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Abstract

Smale’s α-theory certifies that Newton iterations will converge quadratically to a solution
of a square system of analytic functions based on the Newton residual and all higher order
derivatives at the given point. Shub and Smale presented a bound for the higher order
derivatives of a system of polynomial equations based in part on the degrees of the equations.
For a given system of polynomial-exponential equations, we consider a related system of
polynomial-exponential equations and provide a bound on the higher order derivatives of
this related system. This bound yields a complete algorithm for certifying solutions to
polynomial-exponential systems, which is implemented in alphaCertified. Examples are
presented to demonstrate this certification algorithm.
Key words and phrases. certified solutions, alpha theory, polynomial system, polynomial-
exponential systems, numerical algebraic geometry, alphaCertified

1 Introduction

A map f : Cn → Cn is called a square system of polynomial-exponential functions if f is
polynomial in both the variables x1, . . . , xn and finitely many exponentials of the form eβxi

where β ∈ C. That is, there exists a polynomial system P : Cn+m → Cn, analytic functions
g1, . . . , gm : C→ C, and integers σ1, . . . , σm ∈ {1, . . . , n} such that

f(x1, . . . , xn) = P (x1, . . . , xn, g1(xσ1), . . . , gm(xσm))

where each gi satisfies some linear homogeneous partial differential equation (PDE) with complex
coefficients. In particular, for each i = 1, . . . ,m, there exists a positive integer ri and a linear

function `i : Cri+1 → C such that `i(gi, g
′
i, . . . , g

(ri)
i ) = 0.

Consider the square polynomial-exponential system F : Cn+m → Cn+m where

F(x1, . . . , xn, y1, . . . , ym) =


P (x1, . . . , xn, y1, . . . , ym)

y1 − g1(xσ1)
...

ym − gm(xσm
)

 . (1)
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Since the projection map (x, y) 7→ x defines a bijection between the solutions of F(x, y) = 0 and
f(x) = 0, we will only consider certifying solutions to square systems of polynomial-exponential
equations of the form F(x, y) = 0.

For a square system g : Cn → Cn of analytic functions, a point x ∈ Cn is an approximate
solution of g = 0 if Newton iterations applied to x with respect to g quadratically converge
immediately to a solution of g = 0. The certificate returned by our approach that a point is an
approximation solution of F = 0 is an α-theoretic certificate. In short, α-theory, which started
for systems of analytic equations in [11], provides a rigorous mathematical foundation for the fact
that if the Newton residual at the point is small and the higher order derivatives at the point are
controlled, then the point is an approximate solution. For polynomial systems, by exploiting the
fact that there are only finitely many nonzero derivatives, Shub and Smale [10] provide a bound
on all of the higher order derivatives. For polynomial-exponential systems, our approach uses
the structure of F together with the linear functions `i to bound the higher order derivatives.

Systems of polynomial-exponential functions naturally arise in many applications including
engineering, mathematical physics, and control theory, to name a few. On the other hand, such
functions are typical solutions to systems of linear partial differential equations with constant
coefficients. Systems, including ubiquitous functions like sin(x), cos(x), sinh(x), and cosh(x),
can be equivalently reformulated as systems of polynomial-exponential functions, since these
functions can be expressed as polynomials involving eβx for suitable β ∈ C. Since computing
all solutions to such systems is often nontrivial, methods for approximating and certifying some
solutions for general systems is very important, especially in the aforementioned applications.

In the rest of this section, we introduce the needed concepts from α-theory. Section 2 formu-
lates the bounds for the higher order derivatives of polynomial-exponential systems and presents
a certification algorithm for polynomial-exponential systems. In Section 3, we discuss methods
for generating numerical approximations to solutions of polynomial-exponential systems. Sec-
tion 4 describes the implementation of the certification algorithm in alphaCertified as well as
demonstrating the algorithms on a collection of examples. Appendix A demonstrates the input,
command-line execution, and output of alphaCertified for a polynomial-exponential system
from Section 4.1. Files for all of the examples are available at www.nd.edu/~jhauenst/PolyExp.

1.1 Smale’s α-theory

We provide a summary of the elements of α-theory used in the remainder of the article as well as
in alphaCertified. Hence, this section closely follows [5, § 1] expect “polynomial” is replaced
by “analytic.” We focus on square systems, which are systems with the same number of variables
and functions, with more details provided in [2].

Let f : Cn → Cn be a system of analytic functions with zeros V(f) = {ξ ∈ Cn | f(ξ) = 0}
and Df(x) be the Jacobian matrix of f at x. For a point x ∈ Cn, the point Nf (x) is called the
Newton iteration of f at x where the map Nf : Cn → Cn is defined by

Nf (x) =

{
x−Df(x)−1f(x) if Df(x) is invertible,
x otherwise.

For k ∈ N, let Nk
f (x) be the kth Newton iteration of f at x, that is,

Nk
f (x) = Nf ◦ · · · ◦Nf︸ ︷︷ ︸

k times

(x).

The following defines an approximate solution of f to be a point which converges quadratically
in the standard Euclidean norm on Cn to a point in V(f).
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Definition 1.1 Let f : Cn → Cn be an analytic system. A point x ∈ Cn is an approximate
solution of f = 0 with associated solution ξ ∈ V(f) if, for every k ∈ N,

‖Nk
f (x)− ξ‖ ≤

(
1

2

)2k−1

‖x− ξ‖.

Clearly, every solution of f = 0 is an approximate solution of f = 0. Additionally, when
Df(x) is not invertible, then a point x is an approximate solution of f = 0 if and only if
x ∈ V(f). When Df(x) is invertible, the results of α-theory provide a certificate that x is an
approximate solution of f = 0. This certificate is based on α(f, x), β(f, x), and γ(f, x), namely

α(f, x) = β(f, x) · γ(f, x),

β(f, x) = ‖x−Nf (x)‖ = ‖Df(x)−1f(x)‖, and

γ(f, x) = sup
k≥2

∥∥∥∥Df(x)−1Dkf(x)

k!

∥∥∥∥
1

k−1

(2)

where Dkf(x) is the kth derivative of f (see [8, Chap. 5]).
When Df(x) is not invertible, we define β(f, x) as zero and γ(f, x) as infinity. The constant

α(f, x) is then the indeterminate form 0 · ∞ which is defined based on the value of f(x). If
f(x) = 0, then α(f, x) is defined as zero, otherwise α(f, x) is defined as infinity.

