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Abstract. We consider a free boundary problem for a system of partial differential equations,
which arises in a model of tumor growth with a necrotic core. For any positive number R and
0 < ρ < R, there exists a radially symmetric stationary solution with tumor free boundary r = R
and necrotic free boundary r = ρ. The system depends on a positive parameter μ, which describes
tumor aggressiveness, and for a sequence of values μ2 < μ3 < · · · , there exist branches of symmetry-
breaking stationary solutions, which bifurcate from these values. Upon discretizing this model, we
obtain a family of polynomial systems parameterized by μ. By continuously changing μ using a
homotopy, we are able to compute nonradial symmetric solutions. We additionally discuss linear
stability of such solutions.
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Introduction. Tumor growth models are challenging both from a theoretic and
numerical standpoint. These models determine free boundary problems where the
changing shape of the tumor is of prime importance. Spherical solutions are given
explicitly by analytical formulas in [21]. Analytically finding nonspherical solutions
on a branch far from a spherical solution is intractable. Another difficult question is to
determine the stability of each solution, which will tell us whether the tumor is likely
to spread. It is established in [21] that for a sequence of values μ2 < μ3 < · · · , the
radially symmetric solutions bifurcate into nonradially symmetric ones. The nonradial
solutions near the bifurcation point are known up to the first order.

Even though this article studies a tumor growth model with a necrotic core, we
propose a general numerical algorithmic approach to answer the following: numeri-
cally compute values of the parameter where bifurcation occurs; numerically compute
nonspherical solutions on a branch far from a spherical solution; and determine sta-
bility of these solutions. The theoretical analysis of the bifurcation values μ = μl

provided in [21] allows us to check our numerical approach in this situation.
The numerical algorithm we propose is based on recent developments in numerical

algebraic geometry [4, 5, 24] and uses Bertini [3], a software package that implements
numerical algebraic geometric algorithms. Roughly speaking, tumor models lead to
systems of partial differential equations. We discretize these differential equations by
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incorporating the shape of the tumor utilizing a floating mesh with grid points on
the moving boundary of the tumor. This leads to a system consisting of thousands
of multivariate polynomials. To find bifurcation points of the spherical solutions as
the tumor-aggressiveness factor μ changes, we track the spherical solution using μ
as a continuation parameter monitoring the condition number of the Jacobian of the
general system for not-necessarily-spherical solutions. Since the system must be de-
generate, the condition number must be infinite at the bifurcation points. Due to this
rank deficiency, the computation requires using adaptive multiprecision pathtracking
[4, 5], a feature currently only available with Bertini, to perform computations in small
neighborhoods of the bifurcation. Using a numerical approximation of the bifurcation
point, we approximate the tangent cone to the family of solutions at the bifurcation
point. Upon computing the tangent directions of the nonspherical branch, we can
use continuation to numerically track along the branch and compute the nonradially
symmetric solutions far along the branch. We also determine the linear stability of
these solutions.

1. The model. Mathematical models of solid tumor growth, which consider
the tumor tissue as a density of proliferating cells, have been developed and studied
in many papers; see [1, 2, 6, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 22, 23] and the
references provided in them. Radially symmetric solutions have been extensively
discussed . A spherical shape models the tumors grown in vitro, but tumors in vivo
may develop protrusions. It is therefore interesting to explore the existence of non-
spherical solutions of tumor models.

If dead cells are not removed in an efficient manner from the tumor, they accumu-
late inside to form a necrotic core [10, 12]. A necrotic tumor growth model consists of
a core of necrotic cells and a shell adjacent to this necrotic core of proliferating cells.
In particular, let Ω(t) denote the tumor domain at time t, and D(t) ⊂ Ω(t) be the
necrotic core within the tumor domain.

Let p denote the pressure within the tumor resulting from the proliferation of the
tumor cells, σ denote the concentration of nutrients. Then a model with necrotic core
is derived in [10, 12], see also [21]. The steady-state system of the tumor model with
a necrotic core is given as follows(see [21])

Δσ = σχ(x) in Ω, (1.1)
−Δp = μ(σ − σ̃)χ(x) in Ω, (1.2)

σ = σ in ∂D, (1.3)
σ = 1 on ∂Ω, (1.4)
p = κ on ∂Ω, (1.5)

∂p

∂n
= 0 on ∂Ω, (1.6)

where σ is a constant density of cells in the necrotic core, σ̃ > 0 is a threshold
concentration, σ < σ̃ < 1 and μ is a positive parameter measuring the aggressiveness
of the tumor.

