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Abstract. We present new methods for determining polynomials in the ideal of the variety
of bilinear maps of border rank at most r. We apply these methods to several cases including
the case r = 6 in the space of bilinear maps C4 × C4 → C4. This space of bilinear maps
includes the matrix multiplication operator M2 for two by two matrices. We show these newly
obtained polynomials do not vanish on the matrix multiplication operator M2, which gives a
new proof that the border rank of the multiplication of 2× 2 matrices is seven. Other examples
are considered along with an explanation of how to implement the methods.
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1. Introduction

Lower bounds in complexity theory are considered difficult to obtain. We describe a new
method for obtaining lower bounds on the border rank which is based on a new way to find
polynomials that vanish on bilinear maps T : Ca × Cb → Cc of low border rank.

1.1. Rank and border rank. Let Ca∗ := {f : Ca → C | f is linear} denote the dual vector
space to Ca. That is, if an element of Ca is represented by a column vector of height a, then
Ca∗ corresponds to row vectors, and the evaluation is just row-column matrix multiplication. A
bilinear map T : Ca × Cb → Cc has rank one if there exist α ∈ Ca∗, β ∈ Cb∗, and c ∈ Cc such
that T (a, b) = α(a)β(b)c. The rank one bilinear maps are in some sense the simplest bilinear
maps, and T is said to have rank r if r is the minimum number of rank one bilinear maps
which sum to T . This r is sometimes called the tensor rank of T . If one views multiplication
by constants as a “free” operation, then the rank differs at most by a factor of two from the
minimal number of multiplications of variables that is needed to compute T , see [5, Ch. 14] for
more information.

Since the set of all bilinear maps Ca × Cb → Cc is a vector space of dimension abc, it is
natural to talk about polynomials on the space of bilinear maps Ca ×Cb → Cc. Unfortunately,
one cannot test directly for the tensor rank by the vanishing of polynomials, since the common
zero locus of the set of all polynomials vanishing on the set of bilinear maps of rank at most r is,
typically, larger than the set of bilinear maps of rank at most r. This may be described precisely
using the language of algebraic geometry: for the purposes of this article, we define an algebraic
variety (or simply a variety) to be the common zero locus of a collection of polynomials that is
irreducible, in the sense that it cannot be written as a union of two zero loci.

A (proper) Zariski closed subset of a variety X is the common zero locus of a collection of
polynomials restricted to X, and a Zariski open subset is the complement of a Zariski closed set.
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The border rank of a tensor T is defined to be the smallest r such that all polynomials vanishing
on the set of bilinear maps of rank at most r also vanish at T , and one writes R(T ) = r. In this
case, T is arbitrarily close, in any reasonable measure, to a bilinear map of rank r (including
the possibility that the rank of T is r). We let σr;a,b,c⊂ Ca⊗Cb⊗Cc denote the set of bilinear
maps of border rank at most r. It is the algebraic variety formed from the zero set of all the
polynomials having the set of bilinear maps of rank at most r in their zero set. When a,b, c are
understood from the context, we simply write σr. The set of bilinear maps of rank r is a Zariski
open subset of the algebraic variety σr;a,b,c. The set is open because the set of bilinear maps of

border rank less than r is a closed subset of Ca⊗Cb⊗Cc, and the subset of σr;a,b,c of bilinear
maps of rank greater than r is closed in σr;a,b,c.

1.2. Results. We introduce a new technique based on numerical algebraic geometry and in-
terpolation that finds, with high probability, where equations which vanish on the variety of
bilinear maps of border rank at most r can be found. Once one knows where to look, we can use
methods which began in [20] and were refined in [1, 7] to find the actual equations and rigorously
prove they vanish on σr;a,b,c. With these equations, one can then show that the border rank
of a given tensor T is greater than r if T does not satisfy these equations. Of special interest in
this paper will be border rank of the matrix multiplication tensor

M2 :=
2∑

i,j,k=1

ei,j ⊗ ej,k ⊗ ek,i ∈ C4 ⊗ C4 ⊗ C4,

where (ei,j) is the standard basis of C2×2 = C4.
It is known since Strassen’s fundamental 1969 breakthrough [27] that R(M2) ≤ 7. Our main

result is a new proof of the lower bound

(1) R(M2) ≥ 7,

which was originally proven in 2005 by Landsberg, see [15], where very different methods were
used (see Section 5). The proof outline is as follows. We start by proving, with the aid of a com-
puter, that no nonconstant polynomial of degree less than 19 vanishes on σ6;4,4,4. In the course of
this computation, we compute the necessary data to perform the membership test of [13] which
numerically shows (i.e., this shows with extremely high probability) that (1) holds. Additionally,
the same data gives strong evidence that there is a 64-dimensional space of degree 19 equations
that vanish on σ6;4,4,4. The only 64-dimensional representation of GL4 in C[C4⊗C4⊗C4]19 is of
type ((5, 5, 5, 4), (5, 5, 5, 4), (5, 5, 5, 4)). By a randomized procedure, we then construct a basis
for the 31-dimensional highest weight vector space of weight ((5, 5, 5, 4), (5, 5, 5, 4), (5, 5, 5, 4)) in
C[C4⊗C4⊗C4]19. We show using numerical methods that the restriction of this 31-dimensional
vector space to functions defined on σ6;4,4,4 has a 1-dimensional kernel.