The following lemma, which is a conclusion of Theorem 2 of [2, Chap. 8], shows that, when x
is an approximate solution of f = 0, the distance between x and its associated solution can be
bounded in terms of β(f, x). Moreover, this bound can be used to produce a certificate that two
approximate solutions have distinct associated solutions.

Lemma 1.2 Let f : Cn → Cn be an analytic system. If x ∈ Cn is an approximate solution of
f = 0 with associated solution ξ, then

‖x− ξ‖ ≤ 2β(f, x).

Moreover, if x1, x2 ∈ Cn are approximate solutions of f = 0 with associated solutions ξ1, ξ2,
respectively, then ξ1 6= ξ2 provided that

‖x1 − x2‖ > 2(β(f, x1) + β(f, x2)).

Proof. Both results immediately follow from the triangle inequality. In particular,

‖x− ξ‖ ≤ ‖x−Nf (x)‖+ ‖Nf (x)− ξ‖ ≤ β(f, x) +
1

2
‖x− ξ‖

yields ‖x− ξ‖ ≤ 2β(f, x). Additionally,

‖x1 − x2‖ ≤ ‖x1 − ξ1‖+ ‖ξ1 − ξ2‖+ ‖ξ2 − x2‖ ≤ 2(β(f, x1) + β(f, x2)) + ‖ξ1 − ξ2‖

yields that ξ1 6= ξ2 when ‖x1 − x2‖ > 2(β(f, x1) + β(f, x2)). 2

The following theorem, called an α-theorem, is a version of Theorem 2 of [2, Chap. 8] which
shows that the value of α(f, x) can be used to produce a certificate that x is an approximate
solution of f = 0.
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Theorem 1.3 If f : Cn → Cn is an analytic system and x ∈ Cn with

α(f, x) <
13− 3

√
17

4
≈ 0.157671,

then x is an approximate solution of f = 0.

The following theorem, called a robust α-theorem that is a version of Theorem 4 and Re-
mark 6 of [2, Chap. 8], shows that the value of α(f, x) and γ(f, x) can be used to produce a
certificate that x and another point y have the same associated solution.

Theorem 1.4 Let f : Cn → Cn be an analytic system and x ∈ Cn with α(f, x) < 0.03. If
y ∈ Cn such that

‖x− y‖ < 1

20γ(f, x)
,

then x and y are both approximate solutions of f = 0 with the same associated solution.

Let πR : Cn → Rn be the real projection map defined by πR(x) =
x+ x

2
where x is the

complex conjugate of x. If f is an analytic system such that Nf (x) = Nf (x) for all x such that
Df(x) is invertible, then Nf defines a real map, i.e., Nf (Rn) ⊂ Rn. In particular, if x is an
approximate solution of f = 0 with associated solution ξ, then x is also an approximate solution
of f = 0 with associated solution ξ and β(f, x) = β(f, x). The following proposition, which is a
summary of the approach in [5, § 2.1], can be used to determine if the associated solution of an
approximation solution is real.

Proposition 1.5 Let f : Cn → Cn be a polynomial system such that Nf (x) = Nf (x) for all
x ∈ Cn such that Df(x) is invertible. Let x ∈ Cn be an approximate solution of f = 0 with
associated solution ξ.

1. If ‖x− πR(x)‖ > 2β(f, x), then ξ /∈ Rn.

2. If α(f, x) < 0.03 and ‖x− πR(x)‖ < 1

20γ(f, x)
, then ξ ∈ Rn.

Proof. Since ‖x−x‖ = 2‖x−πR(x)‖ and β(f, x) = β(f, x), Item 1 follows by concluding ξ 6= ξ
using Lemma 1.2. Item 2 follows from Theorem 1.4 together with πR(x) ∈ Rn and Nf (Rn) ⊂ Rn.

2

1.2 Bounding higher order derivatives

The constant γ(f, x) defined in (2) yields information regarding the higher order derivatives
of f evaluated at x. Even though, for polynomial systems, γ(f, x) is actually a maximum of
finitely many values, it is often computationally difficult to compute exactly. However, in the
polynomial case, it can be bounded above based in part on the degrees of the polynomials [10].
Due to the nature of polynomial-exponential systems, this bound will be used in our algorithm
presented in Section 2 for certifying solutions to polynomial-exponential systems.

Let g : Cn → C be a polynomial of degree d where g(x) =
∑
|ρ|≤d aρx

ρ and

‖g‖2 =
1

d!

∑
|ρ|≤d

ρ! · (d− |ρ|)! · |aρ|2
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is the standard unitarily invariant norm on the homogenization of g. For a polynomial system
f : Cn → Cn with f(x) = [f1(x), . . . , fn(x)]T , we have

‖f‖2 =

n∑
i=1

‖fi‖2.

For a point x ∈ Cn, define ‖x‖21 = 1 + ‖x‖2 = 1 +
∑n
i=1 |xi|2.

The following is an affine version of Propositions 1 and 3 from [10].

Proposition 1.6 If g : Cn → C is a polynomial of degree d, then, for all x ∈ Cn and k ≥ 1,

|g(x)| ≤ ‖g‖ · ‖x‖d1 and ‖Dkg(x)‖ ≤ d · (d− 1) · · · (d− k + 1) · ‖g‖ · ‖x‖d−k1 .

Let k ≥ 2. Lemma 3 of [10] yields(
d · (d− 1) · · · (d− k + 1)

d1/2 · k!

) 1
k−1

≤ d1/2(d− 1)

2
≤ d3/2

2
.

Additionally, since ‖x‖1 ≥ 1, we know ‖x‖d−11 ≥ ‖x‖d−k1 . These facts together with Proposi-
tion 1.6 yield∥∥∥∥Dkg(x)

k!

∥∥∥∥
1

k−1

≤
(
d1/2 · ‖Dkg(x)‖

d1/2 · k!

) 1
k−1

≤ d
1

2(k−1)

(
d · (d− 1) · · · (d− k + 1) · ‖g‖ · ‖x‖d−k1

d1/2k!

) 1
k−1

≤
(
d1/2 · ‖x‖d−k1 · ‖g‖

) 1
k−1

(
d · (d− 1) · · · (d− k + 1)

d1/2 · k!

