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Abstract

We develop certified tracking procedures for Newton homotopies, which are homotopies for
which only the constant terms are changed. For these homotopies, our certified procedures
include using a constant predictor with Newton corrections, an Euler predictor with no cor-
rections, and an Euler predictor with Newton corrections. In each case, the predictor is
guaranteed to produce a point in the quadratic convergence basin of Newton’s method. We
analyze the complexity of a tracking procedure using a constant predictor with Newton cor-
rections, with the number of steps bounded above by a constant multiple of the length of
the path in the γ-metric. Examples are included to compare the behavior of these certified
tracking methods.

Introduction

The ability to track solution paths defined by a homotopy has applications in many areas of
science and engineering. Software for numerically solving polynomial systems by tracking solution
paths, such as Bertini [1], HOM4PS-2 [11], and PHCpack [21], utilize heuristic computations in
their tracking procedures. These software packages employ various predictor-corrector tracking
methods [2], such as an RKF45 predictor and several Newton corrections. For NAG4M2 [12],
scripts described in [3] can certifiably track paths using a constant predictor and one Newton
correction. Some examples of other certified tracking methods using similar strategies include
[4, 5, 16, 17]. Towards the goal of developing certifiable tracking procedures which utilize higher-
order predictor-corrector strategies, we reduce the gap between the predictor-corrector strategies
used in practice and the certifiable tracking methods by developing certifiable methods using an
Euler predictor and Newton corrections for so-called Newton homotopies. The path tracking
certificate is developed via Smale’s α-theory [19].

For an analytic system f : CN → CN and a vector v ∈ CN , we consider Newton homotopies of
the form

H(x, t) = f(x) + t · v (1)

For a given point x1 ∈ CN , one can take v = −f(x1) and consider tracking the solution path of
H(x, t) = 0 starting at t = 1 with x = x1.
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Newton homotopies can be used for various computations. For example, Newton homotopies
have been used to sample stationary points for potential energy landscapes [14] and for solving
problems in economics [10]. Newton homotopies can also be used to perform monodromy loops.
Such loops are useful in computing numerical irreducible decompositions [20] and monodromy
groups of parameterized problems [13]. In these cases, the occurrence of a single error in tracking
can lead to incorrect output. One can computationally prove theorems by using a certified tracking
approach or an a posteriori certification scheme [7].

ForN ≥ 1 and d ∈ (Z≥1)N , letHN,d be the space of polynomial systems f : CN → CN such that
deg fi = di. Consider the probability distribution on HN,d where the coefficients are independent
complex Gaussian with mean 0 and variance 1 and take x1 = 0. Then, with probability one, the
path φ : [0, 1]→ CN defined by φ(1) = 0 and

H(φ(t), t) = f(φ(t))− t · f(0) ≡ 0

is continuous and smooth with Df(φ(t)) being invertible for all t ∈ [0, 1]. In particular, φ(0) is a
nonsingular solution of f(x) = 0. Therefore, one obtains a numerical approximation of a solution
of f(x) = 0 by approximately following the curve φ(t) from t = 1 to t = 0. Such a procedure for
computing one solution of f(x) = 0 which, in the univariate case, i.e., N = 1, was used in [18].

Our contributions below include the certified tracking procedures NewtonTracker, EulerTracker,
and EulerNewtonTracker. On the complexity side, our main contribution is Theorem 4 which
shows that the number of predictor-corrector steps used by a modification of NewtonTracker is
bounded above by 352L, where L is the length of the path in the γ-metric. In [15], the condition
metric (or µnorm-metric) was used to describe the complexity of path tracking for polynomial sys-
tems. Since, for nonlinear polynomial systems, µnorm is an upper bound on γ, the γ-metric path
length is shorter than the condition metric path length.

In Section 1, we review and summarize the necessary α-theory underpinning our results. In
Section 2, we present NewtonTracker and describe our complexity bound in Section 3. In Sec-
tion 4, we present EulerTracker and EulerNewtonTracker. We present examples in Section 5
demonstrating the practicality of these procedures, including comparisons with [3]. Appendix A
contains tables of data.

1 Smale’s α-theory

For an analytic system f : CN → CN , α-theory provides sufficient conditions to prove that a point
x ∈ CN is in the quadratic convergence basin for Newton’s method of some solution of f = 0. The
following provides the necessary background information needed to develop our certified tracking
algorithms with expanded details provided in [6, Ch. 8].

Let Df(x) be the Jacobian matrix of f evaluated at x and consider Nf : CN → CN defined by

Nf (x) =

{
x−Df(x)−1f(x) Df(x) is invertible

x otherwise.

The map Nf defines a Newton iteration of f and, for k ∈ N, the map

Nk
f = Nf ◦ · · · ◦Nf︸ ︷︷ ︸

k times

defines the kth Newton iteration of f .
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Definition 1 For an analytic system f : CN → CN , a point x ∈ CN is an approximate solution
of f = 0 if there exists ξ ∈ CN such that f(ξ) = 0 and

‖Nk
f (x)− ξ‖ ≤

(
1

2

)2k−1

‖x− ξ‖

for each k ∈ N. In this case, the point ξ is called the associated solution of x and the sequence
{Nk

f (x) | k ∈ N} converges quadratically to ξ.

