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ABSTRACT
This paper presents two new constructions related to sin-
gular solutions of polynomial systems. The first is a new
deflation method for an isolated singular root. This con-
struction uses a single linear differential form defined from
the Jacobian matrix of the input, and defines the deflated
system by applying this differential form to the original sys-
tem. The advantages of this new deflation is that it does not
introduce new variables and the increase in the number of
equations is linear instead of the quadratic increase of previ-
ous methods. The second construction gives the coefficients
of the so-called inverse system or dual basis, which defines
the multiplicity structure at the singular root. We present a
system of equations in the original variables plus a relatively
small number of new variables. We show that the roots of
this new system include the original singular root but now
with multiplicity one, and the new variables uniquely de-
termine the multiplicity structure. Both constructions are
“exact”, meaning that they permit one to treat all conjugate
roots simultaneously and can be used in certification proce-
dures for singular roots and their multiplicity structure with
respect to an exact rational polynomial system.

1. INTRODUCTION
One issue when using numerical methods for solving polyno-
mial systems is the ill-conditioning and possibly erratic be-
havior of Newton’s method near singular solutions. Regular-
ization (deflation) techniques remove the singular structure
to restore local quadratic convergence of Newton’s method.
Our motivation for the current work is twofold. On one

hand, in a recent paper [1], two of the co-authors of the
present paper studied a certification method for approxi-
mate roots of exact overdetermined and singular polyno-
mial systems, and wanted to extend the method to certify
the multiplicity structure at the root as well. Since all these
problems are ill-posed, in [1] a hybrid symbolic-numeric ap-
proach was proposed, that included the exact computation
of a square polynomial system that had the original root
with multiplicity one. In certifying singular roots, this ex-
act square system was obtained from a deflation technique
that added subdeterminants of the Jacobian matrix to the
system iteratively. However, since the multiplicity structure
is destroyed by this deflation technique, it remained an open
question how to certify the multiplicity structure of singular

∗Research partly supported by DARPA YFA, NSF grant
ACI-1460032, and Sloan Research Fellowship.
†Research partly supported by NSF grant CCF-1217557.

roots of exact polynomial systems.
Our second motivation is to find a method that simulta-

neously refines the accuracy of a singular root and a small
number of parameters describing the multiplicity structure
at the root. The knowledge of the multiplicity structure can
be useful in many contexts. It can be used, for instance, to
analyze the number of branches of an algebraic curve at a
singular point [18]. Coupled with subdivision methods [2], it
provides an efficient method to certify the topology of curves
or surfaces.
In previous numerical approaches which both describe the

multiplicity structure and restore the quadratic convergence
of Newton’s method, the number of parameters is large which
can make computation and certification difficult. There-
fore, a method which uses a small number of parameters
describing the multiplicity structure, and which uses New-
ton’s method to simultaneously approximate the coordinates
of the singular root and the parameters, will improve certi-
fication of singular roots and their multiplicity structure.
Contributions
In the present paper, we first give an improved version of
a deflation method that can be used in the certification al-
gorithm of [1]. This method reduces the number of added
equations at each deflation iteration from quadratic to lin-
ear. We prove that applying a single linear differential form
to the input system corresponding to a generic kernel ele-
ment of the Jacobian matrix, reduces both the multiplicity
and the depth of the singular root. The deflated system does
not involve any approximate coefficients and can therefore
be used in certification methods as in [1].
Secondly, to approximate efficiently both the singular point

and its multiplicity structure, we propose a new deflation
which involves a small number of new variables compared to
other approaches that rely on Macaulay multiplication ma-
trices. It is based on a new characterization of the isolated
singular point together with its multiplicity structure via
inverse systems. The deflated polynomial system exploits
the nilpotent and commutation properties of the multiplica-
tion matrices in the local algebra of the singular point. We
prove that the polynomial system we construct has a root
corresponding to the singular root but now with multiplicity
one, and the new added coordinates describe the multiplicity
structure. In particular, this system completely deflates the
system in one step. Moreover, the number of variables and
equations in this construction is at most n+nδ(δ−1)/2 and
Nδ + n(n− 1)(δ − 1)(δ − 2)/4, respectively, where N is the
number of input polynomials, n is the number of variables,
and δ is the multiplicity of the singular point. This construc-



tion is the first approach that completely deflates a singular
root and has polynomial number of equations and variables
in the input size and the multiplicity. Again, the deflated
system does not involve any approximate coefficients and
thus can handle conjugate roots simultaneously and also be
used in certification techniques of exact polynomials as in [1].
Related work.
The treatment of singular roots is a critical issue for numeri-
cal analysis and there is a huge literature on methods which
transform the problem into a new one for which Newton-
type methods converge quadratically to the root.
Deflation techniques which add new equations in order to

reduce the multiplicity were considered in [23, 24]. By tri-
angulating the Jacobian matrix at the (approximate) root,
new minors of the polynomial Jacobian matrix are added to
the initial system in order to reduce the multiplicity of the
singular solution.
A similar approach is used in [8] and [6], where a maximal

invertible block of the Jacobian matrix at the (approximate)
root is computed and minors of the polynomial Jacobian ma-
trix are added to the initial system. For example, when the
Jacobian matrix at the root vanishes, all first derivatives of
the input polynomials are added to the system in both of
these approaches. Moreover, it is shown in [8] that deflation
can be performed at nonisolated solutions in which the pro-
cess stabilizes to so-called isosingular sets. At each iteration
of this deflation approach, the number of added equations
can be taken to be (N − r) · (n− r), where N is the number
of input polynomials, n is number of variables, and r is the
rank of the Jacobian at the root.
These methods repeatedly use their constructions until a