) 1
k−1

≤ d3/2

2‖x‖1

(
d1/2 · ‖x‖d−11 · ‖g‖

) 1
k−1

which we summarize in the following proposition.

Proposition 1.7 If g : Cn → C is a polynomial of degree d, then, for all x ∈ Cn and k ≥ 2,∥∥∥∥Dkg(x)

k!

∥∥∥∥
1

k−1

≤ d3/2

2‖x‖1

(
d1/2 · ‖x‖d−11 · ‖g‖

) 1
k−1

.

Let f : Cn → Cn be a polynomial system with deg fi = di. Define D = max di and

µ(f, x) = max{1, ‖f‖ · ‖Df(x)−1∆(d)(x)‖} (3)

assuming Df(x) is invertible where

∆(d)(x) =


d
1/2
1 · ‖x‖d1−11

. . .

d
1/2
n · ‖x‖dn−11

 . (4)

Since µ(f, x) ≥ 1, µ(f, x)
1

k−1 ≤ µ(f, x) for any k ≥ 2.
The following version of Proposition 3 of [10, § I-3] yields an upper bound for γ(f, x).
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Proposition 1.8 Let f : Cn → Cn be a polynomial system with deg fi = di and D = max di.
For any x ∈ Cn such that Df(x) is invertible,

γ(f, x) ≤ µ(f, x) ·D3/2

2 · ‖x‖1
.

Proof. For k ≥ 2, we have

∥∥∥∥Df(x)−1Dkf(x)

k!

∥∥∥∥
1

k−1

≤
(
‖f‖ · ‖Df(x)−1∆(d)(x)‖

) 1
k−1

∥∥∥∥∥∆(d)(x)−1Dkf(x)

‖f‖ · k!

∥∥∥∥∥
1

k−1

≤ µ(f, x)

 n∑
i=1

‖fi‖2

‖f‖2

(
d
3/2
i

2 · ‖x‖1

)2(k−1)
 1

2(k−1)

≤ µ(f, x)D3/2

2 · ‖x‖1
.

2

2 Certifying solutions

Since the bound provided in Proposition 1.8 does not apply to a polynomial-exponential sys-
tem F , we develop a new bound based on the solutions of linear homogeneous partial differential
equations. With this bound, algorithms for certifying approximate solutions, distinct associated
solutions, and real associated solutions of [5] apply to F .

Consider g(x) = eβx for some β ∈ C. Clearly, for any k ≥ 0, |g(k)(x)| = |β|k · |g(x)|. By
letting B(x) = |g(x)| and C = max{1, |β|}, we have

|g(k)(x)| ≤ Ck ·B(x). (5)

The following lemma shows that a similar bound holds in general.

Lemma 2.1 Let c0, . . . , cr−1 ∈ C, `(x0, . . . , xr) = xr−
∑r−1
i=0 cixi, and g : C→ C be an analytic

function such that `(g, g′, . . . , g(r)) = 0 and r is minimal with such a property. If

B(x) = max{|g(x)|, |g′(x)|, . . . , |g(r−1)(x)|} and C = max{1, |c0|, . . . , |cr−1|},

then, for any x ∈ C and k ≥ 0, we have

|g(k)(x)| ≤
{
B(x) if k < r
(2 · C)k−r · r ·B(x) · C· if k ≥ r.

In particular, |g(k)(x)| ≤ (2 · C)k−1 · r ·B(x) · C = 2k−1 · r · Ck ·B(x).

Proof. We know g(r) =
∑r−1
i=0 cig

(i)(x). For any k > r, by differentiation, we know

g(k) =

r−1∑
i=0

cig
(i+k−r)(x).
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We will now proceed by induction starting at k = r. In particular,

|g(r)(x)| ≤
r−1∑
i=0

|ci| · |g(i)(x)| ≤ B(x) · C
r−1∑
i=0

1 = r ·B(x) · C.

For k > r with p = k − r, we have

|g(k)(x)| ≤
r−1∑
i=0

|ci| · |g(i+p)(x)| ≤ C

max{r−1−p,0}∑
i=0

|g(i+p)(x)|+
r−1∑

i=max{0,r−p}

|g(i+p)(x)|


≤ C

r ·B(x) + r ·B(x) · C
r−1∑
i=r−p

(2 · C)i+p−r


≤ r ·B(x) · C2

(
1 + Cp−1

p−1∑
i=0

2i

)
≤ 2p · r ·B(x) · Cp+1

= (2 · C)k−r · r ·B(x) · C.

The remaining statement follows from the fact that C ≥ 1 and r ≥ 1. 2

The following lemma will also be used to deduce our bound.

Lemma 2.2 If δ0 ≥ 0 and α1, δ1, . . . , αm, δm ≥ 1, then

sup
k≥2

(
δ
2(k−1)
0 + 22(k−1)

m∑
i=1

(
αki δi

)2) 1
2(k−1)

≤ δ0 + 2

m∑
i=1

α2
i δi.

Proof. Fix k ≥ 2. Since 2(k − 1) ≥ 2 and 4(k − 1) ≥ 2k, we know α
4(k−1)
i ≥ α2k

i and

δ
2(k−1)
i ≥ δ2i for i = 1, . . . ,m. The lemma now follows since(

δ0 + 2

m∑
i=1

α2
i δi

)2(k−1)

≥ δ
2(k−1)
0 + 22(k−1)

(
m∑
i=1

α2
i δi

)2(k−1)

≥ δ
2(k−1)
0 + 22(k−1)

m∑
i=1

α
4(k−1)
i δ

2(k−1)
i

≥ δ
2(k−1)
0 + 22(k−1)

m∑
i=1

α2k
i δ

2
i .

