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Abstract. Many systems in biology (as well as other physical and en-
gineering systems) can be described by systems of ordinary di�erential
equation containing large numbers of parameters. When studying the
dynamic behavior of these large, nonlinear systems, it is useful to iden-
tify and characterize the steady-state solutions as the model parameters
vary, a technically challenging problem in a high-dimensional parameter
landscape. Rather than simply determining the number and stability of
steady-states at distinct points in parameter space, we decompose the
parameter space into �nitely many regions, the number and structure of
the steady-state solutions being consistent within each distinct region.
From a computational algebraic viewpoint, the boundary of these re-
gions is contained in the discriminant locus. We develop global and local
numerical algorithms for constructing the discriminant locus and classi-
fying the parameter landscape. We showcase our numerical approaches
by applying them to molecular and cell-network models.

Keywords: parameter landscape · numerical algebraic geometry · dis-
criminant locus · cellular networks.

1 Introduction

The dynamic behavior of many biophysical systems can be mathematically mod-
eled with systems of di�erential equations that describe how the state variables
interact and evolve over time. The di�erential equations typically include pa-
rameters that represent physical processes such as kinetic rate constants, the
strength of cell-cell interactions, and external stimuli. The qualitative behavior
of the state variables may change as the parameters vary. Typically, determining
and classifying all steady-state solutions of such nonlinear systems, as a function
of the parameters, is a di�cult problem. However, when the equations are poly-
nomial, or can be translated into polynomials (e.g, rational functions), which is
the case for many biological systems (as well as other physical and engineering
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systems), computing the steady-state solutions becomes a problem in compu-
tational algebraic geometry. Thus, it is possible to compute the regions of the
parameter space that give rise to di�erent numbers of steady-state solutions.

1.1 Previous work

Due to the ubiquity of such problems, many methods have been proposed for
identifying and characterizing steady-state solutions over a parameter space. A
standard approach to understand changes in qualitative behavior of di�erential
equations as a parameter is varied is to study bifurcations (singularities). Many
standard bifurcation techniques focus on local behavior in the phase space near
a structurally unstable object (e.g., �xed point) and the analysis is algebraic
by focusing on the normal form [22, 20]. Numerical bifurcation techniques as
implemented in, for example, AUTO [15] and MATCONT [14], require an initial
starting point, use a root �nding solver to �nd a �xed point, and then continue
along a branch (e.g., via arc-length continuation). However, these methods are
nearly all local in the phase space in that one �continues� (or �sweeps� [37]) from
a given initial point. Thus, studying a larger phase space requires sampling of
di�erent initial conditions and parameter values. In recent years, computation of
bifurcation diagrams of disconnected branches, so-called de�ation continuation
methods, have been developed [16], however, these do not guarantee �nding all
solutions at a particular parameter value.

We take a geometric approach and do not restrict ourselves to a local area of
the phase space (e.g., no initial condition or guess) nor do we start our analysis
by solving (e.g., using Netwon's method) for a single �xed point. We focus on
where the discriminant vanishes � called the discriminant locus � in which roots
merge along the discriminant as a parameter varied. Recall that when solving
the equation ax2 + bx + c = 0, where a, b, and c are parameters, and x is the
variable, the discriminant locus de�ned by ∆ := b2 − 4ac = 0 is the boundary
separating regions in which the two distinct solutions for x are real (∆ > 0) and
nonreal (∆ < 0). The discriminant locus, when arising from a system of ODEs,
is often called the bifurcation variety [1]. A parametrization of the discriminant
set (variety) can sometimes be computed explicitly, e.g., [8], but this is gener-
ally a di�cult problem for systems with more than a handful of variables and
parameters. Moreover, most of these methods, even those that can systemati-
cally `globally' divide the parameter plane are local in the sense of the phase
space [38]. Other symbolic methods are global in terms of phase space include
using a cylindrical algebraic decomposition [12] with related variants [32, 46, 9]
and computing the ideal of the discriminant locus using resultants or Gröbner
basis methods, e.g., see [13, 18, 42, 34]. Unfortunately, each of these methods
has potential drawbacks due to their algorithmic complexity, symbolic expression
swell, and inherent sequential nature.

By using homotopy continuation and, more generally, numerical algebraic
geometry (see [5, 39, 45]), all solutions over the complex numbers C to a system
of polynomial equations can be computed. In this sense, numerical algebraic
geometry permits the computation, with probability one, of all real steady-state
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solutions over a chosen region of parameter space e�ectively capturing the global
behavior of the dynamical system and even detecting disconnected branches of
solutions. Such methods have been implemented in software packages including
Bertini [6], HOM4PS-3 [10], and PHCpack [43] with Paramtopy [3] extending
Bertini to study the solutions at many points in parameter space. Typically,
these methods work over C while the solutions of interest in biological models
are in a subset of the real numbers R, e.g., one is interested in steady-states in
the positive orthant where the variables are biologically meaningful.

