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Abstract. This article presents several numerical algorithms for computa-
tions in sheaf cohomology. Let X be an algebraic set defined by a system
of homogeneous multivariate polynomials with coefficients in C. Let C be a
union of reduced, irreducible pure-dimensional curve components of X. The
first algorithm computes the dimension of the first cohomology of any twist
of the ideal sheaf of C. Let D be a reduced set of points on C. The second
and third algorithms solve the Riemann-Roch problem of computing the di-
mension of the space of divisors on C which are linearly equivalent to D. Let
S be a reduced, connected, locally Cohen-Macaulay pure-dimensional surface
made up of components of X. The fourth algorithm computes the first and
second cohomology of any twist of the ideal sheaf of S. Furthermore, as the
algorithms are based on homotopy continuation, they take advantage of the
natural parallelism underlying continuation methods.

Introduction

Let F1, F2, . . . , Fr be homogeneous multivariate polynomials in the ring R =
C[z0, z1, . . . , zn] and let V = V (F1, F2, . . . , Fr) := {p ∈ Pn|Fi(p) = 0 for 1 ≤ i ≤ n}
be the algebraic set determined by these polynomials. The set V can be decom-
posed uniquely as a union of varieties V1, V2, . . . , Vr with Vi 6⊆ Vj whenever i 6= j.
Determining the decomposition of an algebraic set into varieties is a fundamental
problem in numerical algebraic geometry and serves as crucial data for many other
computations. An algorithm, based around numerical homotopy continuation, car-
ries out this decomposition and has been implemented in the numeric/symbolic
systems Bertini [1] and PHCpack [8]. The homotopy continuation proceeds by
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casting a set of equations determining the algebraic set V as a member of a param-
eterized family of polynomial systems one of which has known isolated solutions.
The known solutions are tracked via a predictor/corrector method to points nu-
merically close to V . These points can be further refined to lie within a prescribed
tolerance of V .

The output of the algorithm is discrete data in the form of a witness point set
[6, 7]. For each dimension d, this consists of a set of points Wd and a generic codi-
mension d linear space Ld with the basic property that within a user-specified toler-
ance, the points of Wd are the intersection of Ld with the union of the d-dimensional
components of V . With techniques such as monodromy, one can partition Wd into
subsets which are in one-to-one correspondence with the d-dimensional irreducible
components of V . In particular, one can organize the points in Wd into sets such
that all points of a set lie (numerically) on the same irreducible component.

Thus, given a set of polynomials F1, F2, . . . , Fr, it is possible to produce by nu-
merical methods a collection of subsets of points such that the subsets are pairwise
disjoint and are in one to one correspondence with the irreducible components of
the algebraic set V = V (F1, F2, . . . , Fr). From these initial subsets of points, it is
computationally inexpensive to produce arbitrarily large sets of points lying within
a prescribed tolerance of any given irreducible component. This paper exploits the
generic nature of these points to build probability 1 algorithms to extract coho-
mological information concerning unions of 1-dimensional components of algebraic
sets and concerning unions of 2-dimensional components of algebraic sets.

The numerical nature of the algorithms and their utilization of homotopy driven
methods allows them to be applied in contexts that can be difficult for a purely
symbolic approach. For example, if an ideal I determines a non-reduced scheme
supported on the union of two reduced curves and a reduced surface, the algorithms
presented in this paper allow one to extract cohomological information about either
curve individually or about their union or about the surface. This can be done
without computing the radical of the ideal nor is it necessary to determine the
primary decomposition of the ideal. Furthermore, as the algorithms utilized are
numeric, the coefficients of the generators of I are allowed to be numeric as well.

1. Background and Notation

Throughout this paper, R will denote the polynomial ring C[z0, . . . , zn] with
the standard grading. For a sheaf F on Pn, we let H i(F) denote the cohomology
group H i(Pn,F) and let hi(F) denote its dimension as a C-vector space. H i

∗(F)
will denote the graded R-module

⊕

t∈Z
H i(Pn,F(t)), where F(t) = F ⊗ OPn

(t).