Since the highest weight space of the weight ((5, 5, 5, 5), (5, 5, 5, 5), (5, 5, 5, 5)) in
C[C4⊗C4⊗C4]20 is only 4-dimensional, we focus on this space to develop a rigorous proof of (1).
In particular, the restriction to functions defined on σ6;4,4,4 also has a 1-dimensional kernel. This
corresponds to a degree 20 polynomial that vanishes on σ6;4,4,4 which does not vanish at M2

thereby completing the proof.
We remark that while there is a large subspace of C[C4⊗C4⊗C4]20 that vanishes on σ6;4,4,4,

the polynomial we work with is distinguished in that it is the only one that is unchanged (up
to scale) by changes of bases in each of the C4’s.

To make this approach computationally feasible, each polynomial is represented by a pair
of permutations, see Section 4.3. These permutations provide all the information needed to
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evaluate the corresponding polynomial, but, unfortunately, this means that we are unable to
obtain additional information, such as the number of terms.

The technique we present can be applied to other implicitization problems. That is, we want
to consider a variety

(2) X := g(Y )

where Y is (possibly a Zariski open set of) a variety and g is a system of rational functions
defined on Y . In the bilinear case, the tensors of rank at most r is a dense subset of the
algebraic set of tensors of border rank at most r where each tensor of rank at most r can be
written as a sum of r tensors of rank at most one. In this case, Y is simply the product of r
copies of the variety of tensors of rank at most one and g is the linear map corresponding to
taking the sum. Another specific application arising in physics is the analysis of vacuum moduli
space in (supersymmetric) field theories [11] which arise as the closure of the image under a
polynomial map of an algebraic set.

Besides our main result, we proved, using numerical methods the following:

• The degree of σ6;4,4,4 is 15,456.
• The degree of the codimension three variety σ15;4,8,9 is at least 83,000 and no nonconstant

polynomial of degree ≤ 45 vanishes on σ15;4,8,9.
• The degree of the hypersurface σ18;7,7,7 is at least 187,000.
• The degree of the codimension six variety σ6;3,4,6 is 206,472 and no nonconstant polyno-

mial of degree ≤ 14 vanishes on σ6;3,4,6.
• The degree of the codimension three variety σ7;4,4,5 is 44,000 and no nonconstant poly-

nomial of degree ≤ 56 vanishes on σ7;4,4,5.
• The degree of the hypersurface σ8;3,5,7 is 105.

The varieties σ15;4,8,9 and σ18;7,7,7 have applications to 3×3 matrix multiplication. Information
about polynomials in their ideals could help to more precisely determine R(M3), with the
current known bounds being 15 ≤ R(M3) ≤ 21, see [23] and [21]. The other varieties are
presented since they are the margin of what is currently feasible. Results regarding the ideal
being empty are potentially useful for finding further equations since they provide a starting
point for such an endeavor.

1.3. Other methods for finding equations. Very little is known about the equations of σr
in general. One can reduce to the case of a = b = c = r via a process called inheritance.
Additionally, there is a systematic way to determine the equations in any given degree using
multi-prolongation. For a discussion on inheritance and multi-prolongation, see [18, §3.7]. Even
though multi-prolongation is systematic, it is very difficult to utilize except in very small cases.
Most known equations have been found by reducing multi-linear algebra to linear algebra. See
[16, 21] for the most recent equations that go up to σ2m−2;m,m,m. Some information about the
ideal of σr;r,r,r can be found using representation theory (via the algebraic Peter-Weyl Theorem)
as this case is an orbit closure, see [6] for an exposition. By inheritance one could deduce the
σr;m,n,p case for any m,n, p from the σr;r,r,r case.

1.4. Polynomials on vector spaces. We write I(σr) for the set of all polynomials vanishing
on σr, which forms an ideal. Since σr is invariant under re-scaling, we may restrict our attention
to homogeneous polynomials since, in this case, a polynomial will be in the ideal if and only if
all of its homogeneous components are in the ideal.

Let V be a vector space. A subset X ⊂ V is called an algebraic set if it is the common zero
locus of a collection of polynomials on V . Recall that we say that an irreducible algebraic set
is a variety. If X ⊂ V is a variety that is invariant under re-scaling, let SdV ∗ be the space of
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homogeneous polynomials of degree d on V and Id(X) ⊂ SdV ∗ be the component of the ideal
of X in degree d.

Roughly speaking (see Section 2 for more details), our technique for studying the equations
that vanish on a variety X of positive dimension is by applying numerical algebraic geometry
and machine learning techniques to finite subsets of X which lie in a common linear space. That
is, we aim to study finite subsets of algebraic sets of the form Y = X ∩ L ⊂ L where L is a
general linear space of codimension at most dim X. If the codimension of L is dim X, then Y
consists of degX points. If the codimension of L is strictly less than dim X, then Y is also a
variety with the same degree as X. Moreover, if one considers X ⊂ V and Y ⊂ L, and defines
dX and dY to be the minimal degree of the nonzero polynomials in I(X) and I(Y ), respectively,
then dX ≥ dY . In particular, dim Id(Y ) ≥ dim Id(X) for any d ≤ dX with similar bounds for all
d ≥ 0 that can be developed from the corresponding Hilbert functions. Once we have inferred
information about polynomials in I(Y ), we use representation theory to identify which modules
could appear. Finally, sample vectors from these modules are used to test if the entire module
is in the ideal I(X) or not.

2. Deciding where to go hunting

The basic idea of our algorithm is to combine the ability of numerical algebraic geometry to
compute points on certain subsets of a variety with interpolation to obtain information about this
subset from the computed points. We first describe needed concepts from numerical algebraic
geometry and then a brief discussion regarding interpolation.