1.2 Problem setup

The general framework of problems under consideration are autonomous systems
of di�erential equations of the form

d

dt
x = f(x,p) (1)

where x = (x1, . . . , xN ) denotes the state variables, p = (p1, . . . , ps) denotes the
system parameters, and f(x,p) is a system of N functions. For p ∈ Rs, since we
aim to compute the steady-state solutions to Eq. 1, which are x ∈ RN such that
f(x,p) = 0. By using numerical algebraic geometry, we additionally require that
f(x,p) = 0 can be translated into solving polynomial equations, e.g., f(x,p)
consists of polynomial or rational functions. Moreover, we are particularly inter-
ested in the typical situation for biological networks where, for almost all p, the
system f(x,p) = 0 has �nitely many distinct (isolated) solutions, all of which
are nonsingular, i.e., every eigenvalue of the Jacobian matrix Jxf(x,p) of f with
respect to the state variables is nonzero. Therefore, certi�ed techniques are used
to distinguish between real and nonreal solutions [29].

We consider the parameter space P ⊂ Rs for Eq. 1 to consist of those param-
eter values p that are biologically meaningful, e.g., Rs or positive orthant in Rs.
The quantitative behavior of the steady-state solutions, that is, the number of
them, not necessarily the value of the steady-state, is constant on subregions
in P, e.g., the number of physically realistic steady-state solutions is the same
for all parameter values in a region. One can also re�ne the quantitative be-
havior, by restricting, for example, to only positive steady-state solutions that
are locally stable. The points forming the boundaries of these regions are called
critical points and collectively form the discriminant locus, which is called the
minimal discriminant variety in [32]. The discriminant locus is contained in a
hypersurface in P.

Suppose that p ∈ P is such that f(x,p) = 0 is in the interior of a subregion in
the complement of the discriminant locus. The implicit function theorem yields
that the solutions can be extended to an open neighborhood containing p. One
can keep increasing the size of this neighborhood in the parameter space until
it touches the discriminant locus.

1.3 Contribution and organization of paper

In Section 2, we present a numerical discriminant locus method for decomposing
the parameter space into distinct solution regions e�ectively stratifying the pa-
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Algorithm 1: Perturbed sweeping
Input: Parameterized equations f(x, p) = 0 which can be translated into solving

polynomial equations with parameter space P ⊂ R, perturbation ε ∈ R \ {0}, and
description of the discriminant ∆ associated with quantitative behavior of interest.

Output: Description of the intervals in the parameter space P with the same quantitative
behavior.

Randomly select p∗ ∈ P and compute the solution set S ⊂ CN of f(x, p∗ + ε
√
−1) = 0.

Track each smooth solution path parameterized by p ∈ P de�ned by f(x, p+ ε
√
−1) = 0

with start points S at p = p∗.
Use the solution paths to approximate all values of p ∈ P where a solution path becomes

ill-conditioned and re�ne, e.g., using [21, 23], to identify the critical points C ⊂ P
where the quantitative behavior of interest changes.

Return the set of intervals of P whose endpoints are consecutive points in C.

rameter space. We propose three methods for decomposing the parameter space
that build upon advances in real numerical algebraic geometry. A schematic is
given in Figure 1. The �rst (Alg. 1) is for one-dimensional parameter spaces in
which case the discriminant locus consists of �nitely many points. We enhance
sweeping approaches such as [27, 37] with a perturbation and use all solutions
simultaneously to locate the �nitely many regions, which are open intervals in
this case, where the number of steady-state solutions is consistent. The second
(Alg. 2) is for low-dimensional parameter spaces and provides a complete decom-
position of the parameter space into �nitely many regions after decomposing the
discriminant locus. Since computing and decomposing the discriminant locus
may be impractical for high-dimensional parameter spaces, our third method
(Alg. 3) uses the sweeping approach to compute a local decomposition of the pa-
rameter space near a given point in the parameter space. When decomposing a
high-dimensional parameter space is desirable, one could bootstrap together lo-
cal analyses to generate a more complete, or global, view of the parameter space.