2

Throughout the remainder of this section, we assume that F : Cn+m → Cn+m is a polynomial-
exponential system such that there exists a polynomial system P : Cn+m → Cn, analytic func-
tions g1, . . . , gm : C→ C, and integers σ1, . . . , σm ∈ {1, . . . , n} such that

F(x1, . . . , xn, y1, . . . , ym) =


P (x1, . . . , xn, y1, . . . , ym)

y1 − g1(xσ1)
...

ym − gm(xσm)

 . (6)
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Also, for i = 1, . . . , n, we define di = degPi and D = max di.
We assume that each gi satisfies some nonzero linear homogeneous PDE with complex co-

efficients. For each i = 1, . . . ,m, let ri be the smallest positive integer such that there exists

a nonzero linear function `i : Cri+1 → C with `i(gi, g
′
i, . . . , g

(ri)
i ) = 0. By construction, the

coefficient of zri in `i(z0, z1, . . . , zri) must be nonzero. Upon rescaling `i, we will assume that
this coefficient is one, that is, we have

`i(z0, z1, . . . , zri) = zri − ci,ri−1zri−1 − · · · − ci,0z0 (7)

which yields g
(ri)
i =

∑ri−1
j=0 ci,jg

(j)
i . We note that the minimal integer ri with such a property is

called the order of gi.
For example, for nonzero λ, µ ∈ C, if g1(x) = eλx, g2(x) = cos(µx), and g3(x) = x sin(x),

then the order of gi is 1, 2, and 4, respectively. The corresponding differential equations are

∂g1
∂x
− λg1 = 0,

∂2g2
∂x2

+ µ2g2 = 0, and
∂4g3
∂x4

+ 2
∂2g3
∂x2

+ g3 = 0

with linear functions

`1(z0, z1) = z1 − λz0, `2(z0, z1, z2) = z2 + µ2z0, and `3(z0, z1, z2, z3, z4) = z4 + 2z2 + z0.

The bound obtained in Proposition 1.8 depends upon µ(f, x) defined in (3) for polynomial
systems. We extend this to polynomial-exponential systems by defining

µ(F , (x, y)) = max

{
1,

∥∥∥∥DF(x, y)−1
[

∆(d)(x, y)‖P‖
Im

]∥∥∥∥} (8)

assuming that DF(x, y) is invertible. The matrix ∆(d)(x, y) is the n×n diagonal matrix defined
in (4) and Im is the m×m identity matrix. We note that (8) reduces to (3) when m = 0.

The following theorem yields a bound for γ(F , (x, y)).

Theorem 2.3 For i = 1, . . . ,m and z ∈ C, define

Bi(z) = max{|gi(z)|, . . . , |g(ri−1)i (z)|} and Ci = max{1, |ci,0|, . . . , |ci,ri−1|}.

Then, for any (x, y) ∈ Cn+m such that DF(x, y) is invertible,

γ(F , (x, y)) ≤ µ(F , (x, y))

(
D3/2

2‖(x, y)‖1
+ 2

m∑
i=1

C2
i max{1, ri ·Bi(xσi

)}

)
. (9)

Proof. Let M =

[
∆(d)(x, y)‖P‖

Im

]
and k ≥ 2. We have

∥∥∥∥DF(x, y)−1DkF(x, y)

k!

∥∥∥∥ ≤
∥∥DF(x, y)−1M

∥∥∥∥∥∥M−1DkF(x, y)

k!

∥∥∥∥
≤ µ(F , (x, y))

∥∥∥∥M−1DkF(x, y)

k!

∥∥∥∥ .
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By Proposition 1.7 and Lemma 2.1,∥∥∥∥M−1DkF(x, y)

k!

∥∥∥∥2 =

n∑
i=1

∥∥∥∥∥ DkPi(x, y)

d
1/2
i · ‖(x, y)‖di−11 · ‖P‖ · k!

∥∥∥∥∥
2

+

m∑
i=1

∥∥∥∥Dkgi(xσi
)

k!

∥∥∥∥2
≤

n∑
i=1

‖Pi‖2

‖P‖2

(
d
3/2
i

2‖(x, y)‖1

)2(k−1)

+

m∑
i=1

(
2k−1 · ri · Cki ·Bi(xσi)

)2
≤

(
D3/2

2‖(x, y)‖1

)2(k−1)

+ 22(k−1)
m∑
i=1

(
ri · Cki ·Bi(xσi)

)2
.

This yields

γ(F , (x, y)) = sup
k≥2

∥∥∥∥DF(x, y)−1DkF(x, y)

k!

∥∥∥∥
1

k−1

≤ µ(F , (x, y)) sup
k≥2

((
D3/2

2‖(x, y)‖1

)2(k−1)

+ 22(k−1)
m∑
i=1

(
ri · Cki ·Bi(xσi)

)2) 1
2(k−1)

≤ µ(F , (x, y)) sup
k≥2

((
D3/2

2‖(x, y)‖1

)2(k−1)

+

22(k−1)
m∑
i=1

(
Cki max{1, ri ·Bi(xσi

)}
)2) 1

2(k−1)

.

The result now follows from Lemma 2.2. 2

Remark 2.4 When m = 0, the bounds provided in Theorem 2.3 and Proposition 1.8 agree.

The following is an algorithm to certify approximate solutions of F = 0.

Procedure B = CertifySoln(F , z)

Input A polynomial-exponential system F : Cn+m → Cn+m and a point z ∈ Cn+m.

Output A boolean which is True if z can be certified as an approximate solution of F = 0,
otherwise, False.

Begin

1. If F(z) = 0, return True, otherwise, if DF(z) is not invertible, return False.

2. Set β := ‖DF(z)−1F(z)‖ and γ to be the upper bound for γ(F , z) provided in
Theorem 2.3.

3. If β · γ < 13− 3
√

17

4
, return True, otherwise return False.

The algorithms CertifyDistinctSoln and CertifyRealSoln from [5] apply to polynomial-
exponential systems using the bound provided in Theorem 2.3. The algorithm CertifyDistinct-
Soln determines if two approximate solutions have distinct associated solutions. The algorithm
CertifyRealSoln applies to polynomial-exponential systems F such that NF (Rn+m) ⊂ Rn+m
and determines if the associated solution to a given approximate solution is real.

We conclude this section with a refinement of Theorem 2.3 applied to polynomial-exponential
systems depending on exp, sin, cos, sinh, and cosh. This refinement uses the following lemma.
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Lemma 2.5 If λ0, . . . , λm ≥ 0 and µ1, . . . , µm ≥ 2, then

sup
k≥2

λ2(k−1)0 +

m∑
i=1

(
µiλ

k−1
i

k!

)2
 1

2(k−1)

≤ λ0 +
1

2

m∑
i=1

µiλi.