If Df(x) is invertible, the α-theoretic sufficient condition for certifying that x is an approximate
solution of f = 0 is based on the following constants:

α(f, x) = β(f, x) · γ(f, x),
β(f, x) = ‖x−Nf (x)‖,

γ(f, x) = sup
k≥2

∥∥∥∥Df(x)−1Dkf(x)

k!

∥∥∥∥
1

k−1

.

If Df(x) is not invertible, we take β(f, x) = 0 and γ(f, x) =∞. In this case, the product 0 · ∞ is
defined based on f(x), namely α(f, x) = 0 if f(x) = 0 and α(f, x) =∞ if f(x) 6= 0.

The following version of Theorem 2 from [6, pg. 160] certifies that a given point x is an
approximate solution.

Theorem 2 If f : CN → CN is an analytic system and x ∈ CN such that

α(f, x) ≤ α0 =
13− 3

√
17

4
≈ 0.1576707, (2)

then x is an approximate solution of f = 0. Moreover, ‖x− ξ‖ ≤ 2β(f, x) where ξ is the associated
solution of x.

2 Newton tracking

Traditional α-theoretic certified tracking schemes, such as [3, 4, 16], use a constant predictor with a
corrector consisting of one Newton iteration. Here, we derive a certified tracking scheme that uses
a constant predictor and a corrector consisting of potentially multiple Newton iterations per step.
The following scheme ensures that the constant predictor lands within a quadratic convergence
basin of Newton’s method. Depending on local information, in may then be necessary to apply,
say, K Newton iterations to attempt to minimize the total number of Newton iterations used
throughout the entire tracking process. In particular, as K increases, the next stepsize can be
made larger, but there is a diminishing return on the computational investment. Before deciding
the number of Newton iterations at each step, we first provide an upper bound on the stepsize for
the constant predictor to certifiably yield an approximate solution.

Theorem 3 Let f : CN → CN be an analytic system, v ∈ CN , and consider the Newton homotopy
H(x, t) = f(x) + t · v. Suppose that x∗ ∈ CN and t∗ ∈ [0, 1] such that Df(x∗) is invertible and
α(H(·, t∗), x∗) ≤ α0 where α0 is defined in (2). If

|∆t| ≤ α0 − α(H(·, t∗), x∗)

γ(f, x∗) · ‖Df(x∗)−1 · v‖
, (3)

then α(H(·, t∗ + ∆t), x∗) ≤ α0, that is, x∗ is an approximate solution of H(x, t∗ + ∆t) = 0.
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Proof. Clearly, γ(H(·, t∗ + ∆t), x∗) = γ(H(·, t∗), x∗) = γ(f, x∗). Moreover,

β(H(·, t∗ + ∆t), x∗) = ‖Df(x∗)−1H(x∗, t∗ + ∆t)‖
= ‖Df(x∗)−1H(x∗, t∗) +Df(x∗)−1 · v ·∆t‖
≤ β(H(·, t∗), x∗) + ‖Df(x∗)−1 · v‖ · |∆t|.

Multiplying both sides by γ(f, x∗), we have

α(H(·, t∗ + ∆t), x∗) ≤ α(H(·, t∗), x∗) + γ(f, x∗) · ‖Df(x∗)−1 · v‖ · |∆t|.

By (3), we have that α(H(·, t∗ + ∆t), x∗) ≤ α0. 2

After using the constant predictor with ∆t satisfying (3), one then applies K ≥ 0 New-
ton iterations to the system H(x, t∗ + ∆t) = 0 starting at x∗. Intuitively, one expects that
α0 − α(H(·, t∗ + ∆t), NK

f (x∗)) will increase and converge quadratically to α0 asK increases whereas

γ(H(·, t∗), NK
f (x∗))·‖Df(NK

f (x∗))−1 ·v‖ should remain roughly constant. Taking these as assump-
tions along with assuming that

α(H(·, t∗ + ∆t), NK
f (x∗)) =

α(H(·, t∗ + ∆t), x∗)

22K−1
,

we want to determine K ≥ 0 that minimizes the total number of Newton iterations per length
of the step. For simplicity, we abbreviate α = α(H(·, t∗ + ∆t), x∗). Thus, we want to maximize
K ≥ 0 such that

K + 1

α0 − α/22K−1
<

j + 1

α0 − α/22j−1

for all j = 0, 1 . . . ,K − 1. We note the additional one in the numerator arises since one Newton
iteration must be performed to compute α. When j = K − 1, we need

K + 1

α0 − α/22K−1
<

K

α0 − α/22K−1−1
.

This is equivalent to

α0 < α ·
(
K + 1

22K−1−1
− K

22K−1

)
.

