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Abstract

This paper presents two new constructions related to singular solutions of polynomial
systems. The first is a new deflation method for an isolated singular root. This
construction uses a single linear differential form defined from the Jacobian matrix
of the input, and defines the deflated system by applying this differential form to the
original system. The advantages of this new deflation is that it does not introduce
new variables and the increase in the number of equations is linear in each iteration
instead of the quadratic increase of previous methods. The second construction
gives the coefficients of the so-called inverse system or dual basis, which defines the
multiplicity structure at the singular root. We present a system of equations in the
original variables plus a relatively small number of new variables that completely
deflates the root in one step. We show that the isolated simple solutions of this new
system correspond to roots of the original system with given multiplicity structure
up to a given order. Both constructions are “exact” in that they permit one to
treat all conjugate roots simultaneously and can be used in certification procedures
for singular roots and their multiplicity structure with respect to an exact rational
polynomial system.

Keywords: deflation, multiplicity structure, Newton’s method, inverse system,
multiplication matrix

1. Introduction

One issue when using numerical methods for solving polynomial systems is the
ill-conditioning and possibly erratic behavior of Newton’s method near singular solu-
tions. Regularization (deflation) techniques remove the singular structure to restore
local quadratic convergence of Newton’s method.

Our motivation for this work is twofold. On one hand, in a recent paper [I],
two of the co-authors of the present paper and their student studied a certification
method for approximate roots of exact overdetermined and singular polynomial
systems, and wanted to extend the method to certify the multiplicity structure at

November 20, 2015



the root as well. Since all these problems are ill-posed, in [I] a hybrid symbolic-
numeric approach was proposed, that included the exact computation of a square
polynomial system that had the original root with multiplicity one. In certifying
singular roots, this exact square system was obtained from a deflation technique that
added subdeterminants of the Jacobian matrix to the system iteratively. However,
the multiplicity structure is destroyed by this deflation technique, that is why it
remained an open question how to certify the multiplicity structure of singular roots
of exact polynomial systems.

Our second motivation was to find a method that simultaneously refines the ac-
curacy of a singular root and the parameters describing the multiplicity structure
at the root. In all previous numerical approaches that approximate these parame-
ters, they apply numerical linear algebra to solve a linear system with coefficients
depending on the approximation of the coordinates of the singular root. Thus the
local convergence rate of the parameters was slowed from the quadratic convergence
of Newton’s iteration applied to the singular roots. We were interested if the pa-
rameters describing the multiplicity structure can be simultaneously approximated
with the coordinates of the singular root using Newton’s iteration. Techniques that
additionally provide information about the multiplicity structure of a singular root
can be applied to bifurcation analysis of ODEs and PDEs (see, e.g. [8, ©]). They
can also be helpful in computing the topological degree of a polynomial map [7] or
for analyzing the topology of real algebraic curves (see e.g. [2] and Example 6.2 in
125)).

In the present paper, we first give an improved version of the deflation method
that can be used in the certification algorithm of [I], reducing the number of added
equations at each deflation iteration from quadratic to linear. We prove that apply-
ing a single linear differential form to the input system, corresponding to a generic
kernel element of the Jacobian matrix, already reduces both the multiplicity and
the depth of the singular root. Furthermore, we study how to use this new deflation
technique to compute isosingular decompositions introduced in [14].

Secondly, we give a description of the multiplicity structure using a polynomial
number of parameters, and express these parameters together with the coordinates
of the singular point as the roots of a multivariate polynomial system. We prove
that this new polynomial system has a root corresponding to the singular root but
now with multiplicity one, and the newly added coordinates describe the multiplic-
ity structure. Thus, this second approach completely deflates the system in one
step. The number of equations and variables in the second construction depends
polynomially on the number of variables and equations of the input system and the
multiplicity of the singular root. Moreover, we also show that the isolated simple
solutions of our extended polynomial system correspond to roots of the original
system that have prescribed multiplicity structure up to a given order.

Both constructions are exact in the sense that approximations of the coordinates
of the singular point are only used to detect numerically non-singular submatrices,
and not in the coefficients of the constructed polynomial systems.



This paper is an extended version of the ISSAC’15 conference paper [13].

1.1. Related work.

The treatment of singular roots is a critical issue for numerical analysis with a
large literature on methods that transform the problem into a new one for which
Newton-type methods converge quadratically to the root.

Deflation techniques which add new equations in order to reduce the multiplicity
were considered in [31), 32]. By triangulating the Jacobian matrix at the (approxi-
mate) root, new minors of the polynomial Jacobian matrix are added to the initial
system in order to reduce the multiplicity of the singular solution.

A similar approach is used in [I4] and [I1], where a maximal invertible block
of the Jacobian matrix at the (approximate) root is computed and minors of the
polynomial Jacobian matrix are added to the initial system. For example, when the
Jacobian matrix at the root vanishes, all first derivatives of the input polynomials
are added to the system in both of these approaches. Moreover, it is shown in
[14] that deflation can be performed at nonisolated solutions in which the process
stabilizes to so-called isosingular sets. At each iteration of this deflation approach,
the number of added equations can be taken to be (N —r) - (n — r), where N is
the number of input polynomials, n is number of variables, and r is the rank of the
Jacobian at the root.

These methods repeatedly use their constructions until a system with a simple
root is obtained.

In [I6], a triangular presentation of the ideal in a good position and derivations
with respect to the leading variables are used to iteratively reduce the multiplicity.
This process is applied for p-adic lifting with exact computation.

In other approaches, new variables and new equations are introduced simultane-
ously. For example, in [37], new variables are introduced to describe some pertur-
bations of the initial equations and some differentials which vanish at the singular
points. This approach is also used in [23], where it is shown that this iterated
deflation process yields a system with a simple root.

In [25], perturbation variables are also introduced in relation with the inverse
system of the singular point to obtain directly a deflated system with a simple root.
The perturbation is constructed from a monomial basis of the local algebra at the
multiple root.

In [I8, [19], only variables for the differentials of the initial system are introduced.
The analysis of this deflation is improved in [5], where it is shown that the number
of steps is bounded by the order of the inverse system. This type of deflation is also
used in [22], for the special case where the Jacobian matrix at the multiple root has
rank n — 1 (the breadth one case).

In these methods, at each step, both the number of variables and equations are
increased, but the new equations are linear in the newly added variables.

The aforementioned deflation techniques usually break the structure of the local
ring at the singular point. The first method to compute the inverse system describing



this structure is due to F.S. Macaulay [24] and known as the dialytic method. More
recent algorithms for the construction of inverse systems are described in [26] which
reduces the size of the intermediate linear systems (and exploited in [34]). In [I7], an
approach related to the dialytic method is used to compute all isolated and embedded
components of an algebraic set. The dialytic method had been further improved
in [28] and, more recently, in [25], using an integration method. This technique
reduces significantly the cost of computing the inverse system, since it relies on the
solution of linear systems related to the inverse system truncated in some degree and
not on the number of monomials in this degree. Singular solutions of polynomial
systems have been studied by analyzing multiplication matrices (e.g., [4, 27, 12]) via
non-local methods, which apply to the zero-dimensional case.

The computation of inverse systems has also been used to approximate a multiple
root. The dialytic method is used in [38] and the relationship between the deflation
approach and the inverse system is analyzed, exploited, and implemented in [15].
In [33], a minimization approach is used to reduce the value of the equations and
their derivatives at the approximate root, assuming a basis of the inverse system
is known. In [I0], the certification of a multiple root with breadth one is obtained
using a-theorems. In [36], the inverse system is constructed via Macaulay’s method,
tables of multiplications are deduced, and their eigenvalues are used to improve the
approximated root. They show that the convergence is quadratic at the multiple
root. In [2I], they show that in the breadth one case the parameters needed to
describe the inverse system is small, and use it to compute the singular roots in [20].
The inverse system has further been exploited in deflation techniques in [25]. This
is the closest to our approach as it computes a perturbation of the initial polynomial
system with a given inverse system, deduced from an approximation of the singular
solution. The inverse system is used to transform directly the singular root into a
simple root of an augmented system.

1.2. Contributions.

In this paper, we present two new constructions. The first one is a new deflation
method for a system of polynomials with an isolated singular root which does not
introduce new parameters. At each step, a single differential of the system is consid-
ered based on the analysis of the Jacobian at the singular point. The advantage of
this new deflation is that it reduces the number of added equations at each deflation
iteration from quadratic to linear. We prove that the resulting deflated system has
strictly lower multiplicity and depth at the singular point than the original one.