system with a simple root is obtained.
In [10], a triangular presentation of the ideal in a good

position and derivations with respect to the leading variables
are used to iteratively reduce the multiplicity. This process
is applied for p-adic lifting with exact computation.
In other approaches, new variables and new equations are

introduced simultaneously. For example, in [28], new vari-
ables are introduced to describe some perturbations of the
initial equations and some differentials which vanish at the
singular points. This approach is also used in [16], where it
is shown that this iterated deflation process yields a system
with a simple root.
In [18], perturbation variables are also introduced in rela-

tion with the inverse system of the singular point to obtain
directly a deflated system with a simple root. The pertur-
bation is constructed from a monomial basis of the local
algebra at the multiple root.
In [11, 12], only variables for the differentials of the initial

system are introduced. The analysis of this deflation is im-
proved in [4], where it is shown that the number of steps is
bounded by the order of the inverse system. This type of
deflation is also used in [15], for the special case where the
Jacobian matrix at the multiple root has rank n − 1 (the
breadth one case).
In these methods, at each step, both the number of variables

and equations are increased, but the new equations are linear
in the newly added variables.
The aforementioned deflation techniques usually break the

structure of the local ring at the singular point. The first
method to compute the inverse system describing this struc-
ture is due to F.S. Macaulay [17] and known as the dialytic
method. More recent algorithms for the construction of in-

verse systems are described in [19] which reduces the size of
the intermediate linear systems (and exploited in [26]) and
further improved in [21] and more recently in [18] using a
formal integration method.
The computation of inverse systems has also been used to

approximate a multiple root. The dialytic method is used
in [29] and the relationship between the deflation approach
and the inverse system is analyzed, exploited and imple-
mented in [9]. In [25], a minimization approach is used to
reduce the value of the equations and their derivatives at
the approximate root, assuming a basis of the inverse sys-
tem is known. In [27], the inverse system is constructed via
Macaulay’s method, tables of multiplications are deduced,
and their eigenvalues are used to improve the approximated
root. They show that the convergence is quadratic at the
multiple root. In [14], they show that in the breadth one
case the parameters needed to describe the inverse system
is small, and use it to compute the singular roots in [13].
The inverse system has further been exploited in deflation
techniques in [18]. This is the closest to our approach as
it computes a perturbation of the initial polynomial system
with a given inverse system, deduced from an approxima-
tion of the singular solution. The inverse system is used to
transform directly the singular root into a simple root of an
augmented system.
Singular solutions of polynomial systems have also been

studied by analyzing multiplication matrices (e.g., in [3,
20, 7]), by non local methods, which apply only for zero-
dimensional systems.

2. PRELIMINARIES
Let f := (f1, . . . , fN ) ∈ K[x]N where x = (x1, . . . , xn) for
some field K ⊂ C and I = (f1, . . . , fN ) ⊂ K[x]. Suppose that
ξ = (ξ1, . . . , ξn) ∈ Cn is an isolated multiple root of f , mξ is
the maximal ideal at ξ, and Q is the primary component
of I at ξ, i.e.,

√
Q = mξ.

Consider the ring of power series C[[∂ξ]] := C[[∂1,ξ, . . . , ∂n,ξ]].
We will use the notation for β = (β1, . . . , βn) ∈ Nn:

∂βξ := ∂β11,ξ · · · ∂
βn
n,ξ.

We identify C[[∂ξ]] with the dual space C[x]∗ by consider-

ing ∂βξ as derivations and evaluations at ξ, defined by

∂βξ (p) := ∂β(p)

∣∣∣∣
ξ

:=
d|β|p

dxβ11 · · · dx
βn
n

(ξ) for p ∈ C[x]. (1)

The derivation on C[[∂ξ]] with respect to the variable ∂i,ξ is
denoted d∂i,ξ for i = 1, . . . , n. Note that

1

β!
∂βξ ((x− ξ)α) =

{
1 if α = β,

0 otherwise

where β! = β1! · · ·βn!.
For p ∈ C[x] and Λ ∈ C[[∂ξ]] = C[x]∗, let

p · Λ : q 7→ Λ(p q).

We check that p = (xi − ξi) acts as a derivation on C[[∂ξ]]:

(xi − ξi) · ∂βξ = d∂i,ξ (∂βξ ).

For an ideal I ⊂ C[x], consider

I⊥ = {Λ ∈ C[[∂ξ]] | ∀p ∈ I,Λ(p) = 0}.



The vector space I⊥ is naturally identified with the dual
space of C[x]/I. One can easily show that I⊥ is a vector
subspace of C[[∂ξ]] which is stable by the derivations d∂i,ξ .
Since Q is the mξ-primary of I, we have the following clas-
sical result:

Lemma 2.1. If Q is a mξ-primary component of I, then
Q⊥ = I⊥ ∩ C[∂ξ].