Since α ≤ α0, we must have K = 1 or K = 2. With this, our analysis suggests

K =


2 if 4α0/5 < α(H(·, t∗ + ∆t), x∗) ≤ α0

1 if 2α0/3 < α(H(·, t∗ + ∆t), x∗) ≤ 4α0/5

0 otherwise.

(4)

That is, the number of Newton corrections performed depends on α(H(·, t∗ + ∆t), x∗).
This suggests the procedure NewtonTracker, with each step yielding an approximate solution

of H(x, t∗ + ∆t) = 0 via Theorem 3.
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Procedure 1 NewtonTracker

Input: An analytic function f : CN → CN , a vector v ∈ CN , and a point x1 ∈ CN with
α(f(·) + v, x1) ≤ α0.

Output: A point x0 ∈ CN with α(f, x0) ≤ α0.

1: Define H(x, t) := f(x) + t · v.
2: Initialize x∗ := x1 and t∗ := 1.
3: while t∗ > 0 do
4: if α(H(·, t∗), x∗) > 4α0/5 then
5: Set x∗ := N2

H(·,t∗)(x
∗).

6: else if α(H(·, t∗), x∗) > 2α0/3 then
7: Set x∗ := NH(·,t∗)(x

∗).

8: Compute ∆t :=
α0 − α(H(·, t∗), x∗)

γ(f, x∗) · ‖Df(x∗)−1 · v‖
.

9: if ∆t > t∗ then
10: Set t∗ := 0.
11: else
12: Set t∗ := t∗ −∆t.

13: return x0 := x∗.

3 Complexity analysis for Newton tracking

For a Newton homotopy H(x, t) = f(x) + t · v, we have ‖ẋ(t)‖ = ‖Df(x(t))−1 · v‖ along a
solution path x(t). Since the stepsizes for NewtonTracker are inversely proportional to the product
γ(f, x∗) · ‖ẋ(t)‖, the length of the path in the γ-metric, namely∫ 1

0

γ(f, x(t)) · ‖ẋ(t)‖dt =

∫ 1

0

γ(f, x(t)) · ‖Df(x(t))−1 · v‖dt, (5)

is directly related to the number of predictor-corrector steps used when tracking the path. In
Theorem 4, we make this statement precise by bounding the number of predictor-corrector steps in
terms of the length in the γ-metric for the following modification of the NewtonTracker procedure,
called ModifiedNewtonTracker.

There are two differences between NewtonTracker and ModifiedNewtonTracker. The first
is that ModifiedNewtonTracker enforces an upper bound, α0/6 in this case, on the value of
α(H(·, t∗), x∗) before one performs a step. If z∗ is the associated solution of x∗ with respect to
H(x, t∗) = 0 such that Df(z∗) is invertible, then one could simply replace this while loop with a
fixed number of Newton iterations to enforce this upper bound. Thus, we can still consider the
complexity of ModifiedNewtonTracker in terms of the number of predictor-corrector steps.

The second is that the stepsize ∆t is selected so that the proof of Theorem 3 yields

α(H(·, t∗ + r), x∗) ≤ α0/3 for |r| ≤ |∆t|.

These changes imply that

∆t · γ(f, x∗) · ‖Df(x∗)−1 · v‖ ≥ α0/6,

which produces the following complexity result.
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Procedure 2 ModifiedNewtonTracker

Input: An analytic function f : CN → CN , a vector v ∈ CN , and a point x1 ∈ CN with
α(f(·) + v, x1) ≤ α0.

Output: A point x0 ∈ CN with α(f, x0) ≤ α0.

1: Define H(x, t) := f(x) + t · v.
2: Initialize x∗ := x1 and t∗ := 1.
3: while t∗ > 0 do
4: while α(H(·, t∗), x∗) > α0/6 do
5: Update x∗ := NH(·,t∗)(x

∗).

6: Compute ∆t :=
α0/3− α(H(·, t∗), x∗)

γ(f, x∗) · ‖Df(x∗)−1 · v‖
.

7: if ∆t > t∗ then
8: Set t∗ := 0.
9: else

10: Set t∗ := t∗ −∆t.

11: return x0 := x∗.

Theorem 4 Let f : CN → CN be analytic, v ∈ CN , and H(x, t) = f(x) + t · v. Suppose that the
ModifiedNewtonTracker procedure terminates when tracking a homotopy path x(t) for 0 ≤ t ≤ 1
where Df is invertible along the path. If L is the length of the path in the γ-metric given in (5),
then the number of predictor-corrector steps needed to obtain an approximate solution x0 for f = 0
is bounded above by 352L.

Proof. Suppose that ModifiedNewtonTracker took P steps with, say,

1 = t0 > t1 > · · · > tP−1 > tP = 0.

For i = 0, . . . , P−1, define ∆ti = ti−ti+1 > 0 and let yi be the approximate solution of H(x, ti) = 0
computed after the loop in Line 4 is completed. We know

L =

P−1∑
i=0

∫ ti

ti+1

γ(f, x(t)) · ‖Df(x(t))−1 · v‖dt ≥
P−1∑
i=0

∆ti min
ti+1≤t≤ti

γ(f, x(t)) · ‖Df(x(t))−1 · v‖.