At a basic level, the algorithms of numerical algebraic geometry (see [26] for general back-
ground information) perform numerical computations on varieties where each variety is repre-
sented by a data structure called a witness set. Let f be a polynomial system. The common
zero locus of f is an algebraic set that can be decomposed uniquely into finitely many varieties,
none of which is contained in the union of the others. If X is one of these varieties, called an
irreducible component of the zero locus of f , then a witness set for X is the triple {f, L,W}
where the zero set of L defines a general linear subspace of codimension equal to the dimension of
X and W is the intersection of X with this linear subspace defined by L. Given one point in W ,
arbitrarily many points on X can be computed in a process called sampling. In numerical terms,
computing a point “on” a variety means that we have both a numerical approximation of the
point along with an algorithm that can be used to approximate the point to arbitrary accuracy.

This witness set description is not useful for the problems at hand since, for each of the
varieties X under consideration, we do not assume that we have access to a polynomial system
f let alone any nonzero polynomials which vanish on X. However, we do assume that we have a
description of X in the form (2). In fact, by adding variables and clearing denominators, we can

assume that X := π(Z) where π is a projection map and Z is an irreducible component of the
zero locus for some polynomial system F . This is demonstrated in the following simple example.

Example 2.0.1. The set X := {(x, y) ∈ C2 | x2 + y2 = 1} is equal to g(Y ) where

g(t) =

(
1− t2

1 + t2
,

2t

1 + t2

)
and Y := C \ {±i}.

We also have X = π(Z) where π(x, y, t) = (x, y) and Z is the zero locus (which is irreducible) of

F (x, y, t) =

[
(1 + t2)x− (1− t2)

(1 + t2)y − 2t

]
.
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With this setup, we utilize a pseudowitness set [12, 13] for X = π(Z) which is the quadruple
{F, π, L,W} where L defines a linear subspace of codimension equal to the dimension of Z
and W is the intersection of Z with this linear subspace defined by L. In this case, the linear
polynomials L are constructed so that it has exactly dim X general linear polynomials in the
image space of π, i.e., intersect X in degX many points, while the remaining linear polynomials
are general. In particular, π(W ) consists of exactly degX distinct points. As with traditional
witness sets, one can sample and perform membership tests on X [13].

The key here is that once a single sufficiently general point is known on X, other points on X
can be computed as well. In fact, these other points can be forced to live in a fixed general linear
subspace of codimension at most dim X thereby simplifying the future computations since one
can work intrinsically on this linear subspace. If the intersection of the linear subspace and X is
positive dimensional, then it is also a variety and arbitrarily many points can be sampled from
this variety. If the intersection is zero-dimensional, it consists of exactly degX points which,
after computing one, random monodromy loops [24] could be used to try to compute the other
points. The trace test [25] provides a stopping criterion for deciding when exactly degX points
have been computed.

Clearly, any polynomial which vanishes on X must also vanish on a finite subset of X. Al-
though we will not delve too deep into the theory here, one can recover the invariants of X from
a general linear subspace section of X when X is an arithmetically Cohen-Macaulay scheme (see
[22, Chap. 1]). Nonetheless, since our current focus is on developing a list of potential places
of where to look to focus further representation theoretic computations, we can consider all
varieties and not just the arithmetically Cohen-Macaulay ones. Of course, this is at the expense
of bounds rather than equality as demonstrated in the following example.

Example 2.0.2. Consider the following varieties in P3:

X1 := {(s3, s2t, st2, t3) | (s, t) ∈ P1} and X2 := {(s4, s3t, st3, t4) | (s, t) ∈ P1}.
It is easy to verify that

• dim X1 = 1, degX1 = 3, and I(X1) is generated by three quadratics;
• dim X2 = 1, degX2 = 4, and I(X2) is generated by a quadratic and three cubics.

Let Yi = Xi ∩H be the set of degXi points where H is the hyperplane defined by the vanishing
of `(x) = x0 + 2x1 + 3x2 + 5x3. If we consider Yi ⊂ H, then

• I(Y1) is generated by three quadratics;
• I(Y2) is generated by two quadratics.

To summarize, X1 is the twisted cubic curve in P3 which is arithmetically Cohen-Macaulay so
that, for example, the dimension of Id(X1) can be determined from Id(Y1). However, X2 is not
arithmetically Cohen-Macaulay which, in this case, can be observed since 2 = dim I2(Y2) >
dim I2(X2) = 1. Even though one should only expect dX2 ≥ dY2 , we do have equality in this
case, namely dX2 = dY2 = 2.

Once we have decided on our first finite set to consider, the next task is polynomial inter-
polation, that is, to compute polynomials that vanish on this finite set. Given a basis for the
finite-dimensional space of polynomials under consideration, polynomial interpolation reduces
to computing null vectors of a (potentially very large) matrix. From a numerical standpoint, as
the degrees of the polynomials under consideration increase, preconditioning becomes essential
to perform reliable computations. For our computations, we use the approach of [10].

Each computation provides some restrictions on which polynomials can be in I(X). Nev-
ertheless, we also consider what happens when we add new points to our finite set. For a
particular degree, there are two possible choices: either the originally computed polynomials
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will vanish at the new points or the dimension of the set of polynomials that vanish at all the
points will decrease. In the former case, we can then move on to searching for higher degree
polynomials not generated by these polynomials. In the latter case, we continue adding new
points. If no polynomials of a particular degree, say d, vanish on some finite set, then we know
that dim Id(X) = 0 and dX > d. Thus, we try again by considering polynomials of degree d+ 1.

