV : Cn → R defined by (7)
for some Newton-invariant subspace V which can be computed algorithmically.

Output A boolean b which is true if ξ ∈ V and false if ξ /∈ V .
Begin

1. Compute β := β(f, x), γ := γ(f, x), and α := β · γ.
2. If δV (x) > 2β, Return false.
3. If α < 0.03 and δV (x) < 0.05γ−1, Return true.
4. Update x := Nf (x) and go to Step 1.

Theorem 3. Procedure Certify is an algorithm, i.e., terminates after finitely many steps, and
develops a certificate of the correct answer.

Proof. Consider the setup described in Certify. To prove the theorem, we will first show that if
Certify returns in Step 2 or in Step 3, then the return value is correct. Afterwards, we will show
that Certify must terminate in finitely many steps. Since each step in Certify is algorithmic,
this shows that Certify is an algorithm.

Suppose that Certify returned through Step 2. For every v ∈ V , the triangle inequality and
Item 1 of Theorem 1 yields

δV (x) ≤ ‖x− v‖ ≤ ‖x− ξ‖+ ‖ξ − v‖ ≤ 2β(f, x) + ‖ξ − v‖.

Therefore,
0 < δV (x)− 2β(f, x) ≤ inf

v∈V
‖ξ − v‖ = δV (ξ)



yielding ξ /∈ V since δV (ξ) > 0.
Similarly, suppose that Certify returned through Step 3. Then, since

δV (x) = inf
v∈V
‖x− v‖ < 0.05γ−1,

there must exist v∗ ∈ V such that ‖x− v∗‖ < 0.05γ−1. By Item 3 of Theorem 1, both x and v∗

are approximate solutions of f = 0 with the same associated solution ξ. Since v∗ ∈ V and V is
Newton-invariant, it follows that ξ ∈ V .

To show termination of Certify, suppose that ξ /∈ V . Define δ := δV (ξ) > 0 and consider

B(ξ, δ/8) = {y ∈ Cn | ‖y − ξ‖ ≤ δ/8}.

Since Nk
f (x) → ξ as k → ∞, there exists some integer k0 such that Nk

f (x) ∈ B(ξ, δ/8) for

all k ≥ k0. It immediately follows from the triangle inequality that δV (Nk0

f (x)) ≥ 7δ/8 and

β(f,Nk0

f (x)) = ‖Nk0

f (x)−Nk0+1
f (x)‖ ≤ δ/4. Thus,

δV (Nk0

f (x)) ≥ 7δ/8 > 2β(f,Nk0

f (x))

showing that Step 2 will force Certify to return after at most k0 loops.
Similarly, suppose that ξ ∈ V . Then, since Df(ξ)−1 exists, γ(f, z) is bounded in a neigh-

borhood W of ξ, say by B. Thus, there exists an integer k0 such that Nk
f (x) ∈ W for all

k ≥ k0 so that γ(f,Nk
f (x)) ≤ B for all k ≥ k0. Since β(f,Nk

f (x)) → 0 as k → ∞, we

know that α(f,Nk
f (x)) → 0 as k → ∞. Hence, there must exist some integer k1 such that

α(f,Nk
f (x)) < 0.025 for all k ≥ k1. Since ξ ∈ V , Item 1 of Theorem 1 yields

δV (z) ≤ ‖z − ξ‖ ≤ 2β(f, z) = 2α(f, z)γ(f, z)−1 < 0.05γ(f, z)−1

where z := Nk1

f (x). Therefore, Step 3 will force Certify to return after at most k1 loops.

Remark 1. When Nf is a real map, Rn is an Newton-invariant subspace with respect to f . For
z ∈ Cn, let πR(z) ∈ Rn be the real part of z, i.e., πR(z) = (z + conj(z))/2. Hence,

δRn(z) = ‖z − conj(z)‖/2 = ‖z − πR(z)‖.

Thus, Certify reduces to the algorithm CertifyRealSoln described in [9] in this case.