The Hilbert function of F is defined as Hilb(F , t) = h0(F(t)). In this paper, we
will need an algorithm to compute values of the Hilbert function of the ideal sheaves
of reduced, equidimensional schemes. In other words, we will be interested in values
of the Hilbert function of ideal sheaves corresponding to the union of varieties of a
fixed dimension. Suppose C = C1 ∪ · · · ∪Cr is a finite union of varieties. There are
several different numeric and symbolic methods for computing the Hilbert function
of IC . For instance, through homotopy continuation and the cascade algorithm
of Sommese, Verschelde and Wampler [6], one can sample arbitrarily many points
with prescribed tolerance on any irreducible component of an algebraic set. In such
an algorithm, one can take as input any ideal whose corresponding algebraic set in-
cludes C1, C2, . . . , Cr as irreducible components. Through sampling, interpolation
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and numerical linear algebra, one can compute h0(IC(t)) for any value of t. We will
henceforth assume we have access to an algorithm for computing the Hilbert func-
tion of any finite union of varieties and that this algorithm can take as input any set
of polynomials {F1, . . . , Fr} which generate an ideal whose corresponding algebraic
set V (F1, . . . , Fr) includes the varieties C1, . . . , Cr as irreducible components. The
algorithm is given formally as follows:

Algorithm 1.1. Hilb({F1, . . . , Fr}, C, t; hC(t))

Input:
• F1, . . . , Fr ∈ C[z0, z1, . . . , zn]
• C:= An identification of the irreducible components of V (F1, . . . , Fr) that comprise C

• t ∈ Z.

Output:
• hC(t) := h0(IC(t)).

We will use the notation Hilb(C, t) to mean the value of h0(IC(t)) as obtained
through an application of Algorithm 1.1.

2. Algorithm for checking the dimension of any degree component of

the first cohomology module of the ideal sheaf of a curve

Let C ⊂ Pn be a reduced equidimensional curve, i.e. C has no zero-dimensional
components (embedded or not) but can have multiple one-dimensional irreducible
components. Let d = deg C.

Recall the following results of Gruson-Lazarsfeld-Peskine [3]:

Theorem 2.1. If X ⊆ Pn is a reduced irreducible non-degenerate curve of
degree d then IX is (d + 2 − n)-regular.

Corollary 2.2. Let X ⊆ Pn be a reduced curve. Suppose X has irreducible
components Xi of degree di, and that Xi spans a Pni ⊆ Pn. Set

mi =

{

di + 2 − ni, if di ≥ 2;
1, if di = 1 (i.e. if Xi is a line).

If m =
∑

mi, then X is m-regular and H1(IX(t)) = 0 for t ≥ m − 1.

Remark 2.3. If C is reduced then H1(IC(t)) = 0 for t < 0. If C is both reduced
and connected then H1(IC(t)) = 0 for t < 1. As a result, if F is a homogeneous
polynomial of degree k ≥ m then F annihilates H1

∗ (IC).

We recall from [5], Section 1.3, several basic exact sequences. Let F be a general
form of degree k and let t be any integer. Consider the short exact sequence of
sheaves induced by multiplication by F :

(2.1) 0 → IC(t)
×F
−→ IC(t + k) → I(C∩F )|F (t + k) → 0.

Applying the global section functor we obtain the following long exact sequence of
cohomology groups:

(2.2) 0 → H0(IC(t))
×F
−→ H0(IC(t + k)) → H0(I(C∩F )|F (t + k))

→ H1(IC(t))
×F
−→ H1(IC(t + k)) → H1(I(C∩F )|F (t + k)) → . . .
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The first two terms represent the homogeneous component of IC in degrees
t and t + k, respectively. The third term represents the global sections of the
restriction of IC(t + k) to the hypersurface F .

