
A bootstrapping approach for computing

multiple solutions of differential equations

Wenrui Hao∗ Jonathan D. Hauenstein† Bei Hu‡ Andrew J. Sommese§

November 23, 2012

Abstract

Discretizing systems of nonlinear algebraic differential equations yield polynomial
systems. When using a fine discretization, the resulting polynomial system is often
too large to solve using a direct solving approach. Our approach for solving such
systems is to utilize a homotopy continuation based method arising from domain
decomposition. This method solves polynomial systems arising from subdomains
and then uses homotopy continuation to build solutions of the original polynomial
system. We illustrate this approach on one- and two-dimensional problems.

Keywords: Domain decomposition, homotopy continuation, differential equations,
multiple solutions, numerical algebraic geometry.
AMS Subject Classification: 65N55, 65M22,65H10,65L10.

1 Introduction

A common approach for approximating solutions to a system of nonlinear differential
equations is to discretize and solve the resulting nonlinear system of equations. When
the nonlinear equations are algebraic, the resulting system is a system of polynomi-
als. Even though modern numerical codes for computing all solutions of a polynomial
system can yield new solutions [5], the systems of polynomials (arising even from very
sparse grids) are usually much too large for direct solution by these codes. The re-
alization underlying this article is that domain decomposition gives guidance on how

∗Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, IN 46556 (whao@nd.edu). This author was supported by the Duncan Chair of the Uni-
versity of Notre Dame and NSF grant DMS-0712910.

†Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (hauen-
stein@ncsu.edu, www4.ncsu.edu/~jdhauens). This author was supported by NSF grant DMS-1262428.

‡Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, IN 46556 (b1hu@nd.edu, www.nd.edu/∼b1hu).

§Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, IN 46556 (sommese@nd.edu, www.nd.edu/∼sommese). This author was supported by the
Duncan Chair of the University of Notre Dame and NSF grant DMS-0712910.

1

www4.ncsu.edu/~jdhauens

2

to “bootstrap” from the solutions of many small polynomial systems to often many
solutions of a polynomial system arising from a fine discretization based on a realistic
grid. In summary, we focus on computing solutions to the polynomial system resulting
from a realistic discretization, but do not discuss how one would obtain such a realistic
discretization from their given system of differential equations.

A technique was described in [1] in which a very coarse initial grid is used (one can
consider finite differences or other methods). After the system arising from the coarse
discretization was solved and spurious solutions filtered out, the mesh is refined in a
smooth way. The resulting solutions are used as the starting points for a homotopy
moving to a finer discretization. This process can be repeated until the set of real
solutions has stabilized. If one now seeks more accurate solutions, the available solutions
can be extrapolated to finer meshes and used as starting points for another homotopy,
which is now over the real numbers.

Domain decomposition is a powerful tool for devising parallel methods to solve par-
tial differential equations. The basic idea of domain decomposition is to first decompose
the domain into subdomains. Then, each subdomain is solved independently in parallel.
The solutions from the subdomains are then merged together to form solutions of the
original problem. One issue with this approach is computing approximate values to the
subdomain boundary points. Since this is a major difficulty, there is a rich literature
(see, for example, [4, 7, 9] and the references therein) which constructs schemes for
approximating them using a time dependent systems of PDEs, typically for systems of
parabolic differential equations.

In this article, we introduce a new homotopy method based on domain decomposi-
tion which we call the bootstrapping method. This method computes multiple solutions
to discretized systems of nonlinear algebraic differential equations and is naturally par-
allelizable. We introduce this bootstrapping method for solving problems consisting of
one- and two-space dimensions in Sections 2 and 4, respectively. Sections 3 and 5 exam-
ine the algorithm and provide numerical examples. Section 6 summarizes the results.