Fix 0 ≤ i ≤ P − 1 and suppose that t ∈ [ti+1, ti]. Define

vi(t) = ‖yi − x(t)‖ · γ(f, x(t)) and ui(t) = ‖yi − x(t)‖ · γ(f, yi).

Assuming that vi(t) and ui(t) are less than 1−
√

2/2. Proposition 3 of [6, Ch. 8] provides

γ(f, yi) ≤
γ(f, x(t))

(1− vi(t))(1− 4vi(t) + 2vi(t)2)

and

γ(f, x(t)) ≤ γ(f, yi)

(1− ui(t))(1− 4ui(t) + 2ui(t)2)
.

Since ‖yi − x(t)‖ ≤ 2β(H(·, t), yi), we know

ui(t) ≤ 2α(H(·, t), yi) ≤ 2α0/3 < 1−
√

2/2
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which implies

vi(t) ≤
2α0/3

(1− ui(t))(1− 4ui(t) + 2ui(t)2)
≤ 41

210
< 1−

√
2/2.

Therefore,
γ(f, x(t)) ≥ γ(f, yi)(1− vi(t))(1− 4vi(t) + 2vi(t)

2).

Similarly, Lemma 2 of [6, Ch. 8] provides that

‖Df(yi)
−1 · v‖ ≤ ‖Df(yi)

−1Df(x(t))‖ · ‖Df(x(t))−1 · v‖

≤ (1− vi(t))2

1− 4vi(t) + 2vi(t)2
‖Df(x(t))−1 · v‖.

Hence,

γ(f, x(t)) · ‖Df(x(t))−1 · v‖ ≥ (1− 4vi(t) + 2vi(t)
2)2

1− vi(t)
γ(f, yi) · ‖Df(yi)

−1 · v‖

≥ 4

37
γ(f, yi) · ‖Df(yi)

−1 · v‖.

Therefore,

L ≥ 4

37

P−1∑
i=0

∆ti · γ(f, yi) · ‖Df(yi)
−1 · v‖ ≥ 4 · P · α0

37 · 6

which shows that P ≤ 111L
2α0

≤ 352L. 2

4 Euler-Newton tracking

In NewtonTracker, the stepsize was determined so that the constant predictor would yield an
approximate solution. In this section, we determine a stepsize to guarantee that the Euler predictor
will yield an approximate solution. To that end, we first demonstrate that this is equivalent to
having the point arising after using a constant predictor and performing one Newton iteration is an
approximate solution. This immediately yields that the certifiable stepsize for an Euler predictor
can be at least as large as the constant predictor. In addition to showing a small increase in stepsize
in Theorem 5, this shows that one can certifiably track a path of a Newton homotopy using only
Euler predictions.

4.1 Equivalence of Newton and Euler

Let f : CN → CN be an analytic system, v ∈ CN , and consider the Newton homotopy H(x, t) =
f(x)+ t ·v. Suppose that x∗ ∈ CN and t∗ ∈ [0, 1] such that H(x∗, t∗) = 0 and Df(x∗) is invertible.
For ∆t 6= 0, the resulting point using a constant predictor, moving from t∗ to t∗ + ∆t, followed by
a Newton iteration at t∗ + ∆t is

NH(·,t∗+∆t)(x
∗) = x∗ −Df(x∗)−1H(x∗, t∗ + ∆t) = NH(·,t∗)(x

∗)−Df(x∗)−1 · v ·∆t. (6)

Now, we consider the same setup using a Euler predictor without a corrector. To that end, we
first define an Euler predictor step which arises from the approximation:

H(x+ ∆x, t+ ∆t) ≈ H(x, t) +Df(x) ·∆x+ v ·∆t.
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Upon setting the right-hand side equal to zero and solving for ∆x, we have that the Euler prediction
of H from t∗ to t∗ + ∆t is

EH,t∗,∆t(x
∗) = x∗ −Df(x∗)−1(H(x∗, t∗) + v ·∆t) = x∗ −Df(x∗)−1H(x∗, t∗ + ∆t)

= NH(·,t∗+∆t)(x
∗).

That is, for Newton homotopies, a constant predictor with one Newton iteration is the same as
using an Euler predictor with no corrections.

4.2 Certified tracking using Euler and Newton

The key distinction between what is presented here and NewtonTracker is the requirement on the
prediction step. In NewtonTracker, the constant predictor is constrained to yield a point in the
quadratic convergence basin and then applies Newton iterations to move closer to the correspond-
ing solution. In the two tracking procedures below, EulerTracker and EulerNewtonTracker, the
Euler predictor is constrained to certifiably produce a point in the quadratic convergence basin fol-
lowed by Newton iterations to move closer to the corresponding solution. Thus, by the equivalence
provided above and the results presented in the preceding sections, we show how to use α-theory
to certify that the result of a Newton iteration applied to a point x∗ is an approximate solution
where x∗ need not a priori be an approximate solution.