Variations of this approach can be to consider sampling points from the intersection of X
with linear spaces of increasing dimension to see how the dimension of the vanishing polynomials
change as less restrictions are placed on the sample points. The key in the end is to control the
growth of the dimension of the space of polynomials under consideration since this can become
unwieldy quickly. In particular, this method is practical for varieties X of low codimension since
we can work implicitly on linear spaces of low dimension.

When the codimension is one, X is a hypersurface so that the degree of X is equal to the
degree of the polynomial defining X. In this case, one can simply compute a pseudowitness set
to compute its degree rather then use this interpolation based approach. For example, such an
approach was used in [4] for computing the degree of implicitly defined hypersurfaces, which
arise as the algebraic boundaries of Hilbert’s sums of squares cones of degree 38,475 and 83,200.

Example 2.0.3. In Example 2.0.2, we considered finite sets obtained by intersecting the curves
with a particular hyperplane. We now use this information to limit our focus when we add
other points to our finite set. In four variables, there is a ten-dimensional space of homogeneous
polynomials of degree 2, but with our previously computed information, this has already been
reduced to a seven and six dimensional space for X1 and X2, respectively. More specifically,
the four dimensional space arising from the linear polynomial `(x) along with the three and two
dimensional spaces, respectively, from I2(Y1) and I2(Y2), namely

• I2(X1) ⊂ span

{
x0`(x), x1`(x), x1x2 + 2x1x3 + 3x2x3 + 5x23,
x2`(x), x3`(x), x22 − x1x3, x21 − x1x3 − x2x3 − 10x23

}
;

• I2(X2) ⊂ span

{
x0`(x), x1`(x), x1x2 + 2x1x3 + 3x2x3 + 5x23,
x2`(x), x3`(x), x21 − x22 + 11x1x3 + 2x2x3 + 20x23

}
.

By selecting additional random points, one indeed finds dim I2(X1) = 3 and dim I2(X2) = 1.

This procedure develops ideas on where the degrees dj in which generators of the ideal appear.
The next section summarizes the numerical evidence for the results presented in Section 1.2.
From this data, the next step is to conclusively determine the linear subspace of the space of
polynomials of degrees dj that are in the ideal. For this, one uses representation theory as we
describe in Section 4.

3. Review of numerical results

We summarize the six varieties presented in Section 1.2. In all these cases, the codimension
of the variety is the expected codimension, namely codim σr;a,b,c = abc− r(a + b + c− 2). The
points on the varieties were computed using Bertini [2] with the linear algebra computations
performed using Matlab.

3.1. σ6;4,4,4. As discussed above, this codimension four variety provides information about
R(M2), that is, showing M2 /∈ σ6;4,4,4 ⊂ P63 shows R(M2) = 7. We first fix a random lin-
ear space L ⊂ P63 of dimension 4 and consider the finite set W := σ6;4,4,4 ∩ L. The first
objective is to compute points in W , with a goal of computing every point in W . To this end,
we first computed one point in W as follows. One first picks a random point x∗ ∈ σ6;4,4,4,
which is trivial since a dense subset is σ6;4,4,4 is parameterizable. Let L be a system of 59 linear
forms so that L is the zero locus of L and Lt,x∗ be the zero locus of L(x) − t · L(x∗). Since
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x∗ ∈ σ6;4,4,4 ∩ L1,x∗ , a point in W is the endpoint of the path defined by σ6;4,4,4 ∩ Lt,x∗ at t = 0
starting from x∗ at t = 1.

Even though the above process could be repeated for different x∗ to compute points in W ,
we instead used monodromy loops [24] for generating more points in W . After performing 21
loops, the number of points in W that had computed stabilized at 15,456. The trace test [25]
shows that 15,456 is indeed the degree of σ6;4,4,4 thereby showing we had indeed computed W .

From W , we performed two computations. The first was the membership test of [13] for
deciding if M2 ∈ σ6;4,4,4, which requires tracking 15,456 homotopy paths that start at the points
of W . In this case, each of these 15,456 paths converged to points in σ6;4,4,4 distinct from
M2 providing a numerical proof that M2 /∈ σ6;4,4,4. The second was to compute the minimal
degree of nonzero polynomials vanishing on W ⊂ L. This sequence of polynomial interpolation
problems showed that no nonconstant polynomials of degree ≤ 18 vanished on W and hence
σ6;4,4,4. The 15456×8855 matrix resulting from polynomial interpolation of homogeneous forms
of degree 19 in 5 variables using the approach of [10] has a 64-dimensional null space. Thus, the
minimal degree of nonzero polynomials vanishing on W ⊂ L is 19.

The next objective was to verify the minimal degree of nonzero polynomials vanishing on
the curve C := σ6;4,4,4 ∩ K ⊂ K for a fixed random linear space K ⊂ P63 of dimension 5 was
also 19. We used 50,000 points on C and the 50000 × 42504 matrix resulting from polynomial
interpolation of homogeneous forms of degree 19 in 6 variables using the approach of [10] also
has a 64-dimensional null space. With this agreement, we proceeded to use representation
theory, described in Section 4, to understand these polynomials and prove that M2 is indeed not
contained in σ6;4,4,4.

3.2. σ15;4,8,9. For this codimension three variety, we followed a similar computation as above
for computing 83, 000 points in W := σ15;4,8,9 ∩ L where L ⊂ P287 is a random linear space of
dimension 3. By using polynomial interpolation on these points, we are able to show that no
nonconstant polynomial of degree ≤ 45 vanishes on σ15;4,8,9.

3.3. σ18;7,7,7. For this hypersurface, we computed 187, 000 points in W := σ18;7,7,7 ∩ L where
L ⊂ P342 is a random line. This shows that 187, 000 is a lower bound on the degree of σ18;7,7,7
and the degree of the polynomial which defines it.