Now consider the short exact sequence of sheaves induced by multiplication by
F :

(2.3) 0 → OPn(t)
×F
−→ IC∩F (t + k) → I(C∩F )|F (t + k) → 0.

Applying the global section functor and noting that H1(OPn(t)) = 0 for any t, we
obtain the following exact sequence of cohomology groups:

(2.4) 0 → H0(OPn(t))
×F
−→ H0(IC∩F (t + k)) → H0(I(C∩F )|F (t + k)) → 0.

We now observe that in sequence (2.2), if deg F ≥ m−t−1 then H1(IC(t+k)) =
0, so for such a choice of deg F we have

(2.5) 0 → H0(IC(t))
×F
−→ H0(IC(t+k)) → H0(I(C∩F )|F (t+k)) → H1(IC(t)) → 0.

Provided that deg F ≥ m − t − 1, from sequence (2.5) we see that

h1(IC(t)) = h0(I(C∩F )|F (t + k)) − h0(IC(t + k)) + h0(IC(t)).

Furthermore, from sequence (2.4) we see that

h0(I(C∩F )|F (t + k)) = h0(IC∩F (t + k)) − h0(OPn(t)).

Combining these results and noting that h0(OPn(t)) =
(

t+n
n

)

, we obtain the follow-

ing relation between h1(IC(t)) and values of various Hilbert functions.

(2.6) h1(IC(t)) = h0(IC∩F (t + k)) −

(

t + n

n

)

− h0(IC(t + k)) + h0(IC(t)).

Using Hilb algorithm from Section 1, the following is an algorithm that pro-
duces h1(IC(t)) for 0 ≤ t ≤ m − 2 (where m is a bound on the regularity of C).
A bound on the regularity can be computed using Corollary 2.2 or by some other
technique. Recall that if C is m-regular then H1(IC(t)) = 0 for t ≥ m − 1.

Algorithm 2.4. compute cohomology({F1, . . . , Fr}, C, m; h1)

Input:
• F1, . . . , Fr ∈ C[z0, z1, . . . , zn]
• C:= An identification of the irreducible components of V (F1, . . . , Fr) that comprise C

• m ∈ N where m is a bound on the regularity.

Output:
• h1 = [h1(0), . . . , h1(m − 2)], where h1(t) := h1(IC(t)).

Algorithm:
Compute Am−1 := Hilb(C, m − 1).
for t := 0 to m − 2.

Compute At := Hilb(C, t).
Choose a general linear form, F , of degree m − t − 1.
Compute Bt := Hilb(C ∩ F, m − 1) −

(

t+n
n

)

.
Compute h1(t) := Bt − Am−1 + At.
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Remark 2.5. If the above algorithm gives a value of zero for each t, then C is
arithmetically Cohen-Macaulay. More generally, if C is not arithmetically Cohen-
Macaulay then the Buchsbaum index of C is defined to be the smallest positive
integer k such that the module

⊕

t∈Z
H1(P3, IC(t)) is annihilated by all forms

(equivalently a general form) of degree k. The above algorithm can be modified to
compute the Buchsbaum index of a reduced curve, but we omit the details.

3. Algorithm for computing the dimension of a linear system on a

reduced curve

Consider the short exact sequence of sheaves:

(3.1) 0 → IC(t) → OPn(t) → OC(t) → 0.

Applying the global section functor and noting that H1(OPn(t)) = 0 for any t, we
obtain the following exact sequence of cohomology groups:

(3.2) 0 → H0(IC(t)) → H0(OPn(t))
ρt

−→ H0(OC(t)) → H1(IC(t)) → 0.

Noting that h0(OPn(t)) =
(

t+n
n

)

, we obtain the following formula for h0(OC(t)):

(3.3) h0(OC(t)) =

(

t + n

n

)

+ h1(IC(t)) − h0(IC(t)).

As a consequence, we see that Algorithm 2.4 and Algorithm 1.1 combine to give
a solution to the Riemann-Roch problem of computing the dimension of H0(OC(t))
for any t.