Proof. Fix k ≥ 2. Since 2(k − 1) ≥ 2 and µi ≥ 2, we know
(µi

2

)2(k−1)
≥
(µi

2

)2
. The lemma

follows from (
λ0 +

1

2

m∑
i=1

µiλi

)2(k−1)

≥ λ
2(k−1)
0 +

(
m∑
i=1

µiλi
2

)2(k−1)

≥ λ
2(k−1)
0 +

m∑
i=1

(µi
2

)2(k−1)
λ
2(k−1)
i

≥ λ
2(k−1)
0 +

m∑
i=1

µ2
iλ

2(k−1)
i

22

≥ λ
2(k−1)
0 +

m∑
i=1

(
µiλ

(k−1)
i

k!

)2

.

2

Let a, b, c, e, h ∈ Z≥0, δi, εj , ζk, ηp, κq ∈ C, and σi, τj , φk, χp, ψq ∈ {1, . . . , n}. The following
considers the following polynomial-exponential system

G(x1, . . . , xn, u1, . . . , ua, v1, . . . , vb, w1, . . . , wc, y1, . . . , yd, z1, . . . , ze) =
P (x1, . . . , xn, u1, . . . , ua, v1, . . . , vb, w1, . . . , wc, y1, . . . , yd, z1, . . . , ze)

ui − exp(δixσi), i = 1, . . . , a
vj − sin(εjxτj ), j = 1, . . . , b
wk − cos(ζkxφk

), k = 1, . . . , c
yp − sinh(ηpxχp

), p = 1, . . . , e
zq − cosh(κqxψq

), q = 1, . . . , h

 . (10)

Corollary 2.6 Let G be defined as in (10) where P : CN → Cn is a polynomial system with
N = n+ a+ b+ c+ e+ h, di = degPi and D = max di. For any λ, θ ∈ C, define

A(λ, θ) = max{|λ|, |λ2 exp(λθ)/2|},
B(λ, θ) = max{|λ|, |λ2 sin(λθ)/2|, |λ2 cos(λθ)/2|}, and
C(λ, θ) = max{|λ|, |λ2 sinh(λθ)/2|, |λ2 cosh(λθ)/2|}.

Then, for any X = (x, u, v, w, y, z) ∈ CN such that DG(X) is invertible,

γ(G, X) ≤ µ(G, X)

(
D3/2

2‖X‖1
+

a∑
i=1

A(δi, xσi) +

b∑
j=1

B(εj , xτj ) +

c∑
k=1

B(ζk, xφk
)

+

e∑
p=1

C(ηp, xχp
) +

h∑
q=1

C(κq, xψq
)

)
. (11)
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Proof. Let k ≥ 2. The following table lists the bounds on the higher derivatives together with
associated quantities λ and µ used when applying Lemma 2.5.

g(x) bound for |g(k)(x)| λ µ

exp(θx) |θk exp(θx)| |θ| max{2, |θ exp(θx)|}
sin(θx) |θk|max{| sin(θx)|, | cos(θx)|} |θ| max{2, |θ sin(θx)|, |θ cos(θx)}
cos(θx)
sinh(θx) |θk|max{| sinh(θx)|, | cosh(θx)|} |θ| max{2, |θ sinh(θx)|, |θ cosh(θx)}
cosh(θx)

The result now follows immediately by modifying the proof of Theorem 2.3 incorporating the
bounds presented in this table together with Lemma 2.5. Based on Lemma 2.5, the functions
A, B, and C are one-half of the product of the entries in the λ and µ columns. 2

3 Approximating solutions

In order to certify that a point is an approximate solution of F = 0, where F is a polynomial-
exponential system, one needs to first have a candidate point. In some applications, candidate
points arise naturally from the formulation of the problem. One systematic approach to yield
candidate points is to replace each analytic function gi by a polynomial gpi and solve the resulting
polynomial system, namely

Fp(x1, . . . , xn, y1, . . . , ym) =


P (x1, . . . , xn, y1, . . . , ym)

y1 − gp1(xσ1)
...

ym − gpm(xσm)

 . (12)

When the degree of the polynomial approximations are sufficiently large, the numerical solutions
of Fp = 0 are candidates for being approximate solutions of F = 0. In Section 3.1, we discuss
using regeneration [4] to solve Fp = 0.

If a numerical solution of Fp = 0 is not an approximate solution of F = 0, one can try to
apply Newton’s method for F directly to these points to possibly yield an approximate solution
of F = 0. Another approach is to construct a homotopy between Fp and F , and numerically
approximate the endpoint of the path starting with a solution of Fp = 0. We note that neither
method is guaranteed to yield an approximate solution of F = 0.

3.1 Regeneration and polynomial-exponential systems

Regeneration [4] solves a polynomial system by using solutions to related, but easier to solve,
polynomial systems. In particular, we will utilize the linear product [14] structure of Fp in (12).

Suppose that g is a univariate polynomial of degree d. The polynomial y− g(x) has a linear
product structure of

〈x, y, 1〉 × 〈x, 1〉 × · · · × 〈x, 1〉︸ ︷︷ ︸
d−1 times

.

That is, y − g(x) is a finite sum of polynomials of the form L1(x, y) · · ·Ld(x, y) where

L1(x, y) = ay + b1x+ c1 and, for i = 2, . . . , d, Li(x, y) = bix+ ci

11



for some a, bi, ci ∈ C.
For i = 1, . . . ,m, let ri = deg gpi and ai, bi,1, . . . , bi,ri ∈ C. Similar to the algorithms proposed

in [4], we note that the following arguments and proposed algorithm depend on the genericity
of ai and bi,j . Define

Li,1(x, y) = aiy + bi,1x+ 1 and, for j = 2, . . . , ri Li,j(x, y) = bi,jx+ 1.

Let ν = (ν1, . . . , νm) such that 1 ≤ νi ≤ ri. Consider the polynomial systems Qν : Cn+m →
Cn+m defined by

Qν(x1, . . . , xn, y1, . . . , ym) =


P (x1, . . . , xn, y1, . . . , ym)

L1,ν1(xσ1
, y1)

...
Lm,νm(xσm

, ym)

 . (13)

For 1 = (1, . . . , 1), we first compute the solutions of Q1 = 0. We note that in practice,
Q1 is solved by working intrinsically on the linear space defined by L1,ν1(xσ1 , y1) = · · · =
Lm,νm(xσm , ym) = 0. Numerical approximations of these solutions can be obtained using stan-
dard numerical solving methods for square polynomial systems (see [12, 15]) including, for
example, polyhedral homotopies [7] or basic regeneration [4].