3.4. σ6;3,4,6. For this codimension six variety, we followed a similar computation as above for
computing W := σ6;3,4,6∩L where L ⊂ P71 is a random linear space of dimension 6. In this case,
the trace test shows that the set of 206,472 points computed by monodromy does indeed equal
W . Polynomial interpolation showed that no nonconstant polynomial of degree ≤ 14 vanished
on σ6;3,4,6. We stopped at degree 14 due to memory limitations of the numerical linear algebra
routines. However, even though we were unable to compute the minimal degree of nonconstant
polynomials vanishing on W ⊂ L, we note that W with [13] can be used to decide membership
in σ6;3,4,6.

3.5. σ7;4,4,5. For this codimension three variety, we followed a similar computation as above for
computing W := σ7;4,4,5∩L where L ⊂ P79 is a random linear space of dimension 3. In this case,
the trace test shows that the set of 44,000 points computed by monodromy does indeed equal
W . Polynomial interpolation showed that no nonconstant polynomial of degree ≤ 56 vanished
on σ7;4,4,5. We stopped at degree 56 due to additional conditioning problems arising from the
numerical linear algebra routines. As with the σ6,3,4,6 case, W with [13] still can be used to
decide membership in σ7;4,4,5.
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3.6. σ8;3,5,7. For this hypersurface, the trace showed that the set of 105 points computed by
monodromy is equal to W := σ8;3,5,7 ∩ L where L ⊂ P104 is a random line. In particular, this
shows that there is a degree 105 polynomial vanishing on σ8;3,5,7.

4. Polynomials on the space of bilinear maps

4.1. Tensors. In order to explain the polynomials it will be useful to work more invariantly,
so instead of Ca,Cb etc., we write A,B etc. for complex vector spaces of dimensions a,b etc..
It will also be useful to introduce the language of tensors. A bilinear map A∗ × B∗ → C may
also be viewed as a tri-linear map A∗ × B∗ × C∗ → C, as well as in numerous other ways. To
avoid prejudicing ourselves, we simply write T ∈ A⊗B⊗C for any of these manifestations and
call T a tensor. Just as we may view a linear map as a matrix after fixing bases, such T may be
viewed as a three-dimensional matrix after fixing bases. Note that A⊗B⊗C, the set of all such
tensors, is a vector space of dimension abc. More generally, given vector spaces A1, . . . , Ak,
one can define the space of tensors A1⊗ · · ·⊗ Ak. There is a natural map A1⊗ · · ·⊗ Ak ×
B1⊗ · · ·⊗ Bl → A1⊗ · · ·⊗ Ak⊗B1⊗ · · ·⊗ Bl, (f, g) 7→ f⊗g, where f⊗g(α1, . . . , ak, β1, . . . , βl) :=
f(α1, . . . , ak)g(β1, . . . , βl).

4.2. Remarks on the theory. We briefly review the representation theory underlying in the
algorithm. For more details, see [18, Chap. 6]. Let Sd(A⊗B⊗C)∗ denote the vector space
of homogeneous polynomials of degree d on A⊗B⊗C. The variety σr;a,b,c is mapped to itself
under changes of bases in each of the vector spaces and thus if we have one equation, we can
obtain many more by changing bases. That is, let GL(A) denote the set of invertible linear
maps A → A and similarly for B,C. The group G := GL(A) × GL(B) × GL(C) acts on
A⊗B⊗C by (gA, gB, gC) · (

∑
i ai⊗bi⊗ci) =

∑
i gAai⊗gBbi⊗gCci, and GL(V ) acts on SdV ∗ by

g · P (x) = P (g−1 · x). Letting V = A⊗B⊗C and noting G ⊂ GL(V ), we have a G-action on
Sd(A⊗B⊗C)∗. If P ∈ I(σr), then g · P ∈ I(σr) for all g ∈ G. Since ideals are in particular
vector spaces, the linear span of the orbit of P in Sd(A⊗B⊗C)∗ will be in I(σr).

We will use the action of the group G to organize our calculations. A group G is said to act
on a vector space V if there is a group homomorphism ρ : G→ GL(V ). Then V is called a G-
module. The G-module V is said to be irreducible if there is no nontrivial subspace of V invariant
under the action of G. The irreducible polynomial GL(V ) modules are indexed by partitions
π = (p1, . . . , pv), where p1 ≥ · · · ≥ pv ≥ 0. We write |π| = p1 + · · · + pv, and we say π is a

partition of |π|. Let SπV denote the corresponding irreducible GL(V )-module. It occurs in V ⊗|π|

and no other tensor power, however not uniquely - there is a vector space’s worth of realizations
except in the cases π = (d) or π = (1, . . . , 1). The irreducible GL(A) × GL(B) × GL(C)-
modules are all of the form VA⊗VB⊗VC where VA is an irreducible GL(A)-module etc.. For
G = GL(A) × GL(B) × GL(C), every G-module decomposes into a direct sum of irreducible
submodules. This decomposition is not unique in general, but the isotypic decomposition, where
all isomorphic modules are grouped together, is.