In Section 3, we apply these algorithms to two biological models. The �rst is
a detailed ODE model involving rational functions of gene and protein signaling
network that induces long-term memory proposed in [36]. We demonstrate our
method goes beyond singularity theory results in [40]. The second is a new
network model of cell fate speci�cation in a population of interacting stem cells
where the algorithms provide insight into the qualitative behaviors that the
model can exhibit.

The paper concludes in Section 4.

2 Decomposition using numerical algebraic geometry

This section reviews the required ingredients from numerical algebraic geometry
with expanded details provided in, e.g., [5, 39, 45]. Traditionally, symbolic ap-
proaches such as [12, 32] describe the regions using both equations that vanish
on the discriminant locus and inequalities, e.g., see [35, 26, 31, 24] for applica-
tions to biology. The key observation from numerical algebraic geometry is to
replace computing equations and inequalities with geometric descriptions as de-
scribed below. We can use numerical algebraic geometry techniques presented in
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Fig. 1. Flow chart of methods. (A) Perturbed sweeping. (B) Global method for de-
composing (a, b) parameter space into regions based on number of real steady-states.
(C) Local method for high dimensional parameter space analysis.

Algorithm 2: Global decomposition of 2-dimensional parameter space
Input: Parameterized equations f(x,p) = 0 which can be translated into solving

polynomial equations, parameter space P ⊂ R2, and description of the
discriminant ∆ associated with quantitative behavior of interest.

Output: Description of regions in the parameter space P with the same quantitative
behavior.

Randomly select α ∈ R2 and µ∗ ∈ R, and compute the simultaneous solution set
S ⊂ CN × C2 of f(x,p) = 0, α · p = µ∗, and the discriminant locus ∆ = 0.

Use isosingular de�ation [30] as needed to permit tracking on the discriminant locus
intersected with the line α · p = µ parameterized by µ.

Apply perturbed sweeping where µ ∈ R is the parameter to compute the critical points
C ⊂ R of the discriminant locus intersected with the line α · p = µ.

If P has a boundary, append to C the values of α · p such that p lies at the intersection of
the discriminant locus and the boundary of P.

Between two consecutive values in C, say µ1 < µ2, pick µ = (µ1 + µ2)/2 and use
perturbed sweeping to compute a decomposition into intervals along the line α · p = µ
inside of P. Connect the boundaries of these intervals to the endpoints µ1 and µ2 to
create a region decomposition between critical points. Optionally, merge regions across
slices α · p = µj for j = 1, 2 which have the same quantitative behavior.

Return the regions of P.

Section 2.4 to compute every point in the intersection of a line with the discrimi-
nant locus and then compute the boundary of the region. Finding sample points
in the interior of the regions (which is not on the discriminant locus) has been
suggested, e.g., [34, 33, 2, 7]. Isosingular de�ation developed in [30] allows one to
construct a system for tracking along the discriminant locus thereby tracing out
the corresponding boundary. Adaptive multiprecision path tracking [4] is used to
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Algorithm 3: Local decomposition of parameter space
Input: Parameterized equations f(x,p) = 0 which can be translated into solving

polynomial equations, parameter space P ⊂ Rs, description of the discriminant ∆
associated with quantitative behavior of interest, and point p∗ ∈ P that is not
contained in the discriminant locus.

Output: Description of some regions of the parameter space P with the same quantitative
behavior.

Randomly select a direction α∗ ∈ Rs and apply perturbed sweeping to the system
f(x,p∗ + µα∗) = 0 parameterized by µ.

Use isosingular de�ation [30] as needed to permit tracking on the discriminant locus
intersected with the linear space parameterized by p∗ + µα as α varies.

Apply path tracking to vary α to trace out boundaries of regions inside of P with the
same quantitative behavior.

Return the regions of P whose boundaries were traced out.

ensure reliable numerical computations, especially near the discriminant locus.
The computations described in Section 3 adaptively changed between double,
64-bit, and 96-bit precision.

2.1 Computing all solutions

From algebraic geometry, a parameterized system of equations f(x,p) = 0 which
are polynomial or can be translated into polynomials has a generic behavior for
parameters p over the complex numbers. For example, the number of distinct
solutions of f(x,p) = 0 for almost all p ∈ Cs are equal. Therefore, a random
choice of p ∈ Cs, say p∗, will have the generic behavior with probability one. Clas-
sical homotopy continuation, e.g., see [5, 39], permits one to compute all distinct
solutions of f(x,p∗) = 0. One can then continue the solutions of f(x,p∗) = 0
via a parameter homotopy to solve f(x,p) = 0 for any other parameter value p.
This improves computational e�ciency since solving at other parameter values
is typically much faster than the ab initio solving of f(x,p∗) = 0.