2. Discretization. To demonstrate the applicability of numerical algebraic geo-
metric methods to study free boundary problems, we will first describe how we gener-
ated a polynomial system by discretizing a 2-dimensional steady-state necrotic tumor
model. Since this model has two free boundaries, we developed a novel approach to
allow the grid to change in coordination with the two boundaries.
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Let Nθ denote the number of fixed directions and θi = i · 2π
Nθ

for i = 0, . . . , Nθ −1.
Let ri and ρi be the distance from the origin to the boundary of the tumor and the
boundary of the necrotic core, respectively, in the θi direction. That is, ri and ρi

model the two free boundaries in the θi direction and can change independently.

We then discretize in each of these fixed directions both the necrotic region and
the tumor region. Let Nρ be the number of equally spaced grid points between the
origin and each ρi and Nr be the number of equally spaced grid points between each
ρi and ri. Near the boundary of the tumor, we added two additional grid points that
improve the accuracy of the discretization.

The location of all of the grid points change in accordance with the changing
boundaries. For example, Figure 2.1 presents the grid for a radial solution using
Nθ = 40, Nρ = 5, and Nr = 12. Using the same setup, Figure 2.2 presents a grid for
a nonradial solution. The red curve inside the region is the location of the necrotic
core boundary.

Fig. 2.1. Plot of a radially symmetric grid with Nθ = 40, Nρ = 5, and Nr = 12
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We discretized the model described by (1.1–1.6) based on this moving grid using
a third order finite difference scheme. The stencil of grid points consisted of the center
point together with 14 surrounding points, which is presented in Figure 2.3.

Using this stencil, we will now explicitly describe the discretization of σ with the
discretization for p following similarly. To simplify, we will denote the location center
grid point of the stencil as the origin. Let di,j denote the distance from the jth grid
point along the ith angular direction to the origin. The Taylor series expansion using
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Fig. 2.2. Plot of a nonradially symmetric grid with Nθ = 40, Nρ = 5, and Nr = 12
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the surrounding grid points and values of σ yield a linear system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dr(0,−2) 0
dr(0,−1) 0
dr(0, 1) 0
dr(0, 2) 0

dr(−2, 0) dθ(−2, 0)
dr(−1, 0) dθ(−1, 0)
dr(1, 0) dθ(1, 0)
dr(2, 0) dθ(2, 0)

dr(−2,−1) dθ(−2,−1)
dr(−1,−1) dθ(−1,−1)
dr(1,−1) dθ(1,−1)
dr(2,−1) dθ(2,−1)

dr(−1,−2) dθ(−1,−2)
dr(1,−2) dθ(1,−2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂i,j
r σ

∂i,j
rr σ

∂i,j
rrrσ

∂i,j
rrrrσ

∂i,j
θ σ

∂i,j
θθ σ

∂i,j
rθ σ

∂i,j
rrθσ

∂i,j
rθθσ

∂i,j
θθθσ

∂i,j
rθθθσ

∂i,j
rrθθσ

∂i,j
rrrθσ

∂i,j
θθθθσ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ0,−2 − σ0,0

σ0,−1 − σ0,0

σ0,1 − σ0,0

σ0,2 − σ0,0

σ−2,0 − σ0,0

σ−1,0 − σ0,0

σ1,0 − σ0,0

σ2,0 − σ0,0

σ−2,−1 − σ0,0

σ−1,−1 − σ0,0

σ1,−1 − σ0,0

σ2,−1 − σ0,0

σ1,−2 − σ0,0

σ−1,−2 − σ0,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

dr(i, j) =

[
di,j ,

d2
i,j

2
,
d3

i,j

3!
,
d4

i,j

4!

]
and

dθ(i, j)

=
[
iΔθ, (iΔθ)2

2 , iΔθdi,j ,
d2

i,jiΔθ

2 ,
di,j(iΔθ)2

2 , (iΔθ)3

3! ,
di,j(iΔθ)3

3! ,
d2

i,j(iΔθ)2

4 ,
d3

i,jiΔθ

3! , (iΔθ)4

4!

]
,
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We obtain derivatives by solving linear system. Higher derivatives are only part
of computation and are not used in discretization. Here we list the first and second
derivatives with respect to r. The derivatives with respect to θ are complicated and
available on http://www.nd.edu/∼sommese/preprints/scheme.m.