We are interested in the homogeneous polynomials of degree say d on A⊗B⊗C, denoted
Sd(A⊗B⊗C)∗. Via polarization, a polynomial may be considered as a symmetric tensor so
Sd(A⊗B⊗C)∗ ⊂ (A⊗B⊗C)∗⊗d ' A∗⊗d⊗B∗⊗d⊗C∗⊗d. Thus, the isomorphism types of irre-
ducible G-modules in Sd(A⊗B⊗C)∗ are described by triples (π, µ, ν) of partitions of d whose
number of parts `(π) ≤ a etc.. Let kπ,µ,ν denote the multiplicity of SπA

∗⊗SµB∗⊗SνC∗ in

Sd(A⊗B⊗C)∗, that is, the dimension of the space of realizations of SπA
∗⊗SµB∗⊗SνC∗ in

Sd(A⊗B⊗C)∗. The integers kπ,µ,ν are called Kronecker coefficients and can be computed com-
binatorially. The programs Schur or Sage or several other ones will compute them for you in
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small cases. We used a program written by Harm Derksen, which is based on characters of the
symmetric group.

There is a simple formula for dimSπA
∗, namely

dimS(p1,...,pa)A
∗ = Π1≤i<j≤a

pi − pj + j − i
j − i

see, e.g., [9, Thm 6.3]. We will be interested in cases where the dimension is small.
Let Sd denote the group of permutations of d elements. If a = b = c, then σr,a,a,a is also

invariant under the S3-action permuting the vector spaces. Thus anytime Sπ1A
∗⊗Sπ2B∗⊗Sπ3C∗

is in the ideal of σr, the module Sπσ(1)A
∗⊗Sπσ(2)B∗⊗Sπσ(3)C∗ will be as well, for any σ ∈ S3.

4.3. First algorithm: to obtain a sample collection of polynomials. What follows is an
algorithm from [19, 3] to compute a basis of highest weight vectors for each isotypic component
in Sd(A⊗B⊗C)∗. Once one has these, for each isotypic component, one can test if there are
modules in the ideal of σr;a,b,c (or any G-variety for that matter) by sampling random points
on σr;a,b,c as described in the second algorithm. For σ ∈ Sd, we write σ(v1⊗ · · ·⊗ vd) :=
vσ(1)⊗ · · ·⊗ vσ(d). Once and for all fix bases a1, . . . , aa of A∗, and similarly for B,C. Let
π = (p1, . . . , p`, 0, . . . , 0) be a partition as above. Write π = (p1, . . . , p`) and `(π) = `. Define
FA,π ∈ A∗⊗d by

FA,π := (a1)⊗(p1−p2)⊗(a1 ∧ a2)⊗(p2−p3)⊗ · · ·⊗ (a1 ∧ · · · ∧ af )⊗(pf−pf−1).

Here v1 ∧ · · · ∧ vk := 1
k!

∑
σ∈Sk sgn(σ)σ(v1⊗ · · ·⊗ vk).

Input: Degree d and partitions π, µ, ν of d.
Output: A basis P of the highest weight space vector of the isotypic component of

SπA
∗⊗SµB∗⊗SνC∗ in Sd(A⊗B⊗C)∗.

1: Use your favorite method to compute kπ,µ,ν .
2: Set k = 0.
3: while k < kπ,µ,ν do
4: repeat
5: Choose permutations τ1, τ2 ∈ Sd.
6: Define

F τ1,τ2π,µ,ν := FA,π⊗(τ1 · FB,µ)⊗(τ2 · FC,ν) ∈ A∗⊗d⊗B∗⊗d⊗C∗⊗d,

rearrange the factors so it is expressed as an element of (A⊗B⊗C)∗⊗d, and symmetrize
to get

P τ1,τ2π,µ,ν : =
∑
σ∈Sd

σ · F τ1,τ2π,µ,ν

=
∑
σ∈Sd

(σ · FA,π)⊗(σ · τ1 · FB,µ)⊗(σ · τ2 · FC,ν) ∈ A∗⊗d⊗B∗⊗d⊗C∗⊗d

where recall σ · (a1⊗ · · ·⊗ ad) := aσ(1)⊗ · · ·⊗ aσ(d).
7: until P τ1,τ2π,µ,ν is linearly independent of P1, . . . , Pk−1.
8: Increase k = k + 1.
9: Set Pk = P τ1,τ2π,µ,ν .

10: end while

4.3.1. Examples.
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First example, d = 2, (π, µ, ν) = ((2), (1, 1), (1, 1)).
Here k(2),(1,1),(1,1) = 1, so we are looking for a single polynomial. We have FA,(2) = (a1)2,

FB,(1,1) = b1 ∧ b2 and FC,(1,1) = c1 ∧ c2. Try τ1 = τ2 = Id, then

F Id,Id(2),(1,1),(1,1) = (a1⊗a1)⊗(b1⊗b2 − b2⊗b1)⊗(c1⊗c2 − c2⊗c1)

= (a1⊗b1⊗c1)⊗(a1⊗b2⊗c2)− (a1⊗b1⊗c2)⊗(a1⊗b2⊗c1)
− (a1⊗b2⊗c1)⊗(a1⊗b1⊗c2) + (a1⊗b2⊗c2)⊗(a1⊗b1⊗c1)

Thus
P Id,Id(2),(1,1),(1,1)(x

ijkai⊗bj⊗ck) = 2x111x122 − 2x112x121

Here, and throughout, repeated indices are to be summed over. Note that if T = xijkai⊗bj⊗ck
has rank one, then P Id,Id(2),(1,1),(1,1)(T ) = 0, but P will evaluate to be nonzero on a general rank

two tensor.
Second example, d = 3, (π, µ, ν) = ((2, 1), (2, 1), (2, 1)).