In order to compute the nonsingular isolated solutions of Fp = 0, we need to compute
the nonsingular isolated solutions of Qν = 0 for all possible ν. By the theory of coefficient-
parameter homotopies [9], the nonsingular isolated solutions of Qν = 0 can be obtained by
using a homotopy from Q1 to Qν starting with the nonsingular isolated solutions of Q1 = 0.
We note that if i 6= j such that σi = σj and νi, νj > 1, then Qν = 0 has no solutions.

After solving Qν = 0 for all possible ν, we thus have all nonsingular isolated solutions of

P(x1, . . . , xn, y1, . . . , ym) =


P (x1, . . . , xn, y1, . . . , ym)∏r1

j=1 L1,j(xσ1
, y1)

...∏rm
j=1 Lm,j(xσm

, ym)

 = 0. (14)

The final step is to use a homotopy deforming P to Fp starting with the nonsingular isolated
solutions of P = 0. The finite endpoints of this homotopy form a superset of the isolated
nonsingular solutions of Fp = 0.

4 Implementation details and examples

The certification of polynomial-exponential systems is implemented in alphaCertified [6]. The
systems must be of the form G in (10) where the coefficients of P as well as the constant in the
argument of exp, sin, cos, sinh, and cosh must be rational complex numbers. The bound for γ
presented in (11) is computed. Due to the nature of exponential functions, the computations are
performed using arbitrary precision floating point arithmetic. Since floating point errors arising
from the internal computations are not fully controlled, the results of alphaCertified for
polynomial-exponential systems are said to be soft certified. See Appendix A and [5, 6] for more
details regarding input syntax, internal computations, and output.

In the following examples, we used Bertini [1] and alphaCertified on a 2.4 GHz Opteron
250 processor running 64-bit Linux with 8 GB of memory. All files for running these examples
can be found at www.nd.edu/~jhauenst/PolyExp.
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Figure 1: RR dyad

4.1 A rigid mechanism

Consider the algebraic kinematics problem [15] of the inverse kinematics of the RR dyad. The
RR dyad, which is displayed in Figure 1, consists of two legs of fixed length, say a1 and a2,
which are connected by a pin joint. The mechanism is anchored with a pin joint at the point O,
which we take as the origin. Given a point E = (e1, e2), the problem is compute the angles θ1
and θ2 so that the end of the second leg is at E. That is, we want to solve f(θ1, θ2) = 0 where

f(θ1, θ2) =

[
a1 cos(θ1) + a2 cos(θ2)− e1
a1 sin(θ1) + a2 sin(θ2)− e2

]
.

The polynomial-exponential system G : C6 → C6 of the form (10) is

G(θ1, θ2, y1, y2, y3, y4) =


a1y3 + a2y4 − e1
a1y1 + a2y2 − e2
y1 − sin(θ1)
y2 − sin(θ2)
y3 − cos(θ1)
y4 − cos(θ2)

 . (15)

Since θi only appears in f as arguments of the sine and cosine functions, we can compute
solutions of f = 0 by using the solutions of a related polynomial system. In particular, consider
the polynomial system g : C4 → C4 obtained by replacing sin(θi) and cos(θi) with si and ci,
respectively, and adding the Pythagorean identities, namely

g(s1, s2, c1, c2) =


a1c1 + a2c2 − e1
a1s1 + a2s2 − e2
s21 + c21 − 1
s22 + c22 − 1

 .
Given a solution of g = 0, solutions of f = 0 are generated using either the arcsin or arccos
functions. Moreover, it is easy to verify that, for general ai, ei ∈ C, g = 0 has two solutions and
thus f = 0 has two 2π-periodic families of solutions.

Consider the inverse kinematics problem with a1 = 3, a2 = 2, and E = (1, 3.5). We used
Bertini to numerically approximate the two solutions of g = 0. For demonstration, consider
the two digit rational approximations of the solutions

X1 =
1

100
(65, 77, 76,−64) and X2 =

1

100
(95, 32,−30, 95).

The certified upper bounds for α(g,Xi) computed by alphaCertified using exact rational
arithmetic and rounded to four digits are 0.0736 and 0.0788, respectively. Hence, X1 and X2

are both approximate solutions of g = 0. Furthermore, alphaCertified certified that the
associated solutions are distinct and real.
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k β(G, Nk
G (Z1)) β(G, Nk

G (Z2))
0 4.94 · 10−3 5.26 · 10−3

1 7.46 · 10−9 6.29 · 10−9

2 1.21 · 10−17 8.86 · 10−18

3 3.65 · 10−35 2.01 · 10−35

4 3.56 · 10−70 1.10 · 10−70

5 3.56 · 10−140 3.41 · 10−141

6 3.50 · 10−280 3.21 · 10−282

7 3.44 · 10−560 2.90 · 10−564

Table 1: Newton residuals for G

We now consider two corresponding approximations to solutions of G = 0 namely

Z1 = (0.711, 2.261, 0.65, 0.77, 0.76,−0.64) and Z2 = (1.874, 0.324, 0.95, 0.32,−0.30, 0.95). (16)

The upper bounds for α(G, Zi) computed by alphaCertified using 96-bit floating point arith-
metic and rounded to four digits are 0.1265 and 0.1355, respectively. In order to reduce the
effect of roundoff errors, we also used 1024-bit floating point arithmetic and obtained the same
four digit value. Hence, alphaCertified has soft certified that Y1 and Y2 are both approximate
solutions of G = 0. Furthermore, alphaCertified has soft certified that the associated solutions
are distinct and real. Table 1 lists the Newton residuals computed by alphaCertified using
4096-bit precision which demonstrates the quadratic convergence of Newton’s method.

By using Euler’s formula, we could alternatively use the polynomial-exponential system
G′ : C6 → C6 of the form (10) where

G′(θ1, θ2, x1, x2, y1, y2) =


a1x1 + a2x2 − e1 + ie2
a1y1 + a2y2 − e1 − ie2

x1y1 − 1
x2y2 − 1

y1 − exp(iθ1)
y2 − exp(iθ2)


and i =

√
−1. Consider the two points

W1 = (0.711, 2.261, 0.758− 0.653i,−0.637− 0.771i, 0.758 + 0.653i,−0.637 + 0.771i) and
W2 = (1.874, 0.324,−0.299− 0.954i, 0.948− 0.318i,−0.299 + 0.954i, 0.948 + 0.318i).