∂i,j
r σ

=
di,j+1di,j+2di,j−1di,j−2

(di,j−1 − di,j−2)

2∑
k=1

(−1)k σ0,−k

d2
i,j−k(di,j+1 − di,j−k)(di,j+2 − di,j−k)

+
di,j−1di,j−2di,j+1di,j+2

(di,j+1 − di,j+2)

2∑
k=1

(−1)k σ0,k

d2
i,j+k(di,j+k − di,j−1)(di,j+k − di,j−2)

−
( 1

di,j+1
+

1
di,j+2

+
1

di,j−1
− 1

di,j−2

)
σ0,0

∂i,j
rr σ

= 2
( di,j+2 + di,j−2

di,j+2d2
i,j−1 + d2

i,j−1di,j−2 − d3
i,j−1 − di,j−2di,j−1di,j+2

+
di,j−1di,j+2 + di,j−2di,j+2 + di,j−1di,j−2

di,j−1(di,j+1 − di,j−1)(di,j+2 − di,j−1)(di,j−1 − di,j−2)

)
σ0,−1

−2
di,j+2di,j+1 + di,j−1di,j+1 + di,j+2di,j−1

di,j−2(di,j+1 − di,j−2)(di,j+2 − di,j−2)(di,j−1 − di,j−2)
σ0,−2

−2
−d3

i,j+2d
2
i,j−1 + d3

i,j+2d
2
i,j−2 + d2

i,j+2d
3
i,j−1 − d2

i,j+2d
3
i,j−2 − d3

i,j−1d
2
i,j−2 + d3

i,j−2d
2
i,j−1

di,j+1(di,j+1 − di,j+2)(di,j+1 − di,j−1)(di,j+1 − di,j−2)(di,j+2 − di,j−1)

· σ0,1

(di,j+2 − di,j−2)(di,j−1 − di,j−2)

−2
di,j+1di,j−1 + di,j−2di,j+1 + di,j−2di,j−1

di,j+2(di,j+1 − di,j+2)(di,j+2 − di,j−1)(di,j+2 − di,j−2)
σ0,2

2
(di,j+1 + di,j+2 + di,j−1

di,j+1di,j+2di,j−1
+

di,j+1di,j+2 + di,j+1di,j−1 + di,j+2di,j−1

di,j+1di,j+2di,j−1di,j−2

)
σ0,0

The first derivatives with respect to r is represented by ∂j
r and similar for the others.

The first and second derivatives in θ direction are represented by ∂i,j
θ and ∂i,j

θθ respec-
tively. The mixed derivatives are ∂i,j

rθ . The surrounding 14 points are showed in left
and right part of Figure 2.3 for interior points and boundary points respectively.

To avoid numerical difficulties with polar coordinates at the origin, we utilized
Cartesian coordinates together with a central difference scheme. The variables of the
resulting discretized system correspond to the location of the free boundaries in each
direction along with the concentration of nutrients and pressure at each grid point.
In particular, the number of variables of discretized system is Nθ(2(Nρ +NR)+1)+2.
To be more specific, define σi,j = σ(θi, rj) and pi,j = p(θi, rj), for i = 0, 1, 2, . . . , Nθ
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and j = 0, 1, 2, . . . , Nρ + NR. The discretized system is

F (σi,j , pi,j , ri, μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂i,j
rr σ + 1

ri,j
∂i,j

r σ + 1
r2

i,j
∂i,j

θθ σ = σi,jχ(j > Nρ),

−(
∂i,j

rr p + 1
ri,j

∂i,j
r p + 1

r2
i,j

∂i,j
θθ p

)
= μ(σi,j − σ̃)χ(j > Nρ),

σi,Nρ = σ,
σi,NR = 1,

p = κ,

∂j
rp∂j

rσ + ∂i,j
θ p∂i,j

θ σ 1
r2

i,j
= 0,

∂
i,Nρ
r p+ = ∂

i,Nρ
r p−,

(2.1)
where

κ|∂Ω

=
R(∂i,NR

r σ)2(R∂i,NR
r σ + ∂i,NR

θθ σ) + (∂i,NR

θ σ)2(R∂i,NR
rr σ + 2∂i,NR

r σ) − 2R∂i,NR
r σ∂i,NR

θ σ∂i,NR

rθ σ(√
(R ∂i,NR

r σ)2 + (∂i,NR

θ σ)2
)3 .

All the numerical derivatives are obtained by the third order finite difference scheme,
and ∂

i,Nρ
r p+ and ∂

i,Nρ
r p− are two sided derivatives. It should be emphasized that

derivatives from each side of the dead-core boundary are computed using only grid
points from one side and therefore the jump of second derivatives of σ and p doesn’t
impact this numerical computation. Since the derivatives involve rj , these are de-
scribed by rational functions. Clearing the denominators yields a polynomial system
parameterized by μ.