2.2 Perturbed sweeping

For one-dimensional parameter spaces, i.e., s = 1, the discriminant locus consists
of at most �nitely many points. Thus, the parameter p parameterizes solutions
paths x(p) de�ned by f(x(p), p) = 0 which can be tracked. In particular, one
can sweep [27, 37] as p varies and locate all values of p where a solution path is
not smooth, i.e., where Jxf(x(p), p) has a zero eigenvalue. Since each solution
path x(p) satis�es

dx

dp
= −Jxf(x, p)−1 · Jpf(x, p), (2)

numerical ill-conditioning will occur near the discriminant locus. In fact, Eq. 2
will become sti� since Jxf(x, p) is not invertible on the discriminant locus.

Rather than attempting to track through the discriminant locus, we propose
a perturbed sweeping approach that guarantees smoothness of the path for easier
tracking while still observing some ill-conditioning for identifying the discrimi-
nant locus. An example of this is shown in Figure 2 in Section 2.5.
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Theorem 1. For i =
√
−1 and ε ∈ R, we consider the perturbed solution paths

xε(p) de�ned by f(xε(p), p+ εi) = 0. With the setup described above, for all but

�nitely many ε ∈ R, all perturbed solution curves are smooth.

Proof. Since there are only �nitely many points in the discriminant locus over
the complex numbers, there can be only �nitely many values of ε ∈ R such that
there exists δ ∈ R with δ + εi in the discriminant locus.

Since xε(p) → x(p) as ε → 0, we can recover information about the actual
solution curves by monitoring the condition number as in [27] with the distinct
numerical advantage of tracking smooth solution curves. If further re�nement is
needed, additional e�cient local computations can be employed, e.g., [21, 23].

2.3 Global region decomposition

We now build upon the perturbed sweeping approach to decompose parame-
ter spaces which are not one-dimensional. This approach, called a global region

decomposition, is applicable for low-dimensional parameter spaces which mixes
projections, critical sets, and perturbed sweeping. For illustration, we start in the
two-dimensional case, i.e., s = 2, for which the discriminant locus is contained
in a curve. Given α ∈ R2 and µ ∈ R, we consider intersecting the discriminant
locus with the line πα(p) := α ·p = µ. For almost all choices of (α, µ) ∈ R2×R,
i.e., with probability one for randomly selected (α, µ) ∈ R2 × R, there are at
most �nitely many values of p such that the line πα(p) = µ intersects the dis-
criminant locus. Hence, we can use the perturbed sweeping approach along this
line to compute these values. For example, an initial plot of the global region
decomposition can be made by simply selecting various values of α and µ and
plotting the various regions along the various lines πα(p) = µ.

To create a complete global region decomposition, we follow a modi�cation
of [33]. First, we compute all p ∈ C2 such that the line de�ned by πα(p) = µ
intersects the discriminant locus via homotopy continuation. We solve in C2 here
since the number of real intersection points need not be constant whereas the
complex numbers ensures that we will locate every real component. One then
uses isosingular de�ation [30] as needed to construct a system which permits
the tracking along the discriminant locus intersected with the line πα(p) = µ.
Perturbed sweeping viewing µ as a parameter moves the line in parallel sweep-
ing out the entire plane yielding critical points of the discriminant locus with
respect to µ. Hence, if µ1 < µ2 are two consecutive critical points, we know that
the topology of the global region decomposition along the line πα(p) = µ for
µ ∈ (µ1, µ2) is equivalent, e.g., same number of intervals which connect up to
form regions. Hence, one simply connects the regions across the critical points
to form the global regions. An example of this is presented below in Section 2.5.

For higher-dimensional spaces, a global region decomposition is computed
by applying global region decomposition to smaller-dimensional spaces. For ex-
ample, one can compute a global region decomposition on a plane inside of a
high-dimensional parameter space using the two-dimensional method described
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above. By selecting various planes, one obtains an initial plot of the global re-
gion decomposition. To have a complete picture, one can utilize projections into
lower-dimensional spaces computing critical sets of the discriminant locus to lo-
cate all areas where the quantitative behavior can change. For example, in the
three-dimensional case, s = 3, with linear map πα,β(p) = (α · p,β · p) where
α,β ∈ R3, one �rst considers the parameter space of µ ∈ R2 where πα,β(p) = µ.
By computing a global region decomposition for µ ∈ R2 with respect to the
critical curve of the original discriminant locus, one can then stitch together a
global region decomposition in the original three-dimensional space as follows.
Upon �xing µ ∈ R2 inside of a region, one obtains a curve in the original three-
dimensional parameter space where the �nitely many points on the discriminant
locus can be found using perturbed sweeping. Then, applying isosingular de�a-
tion [30] as needed permits the tracking of the original discriminant locus as one
moves µ ∈ R2 inside of its corresponding region to connect neighboring regions
at the critical points.