2 One-dimensional bootstrapping

The fundamental idea of domain decomposition and the bootstrapping approach is
that the polynomial systems resulting from discretizing on the whole domain and each
subdomain are structurally the same and only differ by values of parameters. In short,
this means that coefficient-parameter continuation can be repeatedly used to solve such
systems. To demonstrate this in the one-dimensional case, we will consider Laplace’s
equation. Suppose that u : [0, 1] → R solves⎧⎨

⎩
uxx = f(u) on (0, 1),
u(0) = c0,
u(1) = c1,

(2.1)

3

where f(u) is a polynomial function of u, and c0, c1 ∈ R. Consider discretizing the
system using N +1 grid points located at xi = i/N for i = 0, . . . , N with a second order
central difference scheme to approximate uxx. The resulting polynomial system is

FH(u0, . . . , uN) =

⎡
⎣ f(ui)−H−2(ui+1 − 2ui + ui−1), 1 ≤ i ≤ N − 1

u0 − c0
uN − c1

⎤
⎦ (2.2)

where H = 1/N and ui is considered to be an approximation of u(xi). If we are given
that u(xi) = di and u(xi+1) = di+1, consider discretizing each subinterval [xi, xi+1]
using M + 1 grid points located at xi,j = xi + j/(NM) for j = 0, . . . ,M with a second
order central difference scheme to approximate uxx. The resulting polynomial systems
is obtained from F by simply modifying the parameters N , c0, and c1, namely

Gi,h(ui,0, . . . , ui,M) =

⎡
⎣ f(ui,j)− h−2(ui,j+1 − 2ui,j + ui,j−1), 1 ≤ j ≤ M − 1

ui,0 − di
ui,M − di+1

⎤
⎦
(2.3)

where h = (NM)−1 and ui,j approximates u(xi,j). As mentioned in the Introduction,
obtaining the values of di and di+1 is a major difficulty.

The goal of the bootstrapping approach is to compute solutions of FH′ = 0 for
a sufficiently small value of H ′, i.e., a fine discretization using large number of grid
points, by solving FH = 0 for large values of H, i.e., a coarse discretization using a
small number of grid points, and building from solutions to the subsystems Gi,h = 0
using appropriately selected h and boundary values di and di+1.

We will use the values obtained from solving FH = 0 for the boundary values of the
subsystems. That is, the domain decomposition system under consideration is

Fh,H(u) =

⎡
⎢⎢⎣

f(ui,j)− h−2(ui,j+1 − 2ui,j + ui,j−1), 0 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1
f(ui,0)−H−2(ui+1,0 − 2ui,0 + ui−1,0), 1 ≤ i ≤ N − 1

u0,0 − c0
uN,0 − c1

⎤
⎥⎥⎦

(2.4)
where H = N−1, h = (NM)−1, ui,M = ui+1,0, and

u =
[
u0,0, · · · , u0,M−1, · · · , uN−1,0, · · · , uN−1,M−1, uN,0

]
.

The basic idea is that solutions to Fh,H = 0 can be computed by first solving FH = 0
for small values of N = H−1 and use the solutions for “boundary conditions” to solve
Gi,h = 0 for small values of M = (Nh)−1. Then, solutions to Fh = 0 are computed from
solutions of Fh,H = 0 using the homotopy

F(u, t) = (1− t)Fh(u) + γtFh,H(u), (2.5)

where γ is a random complex number (see [8] for more details). Full details of the
bootstrapping method are as follows.

4

1. For small N , FH defined by (2.2) can be solved directly where H = N−1 yielding
discretized solutions ui,0 on a coarse grid. We denote the set of solutions as SN,0.

2. Each solution in SN,0 defines Dirichlet “boundary conditions” on each subdomain.
Solve Gi,h for i = 0, . . . ,M − 1 where h = (NM)−1 and let the set of solutions be
SN,M . Typically, M is taken to be small, say M = 2 or M = 3.

3. Discard unreasonable solutions of SN,M using a filtering condition. Our filtering
condition ensures that the approximation solution is reasonably close to the real
solution. Some filtering conditions are following:

(a) Variational form: Let v ∈ Vh be the set of continuous piecewise linear
functions that vanish at x = 0 and x = 1. Then, the solutions satisfy the
form

−
∫ 1

0
u′v′dx =

∫ 1

0
f(u)vdx for all functions v,

corresponding to the residual u′′− f(u) being orthogonal to the test function

space Vh. We can pick a sequence {vn}∞n=1, such as vn = sin(nπx)√
n

or vn =
xn(1−x)√

n
, to obtain a series of filtering conditions. (Such a filtering approach

is related to finite element methods). We use∣∣∣∣
∫ 1

0
u′v′dx+

∫ 1

0
f(u)vdx

∣∣∣∣ ≤ ε for ‖v‖H1([0,1]) ≤ 1,

with a reasonably small ε.