Theorem 5 Let f : CN → CN be an analytic system, v ∈ CN , and consider the Newton homotopy
H(x, t) = f(x) + t · v. Suppose that x∗ ∈ CN and t∗ ∈ [0, 1] such that Df(x∗) is invertible and
α(H(·, t∗), x∗) ≤ α0 where α0 is defined in (2). If

|∆t| ≤ e0 − α(H(·, t∗), x∗)

γ(f, x∗) · ‖Df(x∗)−1 · v‖
where e0 =

1 + 4
√
α0 −

√
8α0 + 8

√
α0 + 1

4
√
α0

≈ 0.161405 (7)

then α(H(·, t∗+∆t), EH,t∗,∆t(x
∗)) ≤ α0, that is, EH,t∗,∆t(x

∗) = NH(·,t∗+∆t)(x
∗) is an approximate

solution of H(x, t∗ + ∆t) = 0.

Proof. Define y(∆t) = EH,t∗,∆t(x
∗) = x∗ − Df(x∗)−1(H(x∗, t∗) + v · ∆t). First, we need to

ensure that Df(y(∆t)) is invertible. By Lemma 2(a) of [6, Ch. 8], Df(y(∆t)) is invertible if
‖x∗ − y(∆t) · ‖γ(f, x∗) < c0 := 1−

√
2/2. Since α(H(·, t∗), x∗) ≤ α0, we enforce

|∆t| < c0 − α0

γ(f, x∗) · ‖Df(x∗)−1 · v‖

so that

‖x∗ − y(∆t)‖γ(f, x∗) ≤ γ(f, x∗)(‖Df(x∗)−1H(x∗, t∗)‖+ |∆t| · ‖Df(x∗)−1 · v‖)
= α(H(·, t∗), x∗) + |∆t| · γ(f, x∗) · ‖Df(x∗)−1 · v‖
< α0 + (c0 − α0) = c0.

Define u = ‖x∗ − y(∆t)‖ · γ(f, x∗) < c0 < 1. By Lemma 2(b) of [6, Ch. 8],

‖Df(y(∆t))−1Df(x∗)‖ ≤ (1− u)2

1− 4u+ 2u2
.
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Since the constant and linear terms of a Taylor series expansion of H(y(∆t), t∗ + ∆t) centered
at (x∗, t∗) vanish, we have

β(H(·, t∗ + ∆t), y(∆t)) = ‖Df(y(∆t))−1H(y(∆t), t∗ + ∆t)‖
≤ ‖Df(y(∆t))−1Df(x∗)‖

∑∞
k=2

∥∥∥Df(x∗)−1Dkf(x∗)
k!

∥∥∥ · ‖x∗ − y(∆t)‖k

≤ (1− u)2‖x∗ − y(∆t)‖
1− 4u+ 2u2

∑∞
k=2 u

k−1

=
(1− u)u2

(1− 4u+ 2u2)γ(f, x∗)
.

Also, by Proposition 3 of [6, Ch. 8],

γ(H(·, t∗ + ∆t), y(∆t)) = γ(f, y(∆t)) ≤ γ(f, x∗)

(1− 4u+ 2u2)(1− u)
.

Thus,

α(H(·, t∗ + ∆t), y(∆t)) ≤
(

u

1− 4u+ 2u2

)2

.

This shows that if u ≤ (1− 4u+ 2u2)
√
α0, then α(H(·, t∗ + ∆t), y(∆t)) ≤ α0.

Consider the univariate polynomial p(z) = (1 − 4z + 2z2)
√
α0 − z. Since p(0) > 0 and e0,

as defined in (7), is the smallest positive solution of p(z) = 0, the result follows provided that
u ≤ e0 < c0. Since

u ≤ α(H(·, t∗), x∗) + |∆t| · γ(f, x∗) · ‖Df(x∗)−1v‖,

we know u ≤ e0 by (7). 2

Remark 6 This proof depends on Lemma 2(a) of [6, Ch. 8] to show that Df(y(∆t)) is invertible.
This places a constraint on the stepsize that would also limit the use of higher-order predictors
provided that one follows a similar proof strategy. We explore the limit of this constraint, namely

‖x∗ − y(∆t)‖ · γ(f, x∗) < c0 = 1−
√

2/2 < 2e0.

Thus, if one would instead use a higher-order method to determine y(∆t), one has

‖x∗ − y(∆t)‖ = |∆t| · ‖Df(x∗)−1 · v‖+O(|∆t|2).

Up to first order, this constraint yields

|∆t| < c0
γ(f, x∗) · ‖Df(x∗)−1 · v‖

<
2e0

γ(f, x∗) · ‖Df(x∗)−1 · v‖
.

Theorem 5 suggests the following certified tracker, EulerTracker, which uses only Euler pre-
dictions.