2.4 Local region decomposition

Since a global region decomposition is not practical for high-dimensional pa-
rameter spaces, we propose a local region decomposition method by combining
perturbed sweeping with the classical approach of ray tracing, e.g., see [19].
Given a point p ∈ P not contained in the discriminant locus, which happens for
a random point with probability one, the codimension-one components of the
discriminant locus can be obtained by using the perturbed sweeping approach
along lines emanating from p, say in the direction α, yielding the real values of µ
for which the corresponding line parameterized by p+µα intersects the discrim-
inant locus. As above, once points on the discriminant locus are found, applying
isosingular de�ation [30] as needed permits the tracking along the discriminant
locus tracing the region boundaries as one changes α.

This method is local in the sense that one is only tracing along the real points
obtained by the intersection of the codimension one components of the discrim-
inant locus with the line parameterized by p+µα. As mentioned in Section 2.3,
the number of such real points can change as one changes α. To overcome this,
one could �rst compute all such complex intersection points and track all of
the corresponding paths as one changes α. Thus, one can be sure to obtain all
real points of intersection along any other direction emanating from p. Even
though lower-dimensional boundaries of the regions could be missed with such
an approach, it avoids the expense of computing critical points of projections.
Nonetheless, local decompositions starting from various p with various α can
provide a reasonable plot of the main features of a global decomposition of the
parameter space.

2.5 Quadratic example

To illustrate the perturbed sweeping and global region decomposition approach,
we consider two examples of a parameterized quadratic equation. The �rst has
one parameter, namely f(x, a) = x2 + ax + a/4. The classical discriminant for
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quadratic polynomials yields ∆ = a2 − a with discriminant locus {0, 1}. In
particular, f = 0 has two distinct real solutions when a < 0 or a > 1, two
distinct complex (i.e., nonreal) solutions when 0 < a < 1, and a multiplicity 2
real solution when a = 0 or a = 1. The perturbed sweeping method avoids
tracking through the the singularities to have two smooth paths xε(a) de�ned
by f(xε(a), a + εi) = 0 for any ε ∈ R \ {0} and a ∈ R. For example, with
ε = 10−6, we sweep along the smooth xε(a) and observe the expected solution
behavior as shown in Figure 1A where the number of real solutions changes at
the singularities a = 0 and a = 1, which are clearly observed in Figure 2.

Fig. 2. Illustration of using perturbed sweeping to locate singularities at a = 0, 1.

The second example is f(x, a, b) = x2 + ax+ b/4 which has two parameters
and is shown in Figure 1B. We aim to decompose the parameter space where
the quantitative behavior of interest is the number of real and positive solutions,
which is typical in biological problems. The discriminant locus for this situa-
tion corresponds with the closure of (a, b) such that there exists x such that
f(x, a, b) = 0 and x(2x + a) = 0. In particular, the corresponding discriminant
locus consists of two irreducible curves, de�ned by b = 0 and a2 = b, which cut
the parameter space (a, b) ∈ R2 into four regions where the number of real, posi-
tive, and negative solutions are constant on these regions as shown in Figure 1B.
The following describes the essence of computing a global region decomposition.

Consider taking α = (1, 0) so that πα(a, b) = a. Fixing, say, µ∗ = 0.5, we
use perturbed sweeping along the line de�ned by πα(a, b) = a = µ∗ = 0.5. This
locates the two real points on the discriminant locus, namely b = 0 and b = 0.25.
we do not need to apply isosingular de�ation since both are nonsingular solutions
with respect to the discriminant system f(x, a, b) = 0 and x(2x+ a) = 0.

Next, we use perturbed sweeping with these two solutions parameterized
by µ starting at µ∗ = 0.5 to locate critical points of the discriminant locus. This
locates the critical point of the discriminant locus when πα(a, b) = a = µ = 0.