In addition to the results that appeared in [I3], in the present extended version of
the paper we study the relationship of the new deflation method to the isosingular
deflation (see Proposition , and show how to use our deflation technique to
compute an isosingular decomposition of an algebraic set, introduced in [14] (see
Section [3.2)).

Secondly, to approximate efficiently both the singular point and its multiplicity
structure, we propose a new deflation which involves fewer number of new variables



compared to other approaches that rely on Macaulay’s dialytic method. It is based
on a new characterization of the isolated singular point together with its multiplicity
structure via inverse systems. The deflated polynomial system exploits the nilpotent
and commutation properties of the multiplication matrices in the local algebra of
the singular point. We prove that the polynomial system we construct has a root
corresponding to the singular root but now with multiplicity one, and the new added
coordinates describe the multiplicity structure.

This new method differs dramatically from previous deflation methods. All other
deflation methods in the literature use an iterative approach that may apply as
many iterations as the maximal order of the derivatives of the input polynomials
that vanish at the root. At each iteration these traditional deflation techniques at
least double the number polynomial equations, and either introduce new variables, or
greatly increase the degrees of the new polynomials. Thus these deflation techniques
grow exponentially in the number of iterations and are considered very inefficient
when more than 2 iterations are needed. Our new technique completely deflates
the root in a single iteration, introducing both new variables and new polynomials
to the system. The number of new variables and polynomials are quadratic in the
multiplicity of the point, and the degrees also remain bounded by the original degrees
and the multiplicity. More precisely, the number of variables and equations in this
construction is at most n+nd(d—1)/2 and No+n(n—1)(6—1)(6—2)/4, respectively,
where N is the number of input polynomials, n is the number of variables, and § is
the multiplicity of the singular point. The degrees of the polynomials in the new
system are bounded by the degrees of the input system plus the order of the root,
i.e. the maximal order of the differentials that vanish at the root. Thus, it is the
first deflation technique that produces a deflated system which has polynomial size
in the multiplicity and in the size of the input.

In this extended version we also give a new construction, called E-deflated ideals,
which is a modification of deflated ideals introduced in [I7]. While the construction
in [I7] uses Macaulay’s dialytic method, our construction is based on our defla-
tion method using multiplication matrices, which results in introducing significantly
fewer auxiliary variables. We prove that the isolated simple roots of the E-deflated
ideal correspond to roots of the original system that have a prescribed multiplicity
structure up to a given order (see Section [4.2).

2. Preliminaries

Let £ := (f1,...,fy) € K[x]V¥ with x = (2y,...,2,) for some K C C field. Let
§=(&,...,&,) € C" be an isolated multiple root of f. Let I = (fi,..., fn), m¢ be
the maximal ideal at £ and @ be the primary component of I at £ so that v/Q = mg.

Consider the ring of power series C[[0¢|] := Cl[O1g,-..,0ne]] and we use the
notation for § = (f,...,0,) € N™

O =g O

n

5



We identify C[[@]] with the dual space C[x|* by considering 8? as derivations and
evaluations at &, defined by

olflp

9 (p) =98’ (p)’
Hereafter, the derivations “at x” will be denoted &” instead of @2. The derivation
with respect to the variable 9; in C[[8]] is denoted d, (i = 1,...,n). Note that

SO &) = {1 A

B! 0 otherwise,

where 5! = B¢!--- 3,
For p € C[x| and A € C[[8¢]] = C[x]*, let

p-A:iqg—Apag).
We check that p = (z; — &) acts as a derivation on C[[8¢]]:
(‘ri - £l> ’ 8? = dai,§(8§>

For an ideal I C C[x], let I+ = {A € C[[8¢]] | Vp € I,A(p) = 0}. The vector
space I+ is naturally identified with the dual space of C[x]/I. We check that It is
a vector subspace of C[[8¢]|, which is stable by the derivations dp, .

Lemma 2.1. If Q is a m¢-primary isolated component of I, then Q- = I+ N C[O].

This lemma shows that to compute Q*, it suffices to compute all polynomials of
C[O¢] which are in I*. Let us denote this set 2 = I N C[d¢]. It is a vector space
stable under the derivations dp, .. Its dimension is the dimension of @+ or C[x]/Q,
that is the multiplicity of £, denote it by d¢(), or simply by § if £ and [ is clear
from the context.

For an element A(9¢) € C[O¢] we define the order ord(A) to be the maximal |5
such that 8? appears in A(8¢) with non-zero coefficient.

For t € N, let %, be the elements of & of order < t. As & is of dimension d, there
exists a smallest t > 0 such that Z,,1 = Z;. Let us call this smallest ¢, the nil-index
of 2 and denote it by o¢(I), or simply by o. As & is stable by the derivations dy, ,
we easily check that for ¢t > 0¢(I), 2, = & and that o¢(I) is the maximal degree of
the elements in 7.

3. Deflation using first differentials

To improve the numerical approximation of a root, one usually applies a Newton-
type methods to converge quadratically from a nearby solution to the root of the
system, provided it is simple. In the case of multiple roots, deflation techniques are

6



employed to transform the system into another one which has an equivalent root
with a smaller multiplicity or even with multiplicity one.

We describe here a construction, using differentials of order one, which leads to a
system with a simple root. This construction improves the constructions in [I8] 5]
since no new variables are added. It also improves the constructions presented in [14]
and the “kerneling” method of [I1] by adding a smaller number of equations at each
deflation step. Note that, in [I1], there are smart preprocessing and postprocessing
steps which could be utilized in combination with our method. In the preprocessor,
one adds directly partial derivatives of polynomials which are zero at the root. The
postprocessor extracts a square subsystem of the completely deflated system for
which the Jacobian has full rank at the root.

3.1. Determinantal deflation
Consider the Jacobian matrix Je(x) = [0;f;(x)] of the initial system f. By re-
ordering properly the rows and columns (i.e., polynomials and variables), it can be

put in the form
_ | Ax) B(x)
Jr(x) = [C(X) D(x)} 2)

where A(x) is an r X r matrix with r = rankJg(§) = rankA(§).

Suppose that B(x) is an r x ¢ matrix. The ¢ columns

det(A(x)) { _A_lg)B(X) ]

(for = 0 this is the identity matrix) yield the ¢ elements
AT =D My(x)0, o AY =D Ae(x)0;
i=1 =1

Their coeflicients \; ;(x) € K[x] are polynomial in the variables x. Evaluated at
x = £, they generate the kernel of J¢(£) and form a basis of %;.

Definition 3.1. The family D¥ = {A¥,... AX} is the formal inverse system of
order 1 at . For ¢ = {iy,...,i} C {1,...,c} with |¢| # 0, the i-deflated system of
order 1 of f is
{6, A5 (F), ..., AF ()}
The deflated system is obtained by adding some minors of the Jacobian matrix J¢

as shown by the following lemma. Note that this establishes the close relationship
of our method to the isosingular deflation involved in [14].

Proposition 3.2. Fori=1,...,c,

alfl T 67",}(‘1 8T+if1
MU=V or o ot ot ®)
Ouf, - Ofy O,



Proof. We have AX(f;) = > 1 _; NixOk(fj) +det(A) 0,4:(f;) where A = [Ni1,..., iy
= —det(A) A7 B; is the solution of the system

AN+ det(A)B; = 0,

and B; is the i column of B. By Cramer’s rule, ik 1s up to (—1)7"+’“+1 the
r X r minor of the matrix [A | B;] where the k' column is removed. Consequently
AX(f;) = D opg Mik(x)0k(f;) + det(A) 0,44(f;) corresponds to the expansion of the

determinant along the last row. O]
This proposition implies that AX(f) has at most n — ¢ zero entries (j & [1,...,7]).

Thus, the number of non-trivial new equations added in the z-deflated system is
|¢| - (N —n+c¢). The construction depends on the choice of the invertible block
A(€) in Je(§). By a linear invertible transformation of the initial system and by
computing a z-deflated system, one obtains a deflated system constructed from any
|2| linearly independent elements of the kernel of J¢(§).