This lemma shows that to compute Q⊥, it suffices to com-
pute all polynomials of C[∂ξ] which are in I⊥. Let us denote
this set D = I⊥ ∩ C[∂ξ]. It is a vector space stable under
the derivations d∂i,ξ . Its dimension is the dimension of Q⊥

or C[x]/Q, that is the multiplicity of ξ, denoted by δξ(I) or
simply by δ if ξ and I are clear from the context.
For an element Λ(∂ξ) ∈ C[∂ξ] we define the order, denoted

by o(Λ), to be the maximal |β| such that ∂βξ appears in

Λ(∂ξ) with a non-zero coefficient. For t ∈ N, let Dt be the
elements of D of order ≤ t. As D is of dimension δ, there
exists a smallest t ≥ 0 such that Dt+1 = Dt. Let us call
this smallest t, the nil-index of D and denote it by oξ(I),
or simply by o. As D is stable by the derivations d∂i,ξ , we
easily check that for t ≥ oξ(I), Dt = D and that oξ(I) is the
maximal degree of the elements in D .

3. DEFLATION USING FIRST DIFFEREN-
TIALS

To improve the numerical approximation of a root, one usu-
ally applies a Newton-type method to converge quadratically
from a nearby solution to the root of the system, provided
it is simple. In the case of multiple roots, deflation tech-
niques are employed to transform the system into another
one which has an equivalent root with a smaller multiplicity
or even with multiplicity one.
We describe here a construction, using differentials of or-

der one, which leads to a system with a simple root. This
construction improves the constructions in [11, 4] since no
new variables are added. It also improves the constructions
presented in [8, 6] by adding a smaller number of equations
at each deflation step.
Consider the Jacobian matrix Jf (x) = [∂jfi(x)] of the ini-

tial system f . By reordering properly the rows and columns
(i.e., polynomials and variables), it can be put in the form

Jf (x) :=

[
A(x) B(x)
C(x) D(x)

]
(2)

whereA(x) is an r×r matrix with r = rank Jf (ξ) = rankA(ξ).
Suppose that B(x) is an r × c matrix. The c columns

det(A(x))

[
−A−1(x)B(x)

Id

]
yield the c elements

Λx
1 =

n∑
i=1

λ1,j(x)∂j , . . . , Λx
c =

n∑
i=1

λc,j(x)∂j .

Their coefficients λi,j(x) ∈ K[x] are polynomial in the vari-
ables x. Evaluated at x = ξ, they generate the kernel of
Jf (ξ) and form a basis of D1.

Definition 3.1. The family Dx
1 = {Λx

1 , . . . ,Λ
x
c } is the for-

mal inverse system of order 1 at ξ. For i = {i1, . . . , ik} ⊂
{1, . . . , c} with |i| 6= 0, the i-deflated system of order 1 of f is

{f ,Λx
i1(f), . . . ,Λx

ik (f)}.

By construction, for i = 1, . . . , c,

Λx
i (f) =

n∑
j=1

∂j(f)λi,j(x) = det(A(x))Jf (x)[λi,j(x)]

has n− c zero entries. Thus, the number of non-trivial new
equations added in the i-deflated system is |i| · (N − n+ c).
The construction depends on the choice of the invertible
block A(ξ) in Jf (ξ). By a linear invertible transformation of
the initial system and by computing a i-deflated system, one
obtains a deflated system constructed from any |i| linearly
independent elements of the kernel of Jf (ξ).

Example 3.2. Consider the multiplicity 2 root ξ = (0, 0)
for the system f1(x) = x1 + x2

2 and f2(x) = x2
1 + x2

2. Then,

Jf (x) =
[

A(x) B(x)
C(x) D(x)

]
=
[

1 2x2

2x1 2x2

]
.

The corresponding vector [−2x2 1]T yields the element

Λx
1 = −2x2∂1 + ∂2.

Since Λx
1 (f1) = 0, the {1}-deflated system of order 1 of f is{

x1 + x2
2, x2

1 + x2
2, − 4x1x2 + 2x2

}
which has a multiplicity 1 root at ξ.

We use the following to analyze this deflation procedure.

Lemma 3.3 (Leibniz rule). For a, b ∈ K[x],

∂α(a b) =
∑
β∈Nn

1

β!
∂β(a)dβ∂ (∂α)(b).

Proposition 3.4. Let r be the rank of Jf (ξ). Assume that

r < n. Let i ⊂ {1, . . . , n} with 0 < |i| ≤ n − r and f (1) be

the i-deflated system of order 1 of f . Then, δξ(f
(1)) ≥ 1 and

oξ(f
(1)) < oξ(f).

Proof. By construction, for i ∈ i, the polynomials Λx
i (f)

vanish at ξ, so that δξ(f
(1)) ≥ 1. By hypothesis, the Ja-

cobian of f is not injective so that oξ(f) > 0. Let D(1)

be the inverse system of f (1) at ξ. Since (f (1)) ⊃ (f), we

have D(1) ⊂ D . In particular, for any non-zero element
Λ ∈ D(1) ⊂ K[∂ξ] and i ∈ i, we know Λ(f) = 0 and
Λ(Λx

i (f)) = 0.
Using Leibniz rule, for any p ∈ K[x], we have

Λ(Λx
i (p)) = Λ(

n∑
j=1

λi,j(x)∂j(p))

=
∑
β∈Nn

n∑
j=1

1

β!
∂β
ξ (λi,j(x))dβ∂ξ (Λ)∂j,ξ(p)

=
∑
β∈Nn

n∑
j=1

1

β!
∂β
ξ (λi,j(x))∂j,ξd

β
∂ξ

(Λ)(p)

=
∑
β∈Nn

∆i,βd
β
∂ξ

(Λ)(p)

where

∆i,β =
n∑
j=1

λi,j,β∂j,ξ ∈ K[∂ξ]

with λi,j,β = 1
β!
∂β
ξ (λi,j(x)) ∈ K.