Finally, we simply need to put everything together. At the critical point of
the discriminant locus at a = 0, there are two regions in terms of b, namely b < 0
and b > 0. For any a < 0 or a > 0, there are three regions in terms of b, namely
b < 0, 0 < b < a2, and b > a2. Hence, can merge together the regions b < 0 and
b > a2 for a < 0 and a > 0 at the critical point a = 0. Therefore, this yields a
global region decomposition consisting of 4 distinct regions shown in Figure 1B.
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3 Results from biological models

We showcase our methods by applying them to two biological models. First, we
analyze a detailed ODE model of the gene and protein signaling network that
induces long-term memory proposed by Pettigrew et al. [36]. We demonstrate
that our method can be applied to rational functions and reproduce known bi-
furcation results. Moreover, we �nd an additional, disconnected branch solution
using our method. The second model is a network of cell fate speci�cation in a
population of interacting stem cells with complicated dynamics. Since cellular
decision making often depends on the number of accessible (stable) steady-states
that a system exhibits, we seek to identify distinct regions of parameter space
that can elicit di�erent system behavior.

3.1 Molecular network model

A gene and protein network for long-term memory was proposed by Petti-
grew et al. [36] and investigated using bifurcation and singularity analysis by
Song et al. [40]. The model is of the form of Eq. 1 where f consists of 15 rational
functions, x ∈ R15 is the vector of model variables, and p ∈ R40 is the vector of
parameters. The following summarizes the structure of the 15 rational functions:

numerator degree denominator degree number of functions in f

1 0 2
2 0 2
2 1 1
3 1 4
3 2 2
4 2 3
5 4 1

For a random choice of parameters p, the system of equations f(x,p) = 0 has
432 isolated nonsingular solutions.

We demonstrate that our discriminant method can 1) reproduce their results
as a proof-of-principle, 2) handle rational functions, and 3) we �nd an additional
solution branch not previously located. For this system, the denominators do not
vanish near the regions of interest so they do not have any impact on the behavior
of the solutions. If the denominator also vanished when �nding a solution to the
system of equations from the numerators, then the parameter values for which
this occurs would be added into the discriminant locus.

We �x the model parameters using the values from [40]. This leaves two
parameters to investigate, namely λ which represents the extracellular stimu-
lus [5-HT] and kApSyn. The variable of biological interest required for long-

term facilitation is the steady-state of protein kinase A (PKA) in response to
the extracellular stimulus parameter λ. Our aim is to demonstrate the perturbed
sweeping method on a large model to reproduce results from Figure 5 of [40] In
particular, we verify all of their solution branches but also �nd another solution
not reported, which is the top branch shown in Figure 3. This demonstrates the
power of this method to ensure all real solutions are computed. On inspection,
this additional steady-state is not on the same branch, but is not biologically
feasible so we can reject it as nonphysical. However, by using such an exhaustive
�rst step, we can identify all steady-states, and then systematically characterize
and check each solution.
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Fig. 3. Results of perturbed sweeping method applied to molecular network model of
long-term memory that plots the behavior of protein kinase A (PKA) in response to
changes in λ, which is the extracellular stimulus [5-HT], for elected values of kApSyn
as in [40, Fig. 5]. Solid lines denote a stable steady-state while dashed lines denote an
unstable steady-state. (A) Parameter kApSyn = 0.0022. (B) Parameter kApSyn =

0.015. (C) Parameter kApSyn = 0.03. (D) Parameter kApSyn = 0.1.

3.2 Cellular network model

Most multicellular organisms emerge from a small number of stem-like cells
which become increasingly specialized as they proliferate until they transition
to one of a �nite number of di�erentiated states [11]. We propose a caricature
model of cell fate speci�cation for a ring of cells, and investigate how cell-cell
interactions, mediated by di�usive exchange of a key growth factor, may a�ect
the number of (stable) con�gurations or patterns that the di�erentiated cells may
adopt. The model serves as a good test case for these discriminant locus methods
since, by construction, there is an upper bound on the number of feasible steady-
states (2N stable solutions for a ring of N cells) and some of these patterns are
equivalent due to symmetries inherent in the governing equations.

We consider a ring of N interacting cells and denote by xi(t) ≥ 0 the con-
centration within cell i of a growth factor or protein (e.g., notch), whose value
determines that cell's di�erentiation status [17, 41, 47, 44, 25]. For 0 < ε < a < 1,
the subcellular dynamics of xi are represented by a phenomenological function
q(xi) = (x − ε)(x − a)(1 − x). This function guarantees bistability of each cell
in the absence of cell-cell communication. The bistability represents two distinct
cell fates, e.g., high and low levels of notch, which may be associated with di�er-
entiation of intestinal epithelial cells into secretory and absorptive phenotypes
[17, 41, 11]. We assume further that cell i communicates with its nearest neigh-
bors (cells i ± 1) via di�usive exchange of xi and denote by a parameter g ≥ 0
that describes the coupling strength. Thus, our cell-network model is

dxi
dt

= q(xi) + g ·
i+1∑

j=i−1

(xj − xi), for all i = 1, . . . , N . (3)