Example 3.3. Consider the multiplicity 2 root £ = (0,0) for the system fi(x) =
71 + 22 and fy(x) = 2?2 + 23. Then,

neo = [ 400 D<o ],

As A(€) is of rank 1, the {1}-deflated system of order 1 of f obtained by adding
the 2 x 2 bording minor of A, that is the determinant of the Jg, is

{xl + x%, x% + x%, —4x129 + 2x2} ,
which has a multiplicity 1 root at &.

We use the following to analyze this deflation procedure.

Lemma 3.4 (Leibniz rule). For a,b € K[z],

o (ab) = 3 %85(@(1‘;(8“)(6)).
Py

eNn

Proposition 3.5. Let r be the rank of Je(§). Assume thatr <n. Leti C {1,...,n}
with 0 < |i| < n —1r and £ be the i-deflated system of order 1 of £f. Then,
5e(f1) > 1 and 0(fV) < 0g(F), which also implies that 5¢(fV) < 6¢(f).

Proof. By construction, for i € 4, the polynomials AX(f) vanish at &, so that
5¢(f1) > 1. By hypothesis, the Jacobian of f is not injective yielding og(f) > 0.
Let 20 be the inverse system of f(M) at £&. Since (f) O (f), we have 2V C 2.
In particular, for any non-zero element A € 2V C K[8] and i € 4, A(f) = 0 and
A(AX(f)) =0.



Using Leibniz rule, for any p € K[x], we have

AAE(p) = A(ZM(X)@@))

= Z Z ﬁ‘aﬂ Z] dag (A>ajyf(p)

BeEN™ j=1

- Z Z 6' J&dag(A)@)

BeEN™ j=1

= D Aisdy (M)(p)

BeNn

where
1

Ea?ui,j (x)) € K.

Ai,,@ = Z )\i,m@j,g S K[a;:] and Ai,j,ﬁ =
j=1
The term A;g is D7) Ai j(€)0;¢ which has degree 1 in 9 since [A; ;(£)] is a non-

zero element of ker Jg(§). For simplicity, let ¢;(A) :== 354 A gd5(A).
For any A € C[O¢], we have

Aoy (@i(8)) = D Aijsdy(A) + Apdy (do, ()

BeNn

= ) Aisdd(A) + ¢ild, (M),

BeNn

Moreover, if A € 92U, then by definition ¢;(A)(f) = 0. Since 2 and 2" are
both stable by derivation, it follows that YA € 21, da, . (9i(N)) € 2 + ¢,(2W).
Since 2 C 2, we know Z + ¢;(2W) is stable by derivation. For any element A
of 7+ ¢i(2W), A(f) = 0. We deduce that Z + ¢;(2V)) = 2. Consequently, the
order of the elements in ¢;(2) is at most og(f). The statement follows since ¢
increases the order by 1, therefore og(fV) < og(f). O

We consider now a sequence of deflations of the system f. Let f() be the ;-
deflated system of f. We construct inductively f*+1 as the 4;,,-deflated system of
£ for some choices of i; C {1,...,n}.

Proposition 3.6. There exists k < o¢(f) such that & is a simple root of f*)

Proof. By Proposition , 5e(f)) > 1 and o (f®) is strictly decreasing with k until
it reaches the value 0. Therefore, there exists k < 05(1 ) such that og(f®)) = 0 and
5¢(f®)) > 1. This implies that ¢ is a simple root of f(* O



To minimize the number of equations added at each deflation step, we take |i| = 1.
Then, the number of non-trivial new equations added at each step is at most N —n—+-c.

Here, we described an approach using first order differentials arising from the
Jacobian, but this can be easily extended to use higher order differentials.

3.2. Isosingular decomposition

As presented above, the ¢-deflated system can be constructed even when £ is not
isolated. For example, let f(!) be the resulting system if one takes ¢ = {1,...,c}.
Then, f(V)(x) = 0 if and only if f(x) = 0 and either rank J¢(x) < r or det A(x) = 0.
If det A(x) # 0, then this produces a strong deflation in the sense of [14] and thus
the results of [I4] involving isosingular deflation apply directly to this new defla-
tion approach.

One result of [I4] is a stratification of the solution set of f = 0, called the isosin-
gular decomposition. This decomposition produces a finite collection of irreducible
sets Vi,...,V, consisting of solutions of f = 0, called isosingular sets of f, i.e.
Zariski closures of sets of points with the same determinantal deflation sequence
(see [14] Definition 5.1] for the precise definition of isosingular sets). Rather than
use the isosingular deflation of [14] which deflates using all minors of Jg(z) of size
(r+1) x (r+ 1) where r = rank J¢(£), one can utilize the approach above with
t = {1,...,c}. If det A(x) # 0 on the solution set, then one obtains directly the
components of the isosingular decomposition. Otherwise, one simply needs to fur-
ther investigate the components which arise with det A(x) = 0.

We describe this computation in detail using two examples. In the first example,
det A(x) = 1 so that the method applies directly to computing an isosingular de-
composition. In the second, we show how to handle the case-by-case analysis when
det A(x) could be zero.

Example 3.7. Consider the polynomial system f(z,y, z) where
fize—y* fo=a+y’z fi=2" -y’ —ayz

By [14, Thm. 5.10], every isosingular set of f is either an irreducible component
of the solution set f = 0 or is an irreducible component of the singular set of an
isosingular set. We start by computing the irreducible components of f = 0, namely
Vi={z=y=0}
Since the curve Vi has multiplicity 2 with respect to f, we need to deflate. Since
the Jacobian
1 —2y 0
Jr = 1 2yz y>
20 —yz =3y’ —x2 —xY
has rank 1 on Vi, isosingular deflation would add in all 9 of the 2 x 2 minors of J.
This would guarantee that all solutions of the resulting deflated system would have
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rank.Jy = 1 since Jg can never be the zero matrix. However, by using the approach
above, we only add 4 polynomials:

f(l) = {f7 2y + 2y2> 2:1/(21' - yZ) — Xz - 3y27 yz’ B a:y}

Moreover, since A = 1, which is the upper left corner of Jg, we obtain the same
condition as above with the deflation f(), i.e., f) = 0 if and only if f = 0 and
rank.Jy = 1. Moreover, one can easily verify that V} has multiplicity 1 with respect
to 1) i.e., Jeu) generically has rank 2 on V;.

The next step is to compute all points on V; where J¢u) has rank at most 1. Since

1 0 0
1 0 0
0 0 0
Je1) (0,0, 2) = 0 2242 0 |,
—z 0 0
0 0 0
| 0 0 0 |

one observes that the point (0,0, —1) is isosingular with respect to f. Therefore, the
irreducible sets V; and V5 = {(0,0, —1)} form the isosingular decomposition of f.

Since £ = (0,0,—1) is an isosingular point, deflation will produce a system for
which this point is nonsingular. To that end, since rankJe)(§) = 1, ie., ¢ = 2,
we can use the same null space used in the construction of £). In particular, the
next deflation adds at most 8 polynomials. In this case, two of them are identically
zero so that f?) consists of 13 nonzero polynomials, 11 of which are distinct, with &
being a nonsingular root. If one instead used isosingular deflation with all minors,
the resulting deflated system would consist of 139 distinct polynomials.

Example 3.8. Consider the polynomial system f(w, z,y, z) where
fi=w? =y =2’ —yz, fo=2"

The solution set of f = 0 is the irreducible cubic surface
Vi = {(w,2,9.0) | y* = w® - 2”}.

Since V; has multiplicity 2 with respect to f, we deflate by using A = 2w to yield
£ = {f, 4wz}
Next, we consider the set of points on V; where rank.Jf (1) < 1. Since

2w —32% -2y —y
Jf(1>(w,$,y,0) = 0 0 0 0 5
0 0 0 4w

rankJpa) < 1 on the curve C = Vi N{w = 0} = {(0,2,4,0) | y* = 2°}. However,
since A = 2w is identically zero on this curve, we are not guaranteed that this curve

11



is an isosingular set of f. One simply checks if it is an isosingular set by deflating the
original system f on this curve. If one obtains the curve C, then it is an isosingular
set and one proceeds as above. Otherwise, the generic points of C' are smooth points
with respect to f on a larger isosingular set, in which case one uses the new deflation
to compute new candidates for isosingular sets.

To deflate C' using f, we take A = —y, the top right corner of J¢, to yield

g = {f, — 4wz, 62%z, 22(2y + 2)}.