The upper bounds for α(G′,Wi) computed by alphaCertified using both 96-bit and 1024-bit
floating point arithmetic and rounded to four digits are 0.1492 and 0.1422, respectively. In
particular, alphaCertified soft certified that W1 and W2 are both approximate solutions of
G′ = 0 with distinct associated solutions.

Finally, consider the polynomial system obtained by replacing the sine and cosine functions
in f with a third and second degree truncated Taylor series approximation, respectively, centered
at the origin, namely

fp(θ1, θ2) =

[
a1(1 + θ21/2) + a2(1 + θ22/2)− e1
a1(θ1 + θ31/6) + a2(θ2 + θ32/6)− e2

]
.

The system of equations fp = 0 has six solutions and yield six solutions of f = 0 upon deforming
fp to f . These six solutions split into two groups of three based on the values of sin(θi) and
cos(θi) corresponding to the two families of solutions of f = 0.
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4.2 A compliant mechanism

In [13], Su and McCarthy study a polynomial-exponential system modeling a compliant four-
bar linkage displayed in [13, Fig. 4]. Upon solving a related polynomial system and applying
Newton’s method, they conclude based on the numerical results that a specific compliant four-
bar linkage has two stable configurations. We will first use alphaCertified to certify that their
numerical approximations of the two stable configurations are indeed approximate solutions.
Afterwards, we will use the approaches of Section 3 to recompute these two stable configurations.

The polynomial-exponential system f : C5 → C5 modeling a compliant four-bar linkage is

f(α, θ1, θ2, ν1, ν2) =

 R(α)(W2 −W1) +G1 + r1cs(θ1)−G2 − r2cs(θ2)
R(α)(W2 −W1)ν1 + r1cs(θ1)− r2cs(θ2)ν2

k1(α− α0 − θ1 + θ01)(ν1 − 1) + k2(α− α0 − θ2 + θ02)(ν1 − ν2)


where

R(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
and cs(θ) =

[
cos(θ)
sin(θ)

]
.

We note that each of the first two lines in f consists of two functions. Additionally, f is not
algebraic since X, sin(X), and cos(X) all appear in f when X is either α, θ1, or θ2.

The values for the specific linkage under consider are

W1 =

[
−112.632
−45.053

]
,W2 =

[
112.632
−45.053

]
, G1 =

[
0
0

]
, G2 =

[
100
0

]
, r1 = r2 = 250,

k1 = 29250, k2 = 5824.29, θ01 = 1.4486, θ02 = 0.925, and α0 = −0.2169.

with numerical approximations for the stable configurations

A1 = (−0.216933, 1.448567, 0.924966, 0.610174, 1.094669) and
A2 = (−1.516473, 0.131930,−0.875993, 1.570656, 1.668379).

The polynomial-exponential system G : C11 → C11 of the form (10) is

G(α, θ1, θ2, ν1, ν2, y1, . . . , y6) =



R(y1, y2)(W2 −W1) +G1 + r1cs(y3, y4) −G2 − r2cs(y5, y6)
R(y1, y2)(W2 −W1)ν1 + r1cs(y3, y4) − r2cs(y5, y6)ν2

k1(α− α0 − θ1 + θ01)(ν1 − 1) + k2(α− α0 − θ2 + θ02)(ν1 − ν2)
y1 − sin(α)
y2 − cos(α)
y3 − sin(θ1)
y4 − cos(θ1)
y5 − sin(θ2)
y6 − cos(θ2)


where

R(y1, y2) =

[
y2 −y1
y1 y2

]
and cs(w, z) =

[
z
w

]
.

Let Bi = (Ai, Yi) where

Y1 = (−0.215236, 0.976562, 0.992539, 0.121925, 0.798600, 0.601862) and
Y2 = (−0.998525, 0.0542970, 0.131547, 0.991310,−0.768180, 0.640235).

The upper bounds for α(G, Bi) computed by alphaCertified using both 96-bit and 1024-bit
floating point arithmetic and rounded to four digits are 0.0166 and 0.0427, respectively. In
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bound for approximation of bound for
F α(F,B1) α(F,B2) β(F,B1) β(F,B2) γ(F,B1), γ(F,B2)
G 1.66 · 10−2 4.27 · 10−2 8.08 · 10−7 1.06 · 10−6 2.05 · 104 4.02 · 104

G′ 11.9 42.5 8.08 · 10−7 1.06 · 10−6 1.47 · 107 4.00 · 107

Table 2: Values obtained for G and G′ at B1 and B2

particular, alphaCertified has soft certified that B1 and B2 are both approximate solutions
of G = 0. Furthermore, alphaCertified has soft certified that the associated solutions are
distinct and real.

The formulation of the polynomial-exponential system can have an adverse effect on certifying
solutions. For example, consider the polynomial-exponential system G′ : C11 → C11 obtained
by replacing the 7th, 9th, and 11th functions of G with

y21 + y22 − 1, y23 + y24 − 1, and y25 + y26 − 1.

Clearly, every solution of G = 0 must also be a solution of G′ = 0. Table 2 compares the bounds
for α and γ and the value of β for G and G′ at B1 and B2 computed by alphaCertified. This
table shows that the bounds computed for α(G′, Bi) and γ(G′, Bi) are three orders of magnitude
larger than the bounds computed for α(G, Bi) and γ(G, Bi). In particular, due to the larger
bounds, alphaCertified is unable to certify that B1 and B2 are approximate solutions of
G′ = 0. If we replace Bi with NG′(Bi), then alphaCertified is able to soft certify that the
resulting points are approximate solutions of G′ = 0 using both 96-bit and 1024-bit precision.

We now consider solving a polynomial system obtained by replacing the sine and cosine
functions with a fifth and fourth degree truncated Taylor series approximation, respectively,
centered at the origin. Let the polynomial system P : C11 → C5 consists of the first five
functions in G. In particular, P consists of two linear and three quadratic polynomials and thus
has total degree of the polynomial Qν defined in (13) has total degree 23 = 8.