Fig. 2.3. Stencil for third order scheme

3. The bifurcation problem. Using the discretized problem described in Sec-
tion 2, we want to numerically compute radially symmetric and nonradially symmetric
solutions and, in particular, values of the parameter where bifurcations occur.

The first step is to compute radially symmetric solutions for some fixed radius
R and given parameter σ. In this case, each ri = R and ρi = P for some radius
0 < P < R. In the radially symmetric case, σ and p are independent of θ meaning
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that the discretized polynomial system simplifies extensively. For a given value of μ,
the resulting polynomial system can be solved using Bertini [3].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂j
rrσ + 1

rj
∂j

rσ =
{

σj , j > Nρ

0, j ≤ Nρ

∂j
rrp + 1

rj
∂j

rp =
{ −μ(σj − σ̃), j > Nρ

0, j ≤ Nρ

σNρ = σ,
σNR = 1,
pNR = 1

R ,
∂NR

r p ∂NR
r σ = 0,

∂
Nρ
r p+ = ∂

Nρ
r p−,

(3.1)

where

∂j
rσ =

⎧⎪⎪⎨⎪⎪⎩
−σ0,2 + 8σ0,1 − 8σ0,−1 + σ0,−2

12ΔR
interior points

−σ0,2 + 20σ0,−1 + 16σ0,1 + 45σ0,0 − 80σ0,−2

30ΔR
boundary point

and

∂j
rrσ =

⎧⎪⎪⎨⎪⎪⎩
−σ0,2 + 16σ0,1 + 16σ0,−1 − σ0,−2 − 30σ0,0

12ΔR2
interior points

−σ0,2 + 10σ0,−1 + 56σ0,1 − 105σ0,0 + 40σ0,−2

15ΔR2
boundary point

.

It is similar for the derivatives of function p. Upon computing the radially symmetric
solution for a given value of μ, the second step is to utilize the parameterization by
μ of the polynomial system to determine the values where bifurcations occur. These
values are located where the Jacobian of the discretized polynomial system is rank
deficient. We utilized parameter continuation implemented in Bertini to look for such
values by monitoring the condition number as μ varied. Figure 3.1 displays a graph
of the condition number with respect to μ for 3 ≤ μ ≤ 9 where R = 2.5 and σ = 0.5.
In particular, we observe that the condition number spikes near μ = 7.98 indicating
the existence of a nearby singular radially symmetric solution. Since higher precision
arithmetic is often needed near a singularity to maintain the integrity of the floating
point computations, we used the adaptive precision path tracking algorithms of [4, 5]
implemented in Bertini to control the precision utilized for this computation. All
the computations discussed here were run on a 2.33 GHz Intel Xeon 5410 processor
running 64-bit Linux. Table 3.1 gives the numerical error for computing μ2 and time
consumed. To determine the error in our numerical approximation, we compared the
radially symmetric solution for μ = 8 with the theoretical solution described in [21].
Table 3.2 displays the error for three different grids.

Given a numerical approximation of μ where the Jacobian is numerically rank
deficient, the third step is to approximate the local tangent cone. This describes
the tangent directions of the solution branches at the bifurcation. Due to the rank
deficiency, this computation utilized multiprecision arithmetic. To simplify the no-
tation, rewrite (2.1) as F (x, μ), where x = (σi,j , pi,j, ri) for i = 1, 2, . . . , Nθ and
j = 0, 1, . . . , NR + Nρ are variables and μ is a parameter.
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Table 3.1

Comparing (discretized) bifurcation value of μ2 on a sequence of grids

Theoretical μ2 Nθ NR Nρ Numerical μ2 Abs. error Computing time
40 10 5 7.9746 3e-3 30m29s

7.9772 48 12 6 7.9764 8e-4 41m54s
64 16 8 7.9770 2e-4 70m23s

Table 3.2

Numerical error of radial symmetrical solution for μ = 8 on a sequence of grids

Nθ NR Nρ Numerical error
40 10 5 3.9876e-6
64 16 8 9.7339e-7
80 20 10 4.9838e-7

Given a polynomial system

f =

⎡⎢⎣ f1

...
fm

⎤⎥⎦
in M + 1 variables and a solution x∗, the tangent cone is the set of common zeroes
of the lowest order terms of the Taylor expansions at x∗ of the elements of the ideal
generated by the polynomials f1, . . . , fm. This is at first sight a difficult computation.
In the special case when the Jacobian Jf of f evaluated at x∗ has rank M − 1, then
we know that the tangent cone lies in the two-dimensional linear space

V :=
{
v ∈ C

M+1 | Jf · v = 0
}

.