(b) Bounded condition: A filter forcing |ui,j| < K, where K > 0 is a upper
bound of the PDE solutions. Clearly, a bounded filter can be applied to PDE
systems for which bounds can be estimated.

(c) Other conditions: Other filters can be found in [1], which is derived from
known properties of the solutions of the problem at hand, such as derivatives,
symmetry, positive or some other easily-detected behavior.

4. By construction, the points in SN,M are solutions of Fh,H which are start points
for the homotopy F defined by (2.5) at t = 1. Track the solutions paths defined
by F starting at the points in SN,M . The set of endpoints yields solutions of Fh.
If h is sufficiently small, output the solutions. Otherwise, return to step 2 by
identifying SN,M with SNM,0 and updating N and H accordingly.

With the proper modifications of the polynomial systems, this is a general method
that can be applied to other problems, including problems with Neumann and mixed
boundary conditions.

5

3 One-dimensional examples

To demonstrate the approach, we apply the bootstrapping method to a modification of
(2.1), namely ⎧⎨

⎩
uxx = f(u) on (0, 1),
u′(0) = 0,
u(1) = 0.

(3.6)

In the following examples, the Neumann boundary condition u′(0) = 0 is discretized
using a second-order one-sided scheme of the form

u′(0) ≈ u(2H)− 4u(H) + 3u(0)

−2H
.

The “variational form” filtering condition was used in Example 1 while Example 2
utilized the “bounded condition” filtering since the solutions are bounded by

√
p from [3].

3.1 Example 1

We consider f(u) = −λ(1 + up) where λ ≥ 0 is a real parameter and p is a nonnegative
integer. Multiplying by u′ and integrating over [0, x], we obtain

1

2
(u′)2(x) + F (u(x)) − F (u0) = 0, (3.7)

where F (u) =
∫ u
0 λ(1 + sp)ds and u0 = u(0). Since u′ < 0 for x > 0, we have

∫ u(x)

0

ds√
F (u0)− F (s)

=
√
2(1− x). (3.8)

By taking x = 0, we obtain

G(u0) :=

∫ u0

0

ds√
F (u0)− F (s)

−
√
2 = 0. (3.9)

In particular, there exists λ∗ such that

(i) for 0 < λ < λ∗, there are two solutions,

(ii) the two solutions merge at λ = λ∗, and

(iii) for λ > λ∗, there are no solutions.

Figure 1 presents G(u0) for different values of λ with p = 4. With this setup, one
can verify that λ∗ ≈ 1.30107. Exact values of the real solutions can be obtained from
(3.8) which we compare with the numerical bootstrapping method. We implemented
this method utilizing Bertini [2], which is a software package for solving polynomial
system and tracking homotopy paths. To solve this problem, we used 12 computing

6

nodes each containing two Xeon 5410 processors running 64-bit Linux, i.e., each node
consists of 8 processing cores.

This computation yielded two real solutions for λ = 1.2 and one solution for λ = λ∗,
which are displayed in Figure 2. Table 1 lists the number of ODE solutions, N , M ,
numerical errors, and the time required for the computation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

u
0

G
(u

0)

p=4

λ=1

λ=1.2

λ=1.3
λ=1.4

λ=2

Figure 1: G(u0) for p = 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
λ=1.2

x

u(
x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
λ=1.301070295459649(λ*)

x

u(
x)

u
2
(x)u

1
(x)

u
1
(x)

Figure 2: Two solutions for λ = 1.2 and unique solution for λ = λ∗

7

Table 1: Summary of solutions
λ (N,M) # solns # SN,M 1st soln Err. 2nd soln Err. Time

(7, 3) 2 4 1.105364e-4 3.714641e-4 4m5s
1.2 (21, 2) 2 10 3.236483e-5 1.133685e-4 31m16s

(42, 2) 2 16 8.384076e-6 3.029060e-5 5h39m58s

(7, 3) 1 2 1.674890e-4 1m56s
λ∗ (21, 2) 1 6 3.862634e-5 14m46s

(42, 2) 1 10 1.087360e-5 2h45s42s

3.2 Example 2

We next consider f(u) = −π2

4
u2(u2 − p) where p ≥ 0 is a real parameter [3]. We

utilized the shooting method to confirm our results regarding the number of solutions.
In particular, for each β, let vβ(t) denote the solution of the initial value problem⎧⎨

⎩
−vxx = π2

4 v2(v2 − p) on (0, 1),
v′(0) = 0,
v(0) = β.