Following similar simplifying assumptions as posed in Section 2, the following Euler-Newton
tracking algorithm, EulerNewtonTracker, uses the same Newton correction strategy described in
(4).

Remark 7 All of our certified tracking procedures are described based on the use of exact arith-
metic. However, they could be implemented in finite-precision arithmetic using so-called robust
α-theory (see [6, Ch. 8]). Continued fractions could be used to develop a height-reducing robust
tracking strategy.
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Procedure 3 EulerTracker

Input: An analytic function f : CN → CN , a vector v ∈ CN , and a point x1 ∈ CN with
α(f(·) + v, x1) ≤ α0.

Output: A point x0 ∈ CN with α(f, x0) ≤ α0.

1: Define H(x, t) := f(x) + t · v.
2: Initialize x∗ := x1 and t∗ := 1.
3: while t∗ > 0 do

4: Compute ∆t :=
e0 − α(H(·, t∗), x∗)

γ(f, x∗) · ‖Df(x∗)−1 · v‖
.

5: if ∆t > t∗ then
6: Set ∆t := t∗.
7: Update x∗ := EH,t∗,−∆t(x

∗) and then t∗ := t∗ −∆t.

8: return x0 := x∗.

Procedure 4 EulerNewtonTracker

Input: An analytic function f : CN → CN , a vector v ∈ CN , and a point x1 ∈ CN with
α(f(·) + v, x1) ≤ α0.

Output: A point x0 ∈ CN with α(f, x0) ≤ α0.

1: Define H(x, t) := f(x) + t · v.
2: Initialize x∗ := x1 and t∗ := 1.
3: while t∗ > 0 do
4: if α(H(·, t∗), x∗) > 4α0/5 then
5: Set x∗ := N2

H(·,t∗)(x
∗).

6: else if α(H(·, t∗), x∗) > 2α0/3 then
7: Set x∗ := NH(·,t∗)(x

∗).

8: Compute ∆t :=
e0 − α(H(·, t∗), x∗)

γ(f, x∗) · ‖Df(x∗)−1 · v‖
.

9: if ∆t > t∗ then
10: Set ∆t := t∗.
11: Update x∗ := EH,t∗,−∆t(x

∗) and then t∗ := t∗ −∆t.

12: return x0 := x∗.

10



Figure 1: Plot of the number of steps used by various tracking methods

5 Performance

5.1 Univariate quadratics

A collection of quadratic homotopies in P1 was considered in [3, § 9.1]. After dehomogenizing and
replacing t with 1− t since we track from t = 1 to t = 0, these quadratic Newton homotopies have
the form

H(x, t) = x2 − (1 +m) +m · t,

where m > −1 and start at x1 = 1 when t = 1.
Our first collection of examples are for the selected values ofm ≥ 10 that are also presented in [3,

Table 3]. Table 1 presents the number of steps taken by NewtonTracker, ModifiedNewtonTracker,
EulerTracker, and EulerNewtonTracker which is graphically represented in Figure 1. For these
examples, NewtonTracker, EulerTracker, and EulerNewtonTracker all took the same number of
steps, which is due to the small relative difference between the constants α0 and e0. However, the
cost for NewtonTracker to do this was due to the use of two Newton iterations after each predictor
step (except at the end). The Euler predictions were all relatively accurate so that EulerTracker
could take large steps and EulerNewtonTracker did not need to perform any Newton iterations.
Thus, in terms of the total number of Newton and Euler iterations, the two Euler-based methods
were identical and roughly one-half of the cost of NewtonTracker. For ModifiedNewtonTracker,
only one Newton correction was used after each prediction. The stepsize restriction needed to
simplify the complexity analysis was more costly in terms of steps taken than the other three new
methods, but still considerably less than the approach of [3].

The key measure for the number of steps in our tracking methods is the length of the path in
the γ-metric presented in (5). For m > −1, since f(x) = x2 − (1 +m) and v = m, we have

γ(f, x) =
1

2|x|
and ‖Df(x)−1 · v‖ =

|m|
2|x|

.
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Thus, the length of the the path x(t) =
√

1 +m−m · t in the γ-metric is

L(m) =

∫ 1

0

|m|
4x(t)2

dt =
|m|
4

∫ 1

0

1

1 +m−m · t
dt =

| ln(m+ 1)|
4

.

Since L(m) is logarithmic in m+ 1, the number of steps for ModifiedNewtonTracker is also loga-
rithmic in m+ 1 by Theorem 4. Due to the relationship between the other three tracking methods
and ModifiedNewtonTracker, one expects this relationship to hold for all of them. Table 2 demon-
strates this by showing that the number of steps taken per unit length of the path in the γ-metric
is roughly constant as m increases.