4 Systems constructed from Newton-invariant sets

In algorithm Certify, Newton iterations were performed on the square system and used to test if
a solution was contained in a given Newton-invariant set or its complement, even if the Newton-
invariant set was not defined by analytic equations (complex conjugation is not analytic). In
this section, we investigate overdetermined systems constructed from a linear Newton-invariant
set and randomized square subsystems. In particular, Theorem 4 and Corollary 1 show that
if Newton’s method applied to such systems quadratically converges, then the limit point is a
solution of the original square system, even if it is singular with respect to the original system.
That is, the additional equations could turn a singular solution of the square system into a
nonsingular solution of an overdetermined and randomized square subsystem with certifiable
quadratic convergence. See Sections 5.3 and 5.4 for examples involving traditional benchmarks.



The statements of Theorem 4 and Corollary 1 rely upon the following two definitions. For
an analytic system f : Cn → Cn, define

Singf := {x ∈ Cn | Df(x) is not invertible}.

Overdetermined Newton’s method for an analytic system g : Cn → CN (i.e., n < N) is

Ng(x) := x−Dg(x)†g(x)

where Dg(x)† is the Moore-Penrose pseudoinverse of Dg(x).
Unlike square systems, the fixed points of Ng need not be solutions of g = 0 and the fixed

points for which the Jacobian is full rank need not be attracting. For the former, consider

g(x) =

[
x

x− 4

]
.

Clearly, g = 0 has no solutions but x = 2 is a fixed point of Ng and minimizes ‖g‖2. For the
latter, consider the system adapted from [5]:

h(x) =

[
x

x2 + 1

]
.

Clearly, h = 0 has no solutions but Nh has a fixed point at x = 0. It is shown in [5] that x = 0
is a repulsive point for Newton’s method near the origin.

From a certification viewpoint, one can use the α-theoretic approach of [5] to prove quadratic
convergence to fixed points of Ng. The fixed points of Ng which do not solve g = 0 can be
certifiably identified using randomization via the approach of [9]. The following provides an
approach for certifiably showing that a given fixed point ofNg is indeed a solution of g = 0 when g
is constructed via Newton-invariant sets. As mentioned above, this fixed point may be a singular
solution of the original square system used to construct such an overdetermined system g.

Since linear Newton-invariant sets for a system are invariant under a linear change of coordi-
nates, we simplify the presentation of our results based on systems having a coordinate subspace
as a Newton-invariant set.

Lemma 1. Let 0 < m < n and f : Cm × Cn−m → Cn be an analytic system such that
V := {0}×Cn−m ⊂ Cn is Newton-invariant with respect to f and V 6⊂ Singf . Let g(y) = f(0, y)

and G(x, y) = {f(x, y), x}. If z ∈ Cn−m such that (0, z) ∈ V \ Singf , R ∈ C(n−m)×n, and

S ∈ Cn×(n+m) such that rank DgR(y) = n−m and rank DGS(0, z) = n where gR(y) = R · g(y)
and GS(x, y) = S ·G(x, y), then NGS

(0, z) = NG(0, z) = Nf (0, z) = (0, NgR(z)) = (0, Ng(z)).

Proof. Let ∆ := Df(0, z)−1 · f(0, z). Since (0, z) ∈ V , ∆i = 0 for i = 1, . . . ,m. Let ∆z ∈ Cn−m

such that ∆ = (0, ∆z). Since DgR(z) and DGS(0, z) have full column rank, the same is true for
Dg(z) and DGS(0, z). Thus, the statement follows since

DG(0, z) ·∆ = G(0, z), DGR(0, z) ·∆ = GR(0, z), Dg(z) ·∆z = g(z), DgR(z) ·∆z = gR(z).

Following the notation of Lemma 1, for simplicity, the following relate the square system f ,
the overdetermined system g, and the randomized square subsystem gR. These can be trivially
extended via Lemma 1 to the overdetermined system G and randomized square system GS .