The term ∆i,0 is
∑n
j=1 λi,j(ξ)∂j,ξ which has degree 1 in

∂ξ since [λi,j(ξ)] is a non-zero element of ker Jf (ξ). For

simplicity, let φi(Λ) :=
∑

β∈Nn ∆i,βd
β
∂ (Λ).

For any Λ ∈ C[∂ξ], we have

d∂j,ξ (φi(Λ)) =
∑
β∈Nn

λi,j,βd
β
∂ (Λ) + ∆i,βd

β
∂ (d∂j,ξ (Λ))

=
∑
β∈Nn

λi,j,βd
β
∂ (Λ) + φi(d∂j,ξ (Λ)).

Moreover, if Λ ∈ D(1), then by definition φi(Λ)(f) = 0.

Since D and D(1) are both stable by derivation, it follows
that ∀Λ ∈ D(1), d∂j,ξ (φi(Λ)) ∈ D(1) + φi(D

(1)). As D(1) ⊂
D , this implies that D +φi(D

(1)) is stable by derivation. For

any element Λ of D + φi(D
(1)), Λ(f) = 0. We deduce that

D + φi(D
(1)) = D . Consequently, the order of the elements

in φi(D
(1)) is at most oξ(f). The statement follows since φi

increases the order by 1, therefore oξ(f
(1)) < oξ(f).

We consider now a sequence of deflations of the system f .
Let f (1) be the i1-deflated system of f . We construct in-
ductively f (k+1) as the ik+1-deflated system of f (k) for some
choices of ij ⊂ {1, . . . , n}.

Proposition 3.5. There exists k ≤ oξ(f) such that ξ is a

simple root of f (k).

Proof. By Proposition 3.4, δξ(f
(k)) ≥ 1 and oξ(f

(k)) is strictly
decreasing with k until it reaches the value 0. Therefore,
there exists k ≤ oξ(I) such that oξ(f (k)) = 0 and δξ(f

(k)) ≥
1. This implies that ξ is a simple root of f (k).

To minimize the number of equations added at each defla-
tion step, we take |i| = 1. Then, the number of non-trivial
new equations added at each step is at most N − n+ c.
We described this approach using first order differentials

arising from the Jacobian, but this can be easily extended
to use higher order differentials.

4. THE MULTIPLICITY STRUCTURE
Before describing our results, we start this section by re-

calling the definition of pairs of primal-dual bases for the
space C[x]/Q and its dual D . The following is a definition:

Definition 4.1 (Primal-dual basis pair). Let f , ξ, Q, D ,
δ = δξ(f) and o = oξ(f) be as above. A primal dual basis
pair is a basis of C[x]/Q of the form

B = {(x− ξ)α1 , (x− ξ)α2 , . . . , (x− ξ)αδ} (3)

with α1 = 0, and a dual basis D of D of the form:

Λα1 = ∂α1
ξ = 1ξ

Λα2 =
1

α2!
∂α2
ξ +

∑
|β|≤o
β 6∈E

να2,β

β!
∂βξ

... (4)

Λαδ =
1

αδ!
∂
αδ
ξ +

∑
|β|≤o
β 6∈E

ναδ,β
β!

∂βξ .

where E = {α1, . . . , αδ} ⊂ Nn. We also define E+ :=⋃n
i=1(E+ei) with E+ei = {(γ1, . . . , γi+1, . . . , γn) : γ ∈ E}

and we denote ∂(E) = E+ \ E.
We assume that primal-dual basis pair is such that B is con-
nected to 1 (c.f. [22]) and the orders satisfy 0 = o(Λα1) ≤
· · · ≤ o(Λαδ ) (see e.g. [18]).

Throughout this section we assume that we are given a
fixed primal basis B for C[x]/Q. Note that a primal ba-
sis B connected to 1 can be computed numerically from an
approximation of ξ as in [5, 9, 21, 18].
Given the primal basis B, the dual basisD can be computed

by Macaulay dialytic method and can be used to deflate the
root ξ as in [12]. This introduces n+(δ−1)

((
n+o
n

)
− δ
)

new
variables, which is not polynomial in o. Below, we give a
construction of a polynomial system that only depends on at
most n+nδ(δ−1)/2 variables. These variables correspond to
the entries of the multiplication matrices that we define next.
Let

Mi : C[x]/Q → C[x]/Q

p 7→ (xi − ξi) p

be the multiplication operator by xi − ξi in C[x]/Q. Its
transpose operator is

M t
i : D → D (5)

Λ 7→ Λ ◦Mi = (xi − ξi) · Λ =
d

d∂i,ξ
(Λ) = d∂i,ξ (Λ)

where D = Q⊥ ⊂ C[∂ξ]. The matrix of Mi in the basis B
of C[x]/Q is denoted Mi.
As B is a basis of C[x]/Q, we can identify the elements

of C[x]/Q with the elements of the vector space spanC(B).
We define the normal form N(p) of a polynomial p in C[x]
as the unique element b of spanC(B) such that p − b ∈ Q.
Hereafter, we are going to identify the elements of C[x]/Q
with their normal form in spanC(B).
For any polynomial p(x1, . . . , xn) ∈ C[x], let p(M) be the

operator of C[x]/Q obtained by replacing xi− ξi by Mi. By
definition of a dual basis, we have the following property:

Lemma 4.2. For any p ∈ C[x], the normal form of p is
N(p) = p(M)(1) and we have

p(M)(1) = Λα1(p) 1+Λα2(p) (x−ξ)α2+· · ·+Λαd(p) (x−ξ)αδ .