As m increases without bound, the path in both the Euclidean metric and γ-metric increases
without bound. However, as m decreases to −1, the path heads towards the singular solution at
the origin. The length of the path in the Euclidean metric is bounded whereas it is unbounded
in the γ-metric. Our second set of examples considers selected values of m which approach −1.
Table 3 shows the number of steps and total number of Newton and Euler iterations for selected
values of m approaching −1 with Table 4 showing that the number of steps per unit length in
the γ-metric is roughly constant. In this case, due to the curvature of the path approaching the
singularity, the values of α after the Euler predictions were larger than the above examples, but not
large enough for EulerNewtonTracker to need to perform additional Newton iterations. However,
just as above, NewtonTracker required two Newton iterations at every step except the last. The
added cost of these extra Newton iterations allowed for overall slightly fewer steps than the Euler
prediction methods, but still more total iterations.

5.2 Random polynomial systems

For dense polynomial systems f : CN → CN where all of the coefficients are selected randomly, we
considered tracking the solution path defined by the Newton homotopy H(x, t) = f(x)− t · f(x1)
where x1 = 0.

In our experiment, for selected N ≥ 1 and d ≥ 2, we tracked the corresponding solution path
of the Newton homotopy starting at the origin for 100 random systems consisting of N degree d
polynomials in N variables where the coefficients were independent complex Gaussian with mean
0 and variance 1. Table 5 shows the average number of steps as well as average number of Newton
and Euler iterations used by our four certified tracking procedures and the approach of [3] for
1 ≤ N ≤ 3 and 2 ≤ d ≤ 5, which is graphically represented in Figure 2. Table 6 contains data on
our four tracking procedures for other values of N and d. In our experiments, NewtonTracker and
ModifiedNewtonTracker performed two and one Newton iterations per step, respectively, except
for the last step. Moreover, EulerNewtonTracker did not utilize any Newton iterations so that it
was equivalent to EulerTracker.

Finally, we consider the logarithm of average number of steps where the base is the input size,
namely the number of coefficients N ·

(
N+d
d

)
, which is presented in Table 7 This table provides

initial computational evidence that our certified algorithms could be polynomial in the input size.
For example, suppose that the average number of steps is bounded above by a number of the form

S(N, d) := C ·
(
N ·

(
N + d

d

))k

,

where C and k are universal constants. Therefore,

logN ·(N+d
d ) S(N, d) = k + logN ·(N+d

d ) C.

12



Figure 2: Plot of the number of steps used by various tracking methods

Figure 3: Comparison of log10(average number of steps using ModifiedNewtonTracker) and
log10(S(N, d)) where C = 150 and k = 0.6

For small values of N and d, the logarithm of C may be quite large compared with k which helps
to explain the general decrease in the values presented in Table 7 as N and d increase. Figure 3
compares the average number of steps for ModifiedNewtonTracker with S(N, d) for C = 150 and
k = 0.6.
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A Tables

Number of steps (Total number of Newton and Euler iterations)
m Newton Euler EulerNewton ModifiedNewton Robust [3]
10 5 (8) 5 (5) 5 (5) 13 (12) 184 (183)
100 10 (18) 10 (10) 10 (10) 25 (24) 292 (291)
1000 15 (28) 15 (15) 15 (15) 38 (37) 395 (394)
10000 19 (36) 19 (19) 19 (19) 50 (49) 499 (498)
20000 21 (40) 21 (21) 21 (21) 54 (53) 530 (529)
30000 22 (42) 22 (22) 22 (22) 56 (55) 547 (546)

Table 1: Number of predictor-corrector steps and total number of Newton and Euler iterations
using various tracking methods for selected m

Steps/L(m)
m Newton, Euler & EulerNewton ModifiedNewton

10 8.34 21.69
100 8.67 21.67
1000 8.68 22.00
10000 8.25 21.71
20000 8.48 21.81
30000 8.54 21.73

Table 2: Number of predictor-corrector steps per unit length of the path in the γ-metric
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Number of steps (Total number of Newton and Euler iterations)
m Newton Euler EulerNewton ModifiedNewton

-0.999 8 (14) 9 (9) 9 (9) 32 (31)
-0.99999 12 (22) 15 (15) 15 (15) 52 (51)

-0.9999999 17 (32) 21 (21) 21 (21) 73 (72)
-0.999999999 22 (42) 27 (27) 27 (27) 94 (93)

-0.99999999999 26 (50) 33 (33) 33 (33) 114 (113)
-0.9999999999999 31 (60) 39 (39) 39 (39) 135 (134)

Table 3: Number of predictor-corrector steps and total number of Newton and Euler iterations
using various tracking methods for selected m

Steps/L(m)
m Newton Euler & EulerNewton ModifiedNewton

-0.999 4.63 5.21 18.53
-0.99999 4.17 5.21 18.07

-0.9999999 4.22 5.21 18.17
-0.999999999 4.25 5.21 18.14

-0.99999999999 4.11 5.21 18.00
-0.9999999999999 4.14 5.21 18.04

Table 4: Number of predictor-corrector steps per unit length of the path in the γ-metric

Average number of steps (Average number of Newton and Euler iterations)
N d Newton Euler & EulerNewton ModifiedNewton Robust [3]