(3.10)

For each p, the goal is to compute how many values of β for which vβ(1) = 0. Clearly,
for each such β, vβ(t) solves (3.6). With F (β) = vβ(1). Figure 3 plots F for p = 1, 8, 10.
This clearly shows that F has 2, 4, and 8 roots, respectively.

Following the same setup utilized in Section 3.1, the bootstrapping method was used
to approximate the solutions for these values of p. This computation produced the same
number of solutions as the shooting method. Figure 4 plots these solutions and Table 2
summarizes the data of this computation.

Table 2: Summary of solutions
p (N,M) # solns # SN,M Time

1
(10,3) 2 48 1h23m
(30, 3) 2 19 12m23s

8
(10, 3) 4 120 1h57m
(30, 3) 4 48 27m56s

10
(10, 3) 12 490 3h56m
(30, 3) 8 108 56m42s

8

−3 −2 −1 0 1 2 3 4
−4
−2

0
2
4

p=10, 8 roots

β

F
(β

)

−3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

β

F
(β

)

p=8, 4 roots

−0.2 −0.15 −0.1 −0.05 0 0.05
−0.05

0
0.05

0.1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

β

F
(β

)

p=1, 2 roots

−0.2 −0.1 0
−0.05

0
0.05

0.1

Figure 3: Plots of F using the shooting method

4 Two-dimensional bootstrapping

We extend the bootstrapping method from Section 2 to two-dimensional problems by
considering Laplace’s equation on the unit square. Let Ω = (0, 1) × (0, 1) and suppose
that u(x, y) defined on the unit square Ω solves{

Δu = f(u) on Ω,
u(x, y) = g(x, y) on ∂Ω.

(4.11)

Analogous to Section 2, we decompose Ω into equal subdomains and then decompose
each subdomain. Let Nx and Ny be positive integers with Hx = 1

Nx
and Hy = 1

Ny
,

and grid points (xi1 , yi2) = (i1Hx, i2Hy). The grid points in each domain [xi1 , xi1+1]×
[yi2 , yi2+1] are

(xi1,j1 , yi2,j2) = (i1Hx + j1hx, i2Hy + j2hy)

where hx = 1
NxMx

and hy = 1
NyMy

with positive integers Mx and My. To simplify

notation, we will write (i, j) = ((i1, i2), (j1, j2)). As before, the values ui,j will be

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5
p=10, 8 solutions

x

u(
x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

0

2

4
p=8, 4 solutions

x

u(
x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

x

u(
x)

p=1, 2 solutions

Figure 4: Solutions for different values of p

numerical approximations of u(xi1,j1 , yi2,j2) obtained via solving a polynomial system
resulting from discretization.

The first step of the bootstrapping homotopy method solves the polynomial system
arising from the discretization with respect to Hx and Hy. For the grid displayed in
Figure 5, this computes approximations at the red star points.

The second step uses the solutions computed in Step 1 to setup “boundary condi-
tions” for the subdomains. Consider the subdomain [xi, xi+1] × [0, 1] with Mx and Ny

points in the x and y directions, respectively. For the grid displayed in Figure 5, solving
on these grids yield approximations at the green circle points. Now, consider the subdo-
main [0, 1]× [yi, yi+1] with NxMx and My points in the x and y directions, respectively.
For the grid displayed in Figure 5, solving on these grids yield approximations at the
black square points.

The third step applies a filter to discard unreasonable solutions. The fourth step
uses a homotopy to compute approximations on Ω with NxMx and NyMy grid points in
the x and y directions, respectively, using the polynomial system and approximations
constructed in the second step.