This shows that the coefficient vector [p] of N(p) in the
basis B of is [p] = (Λαi(p))1≤i≤δ.
The following lemma is also well known, but we include it

here with proof:

Lemma 4.3. The values of the coefficients να,β for (α, β) ∈
E×∂(E) appearing in the dual basis (4) uniquely determine
the system of pairwise commuting multiplication matrices Mi,
namely, for i = 1, . . . , n

M
t
i =

0 να2,ei να3,ei · · · ναδ,ei
0 0 να3,α2+ei · · · ναδ,α2+ei

...
...

...
0 0 0 · · · ναδ,αδ−1+ei

0 0 0 · · · 0

(6)

Moreover,

ναi,αk+ej =

{
1 if αi = αk + ej

0 if αk + ej ∈ E, αi 6= αk + ej .



Proof. As M t
i acts as a derivation on D (see (6)) and as the

elements Λαi are numbered by increasing order, the matrix
M t
i in this basis of D has an upper triangular form with zero

(blocks) on the diagonal.
For an element Λαj of order k, its image by M t

i is

Mt
i (Λαj ) = (xi − ξi) · Λαj

=
∑

o(Λαl )<k

Λαj ((xi − ξi)(x− ξ)αl )Λαl

=
∑

o(Λαl )<k

Λαj ((x− ξ)αl+ei ) Λαl =
∑

o(Λαl )<k

ναj ,αl+eiΛαl .

This shows that Mti is upper triangular with zeroes on the
diagonal, and the entries of Mi are the coefficients of the dual
basis elements corresponding to exponents in E×∂(E). The
second claim is clear from the definition of Mi.

The previous lemma shows that the dual basis uniquely
defines the system of multiplication matrices for i = 1, . . . , n,
so we can combine Lemmas 4.2 and 4.3 to get

Mti =

Λα1 (xi − ξi) · · · Λαδ (xi − ξi)
Λα1

(
(x− ξ)α2+ei

)
· · · Λαδ

(
(x− ξ)α2+ei

)
...

...
Λα1

(
(x− ξ)αδ+ei

)
· · · Λαδ

(
(x− ξ)αδ+ei

)

=

0 να2,ei να3,ei · · · ναδ,ei
0 0 να3,α2+ei · · · ναδ,α2+ei
...

...
...

0 0 0 · · · ναδ,αδ−1+ei
0 0 0 · · · 0

Note that these matrices are nilpotent by their upper trian-
gular structure, and all 0 eigenvalues. As o is the maximal
order of the elements of D , we have Mγ = 0 if |γ| > o.

Conversely, the system of multiplication matrices M1, . . . , Mn
uniquely defines the dual basis as follows. Consider ναi,γ for
some (αi, γ) such that |γ| ≤ o but γ 6∈ E+. We can uniquely
determine ναi,γ from the values of {ναj ,β : (αj , β) ∈ E ×
∂(E)} from the following identities:

ναi,γ = Λαi((x− ξ)
γ) = [M(x−ξ)γ ]1,i = [Mγ ]1,i. (7)

The next definition defines the parametric multiplication
matrices that we use in our construction.

Definition 4.4 (Parametric multiplication matrices). Let E =
{α1, . . . , αδ} ⊂ Nn be as above. We define the array µ of
0’s, 1’s and the variables µαi,β as follows: for all αi, αk ∈ E
and j ∈ {1, . . . , n} the corresponding entry is

µαi,αk+ej =


1 if αi = αk + ej

0 if αk + ej ∈ E, αi 6= αk + ej

µαi,αk+ej if αk + ej ∈ ∂(E)

(8)

Thus the number of variables in µ is |E×∂(E)| ≤ nδ(δ−1)/2.
The parametric multiplication matrices are defined for i =
1, . . . , n by

M
t
i(µ) :=

0 µα2,ei µα3,ei · · · µαδ,ei
0 0 µα3,α2+ei · · · µαδ,α2+ei

...
...

...
0 0 0 · · · µαδ,αδ−1+ei

0 0 0 · · · 0

, (9)

We denote by

M(µ)γ := M1(µ)γ1 · · · Mn(µ)γn ,

and note that for general parameter values µ, the matrices
Mi(µ) do not commute, so we fix their order by their indices
in the above definition of M(µ)γ .

Definition 4.5 (Parametric normal form). Let K ⊂ C be a
field. We define

Nz,µ : K[x] → K[z, µ]δ

p 7→ Nz,µ(p) :=
∑
γ∈Nn

1

γ!
∂γz (p) M(µ)γ [1].

where [1] = [1, 0, . . . , 0] is the coefficient vector of 1 in the
basis B. This sum is finite since for |γ| ≥ δ, M(µ)γ = 0, so
the entries of Nz,µ(p) are polynomials in µ and z.

Note that for the specialization at (z, µ) = (ξ, ν) the ma-
trices Mi(µ) (i = 1, . . . , n) are commuting and we have

Nξ,ν(p) = [Λα1(p), . . . ,Λαδ (p)]t ∈ Cδ.

4.1 The multiplicity structure equations of a
singular point

We can now characterize the multiplicity structure by poly-
nomial equations.