Since C' C V4 and JgM generically has rank 2 on C' and V4, we know that C' is not
an isosingular set with respect to f. However, this does yield information about the
isosingular components of f, namely there are no curves and each isosingular point
must be contained in C. Hence, restricting to C, one sees that rank.J,)(§) < 1if and
only if & = (0,0,0,0). Since g™ was constructed using A = —y which vanishes at
this point, we again need to verify that the origin is indeed an isosingular point, i.e.,
deflation produces a system for which the origin is a nonsingular root. To that end,
since Jg(€) = 0, the first deflation simply adds all partial derivatives. The Jacobian of
the resulting system has rank 3 for which one more deflation regularizes £. Therefore,
V1 and Vo = {(0,0,0,0)} form the isosingular decomposition of f.

4. The multiplicity structure

Before describing our results, we start this section by recalling the definition of or-
thogonal primal-dual pairs of bases for the space C[x]/@Q and its dual. The following
is a definition/lemma:

Lemma 4.1 (Orthogonal primal-dual basis pair). Let f, £, Q, 2, 6 = 6¢(f) and
o = o¢(f) be as in the Preliminaries. Then there exists a primal-dual basis pair of
the local ring C[x]/Q with the following properties:

1. The primal basis of the local ring C[x]/Q has the form

Bi={(x— ), (x— ..., (x — )"} (4)

We can assume that cg = 0 and that the monomaials in B are connected to 1
(c.f. [29]). Define the set of exponents in B

E :={ap,...,a5-1}. (5)

2. The unique dual basis A = {Ag, A1, ..., As_1} C Z orthogonal to B has the
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form.:

AO == 8a0 == 15
A= _8a1+ Z Va8 BIBB
81|
(6)
1
A5—l = 045 1 + Z I/a ﬂ aﬁ
9 518 g
Xo-1: 1B1<lag_1] p!
peE

3. We have 0 = ord(Ag) < --- < ord(As_1), and for all 0 <t < o we have
P = span{A; : ord(A;) <t},
where 9, denotes the elements of 9 of order < t, as above.

Proof. Let > be any graded monomial ordering in C[@]. We consider the initial
In(2) = {In(A) | A € 2} of 2 for the monomial ordering . It is a finite set of
increasing monomials D := {9%°, 8™, ..., 0% '} which are the leading monomials
of the elements of a basis A = {Ag,A1,..., As_1} of Z. As 1 € Z and is the lowest
monomial >, we have Ag = 1. As > is refining the total degree in C[8], we have
ord(A;) = |a;| and 0 = ord(Ag) < --- < ord(As_1). Moreover, every element in %,
reduces to 0 by the elements in A. As only the elements A; of order < t are involved
in this reduction, we deduce that %, is spanned by the elements A; with ord(A;) < t.
Let £ ={ap,...,as_1}. The elements A; can be written in the form

A-:—a%+ > Vs B‘aﬁ

;!
18] =<

By auto-reduction of the elements A;, we can even suppose that § ¢ FE in the
summation above, so that they are of the form @

Let B = {(X — g)a(), ceey (X - 5)(15,1} - C[X] As (Az((X - é)aj))ogi’jg(;_l is the
identity matrix, we deduce that B is a basis of C[x]/Q, which is dual to A.

As 2 is stable by derivation, the leading term of d%i(A )isin D. If -5 d (8 7) is not

zero, then it is the leading term of d%i(/\j), since the monomial orderlng is compatible
with the multiplication by a variable. This shows that D is stable by division by
the variable 0; and that B is connected to 1. This completes the proof. O

A basis A of Z as described in Lemma can be obtained from any other basis A
of Z by first choosing pivot elements that are the leading monomials with respect to
a degree monomial ordering on C[8)], then transforming the coefficient matrix of A
into row echelon form using the pivot leading coefficients. The integration method
described in [25] computes a primal-dual pair such that the coefficient matrix has a
block row-echelon form, each block being associated to an order. The computation
of a basis as in Lemma can be then performed order by order.

13



Example 4.2. Let
fi=a1 =+l fo =21 — 29 + 71,

which has a multiplicity 3 root at £ = (0,0). The integration method described
in [25] computes a primal-dual pair

- - 1 1
B:{l,xl,xg}, A= {1,81+82,62+50?—{-8182—1—56%}.

This primal dual pair does not form an orthogonal pair, since (0; + 0s)(x2) # 0.
However, using let say the degree lexicographic ordering such that x; > x5, we easily
deduce the primal-dual pair of Lemma [4.1}

B = {1,x1,m%}, A =A.

Throughout this section we assume that we are given a fixed primal basis B for
C[x]/Q such that a dual basis A of Z satisfying the properties of Lemma {4.1| exists.
Note that such a primal basis B can be computed numerically from an approximation
of £ and using a modification of the integration method of [25].

A dual basis can also be computed by Macaulay’s dialytic method which can be
used to deflate the root £ as in [19]. This method would introduce n + (6 — 1) (("*°)
new variables, which is not polynomial in 0. Below, we give a construction of a
polynomial system that only depends on at most n 4+ nd(é — 1)/2 variables. These
variables correspond to the entries of the multiplication matrices that we define next.
Let

Cxl/Q@ — C[x]/Q
p = (zi—&)p
be the multiplication operator by z; — §; in C[x]/Q. Its transpose operator is
M:2 — 9

d

(A) = do, (M),

where 2 = Q* C C[8]. The matrix of M; in the basis B of C[x]/Q is denoted M;.
As B is a basis of C[x]/Q, we can identify the elements of C[x]/Q with the elements
of the vector space spang(B). We define the normal form N(p) of a polynomial p
in C[x] as the unique element b of spang(B) such that p — b € ). Hereafter, we are
going to identify the elements of C[x]|/Q with their normal form in spang(B).
For any polynomial g(z1,...,x,) € C[x], we denote by ¢(§ + M) be the operator
on C[x]|/Q obtained by replacing x; — & by M;, i.e. it is defined as

g(E+M): Z Loy

WEN"

14
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using the notation M := M]" o --- o M. Similarly, we denote by

q(E+M) Z aV

WGN"

the matrix of ¢(§ + M) in the basis B of C[x]/Q, where M’ :=M]* - .- M. Note that
the operators {M;} and the multiplication matrices {M;} are pairwise commuting.

Lemma 4.3. For any q € C[x|, the normal form of q is N(q) = q(§¢ + M)(1) and
we have

g€ +M)(1) = No(q) 1+ Aa(g) (X = &)™ + -+ Asa(g) (x =)™

Proof. We have ¢(§ + M)(1) = ¢ mod @ = N(q). The second claim follows from
the orthogonality of A and B. O]

This shows that the coefficient vector [p] of N(p) in the basis B of is [p| =

(Ai(p))o<izs—1-
The following lemma is also well known, but we include it here with proof:

Lemma 4.4. Let B as in and denote the exponents in B by E := {ag,...,as_1}

as above. Let .

E*:=|J(E+e)
i=1
with E4+e; = {(71,...,v% +1,...,7) : ¥ € E} and we denote O(E) = ET \ E.
The values of the coefficients vy 5 for (a, B) € E x O(E) appearing in the dual basis
@ uniquely determine the system of pairwise commuting multiplication matrices M;,
namely, fori=1,...,n

0 Vaye; Vas.e; T Vas_1,e;
0 0 Vag,ai+e; *°° Vas_1,a1+e;
t )
M; = (7)
0 0 0 o Vas_qas_o+te;
0 0 0 e 0

Moreover,

1 zfoz, :oszrej
Va;,a P .
khes 0 ZfOék+ej EE, ozi#ak—i—ej.

Proof. As M} acts as a derivation on 2 and 2 is closed under derivation, so the third
property in Lemma implies that the matrix of M/ in the basis A = {Ag, ..., As_1}
of 2 has an upper triangular form with zero (blocks) on the diagonal.

15



For an element A; € A of order k, its image by M/ is
Mi(Ag) = (m = &) - Ay
= > A = &) (x— M)A

|| <k
= ) A((x =)A= D Vo, arre
lou|<k oy | <k

This shows that the entries of M; are the coefficients of the dual basis elements
corresponding to exponents in ExJ(E). The second claim is clear from the definition

The previous lemma shows that the dual basis uniquely defines the system of
multiplication matrices for e =1,...,n

Ao(zi — &) R As i (2 — &)
wo — | Mo ((x=9mTe) e Ay ((x = M)
Ao ((x —§)xarer) - Agq ((x—§)*")
0 Vaq e Vas,e; T Vas_1.e
0 0 Vag,ar1+e;  *°° Vas_q,a1+e;
0 0 0 o Vas_j,a5_a+e;
0 0 0 S 0

Note that these matrices are nilpotent by their upper triangular structure, and all
0 eigenvalues. As o is the maximal order of the elements of &, we have M? = 0 if
lv] > o.