Here k(2,1),(2,1),(2,1) = 1, so again we are looking for a single polynomial. We have FA,(2,1) =

a1⊗(a1 ∧ a2), and similarly for B,C. Try τ1 = τ2 = Id, then

F Id,Id(21),(21),(21) = (a1⊗a1⊗α2 − a1⊗a2⊗a1)⊗(b1⊗b1⊗b2 − b1⊗b2⊗b1)⊗(c1⊗c1⊗c2 − c1⊗c2⊗c1)

= (a1⊗b1⊗c1)⊗(a1⊗b1⊗c1)⊗(a2⊗b2⊗c2)− (a1⊗b1⊗c1)⊗(a1⊗b1⊗c2)⊗(a2⊗b2⊗c1)
− (a1⊗b1⊗c1)⊗(a1⊗b2⊗c1)⊗(a2⊗b1⊗c2) + (a1⊗b1⊗c1)⊗(a1⊗b2⊗c2)⊗(a2⊗b1⊗c1)
− (a1⊗b1⊗c1)⊗(a2⊗b1⊗c1)⊗(a1⊗b2⊗c2) + (a1⊗b1⊗c1)⊗(a2⊗b1⊗c2)⊗(a1⊗b2⊗c1)
+ (a1⊗b1⊗c1)⊗(a2⊗b2⊗c1)⊗(a1⊗b1⊗c2)− (a1⊗b1⊗c1)⊗(a2⊗b2⊗c2)⊗(a1⊗b1⊗c1)

Thus P Id,Id(21),(21),(21) ≡ 0 so we need to try different τ1, τ2. Take τ1 = Id and τ2 = (12). Then

F
Id,(1,2)
(21),(21),(21) = (a1⊗a1⊗a2 − a1⊗a2⊗a1)⊗(b1⊗b1⊗b2 − b1⊗b2⊗b1)⊗(c1⊗c1⊗c2 − c2⊗c1⊗c1)

= (a1⊗b1⊗c1)⊗(a1⊗b1⊗c1)⊗(a2⊗b2⊗c2)− (a1⊗b1⊗c2)⊗(a1⊗b1⊗c1)⊗(a2⊗b2⊗c1)
− (a1⊗b1⊗c1)⊗(a1⊗b2⊗c1)⊗(a2⊗b1⊗c2) + (a1⊗b1⊗c2)⊗(a1⊗b2⊗c1)⊗(a2⊗b1⊗c1)
− (a1⊗b1⊗c1)⊗(a2⊗b1⊗c1)⊗(a1⊗b2⊗c2) + (a1⊗b1⊗c2)⊗(a2⊗b1⊗c1)⊗(a1⊗b2⊗c1)
+ (a1⊗b1⊗c1)⊗(a2⊗b2⊗c1)⊗(a1⊗b1⊗c2)− (a1⊗b1⊗c2)⊗(a2⊗b2⊗c1)⊗(a1⊗b1⊗c1).

Thus P
Id,(1,2)
(21),(21),(21)

 2∑
i,j,k=1

xijkai⊗bj⊗ck

 =

x111x111x222 + 2x112x121x211 − (x111x121x212 + x111x211x122 + x111x112x221).

Note that if T has rank one, then P
Id,(1,2)
(21),(21),(21)(T ) = 0, but P will evaluate to be nonzero on

a general rank two tensor.

4.3.2. Permutation pairs to avoid. We want to avoid the case that occurs in the first try of the
second example of Section 4.3.1, i.e., that P τ1,τ2π,µ,ν = 0. Although a complete classification of the
cases when this happens is unknown, an easy necessary condition for P τ1,τ2π,µ,ν 6= 0 is the following
[14, Lemma 7.2.7]: When we write 1, 2, . . . , d in a tableau columnwise starting with the longest
column and we write τ1(1), τ1(2), . . . , τ1(d) in a second tableau columnwise, and we do the same
for τ2 in a third tableau, then it is necessary that there exists no pair of numbers that lies in the
same column in all three tableaux. If this occurs, we call this situation a zero pattern. We can
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choose random permutations that avoid the zero pattern by just choosing random permutations
and repicking if it contains a zero pattern.

4.3.3. Implementation. The algorithm is not complicated to implement, but the following details
are paramount for its running time.

What is crucial in our implementation is that we avoid writing down the Pi as polynomials.
A polynomial Pi is stored only as its permutation pair (τ1, τ2) ∈ Sd × Sd. To prove linear
independence among polynomials Pi, the Pi ∈ Sd(A ⊗ B ⊗ C)∗ are contracted with random

tensors tj = w⊗dj with wj ∈ A ⊗ B ⊗ C having low rank, which is the same as evaluating the

function Pi on wj . If the resulting matrix (〈Pi, tj〉)i,j consisting of the contractions 〈Pi, tj〉 has
full rank, then the Pi are linearly independent.

If a ∈ (A⊗B⊗C)⊗d is of rank 1, then the contraction 〈Pi, a〉 is a product of `×` determinants,
which can be efficiently computed. Hence to compute a contraction 〈Pi, tj〉, it would suffice to
expand tj into rank 1 tensors and sum over the products of determinants. But to make this
method computationally feasible, we do not expand tj completely, since 〈Pi, tj〉 would consist of
a huge amount of zero summands. We use a standard divide and conquer method to expand tj
partially and prune the computation whenever at least one determinant is seen to be zero.

To avoid numerical errors, for proving linear independence working over a finite field or ring
suffices. The same method can be used to evaluate at the matrix multiplication tensor M2.

4.4. Second algorithm: to test on the secant variety. Once one has a basis of highest
weight vectors for an isotypic component, one needs to determine which linear combinations of
basis vectors vanish on σr. The following algorithm (see, e.g., from [19, 3]) is standard linear
algebra:

Input: The output of first algorithm for some (π, µ, ν), i.e., a collection P1, . . . , Pk = Pkπ,µ,ν ∈
Sd(A⊗B⊗C)∗ and r, where we will test for polynomials in I(σr;a,b,c).