Theorem 4.6. Let K ⊂ C be any field, f ∈ K[x]N and let
ξ ∈ Cn be an isolated solution of f . Let Mi(µ) for i = 1, . . . n
be the parametric multiplication matrices as in (9) and Nξ,µ
be the parametric normal form as in Defn. 4.5 at z = ξ.
Then the ideal Jξ of C[µ] generated by the polynomial system{

Nξ,µ(fk) for k = 1, . . . , N,

Mi(µ) · Mj(µ)− Mi(µ) · Mi(µ) for i, j = 1, . . . , n
(10)

is the maximal ideal

mν = (µα,β − να,β , (α, β) ∈ E × ∂(E))

where να,β are the coefficients of the dual basis defined in (4).

Proof. As before, the system (10) has a solution µα,β = να,β
for (α, β) ∈ E × ∂(E). Thus Jξ ⊂ mν .
Conversely, let C = C[µ]/Jξ and consider the map

Φ : C[x]→ Cδ, p 7→ Nξ,µ(p).

Let K be its kernel. Since the matrices Mi(µ) are commuting
modulo Jξ, we can see that K is an ideal. As fk ∈ K, we
have I := (fk) ⊂ K.
Next we show thatQ ⊂ K. By construction, for any α ∈ Nn

we have modulo Jξ

Nξ,µ((x− ξ)α) =
∑
γ∈Nn

1

γ!
∂γξ ((x− ξ)α) M(µ)γ [1] = M(µ)α[1].

Using the previous relation, we check that ∀p, q ∈ C[x],

Φ(pq) = p(ξ + M(µ))Φ(q) (11)

where p(ξ + M(µ)) is obtained by replacing xi − ξi by Mi(µ).
Let q ∈ Q. As Q is the mξ-primary component of I, there
exists p ∈ C[x] s.t. p(ξ) 6= 0 and p q ∈ I. By (11), we have

Φ(p q) = p(ξ + M(µ))Φ(q) = 0.



Since p(ξ) 6= 0 and p(ξ + M(µ)) = p(ξ)Id+N with N lower
triangular and nilpotent, p(ξ+M(µ)) is invertible. We deduce
that Φ(q) = p(ξ + M(µ))−1Φ(pq) = 0 and q ∈ K.
Let us show now that Φ is surjective and more precisely,

that φ((x − ξ)αk ) = ek (abusing the notation as here ek
has length δ not n). Since B is connected to 1, either
αk = 0 or there exists αj ∈ E such that αk = αj + ei
for some i ∈ {1, . . . , n}. Thus the j − th column Mi(µ) is ek
by (8). As {Mi(µ) : i = 1, . . . , n} are pairwise commuting,
we have M(µ)αk = Mj(µ)M(µ)αj , and if we assume by induc-
tion on |αj | that the first column of M(µ)αj is ej , we obtain
M(µ)αk [1] = ek. Thus, for k = 1, . . . , δ, Φ((x− ξ)αk ) = ek.
We can now prove that mν ⊂ Jξ. As Mi(ν) is the multipli-

cation by (xi−ξi) in C[x]/Q, for any b ∈ B and i = 1, . . . , n,
we have (xi − ξi) b = Mi(ν)(b) + q with q ∈ Q ⊂ K. We
deduce that for k = 1, . . . , δ,

Φ((xi−ξi) (x−ξ)αk ) = Mi(µ)Φ((x−ξ)αk ) = Mi(µ)(ek) = Mi(ν)(ek).

This shows that µα,β − να,β ∈ Jξ for (α, β) ∈ E × ∂(E) and
that mν = Jξ.

In the proof of the next theorem we need to consider cases
when the multiplication matrices do not commute. We in-
troduce the following definition:

Definition 4.7. Let K ⊂ C be any field. Let C be the ideal
of K[z, µ] generated by entries of the commutation relations:
Mi(µ) · Mj(µ) − Mj(µ) · Mi(µ) = 0, i, j = 1, . . . , n. We call C
the commutator ideal.

Lemma 4.8. For any field K ⊂ C and for any p ∈ K[x],
i = 1, . . . , n,

Nz,µ(xip) = xiNz,µ(p) + Mi(µ)Nz,µ(p) +Oi,µ(p). (12)

where Oi,µ : K[x] → K[z, µ]δ is linear with image in the
commutator ideal C.

Proof.

Nz,µ(xip)

=
∑
γ

1

γ!
∂γz (xip) M(µ)γ [1]

= xi
∑
γ

1

γ!
∂γz (p) M(µ)γ [1] +

∑
γ

1

γ!
γi ∂

γ−ei
z (p) M(µ)γ [1]

= xi
∑
γ

1

γ!
∂γz (p) M(µ)γ [1] +

∑
γ

1

γ!
∂γz (p) M(µ)γ+ei [1]

= xiNz,µ(p) + Mi(µ)

(∑
γ

1

γ!
∂γz (p) M(µ)γ [1]

)

+
∑
γ

1

γ!
∂γz (p)Oi,γ(µ)[1]

where Oi,γ = Mi(µ)M(µ)γ−M(µ)γ+ei is a δ×δ matrix with co-
efficients in C. Therefore, Oi,µ : p 7→

∑
γ

1
γ!
∂γz (p)Oi,γ(µ)[1]

is a linear functional of p with coefficients in C.

The next theorem proves that the system defined as in (10)
for general z has (ξ, ν) as a simple root.