Conversely, the system of multiplication matrices My, ..., M, uniquely defines the
dual basis as follows. Consider v,, , for some (a;,7) such that |y| <o but v € ET.
We can uniquely determine v,, , from the values of {vy, 3 : (a;,8) € E x O(E)}
from the following identities:

Vayy = Ni((x = €)7) = Mx—gprJia = M1 (8)

The next definition defines the parametric multiplication matrices that we use in
our constriction.

Definition 4.5 (Parametric multiplication matrices). Let £, 9(E) as in Lemma4.4]
We define an array p of length nd(d — 1)/2 consisting of 0’s, 1’s and the variables
a5 as follows: for all a;, a € E and j € {1,...,n} the corresponding entry is
1 if o = o + €;
Hogonte; = § 0 ifay+e; € E, oy #ap+ej 9)
Hosonte; i ap +e€; & E.
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The parametric multiplication matrices corresponding to E are defined for ¢ =
1,...,n by

0 Ha e Haoz e U Haos_y e
0 0 Has,a1+e;  *°° Mas_q,01+e;
Mi(p) =] : 7 (10)
0 0 0 o as a5 otes
0 0 0 e 0

We denote by
M(p)7 i My ()7 M ()™,

and note that for general parameters values p, the matrices M;(x) do not commute,
so we fix their order by their indices in the above definition of M(x1)”. Later we will in-
troduce equations to enforce pairwise commutation of the parametric multiplication

matrices, see Theorems [£.8 and [4.11]

Remark 4.6. Note that we can reduce the number of free parameters in the para-
metric multiplication matrices by further exploiting the commutation rules of the
multiplication matrices corresponding to a given primal basis B. For example, con-
sider the breadth one case, where we can assume that £ = {0,e1,2e1,...,(d—1)e;}.
In this case free parameters only appear in the first columns of Ma(p), ..., M,(p), the
other columns are shifts of these. Thus, it is enough to introduce (n — 1)(§ — 1)
free parameters, similarly as in [22]. In Section [5| we present a modification of [22),
Example 3.1] which has breadth two, but also uses at most (n — 1)(d — 1) free
parameters.

Definition 4.7 (Parametric normal form). Let K C C be a field. We define
Now 1 K[x] — K]z, u°
1
p = Nou(p) = plz+Mp)[1] =Y =07 (p)M(u)[1].

_' z
~ENn oA

where [1] = [1,0,...,0] is the coefficient vector of 1 in the basis B. This sum has
bounded degree for all p since for |y| > o, M(u)? = 0, so the entries of N ,(p) are
polynomials in i of degree at most o.

Notice that this notation is not ambiguous, assuming that the matrices M;(u) (i =
1,...,n) are commuting. The specialization at (x, ) = (&, v) gives the coefficient
vector [p] of N(p):

New(p) = [Ao(p), ..., As—1(p)]' € C°.

4.1. The multiplicity structure equations of a singular point

We can now characterize the multiplicity structure by polynomial equations.

17



Theorem 4.8. Let K C C be any field, £ € K[x]V, and let £ € C" be an isolated
solution of £. Let ) be the primary ideal at & and assume that B is a basis for
K[x]/Q satisfying the conditions of Lemma [{.1 Let E C N" be as in (%) and
M;(p) for i = 1,...n be the parametric multiplication matrices corresponding to E
as in (@ and N, be the parametric normal form as in Defn. at z = &. Then
the ideal Le of Cp] generated by the polynomial system

{A/'g,#(fk fork=1,... N, (11)

M;(pe) - Mj(p) — Mi(p) - Mi(pe)  ford,j=1,....n
18 the mazimal ideal

m, = (Ma,,@ — Va g, (aaﬁ> € Ex 8<E))
where v, 5 are the coefficients of the dual basis defined in (@)

Proof. As before, the system has a solution pi, 3 = v4 4 for (o, ) € E x O(E).
Thus Le C m,,.
Conversely, let C'= C[u]/L¢ and consider the map

®:Clx] = C° prr Nep(p) mod Le.

Let K be its kernel. Since the matrices M; (1) are commuting modulo L¢, we can see
that K is an ideal. As f, € K, we have I := (f1,..., fn) C K.
Next we show that () C K. By construction, for any o € N" we have modulo L,

Using the previous relation, we check that Vp, ¢ € C[x],

®(pq) = p(& +M(p))P(q) (12)

Let ¢ € Q. As @ is the mg-primary component of I, there exists p € C[x] such that
p(€) # 0 and pg € Z. By ([12), we have

d(pq) = p(§ +M(u))®@(q) = 0.

Since p(§) # 0 and p(§ +M(u)) = p(§)Id+ N with N lower triangular and nilpotent,
p(€+M(p)) is invertible. We deduce that ®(q) = p(§ +M(u)) "' ®(pg) = 0 and q € K.

Let us show now that ® is surjective and more precisely, that ®((x—¢§)**) = ey, for
k =0,...,6—1 (abusing the notation, as here e; has length § not n and e; has a 1 in
position i + 1). Since B is connected to 1, either a;, = 0 or there exists o; € E such
that ay, = a; +€; for some i € {1,...,n}. Thus the ;™ column of M;(p) is ey, by @
As {M;(p) : i = 1,...,n} are pairwise commuting, we have M(u)* = M;(u)M(u)*,

18



and if we assume by induction on |oy;| that M) [1] = e;, we obtain M(x)*[1] = ey.
Thus, for k=0,...,0 — 1, ((x — &)™) = €.

We can now prove that m, C L¢. As M;(v) is the multiplication by (x; — &;) in
Clx]/Q, for any b € B and i = 1,...,n, we have (z; — &) b = M;(v)(b) + ¢ with
q € Q C K. We deduce that for k =0,...,§ — 1,

(s = &) (x = §)™) = Mi(1)P((x — §)™) = Mi(p)er, = Mi(v)ey.
This shows that jiq 5 — vap € L for (o, 5) € E x O(F) and that m, = L. O

In the proof of the next theorem we need to consider cases when the multiplication
matrices do not commute. We introduce the following definition:

Definition 4.9. Let K C C be any field. Let C be the ideal of K|z, u| generated by
entries of the commutation relations: M;(g)-M;(p) —M;(p) -M;(p) =0,4,5=1,...,n.
We call C the commutator ideal.

Lemma 4.10. For any field K C C, p € K[x], and i =1,...,n, we have
Noyu(2ip) = 2iNou(p) +Mi (1) Nou(p) + Oiu(p)- (13)
where Oy, : K[x] — Kz, p]° is linear with image in the commutator ideal C.

Proof. Ny (zip) =3, 5 07 (ip) M(pe) (1]

= z Z $8Z(p) M(p)7[1] + Z 7 9, (p)M(p)"[1]
RO ECEDHIES SELBE MR
s Nu(p) + M) (Z 0 Mwm)

where O; (1) = M;(p)M(p)Y — M(p)?*% is a 6 x 0 matrix with coefficients in C.
Therefore, Oy, : p = 3 507 (p) O ()[1] is a linear functional of p with coefficients

RAR

in C. O]

The next theorem proves that the system defined as in for general z has (¢, v)
as a simple root.

Theorem 4.11. Let K C C be any field, £ € K[x], and let £ € C™ be an isolated
solution of £. Let @ be the primary ideal at & and assume that B is a basis for
K[x]/Q satisfying the conditions of Lemma [{.1 Let E C N" be as in (%) and

19



M;(p) fori=1,...n be the parametric multiplication matrices corresponding to E as
in (10) and N, be the parametric normal form as in Defn.[4.7] Then (z, ju) = (£, v)

is an isolated root with multiplicity one of the polynomial system in K|z, p]:

{N W(fi) =
Mi(1) - M (1

Proof. For simplicity, let us denote the (non-zero) polynomials appearing in by

)0 fork=1,..., N, (14)

M;(p) - M;(p ):O fori,g=1,...,n.