Output: with probability as high as you like the component of I(σr;a,b,c) in SπA
∗⊗SµB∗⊗SνC∗.

If the component is zero, then the answer is guaranteed correct, and more generally, the
algorithm can only overestimate the component if the points on σr are not chosen randomly
enough.

1: Set P = c1P1 + · · · ckPk, where c1, . . . , ck are variables.
2: Chose “random”vectors

vj =

a∑
i=1

b∑
k=1

c∑
l=1

(αi1,jai)⊗(βk1,jbk)⊗(γl1,jcl) + · · ·+ (αir,jai)⊗(βkr,jbk)⊗(γlr,jcl)

where the αiδ,j , β
k
δ,j , γ

l
δ,j are “random” numbers.

3: Evaluate P at these k points.
4: if there exist a solution c1, . . . , ck such that all the evaluations are zero then
5: If there is a m-dimensional solution space, then with reasonable probability one has m

copies of the module in the ideal.
6: else
7: No module in this isotypic component is in I(σr;a,b,c).
8: end if

4.4.1. Implementation. Again, here it is crucial to store the Pi only as permutation pairs. Evalu-
ation at points works as described in Section 4.3.3. Unlike linear independence, we need stronger
methods to prove linear dependence. One can parametrize σ6 and use the fact that the rela-
tions between all determinants that appear during the calculation are given by Young tableau
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relations, cf. [8, p. 110]. No particular optimization was done during this step, which renders it
the slowest part of our algorithm.

4.5. Our run. Let d = 19, (π, µ, ν) = ((5554), (5554), (5554)). Here k(5554),(5554),(5554) = 31.
We found 31 pairs τ1, τ2 that result in 31 linearly independent polynomials by choosing τ1 and
τ2 randomly, but avoiding the zero pattern. As expected, the linear combination has support 31
and no evident structure other than that it “magically” vanishes on σ6;4,4,4. A somewhat nicer
description (smaller support) of a polynomial vanishing on σ6;4,4,4 is obtained in the following
d = 20 case.

Let d = 20, (π, µ, ν) = ((5555), (5555), (5555)). Here k(5555),(5555),(5555) = 4. The following
random choices of pairs τ1, τ2 give 4 linearly independent polynomials.
τ1 = (τ1(1), τ1(2), . . . , τ1(20)) = (10, 15, 5, 9, 13, 4, 17, 14, 7, 20, 19, 11, 2, 12, 8, 3, 16, 18, 6, 1),
τ2 = (10, 11, 6, 2, 8, 9, 4, 20, 15, 16, 13, 18, 14, 19, 7, 5, 17, 3, 12, 1)

τ1 = (19, 10, 1, 5, 7, 12, 2, 13, 16, 6, 18, 9, 11, 20, 3, 17, 14, 8, 15, 4),
τ2 = (10, 5, 13, 6, 3, 16, 11, 1, 4, 18, 15, 17, 9, 2, 8, 12, 19, 7, 14, 20)

τ1 = (16, 20, 9, 13, 8, 1, 4, 19, 11, 17, 7, 2, 14, 3, 6, 5, 12, 15, 18, 10),
τ2 = (1, 20, 11, 19, 5, 16, 17, 2, 18, 13, 7, 12, 14, 10, 8, 15, 6, 9, 3, 4)

τ1 = (11, 5, 2, 1, 16, 10, 20, 3, 17, 19, 12, 18, 13, 9, 14, 4, 8, 6, 15, 7),
τ2 = (1, 6, 15, 13, 20, 3, 18, 11, 14, 2, 9, 5, 4, 17, 12, 8, 19, 16, 7, 10)

This gives rise to 4 polynomials f1, . . . , f4. Restricting these functions to σ6, the second algo-
rithm yields the following linear combination, which vanishes on σ6: −266054 f1 + 421593 f2 +
755438 f3 + 374660 f4. The coefficients look random, as is expected, since the permutation pairs
were chosen at random. The computation took several hours on 16 processors, the symbolic
proof of vanishing at σ6 being by far the slowest part.

5. Review of the original proof that M2 6∈ σ6;4,4,4
The essence of the proof that the border rank of M2 is not six in [17] is as follows: there is a

now standard argument due to Baur for proving lower bounds for rank by splitting a putative
computation into two parts using the algebra structure on the space of matrices. The argument
in [17] was to apply the same type of argument to each component of the variety consisting
of subvarieties where the rank is greater than the border rank. The article [17] contained a
gap in the proof that was filled in [15] but not published in JAMS because the editor was
concerned the erratum was almost as long as the original article and the author did not see a
way to shorten it. The gap in [17] was caused by overlooking the possibility of certain types of
components, where the limiting 6-planes are not formed by points coming together but by some
other unusual configuration of points. All such components of σ6;4,4,4 are not known explicitly,
but the correction only used qualitative aspects of how the limiting 6-plane arose. There were
3 basic cases, where any subset of 5 of the limit points are linearly independent, where there is
a subset of 5 that are not, but any subset of four are, and where there is a subset of 4 that are
not, but any subset of 3 are. In each of these cases, one is forced to have a limit taking place
among rank one tensors in a much smaller space, which was what made the analysis tractable.
The computations performed above provide an explicit polynomial vanishing on σ6;4,4,4 which
does not vanish at M2, providing a significantly shorter proof of this fact.
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