Theorem 4.9. Let f ∈ K[x]N and ξ ∈ Cn be as above.
Let Mi(µ) for i = 1, . . . n be the parametric multiplication
matrices defined in (9) and Nx,µ be the parametric normal

form as in Defn. 4.5. Then (z, µ) = (ξ, ν) is an isolated root
with multiplicity one of the polynomial system in K[z, µ]:{
Nz,µ(fk) = 0 for k = 1, . . . , N,

Mi(µ) · Mj(µ)− Mj(µ) · Mi(µ) = 0 for i, j = 1, . . . , n.
(13)

Proof. For simplicity, let us denote the (non-zero) polyno-
mials appearing in (13) by

P1, . . . , PM ∈ K[z, µ],

where M ≤ Nδ + n(n − 1)(δ − 1)(δ − 2)/4. To prove the
theorem, it is sufficient to prove that the columns of the Ja-
cobian matrix of the system [P1, . . . , PM ] at (z, µ) = (ξ, ν)
are linearly independent. The columns of this Jacobian ma-
trix correspond to the elements in C[z, µ]∗

∂1,ξ, . . . , ∂n,ξ, and ∂µα,β for (α, β) ∈ E × ∂(E),

where ∂i,ξ defined in (1) for z replacing x, and ∂µα,β is
defined by

∂µα,β (q) =
dq

dµα,β

∣∣
(z,µ)=(ξ,ν) for q ∈ C[z, µ].

Suppose there exist a1, . . . , an, and aα,β ∈ C for (α, β) ∈
E × ∂(E) not all zero such that

∆ := a1∂1,ξ + · · ·+ an∂n,ξ +
∑
α,β

aα,β∂µα,β ∈ C[z, µ]∗

vanishes on all polynomials P1, . . . , PM in (13). In particu-
lar, for an element Pi(µ) corresponding to the commutation
relations and any polynomial Q ∈ C[x, µ], using the product
rule for the linear differential operator ∆ we get

∆(PiQ) = ∆(Pi)Q(ξ, ν) + Pi(ν)∆(Q) = 0

since ∆(Pi) = 0 and Pi(ν) = 0. By the linearity of ∆,
for any polynomial C in the commutator ideal C, we have
∆(C) = 0.
Furthermore, since ∆(Nz,µ(fk)) = 0 and

Nξ,ν(fk) = [Λα1(fk), . . . ,Λαδ (fk)]t,

we get that

(a1∂1,ξ + · · · , an∂n,ξ) · Λαδ (fk) +
∑
|γ|≤|αδ|

pγ(ν) ∂γ,ξ(fk) = 0

(14)
where pγ ∈ C[µ] are some polynomials in the variables µ
that do not depend on fk. If a1, . . . , an are not all zero, we
have an element Λ̃ of C[∂ξ] of order strictly greater than
ord(Λαδ ) = o that vanishes on f1, . . . , fN .
Let us prove that this higher order differential also vanishes

on all multiples of fk for k = 1, . . . , N . Let p ∈ C[x] such
that Nξ,ν(p) = 0, ∆(Nz,µ(p)) = 0. By (12), we have

Nξ,ν((xi − ξi)p)
= (xi − ξi)Nξ,ν(p) + Mi(ν)Nξ,ν(p) +Oi,ν(p) = 0

and

∆(Nz,µ((xi − ξi)p))
= ∆((xi − ξi)Nz,µ(p)) + ∆(Mi(µ)Nz,µ(p)) + ∆(Oµ(p))

= ∆(xi − ξi)Nξ,ν(p) + (ξi − ξi)∆(Nz,µ(p))

+ ∆(Mi(µ))Nξ,µ(p) + Mi(ν)∆(Nz,µ(p))

+ ∆(Oi,µ(p))

= 0.



As Nξ,ν(fk) = 0, ∆(Nz,µ(fk)) = 0, i = 1, . . . , N , we deduce
by induction on the degree of the multipliers and by linearity
that for any element f in the ideal I generated by f1, . . . , fN ,
we have

Nξ,ν(f) = 0 and ∆(Nz,µ(f)) = 0,

which yields Λ̃ ∈ I⊥. Thus we have Λ̃ ∈ I⊥ ∩ C[∂ξ] = Q⊥

(by Lemma 2.1). As there is no element of degree strictly
bigger than o in Q⊥, this implies that

a1 = · · · = an = 0.

Then, by specialization at x = ξ, ∆ yields an element of
the kernel of the Jacobian matrix of the system (10). By
Theorem 4.6, this Jacobian has a zero-kernel, since it defines
the simple point ν. We deduce that ∆ = 0 and (ξ, ν) is an
isolated and simple root of the system (13).

The following corollary applies the polynomial system de-
fined in (13) to refine the precision of an approximate mul-
tiple root together with the coefficients of its Macaulay dual
basis. The advantage of using this, as opposed to using the
Macaulay multiplicity matrix, is that the number of vari-
ables is much smaller, as was noted above.

Corollary 4.10. Let f ∈ K[x]N and ξ ∈ Cn be as above,
and let Λα0(ν), . . . ,Λαd−1(ν) be its dual basis as in (4). Let
E ⊂ Nn be as above. Assume that we are given approximates
for the singular roots and its inverse system as in (4)

ξ̃ ∼= ξ and ν̃αi,β
∼= ναi,β ∀αi ∈ E, β 6∈ E, |β| ≤ o.

Consider the overdetermined system in K[z, µ] from (13).
Then a random square subsystem of (13) will have z = ξ, µ =
ν a simple root with high probability. Thus, we can apply
Newton’s method for this square subsystem to refine ξ̃ and
ν̃αi,β for (αi, β) ∈ E × ∂(E). For ν̃αi,γ with γ 6∈ E+ we can
use (7) for the update.