Theorem 4. Let 0 < m < n and f : Cm × Cn−m → Cn be an analytic system such that
V := {0}×Cn−m ⊂ Cn is Newton-invariant with respect to f and V 6⊂ Singf . Let g(y) = f(0, y).

If (0, z) ∈ V \ Singf and R ∈ C(n−m)×n such that {Nk
gR(z)}k≥1 quadratically converges to

ξ ∈ Cn−m with rank DgR(ξ) = n−m where gR(y) = R · g(y), then g(ξ) = f(0, ξ) = 0.

Proof. Since gR is a square system with NgR(ξ) = ξ and rank DgR(ξ) = n − m, we know
gR(ξ) = 0, α(gR, ξ) = 0, and γ(gR, ξ) < ∞. Thus, Theorem 1(3) shows that, for the ball
B ⊂ Cn−m centered at ξ with radius 0.05/γ(gR, ξ) > 0, Newton’s method for gR starting
at any point in B is an approximate solution of gR = 0 with associated solution ξ. Define
Wf := {y | (0, y) ∈ V \Singf} ⊂ Cn−m. Since V is not contained in Singf , it follows that B∩Wf

is dense in B. Therefore, we can construct {z`}`≥1 ⊂ B ∩Wf such that 0 < ‖z` − ξ‖ < `−1. In
particular, this construction yields rank Df(0, z`) = n and rank DgR(z`) = n−m for all ` ≥ 1.

For each ` ≥ 1, let ∆z` := DgR(z`)
−1gR(z`) = z`−NgR(z`). By Lemma 1, we know (0, ∆z`) =

(0, z`)−Nf (0, z`) = Df(0, z`)
−1f(0, z`). If we assume that ‖∆z`‖ ≤ 2 · `−1, then

‖g(z`)‖ = ‖f(0, z`)‖ = ‖Df(0, z`) · (0, ∆z`)‖ ≤ 2 · ‖Df(0, z`)‖ · `−1.

By continuity, g(z`) = f(0, z`) → g(ξ) = f(0, ξ) and Df(0, z`) → Df(0, ξ). Since Df(0, ξ)
is an n × n matrix with complex entries, we know ‖Df(0, ξ)‖ < ∞. Taking limits, we have
‖g(ξ)‖ = ‖f(0, ξ)‖ = 0. Hence, g(ξ) = f(0, ξ) = 0.

Therefore, all that remains is to show ‖∆z`‖ ≤ 2 · `−1 for all ` ≥ 1. To reach a contradiction,
we assume that ` ≥ 1 such that ‖∆z`‖ > 2 · `−1. By construction, `−1 > ‖z` − ξ‖ > 0 so that

‖z` −NgR(z`)‖ = ‖∆z`‖ > 2 · ‖z` − ξ‖ > 0.

The triangle inequality yields

‖z` − ξ‖+ ‖NgR(z`)− ξ‖ ≥ ‖z` −NgR(z`)‖ = ‖∆z`‖ > 2 · ‖z` − ξ‖ > 0

providing ‖NgR(z`)−ξ‖ > ‖z`−ξ‖ > 0. However, since z` ∈ B, i.e., z` is an approximate solution
of gR = 0 with associated solution ξ, (2) yields the impossible statement

1

2
‖z` − ξ‖ ≥ ‖NgR(z`)− ξ‖ > ‖z` − ξ‖ > 0.

Corollary 1. Let 0 < m < n and f : Cm × Cn−m → Cn be an analytic system such that
V := {0} × Cn−m ⊂ Cn is Newton-invariant with respect to f and V 6⊂ Singf . Suppose that

g(y) = f(0, y). If (0, z) ∈ V \ Singf such that {Nk
g (z)}k≥1 quadratically converges to ξ ∈ Cn−m

with rank Df(0, Nk
g (z)) = n for all k ≥ 1 and rank Dg(ξ) = n−m, then g(ξ) = f(0, ξ) = 0.