1

2 12.2 (22.4) 11.5 (11.5) 33.1 (32.1) 218.0 (217.0)
3 35.4 (68.8) 33.8 (33.8) 100.7 (99.7) 661.6 (660.6)
4 51.5 (101.0) 49.5 (49.5) 149.1 (148.1) 1082.3 (1081.3)
5 93.8 (185.6) 90.5 (90.5) 274.4 (273.4) 1710.5 (1709.5)

2

2 69.2 (136.4) 66.8 (66.8) 201.2 (200.2) 932.5 (931.5)
3 117.5 (233.0) 113.9 (113.9) 345.6 (344.6) 2167.8 (2166.8)
4 237.4 (472.8) 230.8 (230.8) 704.3 (703.3) 2810.2 (2809.2)
5 386.0 (770.0) 375.8 (375.8) 1149.8 (1148.8) 6583.9 (6582.9)

3

2 132.3 (262.6) 128.5 (128.5) 390.1 (389.1) 1553.4 (1552.4)
3 311.5 (621.0) 303.2 (303.2) 925.7 (924.7) 3439.4 (3438.4)
4 517.9 (1033.8) 504.8 (504.8) 1545.5 (1544.8) 10458.8 (10457.8)
5 923.6 (1845.2) 901.0 (901.0) 2762.0 (2761.0) 12385.5 (12384.5)

Table 5: Average number of predictor-corrector steps and average number of Newton and Euler
iterations using various tracking methods for 100 random systems for selected N and d.
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Average number of steps (Average number of Newton and Euler iterations)
N d Newton Euler & EulerNewton ModifiedNewton

4

2 231.9 (461.8) 225.6 (225.6) 687.6 (686.6)
3 655.2 (1308.4) 638.9 (638.9) 1955.4 (1954.4)
4 1130.8 (2259.6) 1103.4 (1103.4) 3382.4 (3381.4)
5 1985.1 (3968.2) 1937.8 (1937.8) 5944.9 (5943.9)

5

2 409.7 (817.4) 399.3 (399.3) 1220.1 (1219.1)
3 872.4 (1742.8) 850.9 (850.9) 2606.8 (2605.8)
4 1957.9 (3913.8) 1911.3 (1911.3) 5862.4 (5861.4)
5 3361.7 (6721.4) 3282.6 (3282.6) 10074.4 (10073.4)

6
2 551.6 (1101.2) 538.0 (538.0) 1645.4 (1644.4)
3 1472.3 (2942.6) 1436.9 (1436.9) 4405.1 (4404.1)
4 2876.5 (5751.0) 2808.6 (2808.6) 8617.9 (8616.9)

7
2 707.1 (1400.2) 683.8 (683.8) 2092.9 (2091.9)
3 2043.9 (4085.8) 1995.3 (1995.3) 6119.2 (6118.2)
4 3899.5 (7797.0) 3808.0 (3808.0) 11686.8 (11685.8)

8
2 869.6 (1737.2) 848.4 (848.4) 2598.4 (2597.4)
3 2853.6 (5705.2) 2786.3 (2786.3) 8547.9 (8546.9)

9
2 1110.4 (2218.8) 1083.7 (1083.7) 3319.9 (3318.9)
3 4016.9 (8031.8) 3922.7 (3922.7) 12036.7 (12035.7)

10
2 1492.5 (2983.0) 1457.0 (1457.0) 4465.6 (4464.6)
3 4482.0 (8692.0) 4377.1 (4377.1) 13432.5 (132431.5)

Table 6: Average number of predictor-corrector steps and average number of Newton and Euler
iterations using various tracking methods for 100 random systems for selected N and d.
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Loginput size(Average number of steps)

N d Newton Euler & EulerNewton ModifiedNewton

1

2 2.28 2.22 3.18
3 2.57 2.54 3.33
4 2.45 2.42 3.11
5 2.53 2.51 3.13

2

2 1.71 1.69 2.13
3 1.59 1.58 1.95
4 1.61 1.60 1.93
5 1.59 1.59 1.89

3

2 1.44 1.43 1.75
3 1.40 1.40 1.67
4 1.34 1.34 1.58
5 1.33 1.33 1.55

4

2 1.33 1.32 1.60
3 1.31 1.31 1.53
4 1.25 1.24 1.44
5 1.22 1.22 1.40

5

2 1.29 1.29 1.53
3 1.20 1.20 1.40
4 1.18 1.17 1.35
5 1.14 1.13 1.29

6
2 1.23 1.23 1.45
3 1.17 1.17 1.35
4 1.12 1.11 1.27

7
2 1.19 1.18 1.38
3 1.13 1.13 1.29
4 1.07 1.06 1.21

8
2 1.15 1.15 1.34
3 1.11 1.10 1.26

9
2 1.13 1.13 1.31
3 1.09 1.09 1.24

10
2 1.13 1.12 1.29
3 1.06 1.05 1.19

Table 7: Logarithm of the average number of predictor-corrector steps with the base being the
input size N ·

(
N+d
d

)
.
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