Example 4.11. Reconsider the setup from Ex. 3.2 with
primal basis {1, x2} and E = {(0, 0), (0, 1)}. We obtain

M1(µ) =

[
0 0
µ 0

]
and M2(µ) =

[
0 0
1 0

]
.

The resulting deflated system in (13) is

F (z1, z2, µ) =


z1 + z2

2

µ+ 2z2

z2
1 + z2

2

2µz1 + 2z2


which has a nonsingular root at (z1, z2, µ) = (0, 0, 0) corre-
sponding to the origin with multiplicity structure {∂1, ∂x2}.

5. EXAMPLES
Computations for the following examples can be found at
www.nd.edu/~jhauenst/deflation/.

5.1 A family of examples
For each d ≥ 2, we consider Fd(x1, x2, x3) = {x1, x

2
2, x

d
3}

having a multiplicity 2d root at the origin and primal basis{
1, x3, . . . , xd−1

3

x2, x2x3, . . . , x2x
d−1
3

}
.

The following compares using our approach described in § 4
with an approach using the null spaces of Macaulay multi-
plicity matrices for computing both the singular point and
multiplicity structure together (see for example [5, 12]).

New approach Null space
d Poly Var Poly Var
2 17 12 39 21
3 36 25 153 73
4 65 44 423 192
5 104 69 948 417
6 153 100 1851 795

In particular, the number of polynomials and variables grows
quadratically in d in our new approach and quartically in d
based on using null spaces of Macaulay matrices.

5.2 Caprasse system
Following [5, § 7.7], we consider the Caprasse system

f(x1, x2, x3, x4) =
x1

3x3 − 4x1x2
2x3 − 4x1

2x2x4 − 2x2
3x4 − 4x1

2+
10x2

2 − 4x1x3 + 10x2x4 − 2,
x1x3

3 − 4x2x3
2x4 − 4x1x3x4

2 − 2x2x4
3 − 4x1x3+

10x2x4 − 4x3
2 + 10x4

2 − 2,
x2

2x3 + 2x1x2x4 − 2x1 − x3,
x4

2x1 + 2x2x3x4 − 2x3 − x1


at the multiplicity 4 root ξ = (2,−

√
−3, 2,

√
−3).

We first consider simply deflating the root. Using the ap-
proaches of [5, 8, 11], one iteration suffices. For example, us-
ing an extrinsic and intrinsic version of [5, 11], the resulting
system consists of 10 and 8 polynomials, respectively, and 8
and 6 variables, respectively. Following [8], using all minors
results in a system of 20 polynomials in 4 variables which can
be reduced to a system of 8 polynomials in 4 variables using
the 3×3 minors containing a full rank 2×2 submatrix. The
approach of § 3 using an |i| = 1 step creates a deflated sys-
tem consisting of 6 polynomials in 4 variables. In fact, since
the null space of the Jacobian at the root is 2 dimensional,
adding two polynomials is necessary and sufficient.
Next, we consider the computation both the point and mul-

tiplicity structure. Using an intrinsic null space approach
via a second order Macaulay matrix, the resulting system
consists of 64 polynomials in 37 variables. In comparison,
the approach of § 4 using the primal basis {1, x1, x2, x1x2}
constructs a system of 30 polynomials in 19 variables.

5.3 Examples with multiple iterations
In our last set of examples, we consider simply deflating a
root of the last three systems from [5, § 7] and a system from
[10, § 1], each of which required more than one iteration to
deflate. These four systems and corresponding points are:

1: {x4
1 − x2x3x4, x

4
2 − x1x3x4, x

4
3 − x1x2x4, x

4
4 − x1x2x3}

at (0, 0, 0, 0);

2: {x4, x2y + y4, z + z2 − 7x3 − 8x2} at (0, 0,−1);

3: {14x+33y−3
√

5(x2 +4xy+4y2 +2)+
√

7+x3 +6x2y+
12xy2 +8y3, 41x−18y−

√
5+8x3−12x2y+6xy2−y3 +

3
√

7(4xy − 4x2 − y2 − 2)} at Z3 ≈ (1.5055, 0.36528);

4: {2x1+2x2
1+2x2+2x2

2+x2
3−1, (x1 + x2 − x3 − 1)3 − x3

1,
(2x3

1 + 5x2
2 + 10x3 + 5x2

3 + 5)3 − 1000x5
1} at (0, 0,−1).

We compare using the following three methods:

www.nd.edu/~jhauenst/deflation/


A: intrinsic slicing version of [5, 11];

B: isosingular deflation [8] via a maximal rank submatrix;

C: approach of § 3 using an |i| = 1 step.

For each of the four examples above, the following lists the
multiplicity δ and depth o as well as the number of nonzero
distinct polynomials, variables, and iterations for each of the
three deflation methods above.

Method A Method B Method C
δ o Poly Var It Poly Var It Poly Var It

1 131 10 16 4 2 22 4 2 16 4 2
2 16 7 24 11 3 11 3 2 12 3 3
3 5 4 32 17 4 6 2 4 6 2 4
4 18 7 96 41 5 54 3 5 22 3 5

For breath one singular points as in system 3, method B
and C give the same deflated system. Except for method B
on the second system, all three methods required the same
number of iterations to deflate the root. For the first and
third systems, our new approach matched the best of the
other methods and resulted in a significantly smaller deflated
system for the last one.
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duality and multiplicities in polynomial system
solving. In ISSAC ’95, ACM, New York, 1995, pp.
167–179.
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