Proof. Since rank Dg(ξ) = n −m, there is a Zariski open and dense U ⊂ C(n−m)×n such that,
for all R ∈ U , rank DgR(ξ) = n where gR(x) = R · g(x). Fix R ∈ U . By Theorem 1(3), Newton’s
method for gR starting at any point in the ball B centered at ξ with radius 0.05/γ(gR, ξ) > 0
quadratically converges to ξ. Since Nk

g (z) → ξ, let k0 ≥ 1 such that {Nk
g (z)}k≥k0

⊂ B. Since

DgR is full rank on B, Lemma 1 yields Nk
g (z) = Nk

gR(z) for all k ≥ k0. The statement now
follows immediately from Theorem 4.

Example 5. Let f : C2 → C2 be the polynomial system defined in (1). Example 1 showed the
complex line V6 := {(x, x−1) | x ∈ C}, which is defined by x−y−1 = 0, is Newton-invariant with
respect to f . Restricting to V6, f = 0 has two solutions, namely ξ1 = (0,−1) and ξ2 = (1, 0). One



can verify that Df(ξ1) is invertible while ξ2 is a singular solution of f = 0. The overdetermined
polynomial system

G(x, y) =

 x+ y2 − 1
x2 + y2 − 1
x− y − 1


has rank DG(ξ1) = rank DG(ξ2) = 2, i.e., ξ1 is nonsingular with respect to both f and G, but ξ2
is singular with respect to f and nonsingular with respect to G. Using alphaCertified [10] with
the points z1 = (1/250,−249/250) and z2 = (251/250,−1/250), and square subsystem

GS(x, y) =

[
x+ y2 − 1 + 3(x− y − 1)
x2 + y2 − 1 + 2(x− y − 1)

]
,

we know that {Nk
G(zj)}k≥1 = {Nk

GS
(zj)}k≥1 quadratically converges for j = 1, 2. Theorem 4

and Corollary 1 together with Lemma 1 yield that the corresponding limit points, ξj , are indeed
solutions of f = 0.

5 Implementation details and examples

Before demonstrating the developed techniques on several examples, we first briefly summarize
its implementation in alphaCertified [10].

5.1 Implementation in alphaCertified

The software program alphaCertified can perform α-theoretic computations in exact rational
or arbitrary precision floating point arithmetic. When rational computations are utilized, the
internal computations are certifiable. The analytic system f must either be a polynomial system
or a polynomial-exponential system and presented with constants that are rational complex
numbers, i.e., in Q[i]. The value of γ(f, x) is bounded above using [16] or [8], respectively.

The algorithm Certify is implemented in version 1.3 of alphaCertified as follows. For a
Newton-invariant set V ⊂ Cn, the function δV defined by (7) is assumed to be of the form

δV (z) = ‖z − (P · zR + i ·Q · zI + r)‖ (8)

for n× n matrices P and Q and n vector r with rational complex entries where

zR = (z + conj(z))/2 and zI = i · (conj(z)− z)/2.

For example, if V = Rn, then P = In, Q = 0, and r = 0 where In is the n× n identity matrix.
Additionally, if V = {(x, conj(x)) | x ∈ C} ⊂ C2, one can easily verify that

P =
1

2

[
1 1
1 1

]
, Q =

1

2

[
1 −1
−1 1

]
, and r =

[
0
0

]
.

5.2 A basic example

Reconsider the system f defined in (1) with the real Newton-invariant sets (see Example 1)

V1 := R2, V3 := {(0, y) | y ∈ R}, V5 := {(1, y) | y ∈ R},
V7 := {(x, x− 1) | x ∈ R}, and V9 := {(x, 1− x) | x ∈ R}.