This model assumes uniform coupling g for all nearest neighbors as well as
periodic boundary conditions (xN+1 ≡ x1 and x0 ≡ xN ), as shown in Figure 4A.
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We analyze the model by using the global region decomposition method
for N = 3, 4, 5 cells and construct classi�cation diagrams in (a, g) parameter
space (Figure 4B). In addition to decomposing the parameter space into regions
based on the number of steady-state solutions, the method also provides valuable
information about how solution structure and stability changes as the system
parameters vary. For example, in Figure 4C for the N = 3 cell-network, we show
how the values and stability of the steady-states for (x1, x2, x3) change as a varies
with g = 0.025 and as g varies with a = 0.4 where ε = 0.01. In Figure 4D, we
plot bifurcation diagrams as a and g vary as before for the N = 4 cell-network.
In this plot, instead of presenting particular components xi (i = 1, 2, 3, 4), we
plot the 2-norm (‖x‖2 = (x21 + x22 + x23 + x24)

1/2) to capture the multiplicity of
solutions. We note that for N = 3 and N = 4 there are always two stable and
one unstable steady-states, independent of (a, g) parameter values (as shown by
the black and red points in Figure 4C, and by the solid blue lines in Fig. 4D).

For N = 4, the classical discriminant locus for this model can be shown to
have degree 72 using homotopy continuation. That is, there is a degree 72 polyno-
mial ∆(a, g) such that the classical discriminant locus is de�ned by ∆ = 0. Even
though we were unable to compute this polynomial explicitly, the advantage
of using numerical algebraic geometry, as �rst described in [28], is that com-
putations can be performed on this discriminant locus without having explicit
de�ning equations. In particular, with a = 0.4 as in Figure 4D, the univariate
polynomial equation∆(0.4, g) = 0 has 45 complex solutions, 25 of which are real.
Of these 25 real solutions, 15 are positive with only 4 of them corresponding to
where change in the number of stable steady-state solutions occur. The regions
(intervals) for g ≥ 0 when a = 0.4 are approximately:

region # stable steady-state solns

[0, 0.0197) 16
(0.0197, 0.0206) 12
(0.0206, 0.0411) 10
(0.0411, 0.0533) 6

(0.0533,∞) 2

We now interpret the results in the context of cell-cell communication. We
notice that intermediate values of a generate the largest number of real stable
steady-states; small and high values of a yield fewer real stable steady-states.
Interestingly, all cells synchronize for intermediate to strong values of the cou-
pling parameter g (two stable states in blue region in Figure 4B). We conclude
that strong cell-cell communication reduces the number of stable steady-state
con�gurations that a population of cells can adopt and, thus, cell-cell commu-
nication could be used robustly to drive the cells to a small number of speci�c
states. When coupling is weak (0 < g < 0.1), the interacting cells have more
�exibility in terms of their �nal states, with the 5-cell network admitting up
to 32 stable steady-states (Figure 4B(iii)). Weaker cell-cell communication al-
lows more patterns to emerge and may be appropriate when it is less important
that neighboring cells share the same phenotype. We �nd that the regions of
(a, g) parameter space that give rise to more than two (synchronized) steady-
states also increase in size as the number of cells increases.
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Fig. 4. Global region decomposition applied to coupled cell-network model. (A) Ring
of cell-network. Each cell xi has bistable dynamics at stable states at 0 and 1, and
unstable state given by a. The cells are coupled to neighbour cells by a coupling strength
parameter g. (B) Region decomposition with parameters a, g, similar to a classi�cation
diagram, with the number of real stable steady-stages denoted by di�erent colors. The
number of stable real steady-states is given for each network where N = 3, 4, and 5. (C)
Steady-state values in state space for N = 3 cell-network are plotted as parameter a is
varied between [ε, 1] or g is varied. The two black dots are stable steady-states, the red
is an unstable steady-state, these steady-states are independent of parameter values a
and g. (D) Bifurcation diagram showing ‖x‖2 as the parameters are varied.

3.3 Chain of cells

We next consider a chain of cells rather than a ring. We demonstrate the ability
of the local region decomposition method to analyze a generalization of Eq. 3 in
which the coupling strength between two cells is not constant. For this carica-
ture stem-cell model, we have classi�ed the number of stable steady-states as the
cell-cell coupling parameters are varied, and this increases the dimension of the
parameter space. Visualization of the decomposition of higher dimensional pa-
rameter spaces is di�cult, therefore we created a movie which we describe below.
This movie along with code dependent on Bertini [6] and Matlab used to gen-
erate it is available at the repository http://dx.doi.org/10.7274/R0P848V0.