Whenever h1(IC(t)) = 0, we can conclude that the restriction map ρt is sur-
jective. In this setting, any divisor linearly equivalent to a degree t hypersurface
section is cut out by some hypersurface. Using the previous section and conse-
quences of the surjectivity of restriction maps, we would now like to develop an
algorithm to solve a more general Riemann-Roch problem: let C be a reduced,
irreducible curve and let D be a finite set of points on C. What is the dimension
of the linear system defined by D on C? In cohomological terms, we are asking
for the value of h0(OC(D)). We will assume that D does not contain any singular
point of C.

Notice that since D is effective, we immediately have h0(OC(D)) ≥ 1. We will
break our problem into two algorithms. The first algorithm will be to determine if
h0(OC(D)) = 1. The second algorithm will be to determine the value of h0(OC(D)).

In the first algorithm, our goal is to check whether D′ ∼ D =⇒ D′ = D. In
other words, whether D is the only divisor which is linearly equivalent to D. We
will use the observation above about the surjectivity of ρt. Let deg D denote the
number of points in D. Let F be a general hypersurface containing D and with
deg F ≥ deg D. The integer m is defined in the previous section (it depends on
C). Recall that h1(IC(t)) = 0 for all t ≥ m − 1. By the generality assumption,
F does not contain C. As a consequence, it cuts out a hypersurface section of C

containing D. Let E be the residual to D in this hypersurface section. By the
generality assumption of F together with the assumption that deg F ≥ deg D and
the assumption that D does not contain any of the singular points of C, it follows
that D and E have no points in common and that E is reduced. Now, if D′ is any
divisor linearly equivalent to D, then D′ + E is linearly equivalent to a degree m

hypersurface section of C, hence is a hypersurface section. The fact that D consists
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of a reduced set of points means that the general element of the linear system also
consists of a reduced set of points. Thus, without loss of generality we may assume
that D′ consists of a reduced set of points. To check whether h0(OC(D)) = 1, it
is enough to choose a general hypersurface F ′ of the same degree as F , containing
E, and check whether the residual is equal to D. Since one hypersurface section of
C containing E has a reduced residual (namely D), the same is true of the general
hypersurface section of C containing E. As a consequence, it is enough to do this
for general F ′.

Algorithm 3.1. check residual({F1, . . . , Fr}, C, D; trivial)

Input:
• F1, . . . , Fr ∈ C[z0, z1, . . . , zn]
• C:= An identification of the irreducible components of V (F1, . . . , Fr) that comprise C

• D: a reduced set of points on C.

Output:
• trivial: True, if h0(OC(D)) = 1, otherwise False.

Algorithm:
Choose a general hypersurface, F , containing D such that deg F ≥ deg D.
Compute the residual, E, to D in the hypersurface section cut out on C by F .
Choose a general hypersurface, F ′, of the same degree as F , containing E.
Compute the residual, D′, to E in the hypersurface section cut out by F ′ on C.
If D = D′, then trivial := True, else trivial := False.

Using algorithm 3.1, we can compute the value of h0(OC(D)). It relies on the
fact that requiring the passage through a general point imposes one condition on a
linear system.

Algorithm 3.2. compute dim({F1, . . . , Fr}, C, D; h0)

Input:
• F1, . . . , Fr ∈ C[z0, z1, . . . , zn]
• C:= An identification of the irreducible components of V (F1, . . . , Fr) that comprise C

• D: a reduced set of points on C.

Output:
• h0 = h0(OC(D)).

Algorithm:
Set h0 := 1.
while check residual(C, D) = False

Choose a general point P on C.
Set D := D ∪ {P}.
Set h0 := h0 + 1.

Remark 3.3. The same approach gives an alternate approach to compute the
Hilbert function of any subvariety X of Pn: Check if there is a polynomial of
degree t containing X . If so, add a general point X := X ∪ P , and see if there is a
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polynomial of degree t vanishing on the new X . Keep going until the answer is no,
and the number of points is the dimension of (IX )t.