10

Figure 5: Mesh grid with Nx = Ny = Mx = My = 3

5 Two-dimensional example

We apply the two-dimensional bootstrapping method to a tumor model without a
necrotic core that was discussed in [6]. Let Ω denote the tumor region, σ denote the
concentration of nutrients, p denote the pressure, σ̃ denote the concentration of nutri-
ents needed for sustainability, μ denote the aggressiveness of the tumor, and κ denote
the mean curvature. A normalized steady state system of a free boundary problem
modeling tumor growth is given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−Δσ = −σ in Ω
−Δp = μ(σ − σ̃) in Ω

σ = 1 on ∂Ω
p = κ on ∂Ω

∂p
∂n = 0 on ∂Ω,

(5.12)

It should be emphasized here that Ω is unknown in advance yielding a free boundary
problem. To handle the free boundary, we developed a novel discretization approach
to allow the length of the grid to change in coordination with the boundary. That is,
let R(θ) be the length of tumor in the θ direction which changes independently and
models the free boundary in this direction. Using the floating grid presented in [6],

11

we apply a third-order finite difference scheme to setup a discretization of the system
(5.12), which yields a polynomial system. In [6], nonradial solutions were computed
by using parameter continuation with respect to μ starting from bifurcation branching
points. A more difficult question is to compute other nonradial solutions for a given
value of μ. The bootstrapping method allows us to compute such solutions with the
goal of computing as many as possible.

We built a filtering condition based on the fact that the distance to the boundary in
each angular direction, denoted R(θ), must be positive. This was enforced by requiring
R(θ) > −ε. Here we choose ε = 1 by taking numerical error into consideration. Using
the same floating grids described in [6] along with the difference scheme, we employed the
bootstrapping algorithm utilizing Bertini on 20 computing nodes of the type described
in Section 3.1.

Let NR and Nθ denote the number of subdomains in the radial, R, and angular, θ,
direction, respectively. Each subdomain was decomposed using MR and Mθ grid points
in the R and θ directions, respectively. For small values of NR and Nθ, e.g., NR = 2
and Nθ = 3, Bertini computed all solutions of the polynomial system arising from
the discretization. This polynomial system has a natural multi-homogeneous structure
which we utilized to reduce the bound on the number of isolated solutions over C from
317 =129,140,163 to 923,440. This was the starting point for the bootstrapping method
which built numerical solutions on the whole domain using more grid points. Table 3
lists number of grid points, number of solutions, and time needed for the computation.

Table 3: Summary for solving (5.12)

μ NR Nθ MR Mθ Num. of solns Time

3
2 3 3 1 56 1h46m41s
8 5 1 1 117 2d2h47m50s

2
2 3 3 1 34 1h12m13s
8 5 1 1 61 23h35m45s

1
2 3 3 1 4 54m34s
8 5 1 1 6 11h56m23s

0.9
2 3 3 1 2 44m21s
8 5 1 1 2 7h3m25s

0.8
2 3 3 1 1 22m13s
8 5 1 1 1 3h46m12s

0.5
2 3 3 1 1 22m11s
8 5 1 1 1 3h45m50s

After obtaining a non-radial solution using the bootstrapping homotopy method,
we utilized higher-order difference schemes and finer grids to refine the solutions. The
solutions for the higher-order schemes were computed using a homotopy starting from
the solutions obtain via the bootstrapping approach. After refinement, some “fake”

12

solutions, which arose as artifacts of the discretization, were identified and discarded.
For example, with μ = 3, we found 24 solutions using this process which are presented
in Figure 6. In this figure, it shows the pressure distribution among the region Ω and the
maximum and minimum radius R(θ). We note that solution 21 presented in Figure 6
is the radial solution for μ = 3. Starting from solutions 2 and 4 using a parameter
continuation with respect to μ, we found that these solutions arise from the bifurcation
at μ2 (see [6]) for more details regarding this bifurcation point). Figure 7 shows the
solution behavior of these paths starting from solutions 2 and 4 which intersect the
radial solution branch at μ2.