Py, ..., Py € K|z, pl,

where M < No+n(n—1)(0 —1)(6 — 2)/4. To prove the theorem, it is sufficient to
prove that the columns of the Jacobian matrix of the system [Py, ..., Py] at (z, u) =
(&, v) are linearly independent. The columns of this Jacobian matrix correspond to
the elements in Clz, u]*

Ore, -+ 0nge, and 0, , for (a,B) € E x I(E),

where 0; ¢ is defined in for z replacing x, and 9, , is defined by

a,B

dq

Ousla) = -

\@p=ew)  Tor q € Clz, ).
:uoz,ﬂ

Suppose there exist aq, ..., a,, and a, 5 € C for (o, 5) € E x (E) not all zero such
that
A= e+ + nOne + Y apdy, , € Clz, u]”
a?B

vanishes on all polynomials Py, ..., Py in . In particular, for an element P;(pu)
corresponding to the commutation relations and any polynomial @ € C[x, p], using
the product rule for the linear differential operator A we get

A(RQ) = A(R)Q(&,v) + F(1)A(Q) =0

since A(P;) = 0 and P;(v) = 0. By the linearity of A, for any polynomial C' in the
commutator ideal C defined in Defn. [£.9, we have A(C) = 0.
Furthermore, since A(N,,(fx)) = 0 and by

Neo(f) = [No(fr), - - Nooa (fi)]
we get that

(@101 + - +andne) - Ns a1 (f) + Y py(v) BY(fi) =0 (15)

[v|<]as—1]

where p, € C[u] are some polynomials in the variables y that do not depend on f.
If ay,...,a, are not all zero, we have an element A of C[8¢| of order strictly greater
than ord(As_1) = o that vanishes on fi,..., fy.
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Let us prove that this higher order differential also vanishes on all multiples of f;
for k =1,...,N. Let p € C[x] such that N¢,(p) = 0, A(N,,.(p)) = 0. Since the
multiplication matrices commute at p = v, we have by Lemma

-/\/"g’v((xz —&)p) = (v — gi)j\/’&,u(p> + Mi(V)/\fg,u(P) =0
and by we have

ANGu((z: = &)p) = A — &N () + AMi(WNZu(p)) + A(Ou(p))
= Az = &)New(p) + (& — &) AWNLL(P)
+ AMi (1)) Ne u(p) + Mi(V) AN, (p))
+ A(Oiu(p))
= 0.

As Neo(fi) = 0, AWNLu(fi)) =0, i =1,...,N, we deduce by induction on the
degree of the multipliers and by linearity that for any element f in the ideal I
generated by fi,..., fy, we have

Neo(f) =0 and  A(Nu(f)) =0,

which yields A € I'+. Thus we have A € I*NC[d¢] = Q* (by Lemma. As there
is no element of degree strictly bigger than o in Q-+, this implies that

ay=---=a,=0.

Then, by specialization at x = &, A yields an element of the kernel of the Jacobian
matrix of the system (11)). By Theorem , this Jacobian has a zero-kernel, since
it defines the simple point v. We deduce that A = 0 and ({,v) is an isolated and
simple root of the system ([14]). O

The following corollary applies the polynomial system defined in to refine
the precision of an approximate multiple root together with the coefficients of its
Macaulay dual basis. The advantage of using this, as opposed to using the Macaulay
multiplicity matrix, is that the number of variables is much smaller, as was noted
above.

Corollary 4.12. Let f € K[x]|" and & € C" be as above, and let Ao(v),. .., Ns_1(v)
be its dual basis as in @ Let E C N" be as above. Assume that we are given
approzimates for the singular roots and its inverse system as in (@

§2¢ and Unp=va,p Yy € B, B¢ E, |B] <o.

Consider the overdetermined system in K|z, u] from . Then a square system of
random linear combinations of the polynomials in will have a simple root at
z = &, u = v with high probability. Thus, we can apply Newton’s method for this
square system to refine € and Uy, 5 for (ai, ) € E x O(E). For ¥, with v & E*
we can use (@ for the update.
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Example 4.13. Reconsider the setup from Ex. with primal basis {1,z2} and
E ={(0,0),(0,1)}. We obtain

M’i(ﬂ)z[g H and Mé(u)z[g (1)]

F(Zlaz2aﬂ> = 2 2

which has a nonsingular root at (zi, 22, 1) = (0,0,0) corresponding to the origin
with multiplicity structure {1, 0s}.

We remark that, even if E does not correspond to an orthogonal primal-dual basis,
it can define an isolated root. The deflation system will have an isolated simple
solution as soon as the parametric multiplication matrices are upper-triangular and
nilpotent. This is illustrated in the following example:

Example 4.14. We consider the system: f; = z; — 2o + 23, fo = 21 — 29 + 23 of
Example [£.2] The point (0,0) is a root of multiplicity 3. We take B = {1, z1, 22},
which does not correspond to a primal basis of an orthogonal primal-dual pair. The
parametric multiplication matrices are:

01 0 0 py 1
Mi(p)=10 0 p |, My(p)=10 0 ps
00 O 0 0 0

The extended system is generated by the commutation relations My My — MM, = 0,
which give the polynomial pqpus — ps, and the normal form relations:

e N(f1) = 0 gives the polynomials @1 — zo + 212, 1+ 22y — o, —1 + py,

o N(fy) = 0 gives the polynomials x1 — z +x9%, 1+ (=14 223) pto, —1+2 29+
23
To illustrate numerically that this extended system in the variables (x1, za, pi1, o, 113)

defines a simple root, we apply Newton iteration on it starting from a point close to
the multiple solution (0,0) and its inverse system:

Iteration [z, x9, 1, 2, 3]

0 (0.1,0.12,1.1,1.25,1.72]

1 [0.0297431315,0.0351989647,0.9975178694, 1.0480778978, 1.0227973199]

2 [0.0005578682, 0.0008806394, 0.9999134370, 0.9997438194, 0.9996904740]

3 [0.0000001981, —0.0000001864, 0.9999999998, 1.0000002375, 1.0000002150]
4 [2.084095775 107, —1.9808984139 10~14,1.0, 1.0000000000, 1.0000000000]
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As expected, we observe the quadratic convergence to the simple solution (£, v)
corresponding to the point (0,0) and the dual basis

1 1
{1, 81 + 1/282, 82 + él/laf + 1/38182 + 57/21/383}

with vV = 1,1/2 = 1,1/3 =1.

4.2. Deflation ideals

In this section we study a similar approach as in [I7], where a so called deflation
ideal 119 is defined for an arbitrary ideal I C K[x] and d > 0. Here we define a
modification of the construction of [17], based on our construction in Theorem |4.11}
which we call the E-deflation ideal.

Definition 4.15. Let £ = (fy,..., fn) € K[x|Y and I = (fy,..., fn). Let
E:{Oéo,...,Oég_l} Cc N”

be a set of § exponent vectors stable under subtraction, i.e., if o, 3 € N®" and < «
componentwise, then a € F implies § € E. We also assume that oy = 0 and

lag| < -+ < sl
Let
Hoi= (Mai,ak+ej DO, € E,j =1,...,n, |Oél| > |O¢k‘ + 1, ag —|-ej ¢ E)

be new indeterminates of cardinality D < ndé(d — 1)/2. Let M;(u) fori =1,...,n
be the parametric multiplication matrices corresponding to F defined in . Then
we define the E-deflated ideal I'F) C K[x, u] as

Here Ny, is the parametric normal form defined in Defn. for z = x.

First we prove that the E-deflation ideal does not depend on the choice of the
generators of I.

Proposition 4.16. Let I C K[x] and E C N" be as above. Then, the E-deflation
ideal I'®) does not depend on the generators fi,..., fn of I.

Proof. By Lemma [4.10] we have
Nayu(xip) = 2Ny u(p) +Mi (1) Nicu(p) + Oiu(p),

where O; ,(p) is a vector of polynomials in the commutator ideal C as in Defn. [£.9]
Thus, if Ny .(p) € I'®) then Ny, (z;p) € I'®). Using induction on the degree of x,
we can show that N . (p) € I'®) implies that Ny ,(x*p) € I'E). Using that N, is
linear, we get Ny, (1) C IE). O
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Next, we prove the converse of Theorem [4.11, namely that isolated simple roots
of I'®) correspond to multiple roots of I with multiplicity structure corresponding
to E/, at least up to the order of E.