4. Algorithm for checking the dimension of any degree component of

the first or second cohomology module of the ideal sheaf or

structure sheaf of a surface

When we move to the study of surfaces, it is important to know the behavior
of both the first and second cohomology of the ideal sheaf. We will assume that
our surface is reduced, connected, locally Cohen-Macaulay and that it is pure di-
mensional. This will assure that both the first and second cohomology of the ideal
sheaf will be zero in all but finitely many degrees.

The computation of the first cohomology is very similar to that for curves
however there are some differences. First, the theorem of Gruson, Lazarsfeld and
Peskine no longer applies to give a “good” value of m. Instead, we use results of
Kwak ([4] Theorem 4.1 and Remark 4.1). Let X be a non-degenerate algebraic
surface in Pn. Let d = deg X and let e = n − 2 be the codimension of X .

(1) If X ⊂ P
n is smooth then IX is (d − e + 1)-regular.

(2) If X is either locally Cohen-Macaulay or irreducible then IX is ((d −
e + 1)d − 2e − ρa)-regular, where ρa is the arithmetic genus of a general
hyperplane section of X .

So we set m to be either of the values above, depending on whether X is smooth
or only locally Cohen-Macaulay. We remark that we have algorithms for computing
the arithmetic genus of a curve, so in particular of the hyperplane section of X .

Next, we note that just as with the curve case, the assumption that X is reduced
and connected gives that H1(IX(t)) = 0 for t ≤ 0 ([2], Lemma 4.4). Then with the
above choice of m, Algorithm 2.4 works by simply replacing the curve C with the
surface X . The only additional computation needed in advance is the computation
of the arithmetic genus, in order to compute m.

Now we turn to the computation of the second cohomology. We first note that
the exact sequence (3.2) still applies with C replaced by X , so the algorithm for
the first cohomology of the ideal sheaf, together with the knowledge of the Hilbert
function, continues to give us the value of h0(OX (t)) for any t:

h0(OX(t)) = h1(IX(t)) +

(

n + t

n

)

− h0(IX(t)).

We now turn to the computation of h2(IX (t)). Let ωX be the dualizing sheaf
of X . First recall that

h2(OX(t)) = h0(ωX(−t)).

To compute the latter, we borrow from liaison theory. Recalling that e is the
codimension of X , choose e general hypersurfaces of degree m containing X , and
let Y be the intersection of these hypersurfaces. Since IX is generated in degree
≤ m, the complement X ′ of X in Y is again a surface. Because of the choice of the
degree of the hypersurfaces, this complement is in fact the residual in the sense of
liaison theory. Thus for any s we have an exact sequence (cf. [5])

0 → H0(IY (s)) → H0(IX′(s)) → H0(ωX(s + n + 1 − em)) → 0.

Hence

h2(OX (t)) = h0(ωX (−t)) = h0(IX′(em − t − n − 1)) − h0(IY (em − t − n − 1)).
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Note that this latter dimension is computed by a simple formula, not by numerical
methods:

h0(IY (s)) = e ·
(

s−m+n
n

)

−
(

e
2

)(

s−2m+n
n

)

+
(

e
3

)(

s−3m+n
n

)

· · ·

=
∑e

i=1(−1)i+1
(

e
i

)(

s−im+n
n

)

.

An algorithm to compute the Hilbert polynomial of X has already been achieved.
Let us denote by PX(t) this polynomial. Since

PX(t) = h0(OX(t)) − h1(OX(t)) + h2(OX(t)),

this gives an algorithm to compute h1(OX(t)) for any t.
Finally, since h2(IX (t)) = h1(OX (t)) (thanks to the exact sequence of sheaves

0 → IX(t) → OPn(t) → OX(t)) → 0

and the corresponding long exact sequence on cohomology), we obtain our algorithm
for h2(IX(t)) as desired.

Remark 4.1. Algorithms 3.1 and 3.2 carry over easily to the surface case.
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