Since we are using fifth and fourth degree polynomial approximations for the sine and cosine
functions, respectively, we have ri = 5 if i is odd and ri = 4 if i is even. We picked random
ai, bi,j ∈ C for i = 1, . . . , 6 and j = 1, . . . , ri and used Bertini to solve each Qν = 0. In total,
this produced numerical approximations to 356 nonsingular isolated solutions of P = 0 where P
is defined in (14).

The tracking of the 356 paths from P to the polynomial approximation, Gp, of G produced
120 points which became the start points for the homotopy deforming Gp to G. This homotopy
yielded 93 numerical approximations to solutions of G = 0. By using both 96-bit and 1024-
bit floating point arithmetic, alphaCertified soft certified that each of these 93 points are
indeed approximate solutions with distinct associated solutions Moreover, this computation soft
certified that 65 have real associated solutions, two of which are the two stable configurations
computed in [13].

5 Conclusion

One key to certification using α-theory is the ability to compute a bound on γ, which is defined
in terms of all higher order derivatives. For polynomial systems, where there are only finitely
many nonzero derivatives, Shub and Smale developed the bound presented in Proposition 1.8.
This bound is based on first order derivatives, coefficients and degrees of the polynomials, and
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the point of interest. Theorem 2.3 extends this bound to polynomial-exponential systems and
is implemented in alphaCertified.

The computationally expensive part of computing the bound on γ is the linear algebra
computations required to compute µ as defined in (8). Thus, the restriction on the size of the
systems for which the bound could be computed arises from the linear algebra algorithms used.
Even though large systems could be investigated, the fact that this produces an upper bound
of γ means that β will need to be smaller in order to certify an approximate solution. Therefore,
the use of this bound may induce additional computational cost via higher precision.

Since the certification approach presented for polynomial-exponential systems is based on
the quadratic convergence of Newton’s method and α-theory, we limit our focus to certifying
nonsingular solutions to square systems. Even though Newton’s method near singular solutions
can have a variety of behavior, e.g., see [3], one can attempt the certification method at any point.
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A Using alphaCertified

As a demonstration of using alphaCertified, we consider the polynomial-exponential system G
in (15) where a1 = 3, a2 = 2, and E = (1, 3.5) along with the points Zi in (16).

A.1 Input

We describe the three required files: input system, points, and configurations.

Input system

In order to describe the system G, which is of the required form (10), we first list the total
number of variables, 6, and the number of polynomials, 2. With this setup, alphaCertified
assumes that the last four variables will be defined in terms of the first two variables, which are
described after the polynomials. Since the system is assumed to be exact, the real and imaginary
parts of all numbers listed in this file must be rational.

Each polynomial is represented as a sum of monomials. Thus, we list the total number of
monomials in the polynomial (both have 3 terms) followed by a description of each monomial. A
monomial is described by the entries of the exponent vector followed by the real and imaginary
parts of the coefficient.

The relations for the last four polynomials are described by the variable number for which
the analytic function depends upon, a string indicating which analytic function (“X” for exp(),
“S” for sin(), “C” for cos(), “SH” for sinh(), and “CH” for cosh()), and the real and imaginary
parts of the corresponding constant.

Figure 2 lists the contents of this file, which we name inputSystem, along with comments.

Points

Since the number of variables was described in the input system, we only need to list the
number of points, 2, followed by floating-point representation of the real and imaginary parts of
the coordinates for each of the points Z1 and Z2.

Figure 3 lists the contents of this file, which we name points.

Configurations

The last file indicates the settings and algorithms for alphaCertified to run. For polynomial-
exponential systems, we need to utilize floating-point arithmetic and can set the precision.

Figure 4 lists the contents of this file, which we name config, which instructs alphaCertified
to use 1024-bit floating-point arithmetic while executing the default certification procedures in
alphaCertified. We refer the reader to [6] for more details on settings and algorithms.
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6 2 number of variables and number of polynomials

3 number of terms in first polynomial: 3y3 + 2y4 − 1
0 0 0 0 1 0 3 0 3y3
0 0 0 0 0 1 2 0 2y4
0 0 0 0 0 0 -1 0 −1

3 number of terms in second polynomial: 3y1 + 2y2 − 7/2
0 0 1 0 0 0 3 0 3y1
0 0 0 1 0 0 2 0 2y2
0 0 0 0 0 0 -7/2 0 −7/2

1 S 1 0 y1 − sin(θ1)
2 S 1 0 y2 − sin(θ2)
1 C 1 0 y3 − cos(θ1)
2 C 1 0 y4 − cos(θ2)

Figure 2: inputSystem and a line-by-line description of the file

2

0.711 0

2.261 0

0.65 0

0.77 0

0.76 0

-0.64 0

1.874 0

0.324 0

0.95 0

0.32 0

-0.30 0

0.95 0

Figure 3: points

ARITHMETICTYPE: 1;

PRECISION: 1024;

Figure 4: config
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A.2 Execution

For simplicity, we follow Linux syntax and assume that a binary file for alphaCertified along
with the three files constructed above are in the same folder. With this setup, we execute

� ./alphaCertified inputSystem points config

A.3 Output

The output of alphaCertified is contained in a summary of the results printed to the screen,
contained in Figure 5, and several files. Figure 6 contains the portions of the human readable
file summary created during the execution of alphaCertified. These values are also printed in
the machine readable file constantValues.

alphaCertified v1.3.0 (October 16, 2013)

Jonathan D. Hauenstein and Frank Sottile

GMP v4.3.2 & MPFR v3.1.2

Please note that all coefficients must be complex rational numbers.

alphaCertified is using the polynomial-exponential certification algorithms.

Analyzing 2 points using 1024-bit floating point arithmetic.

Isolating 2 approximate solutions.

Classifying 2 distinct approximate solutions.

Floating point (1024 bits) soft certification results:

Number of points tested: 2

Certified approximate solutions: 2

Certified distinct solutions: 2

Certified real distinct solutions: 2

Figure 5: Summary printed to the screen

alpha < 1.265465288439055e-1 alpha < 1.355028294876322e-1

beta ∼= 4.938677034638513e-3 beta ∼= 5.257805074083256e-3

gamma < 2.562356840836994e1 gamma < 2.577174839659842e1

Figure 6: Portions of summary corresponding to Z1 and Z2, respectively
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