Theorem 4.17. Let I = (f,..., fn) CK[x] and E = {ay,...,a5_1} C N" be as in
Definition[4. 18 and let 0 = |as_1|. Let (£,v) € C"*P be an isolated solution of the E-
deflated ideal I'®) C K[x, u]. Then £ is a root of I, and (&,v) uniquely determines
an orthogonal pair of primal-dual bases B and A. They satisfy the conditions of
Lemma for Clz]/Q and its dual, respectively, where @ = I¢ + m"Jrl with I the
intersection of the primary components of I contained in me.

Proof. Since Ny ,(fi)[1] = fx, we have fi,...,fy € I'®) thus ¢ € V(I). The
monomial set B = {(x —&)* : i =0,...,0 — 1} is stable by derivation and thus
connected to 1 (i.e. if m € x¥ and m # 1, there exists m’ € x¥ and i € [1,n] such
that m = x;m’). The matrices {M;(v)} associated to the rewriting family

F = {(x g)ortes Zyalaﬁe]x Y ay € E, ock—l—ej¢E}

i<k

are pairwise commuting. By [29, B0], F is a border basis for B and B is a basis of
Clz]/Q where Q := (F) C C[x]. In particular, dim C[z]/Q = d. Since the matrices
M;(v) are strictly lower triangular, the elements of C[x]/Q are nilpotent, so @ is a
me-primary ideal. By Lemma the dual basis A = (Ag, ..., As_1) is

1
A= Z M(v)"]iq —|8g, using the identity
~ENn s

Vayy = M(v)"];q forally e N*, i =0,...,0 — 1

similarly as in (6) and (8). By induction on the degree, we prove that for |y| > ||
we have [M(v)?];; = 0. Thus, B and A satisfies the properties of Lemma [4.1]
Let 2 :=span(A). Then Z is stable under derivation since

dp, (N;) = d3¢,g(ZNn[M<V)’y]i71%ag> = BZNH[Mj<V)M(V)5]i’1Ea§
= M;@)]ix- (ﬂZNn[M(V)ﬁ]*J%a?) = ;[Mj(’/)]i,k/\k-

This implies that 2 C @, and comparing dimensions we get equality, i.e.,
ge@ << A(g=0foralli=0,...,6—1.

Since Ai(f) = Neo(fi)lil =0forallk=1,... ., Nandi=0,...,6 — 1,1 C Q.
Finally, we prove that Q) = I¢ —i—m"Jrl As 2 is generated by elements of order < o,
OH C Q. Thus, I + m°+1 C Q. Locahzlng at mg yields I + m°+1 C Q.
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We prove now the reverse inclusion: ¢ C I¢ + mg“. Let 9 = Ij C ClO¢].
Suppose that there exists an element of Z of order < o, which is not in 2 = Q™.
Let A be such a non-zero element of % \ Z of smallest possible order ¢ < o.
As & € V(I), we can assume that ¢ > 0. We are going to prove that (£,v) is
not an isolated solution.

By reduction by the basis A; of &, we can assume that the coefficients of J¢* are
zero in A. Thus, for any parameter value ¢ € C we can replace A by

Ac = (AQ,...,A§_1+C'A)

so that B and A, form a primal-dual pair.
As t is minimal, we have dy, (A) € %1 for all i € [1,n]. Thus, there exist
coefficients v ; such that

do, . (A) = Z v A

As A is of order t < ord(As—1) and dp, . (A) is of order < t, the coefficients v]5 ,
must vanish. This shows that the matrix M} (V') = (A, j((x—§)*%)) is a nilpotent
upper triangular matrix of the form ({10j).

All the coefficients v ; cannot vanish otherwise A is a constant, which is excluded
since t > 0. Thus for all ¢ # 0, the matrices M;(v')" representing the operators dy,
in the dual basis A, are distinct from M;(v)". These matrices are commuting, since
the derivations dp, , commute. Moreover, for any a € N", we have

Ac((x - f)a) = (X - 5)0‘ : Ac(l) = <Mt(l/)a[Ac]a [1]> = <[AC]7M(V,)Q[1]>‘

As A(f) = 0, we deduce that A.(f) =0, £(§ +M(¢))[1] = 0 and N, (f) = 0.

Therefore, the solution set of the system I¥) contains (£,1/) for all ¢ # 0, that
is the line through the points (£, v), (§,v'), which implies that (£, ) is not isolated.
We deduce that if (£, v) is isolated, then Z¢, C %, = Z, that is

(Ig + I'('l?_l)L C QL
or equivalently, @ C I¢ + mgﬂ. O

This theorem implies, in particular, that if ¢ is an isolated root of I and o is its
order, then ) = I is the primary component of I associated to &.

The following example illustrates that if & is not an isolated root of I, but an
embedded point, then the primary ideal () in Theorem may differ from the
primary ideal in the primary decomposition of I corresponding to &.

Example 4.18. We consider the ideal I = (22, zy) with primary decomposition
I = (z) N (2?%,y), which corresponds to a simple line V' (z) with an embedded point
V(22 y) of multiplicity 2 at & = (0,0). With Fy := {(0,0),(1,0)} corresponding to
the primal basis {1, x}, we get parametric multiplication matrices

¢ (01 t_ (0 p
MI_(OO My = 0 0
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which are commuting. The parametric normal form is

= N(F) = [(x),0:(/)(x) + 10y () ()],

so the Fy-deflated ideal is I(%0) = (22 2z, vy, y + px) = (x,y C Clz,y, u], but (0,0)
corresponds to a positive dimensional component {(0,0, u) : u € C} of 150,

For E; = {(0,0),(1,0),(0,1)} corresponding to the primal basis {1, x,y}, the para-
metric multiplication matrices are constant and obviously commute:

010
Mi={ 00 0|, M=
000

o O O

0
0
0

o O =

The parametric normal form is f — N (f) = [f(x), 0,(f)(x), 9, (f)(x)].
The Ej-deflated ideal IV = (2% 2,0, 2y,y,2) = (z,y) C (C[a: y]. It defines the
(smooth) isolated point £ = (0,0) and the associated (z,y)-primary ideal is

Q= (1,0,,0,)" = (¢*, 2y, y*) =+ (2,9)* = (z,9)* # (2% y) .

Similarly, if Ey, := {(0,0), (1,0),(0,1),...,(0,k)} corresponding to the primal basis
{1,2,y,...,y"}, we get that V(I(F¥) is an isolated simple point with projection
(0,0), and the corresponding primary ideal is

Q=(1,0,,0,,... ,(’35)L =1+ (x,y)k = (a:Q,y) N (x,ka) + (xz,y) )

5. Examples

Computations for the following examples, as well as several other systems, along
with MATLAB code can be found at www.nd.edu/~jhauenst/deflation/.

5.1. Caprasse system
We first consider the Caprasse system [3], [35]:

:E13
2

x1x33 —4dxox3ry — 4561:1)3:1,‘42 — 2xomad — 4xix3+ 1020004 — 49032 +10z4%2 -2
(21,22, 23,24) =

$2213 +2x122004 — 21 — X3

2

xr3 — 4:1:1:1:229103 — 4.7712$2:E4 — 2$23.’L‘4 — 4x12 + 10 $22 —4xi1x3 + 1022224 — 2
T4°T1 + 222234 — 223 — T1

The following is a multiplicity 4 root:
2.1

T 21 1
= PRI =\ 7= T T s T m T = €C4
of multiplicity 4.
We analyze first the methods for deflating the root £. Using the approaches of
[0, [14), 18], one iteration suffices. For example, using an extrinsic and intrinsic version

of [6, [18], the resulting system consists of 10 and 8 polynomials, respectively, and 8
and 6 variables, respectively. Following [14], using all minors results in a system of
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20 polynomials in 4 variables which can be reduced to a system of 8 polynomials in 4
variables using the 3 x 3 minors containing a full rank 2 x 2 submatrix. The approach
of §[3|using an |i| = 1 step creates a deflated system consisting of 6 polynomials in 4
variables. In fact, since the null space of the Jacobian at the root is 2 dimensional,
adding two polynomials is necessary and sufficient.

We illustrate now the second method, for computing the multiplicity structure.
The primal basis of £ is given by

B = {1,1’1 - glal‘Q - 52, (._'23'1 - 61)2}7 with £ = {(070)7 (170)7 (Oa 1)7 (270)}7
and its orthogonal dual basis has the following structure.