For smaller values of μ, e.g., μ = 0.5 and μ = 0.8, this bootstrapping process only
found the radial solution. This suggests that no nonradial solutions exist for these values
of μ, which is consistent with the theoretical results regarding this tumor model [6].

6 Conclusion

A bootstrapping approach arising from domain decomposition was presented for com-
puting multiple solutions of differential equations for one- and two-dimensional prob-
lems. The computations needed in this method are parallelizable and allow for the
computation of solutions of extremely large polynomial systems. The bootstrapping al-
gorithm for three-dimensional case shall be considered in the future along with a detailed
analysis of how to pick the starting value of N as well as M in the algorithm. Another
line of research is developing and testing filtering conditions on a variety of problems.

References

[1] E.L. Allgower, D.J. Bates, A.J. Sommese, and C.W. Wampler, Solution
of Polynomial Systems Derived from Differential Equations, Computing, Vol. 76,
1–10 (2005).

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler,

Bertini: Software for numerical algebraic geometry. Available at
www.nd.edu/∼sommese/bertini.

[3] C. Chen, Z. Xie, Structure of multiple solutions for nonlinear differential equa-
tions, Sci. China Ser. A – Math, Vol. 47, 172–180 (2004).

[4] C.N. Dawson, Q. Du, and T.F. Dupont, A finite difference domain decompo-
sition algorithm for numerical solution of the Heat equation, Math. Comp., Vol. 57,
63–71 (1991).

[5] W. Hao, J.D. Hauenstein, B. Hu, Y. Liu, A.J. Sommese, and Y.-T. Zhang,
Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-
ventral patterning, Discret. Contin. Dyn. – S, Vol. 4, 1413–1428 (2011).

13

Max
R

=2.8865Min
R

=2.2863

1

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=3.3757Min
R

=1.9847

2

−
4

−
2

0
2

4
−

4

−
2 0 2 4

Max
R

=2.6194Min
R

=2.4028

3

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=3.3757Min
R

=1.9847

4

−
4

−
2

0
2

4
−

4

−
2 0 2 4

Max
R

=2.8865Min
R

=2.2863

5

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.6492Min
R

=2.2715

6

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.7321Min
R

=2.2042

7

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.7972Min
R

=2.2474

8

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.694Min
R

=2.376

9

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.8508Min
R

=2.0572

10

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.7972Min
R

=2.2474

11

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.6492Min
R

=2.2715

12

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.6836Min
R

=2.3757

13

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.8508Min
R

=2.0572

14

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.7321Min
R

=2.2042

15

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.8225Min
R

=2.4574

16

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.5682Min
R

=2.3968

17

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.6151Min
R

=2.4062

18

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.5933Min
R

=2.3186

19

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.5806Min
R

=2.3949

20

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.4995Min
R

=2.4995

21

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.5933Min
R

=2.3186

22

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.5682Min
R

=2.3968

23

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Max
R

=2.5806Min
R

=2.3949

24

−
2

0
2

−
3

−
2

−
1 0 1 2 3

Figure 6: Solutions for μ = 3

[6] W. Hao, J.D. Hauenstein, B. Hu, Y. Liu, A.J. Sommese, and Y.-T. Zhang,
Continuation along bifurcation branches for a tumor model with a necrotic core,

14

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
−1.5

−1

−0.5

0

0.5

1

1.5

μ

R
en

d−
R

1

Nonradial solutions tracking

μ
2

Figure 7: Tracking solution paths back to the bifurcation at μ2

J. Sci. Comput., Vol. 53, 395–413 (2012).

[7] W. Hao and S. Zhu, Parallel iterative methods for parabolic equations, Int. J.
Comput. Math, Vol. 86, 431–440 (2009).

[8] A.J. Sommese and C.W. WamplerNumerical solution of systems of polynomials
arising in engineering and science, World Scientific, Singapore (2005).

[9] S. Zhu, Conservative domain decomposition procedure with unconditional stability
and second-order accuracy, Appl. Math. Comput., Vol. 216, 3275–3282 (2010)

	Introduction
	One-dimensional bootstrapping
	One-dimensional examples
	Example 1
	Example 2

	Two-dimensional bootstrapping
	Two-dimensional example
	Conclusion