If λ ∈ CM is a nonzero row vector such that λ · Jf = 0, it follows that all first order
derivatives of λ ·f vanish at x∗. We can compute the second order terms Q(x) of λ ·f
using the Hessian of λ · f at x∗. The tangent cone in question belongs to the solution
set of Q on V , and if this solution set is one-dimensional, it consists of either one or
two lines. From this we conclude the tangent cone consists of at most two lines. In our
case, using [21], we compute two lines, one in the direction of the radially symmetric
branch and the other in the direction of the nonradially symmetric branch. We can
use this direction with continuation to move onto the bifurcation branch.

The following algorithm computes these two tangent directions by reducing down
to a polynomial in two variables utilizing an intrinsic parameterization of V . The tan-
gent directions then correspond to the two solutions of a polynomial system consisting
of a homogeneous quadratic and a linear polynomial in two variables.

Procedure (Δx1, Δx2) = TangentCone(F, μ0, x0, Δμ)
Input A parameterized polynomial system F (x, μ), a parameter value μ0, a point x0

that is a singular solution of F (x, μ0), and expected variation Δμ.
Ouput Two tangent directions Δx1 and Δx2.
Begin

1. Compute the Jacobian matrix Jx with respect to the variables x and
the derivative Jμ with respect to the parameter μ for F at (x0, μ0). Set
A := [Jx Jμ].
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Fig. 3.1. Condition number with respect to μ for R = 2.5 and σ = 0.5

2. Compute a basis
[

q1 q2

u1 u2

]
for the two-dimensional null space of A

and a nonzero vector λ in the one-dimensional null space of AT .
3. Construct the polynomial g(α, β) = λT F (x0+αq1+βq2, μ0+αu1+βu2).
4. Construct the Hessian matrix H of g and compute the two solutions

(α1, β1) and (α2, β2) of the polynomial system

[α, β] · H(0, 0) · [α, β]T = 0
αu1 + βu2 = Δμ

Return Δx1 := α1q1 + β1q2 and Δx2 := α2q1 + β2q2.

After computing the tangent direction for the nonradially symmetric solution
branch, the last step is to track along that solution branch using the tangent direction
as a first order description of the solution branch locally. After successfully moving off
of the singularity and onto a smooth point on the solution branch, standard predictor-
corrector methods were used to track along the solution branch. Figure 3.2 pictorially
demonstrates the local behavior of the solution branches near the bifurcation at μ2

for the running example. Figures 3.3 and 3.4 show the progression of the nonradial
solution in each direction along the nonradially symmetric solution branches. Even
though the figures indicate that the “upper” and “lower” solution branches appear to
differ only by a rotation, numerical values suggest that this is not the case and the
next section shows that they indeed behave very differently.

4. Linear stability study. An important question is to determine the stabil-
ity of the solution branches that we have computed. To that end, define Un =
(σ1(nτ), p1(nτ), R1(nτ)), ρ1(nτ)) where τ is the time step size. We solved the lin-
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Fig. 3.2. Local behavior of the solution branches

earized system described in [21] using a third order scheme in the spatial direction
coupled with the backward Euler scheme in time direction. Such a scheme is un-
conditional stable. At each time step, this required the solving of the linear system
Un+1 = AUn, where the matrix A depends on the steady state solutions (σ0, p0,
R0, ρ0, see [21] for the detail) and τ . In particular, this process transfers the linear
stability of the solution to the spectrum of the matrix A which depends upon the
solution.

Let |ρ(A)| denote the maximum absolute value of the eigenvalues of A. If |ρ(A)| <
1, then ‖Un‖ → 0 yielding a stable system. Additionally, if |ρ(A)| > 1, then the system
is unstable. Since the stability of the radially symmetric solutions has been determined
[21], we are interested in the stability of the nonradially symmetric solution branches.

For the working example, namely R = 2.5 and σ = 0.5, we computed the
eigenvalues of A for different values of μ along the “upper” and “lower” nonradi-
ally symmetric solution branches to determine the stability. Tables 4.1 and 4.2 list
|ρ(A)| along the “upper” and “lower” branches, respectively. In particular, when
7.86654 < μ < μ2 ≈ 7.97689, the “upper” branch is stable and, for μ near μ2, the
“lower” branch is unstable, as pictorially presented in Figure 3.2. This computation
shows that the top two solutions in Figure 3.3 are stable while all the other solutions
in Figures 3.3 and 3.4 are unstable.