It is easy to verify that each δVj
can be presented in the form (8). Let Pj , Qj , and rj be the

corresponding elements. Since each Vj ⊂ R2, we have Qj = 0. Additionally, since the origin is
contained in V1 and V3, we also have r1 = r3 = 0. The remaining elements are:

P1 =

[
1 0
0 1

]
, P3 =

[
0 0
0 1

]
, P5 =

[
0 0
0 1

]
, P7 =

1

2

[
1 1
1 1

]
, P9 =

1

2

[
1 −1
−1 1

]
,

r5 =

[
1
0

]
, r7 =

[
1/2
−1/2

]
, r9 =

[
1/2
1/2

]
.

Since the singular solution (1, 0) of f = 0 was considered in Example 5, we now consider the
two nonsingular solutions, namely (0,±1). Clearly, both of (0,±1) lie in V1 and V3, with one
in V7 and the other in V9. Algorithm Certify in alphaCertified using exact rational arithmetic
promptly proves the proceeding statement starting with the approximations

(1/1502− i/3203, 1256/1255 + i/1842) and (−1/2934 + i/8472,−1483/1482− i/2384).

5.3 An example from Griewank and Osborne

Reconsider the polynomial system G from [6] defined in (5) for which the vertical line x = 0 is
a Newton-invariant set. For any y 6= 0, NG(0, y) = (0, 0) so that Newton’s method converges to
the only solution of G = 0 in one iteration.

We now consider applying Newton’s method to the point P = (10−16, 1). Figure 2 plots
the Newton residual, i.e., β, for the first 200 iterations of Newton’s method starting at P com-
puted using alphaCertified. As suggested by this plot, Newton’s method diverges to infinity.
However, one can easily verify that for the system

H(x, y) =

[
G(x, y)
x

]
as well as for a randomization of H down to a square system, Newton’s method starting at P
immediately quadratically converges to the origin in stark contrast to the results of [6].

5.4 A system with embedded points

Consider the system defining the cyclic 4-roots [2], namely

F4(x1, x2, x3, x4) =


x1 + x2 + x3 + x4

x1x2 + x2x3 + x3x4 + x4x1
x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2

x1x2x3x4 − 1

 .
The solution set defined by F4 = 0 has two irreducible curves while the ideal generated by F4 in
C[x1, . . . , x4] also has 8 embedded points. It is easy to verify that the line {(−t,−t, t, t) | t ∈ C}
is Newton-invariant with respect to F4 and contains 4 of the embedded points, namely when
t = ±1,±

√
−1. For the overdetermined system G4 constructed by appending the linear poly-

nomials x1 − x2, x1 + x3, and x1 + x4 to the system F4, each of these four embedded points
are nonsingular solutions of G4 = 0. For a general randomization of G4, Bertini [1] computed
numerical approximations of its 20 nonsingular solutions. Using the approach of [9], we are able
to use alphaCertified to certifiably determine 16 of these solutions do not solve F4 = 0. With
Theorem 4, we can now use alphaCertified to certifiably show the other 4 solve F4 = 0.



Fig. 2. Plot of the Newton residual for 200 iterations starting at P

5.5 Four-bar linkages using isotropic coordinates

A general four-bar linkage moves in a one-dimensional motion curve when the joints are per-
mitted to rotate. The nine-point path synthesis problem asks to compute the one-dimensional
motion curves of four-bar linkages that pass through nine given points. In [18], which showed
there were 1442 motion curves passing through nine points in general position, the formulation of
this problem used isotropic coordinates. Naturally, one may rewrite this system using Cartesian
coordinates, which was used in the formulation of the problem in [15] and certification of real
solutions in [9]. However, with Certify, one can certify directly using the isotropic formulation.

Let P = {P0, . . . , P8} ⊂ C2 be a collection of nine points written using isotropic coordinates.
The polynomial system fP : C12 → C12 corresponding to the isotropic formulation of the nine-
point path synthesis problem derived in [18] depends upon the variables

{x, x, a, a, n, n, y, y, b, b,m,m}

and is constructed as follows. The first four polynomials are

f1 = n− ax, f2 = n− ax, f3 = m− by, and f4 = m− by.