To that end, we consider a generalization of the model given in Eq. 3 which
uses coupling strengths gi,i+1 = gi+1,i ≥ 0 between cell i and i + 1 with cyclic
ordering (N + 1 ≡ 1), namely

dxi
dt

= q(xi) +

i+1∑
j=i−1

gi,j · (xj − xi), for all i = 1, . . . , N . (4)

With N = 4, the classical discriminant locus for this generalized model has
degree 486. We consider the case with ε = 0.01, a = 0.4, and g4,1 = g1,4 = 0
leaving three free parameters: g1,2, g2,3, and g3,4.
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First, we consider the perturbed sweeping approach along the ray de�ned by
gi,i+1 = i · µ for i = 1, 2, 3 and µ ≥ 0. This decomposes the space µ ≥ 0 into 15
regions, approximately

regions # stable steady-state solns

[0, 0.0079) 16
(0.0079, 0.0080) 15
(0.0080, 0.0132) 14
(0.0132, 0.0136) 13
(0.0136, 0.0137) 12
(0.0137, 0.0142) 11
(0.0142, 0.0153) 10
(0.0153, 0.0161) 9
(0.0161, 0.0171) 8
(0.0171, 0.0237) 7
(0.0237, 0.0352 6
(0.0352, 0.0360) 5
(0.0360, 0.0407) 4
(0.0407, 0.1264) 3

(0.1264,∞) 2

As a comparison, the classical discriminant with respect to µ ∈ C consists of 312
distinct points of which 84 are real. Of these, 42 are positive with 14 correspond-
ing to a change in the number stable steady-state solutions.

Next, we vary g1,2 and g3,4 for a �xed g2,3 (see Figure 5). As this is a chain
of cells, we observe a natural symmetry as g1,2 and g3,4 vary for �xed values
of g2,3. Additionally, as the strength of the cell-cell coupling is increased, the
number of stable steady-states decreases monotonically from a maximum value
of 16 when coupling is weak down to the minimimum value of 2 when coupling
is strong where the rate of decline depending on the choice of parameter values.

Fig. 5. Frame showing how, when N = 4 and g2,3 = 0.025, the number of stable
steady-state solutions for Eq. 4 changes as g1,2 and g3,4 vary.

Finally, we determine how the how the number of stable steady-state solu-
tions change as we move through the three-dimensional parameter using a movie.
Each frame of the movie is based on a �xed value of g1,2 and shows the decom-
position of the plane involving g2,3 and g3,4. Figure 6 contains four frames from
this movie. In particular, as the coupling g1,2 increases, the maximum number
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of stable steady-states decreases (from 16 when g1,2 = 0 to 8 when g1,2 = 0.1).
We note that when g1,2 > 0, the frames in the parameter space (g2,3, g3,4) are
no longer symmetric. We note also the appearance of regions of parameter space
in which, for �xed values of g1,2, the number of stable steady-states no longer
decreases monotonically with g2,3 or g3,4. These results, which would not easily
be accessible using standard analytical tools, highlight the rich structure of the
cell-network model and the power of the local region decomposition method for
identifying these solutions.

Fig. 6. Series of frames showing how, for �xed values of the parameter g1,2 = 0.0,
0.0325, 0.0675, 0.1 and N = 4, the number of stable steady-state solutions for Eq. 4
changes as g2,3 and g3,4 are varied.

4 Conclusion

We have presented a suite of numerical algebraic geometric methods for decom-
posing the parameter space associated with a dynamical system into distinct
regions based on the multiplicity and stability of its steady-state solutions. The
methods enable us to understand the parameter landscape of high-dimensional,
ordinary di�erential models with large numbers of parameters. These methods
have considerable potential: they could be used to analyze di�erential equation
models associated with a wide range of real-world problems in biology, science,
and engineering which cannot easily be tackled with existing approaches.

We have demonstrated that coupling the dynamics of cells, which individually
exhibit bistable internal dynamics, can increase markedly the number of real
stable steady-states that population exhibits. We considered di�erent network
topologies (rings and chains of cells) as well as heterogeneity of cell-cell coupling
strengths using the local region decomposition. This methodology may help us
to understand how stem cells within the intestinal crypt are able to generate
di�erentiated cells with an array of absorptive and secretory phenotypes, just
by considering the interaction of the cells as a network.
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