Ay = 1,
Ay
Ag Oy + Vg w305 + Vg 24 Ory
Ay = QB%/Q + Va;%’a;gaa:g + Vg2

+ V2 Op,as + V2

Z7,213

Ozy + Vay w3 0ns + Vg 24 Ory

,z48$4 + V:v%,:vlasgall‘bw

Opyaq + Va2 220,2/2
+ Vx%,xzarg 891?2903 + Vw% ac172394 + Vz%,xgax§/2

+ V.2 8963364 + Vx%xiaxi/z

7,T3%4

»L1T4

»L2T4

Computing the kernel of the Macaulay multiplicity matrix

Macg(f, €) := [ag <xﬁ fi(x))}

|8]<d,1<i<N,Ja|<d

for d = 2 (of size 20 x 15), we get the unique solution

V:Ul,:lfg = _1,1/11’;;4 = 0,1/$27m3 = 1’ VCDQ,J:4 — 1’
V3 V3 1
Vx%,xg = T’VI%,M = T’Vﬂ?%ﬂ?lﬂ?z = —17 (16)
) 1 1 1
Vetman = T p Vet T T Yetad T T Veheas = T
1 1 1
Vx%’““” - _§7Va;%,x§ - 1’V$%,x3x4 = _Z7VI%J}£ = —5.

The system of parametric multiplication matrices corresponding to E is given by

0 1 0 0 ro o 1 0
. 0 0 0 1 , 0.0 0 np20
Ml(/") = ’ MQ(M) = )
0 0 O U 0 0 O Hy2 22
0 0 O 0 L0 0 O 0
0 Hzy,z3  Hog,zs iu‘:c%,:cg o Hzy,xy Hro,zg lu‘z%,z4
0 0 0 Ha2piay 0 0 0 Hy2amy
M3(n)t = ' ;o Mt = '
O 0 O 'uz%,zzzg O 0 0 M(L‘%,.’L‘zflhl
0 0 0 0 L O 0 0 0
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Note that fu,2 .2, 1142 252,, [42 .2 do DOt appear in these multiplication matrices.
Each of these matrices are nilpotent, and one can check that the maximal non-zero
products of them have degree 2. To obtain the polynomial system in (14]), we first
have to compute

Nou(£) = 3 S 00(f) () [1] € Q. "
. v

Note that Nx ,(fi)[1] = f; since the only time the [1, 1] entry in M(x)? is not zero is
when v = 0. The other entries of Ny ,(f;) depend on the p variables, for example
Nx,p,(f1)[4] = (x13 — dgpyxe® — 4x1) P2 g + (—4 11219 — 2295 + 10x2) He? 24
+3 r1r3 — 4.%21‘4 —4+4+ (—8 T1X4 — 8(1321‘3) :u’ac%,acla:z
+ (3/2 12— 219° — 2) Py w5 + (3/2 12— 219° — 2) Hz,23 102 21 0
—4 L1021 x4 — 4x1x2/‘$2@4“x%,x1x2 + (—4%1563 — 6xawy + 10) M2 o2
—4 T1T2 w502 2109 — 4$1$2Hm2,xsﬂx§,x§
+ (*21‘12 - 35522 + 5) Hay,aa Ha? a0,
+ (=221 = 322° +5) flag e fiy? 13
+ (3/221% — 239° — 2) M2 21wy — AT1T2G2 gy — AT1T2U142 410y
( 23?1 —3%2 +5) Ha? oy

Note that this polynomial is clearly not equal to A3(x®f) for any «, which would
be linear in the p variables.
The commutator relations appearing in contain polynomials such as

Ha? zoxs — HaizsMa? 2120 + Hao,az o 22,

which is the only non-zero entry in MoMg — M3Ms.
Using an elimination order, we computed the following Grobner basis for the
E-deflated ideal I™¥) generated by the polynomials in :

3%42 + 17 3«7332 + 47 T4+ x2,23 + L1, My ,z3 + 17 Hzy,245
Hxo,xy — 17 2,“%2,%3 + 35[?3%’4, 2“7;%,7;21‘4 + 17 8Mx%7g;lx4 - 31’31'4, 4”35%@4 - 3.’13'4,
= 3w3%4y Afhy2 gy gy T, 164152 0 — 323, 24,2 2 + 1, 812 4 ) — 3374,

8 132 25

Atx=¢= ( \/37 —\/ig, 3—%, \/Lg) this gives the same solution g = v as in 1)
5.2. A family of examples

In this section, we consider a modification of [22, Example 3.1], defining multiple
points with breadth 2. For any n > 2, the following system has n polynomials, each
of degree at most 3, in n variables:

3 2 2 .3 2 3 2 2
T+ 2] — 25, xo+ x5 —x3,...,T,_ 1+ X, — Tp, T,

28



The origin is a multiplicity 0 := 2" root having breadth 2 (i.e., the corank of Jacobian
at the origin is 2).

We apply our parametric normal form method described in § Similarly as in
Remark [1.6| we can reduce the number of free parameters to be at most (n—1)(§—1)
using the structure of the primal basis B = {z¢2% : a < 271, b < 2}.

The following table shows the multiplicity, number of variables and polynomials
in the deflated system, and the time (in seconds) it took to compute this system
(on a iMac, 3.4 GHz Intel Core i7 processor, 8GB 1600Mhz DDR3 memory). Note
that when comparing our method to an approach using the null spaces of Macaulay
multiplicity matrices (see for example [0, [19]), we found that for n > 4 the deflated
system derived from the Macaulay multiplicity matrix was too large to compute.
This is because the nil-index at the origin is 2" !, so the size of the Macaulay

multiplicity matrix is n - (2%;:"_1) X (2n7;+").

New approach Null space

mult | vars | poly | time | vars | poly time
4 5 9 1.476 8 17 2.157
8 17 | 31 | 5.596 | 192 | 241 208
16 | 49 | 100 | 19.698 | 7189 | 19804 | > 76000
32 | 129 | 296 | 73.168 | N/JA| N/A N/A
64 | 321 | 819 | 659.59 | N/JA| N/A N/A

O =W N3

5.3. Examples with multiple iterations
In our last set of examples, we consider simply deflating a root of the last three

systems from [6l, § 7] and a system from [16, § 1], each of which required more than
one iteration to deflate. These four systems and corresponding points are:

1: {o} — zow3my, 23 — 217374, :U§ — 11Z9T4, 7] — 17273} at (0,0,0,0) with § = 131 and
o= 10;

2: {a 2%y +yt 2+ 2% — 723 — 822} at (0,0, —1) with § =16 and 0 = T;

3: {14z + 33y — 3V/5(2? + day + 4y% 4+ 2) + V7 + 2 + 622y + 122y% + 8y3, 412 — 18y —
V5 4823 — 1222y + 6xy? — 3 + 3v7(4oy — 42? — y? — 2)} at Z3 ~ (1.5055,0.36528)
with 6 =5 and 0 = 4;

4: {271 + 223 + 29 + 223 + x% — 1, (w1 + 29 — 23 — 1)3 — 23,
(223 + 523 + 1023 + 523 + 5)% — 100023} at (0,0, —1) with =18 and 0 = 7.

We compare using the following four methods: (A) intrinsic slicing version of
[6], 18]; (B) isosingular deflation [14] via a maximal rank submatrix; (C) “kerneling”
method in [I1]; (D) approach of § [3| using an || = 1 step. We performed these
methods without the use of preprocessing and postprocessing as mentioned in §
to directly compare the number of nonzero distinct polynomials, variables, and
iterations for each of these four deflation methods.
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Method A Method B Method C Method D

Poly | Var | It | Poly | Var | It | Poly | Var | It | Poly | Var | It
1] 16 4 | 2] 22 4 (2] 22 4 | 2] 16 4 |2
2024 |11 |3 | 11 3 2] 12 3 12 12 3 13
3132 |17 |4] 6 2 4] 6 2 4] 6 2 |4
41 96 | 41 | 5| 54 3 |5 54 3 | 5] 22 315

For breadth one singular points as in system 3, methods B, C, and D yield the
same deflated system. Except for methods B and C on the second system, all four
methods required the same number of iterations to deflate the root. For the first
and third systems, our new approach matched the best of the other methods and
resulted in a significantly smaller deflated system for the last one.
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