The remaining eight polynomials arise from the displacement from P0 to the other points Pj .
Define Qj := (δj , δj) = Pj−P0, which is written via isotropic coordinates. Then, for j = 1, . . . , 8,

f4+j = γjγj + γjγ
0
j + γjγ

0
j

where
γj = qxj r

y
j − q

y
j r

x
j , γj = rxj p

y
j − r

y
j p

x
j , γ0j = pxj q

y
j − p

y
j q

x
j

and
pxj = n− δjx, qxj = n− δjx, rxj = δj(a− x) + δj(a− x)− δjδj ,
pyj = m− δjy, qyj = m− δjy, ryj = δj(b− y) + δj(b− y)− δjδj .



When P consists of points in general position, there is a six-to-one map from the solution set
of fP = 0 to four-bar motion curves which pass through the points P arising from a two-
fold symmetry and Roberts cognates. Moreover, when P consists of 9 points that are “real” in
isotropic coordinates, then δj = conj(δj) and

V := {(x, conj(x), a, conj(a), n, conj(n), y, conj(y), b, conj(b),m, conj(m)) | x, a, n, y, b,m ∈ C}

is Newton-invariant with respect to fP .
As a demonstration of the algorithm Certify, we certify the solution to two sets of real

points. The first, called Problem 3 in Table 2 of [18], was also considered in [9] using Cartesian
coordinates. The corresponding δj are

δ1 = 0.27 + 0.1i, δ2 = 0.55 + 0.7i, δ3 = 0.95 + i, δ4 = 1.15 + 1.3i,
δ5 = 0.85 + 1.48i, δ6 = 0.45 + 1.4i, δ7 = −0.05 + i, δ8 = −0.23 + 0.4i

with δj = conj(δj). We used Certify implemented in alphaCertified to certify the approxi-
mations of the solutions obtained by Bertini [1]. Confirming previous computations in [9,18],
this showed that 64 of the 1442 motion curves through the corresponding nine points were real.

The second set of real points is modeled after Problem 4 in Table 2 of [18] which took
points on the ellipse x2 + y2/4 = 1. Since that collection of nine points was contained in the
discriminant locus, we took a collection of nine points on this ellipse and perturbed them. For
example, consider the following δj , with δj = conj(δj), constructing in this fashion:

δ1 = 0.25 + 1.33i, δ2 = 0.5 + 1.74i, δ3 = 0.75 + 1.93i, δ4 = 1 + 2.01i,
δ5 = 1.25 + 1.95i, δ6 = 1.5 + 1.73i, δ7 = 1.75 + 1.33i, δ8 = 2− 0.007i.

After using Bertini to generate approximations to the solutions, Certify showed that 51 of
the 1442 motion curves through the corresponding nine points were real.

6 Discussion and summary

Newton-invariant sets naturally arise when considering “real” solutions in other coordinate sys-
tems. They could also arise in other situations, such as “side conditions” for solution sets.
Theorem 4 and Corollary 1 provide conditions in which the limit of Newton’s method applied to
an overdetermined system or a randomized square subsystem converges to a true solution. This
article also described the algorithm Certify which, from an approximation of a solution, can
certifiably determine if the corresponding solution is contained in a particular Newton-invariant
set or its complement. This approach adds to the certifiable toolbox of methods that can be
applied to various problems in computational algebraic geometry.

The algorithm Certify is implemented in alphaCertified using both exact rational and
arbitrary precision floating point arithmetic. All computations are completely rigorous when
using rational arithmetic. If floating point arithmetic is used, the current implementation does
not fully control roundoff errors. One could, for example, use interval arithmetic [14] to bound
the errors and produce certifiable computations in this case.
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2. G. Björck and R. Fröberg. A faster way to count the solutions of inhomogeneous systems of
algebraic equations, with applications to cyclic n-roots. J. Symbolic Comput., 12(3), 329–336, 1991.

3. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag,
New York, 1998.
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