Since |ρ(A)| is close to 1 for some of these computations, we verified the accuracy
computations by doubling the number of grid points three times. The results of this
computation are presented in Table 4.3. In particular, the results described in this
table together with Table 3.2 suggest that our numerical approximations have error
on the order of 10−6 yielding that the linear stability is convincing and reasonable.
Moreover, eigenvalue analysis is matched by time marching in our numerical simula-
tion. FIG 4.1 shows the nonlinear stability for μ = 7.882432 (|ρ(A)| = 0.99998) and
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Fig. 3.3. Nonradially symmetric “upper” branch

Table 4.1

Maximum eigenvalue for the “upper” branch

μ |ρ(A)| μ |ρ(A)| μ |ρ(A)|
7.976889 1.00000 7.926135 0.99994 7.707620 1.00823
7.975754 0.99999 7.918189 0.99994 7.691728 1.03423
7.973053 0.99996 7.910243 0.99995 7.675836 1.06282
7.970353 0.99995 7.898324 0.99996 7.659944 1.09445
7.967654 0.99994 7.882432 0.99998 7.644052 1.12956
7.964954 0.99994 7.866540 1.00001 7.628160 1.16867
7.962254 0.99993 7.850648 1.00003 7.612268 1.21240
7.959554 0.99993 7.834756 1.00006 7.596376 1.26151
7.956854 0.99993 7.818864 1.00010 7.580484 1.31690
7.954154 0.99993 7.802972 1.00013 7.564592 1.37974
7.951454 0.99993 7.787080 1.00017 7.548700 1.45148
7.948754 0.99993 7.771188 1.00022 7.532808 1.53399
7.946054 0.99993 7.755296 1.00027 7.516916 1.62972
7.934081 0.99993 7.739404 1.00032 7.501024 1.74191

μ = 7.976203 (|ρ(A)| = 1.00002).

5. Conclusion. In this paper, we have studied a model for the growth of a
tumor with a necrotic core. The model has incorporated important physical quantities
such as internal tumor pressure and cell-to-cell adhesion. We presented a numerical
algebraic geometric approach based on homotopy continuation to solve the steady
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Fig. 3.4. Nonradially symmetric “lower” branch

Table 4.2

Maximum eigenvalue for the “lower” branch

μ |ρ(A)| μ |ρ(A)| μ |ρ(A)|
7.976889 1.00000 7.927133 1.00022 7.708590 1.08048
7.976203 1.00002 7.919186 1.00024 7.692696 1.10909
7.973553 1.00004 7.911239 1.00027 7.676802 1.14047
7.970903 1.00006 7.899318 1.00030 7.660908 1.17498
7.968253 1.00007 7.883424 1.00035 7.645014 1.21299
7.965603 1.00009 7.867530 1.00041 7.629120 1.25499
7.962953 1.00010 7.851636 1.00046 7.613226 1.30154
7.960303 1.00011 7.835742 1.00051 7.597332 1.35331
7.957653 1.00012 7.819848 1.00057 7.581438 1.41114
7.955003 1.00013 7.803954 1.00063 7.565544 1.47604
7.952353 1.00014 7.788060 1.00069 7.549650 1.54927
7.949703 1.00015 7.772166 1.00075 7.533756 1.63242
7.947053 1.00015 7.756272 1.00869 7.517862 1.72754
7.943027 1.00017 7.740378 1.03051 7.501968 1.83724

state system and numerical compute nonradially symmetric solution branches. The
linear stability analysis reveals that the stability of steady state solution depends on
the aggressiveness parameter μ of the model. In summary, this approach provides a
general method to study tumor growth systems with free boundaries.
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Fig. 4.1. Nonlinear stability

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time t

||x
(t

)−
x s||

μ=7.882432 on the "upper" branch

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

time t

||x
(t

)−
x s||

μ=7.976203 on the "lower" branch

Table 4.3

Errors and orders

Formula value
max |x10 − x20| 7.9414e−6
max |x10 − x40| 7.4104e−6
max |x20 − x40| 6.0829e−7
max |x10 − x80| 7.3657e−6
max |x20 − x80| 6.5529e−7
max |x40 − x80| 4.4882e−8

log2

(
‖x10−x80‖2
‖x20−x80‖2

)
2.6507

log2

(
‖x20−x80‖2
‖x40−x80‖2

)
2.7477
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