Membership tests for images of algebraic sets by linear projections

Jonathan D. Hauenstein^{*} Andrew J. Sommese[†]

December 23, 2012

Abstract

Given a witness set for an irreducible variety V and a linear map π , we describe membership tests for both the constructible algebraic set $\pi(V)$ and the algebraic set $\overline{\pi(V)}$. We also provide applications and examples of these new tests including computing the codimension one components of $\overline{\overline{\pi(V)} \setminus \pi(V)}$. Additionally, we also describe computing the geometric genus of a curve section of an irreducible component of the solution set of a polynomial system and a test for deciding whether a plane quartic curve is a Lüroth quartic.

Keywords. Numerical algebraic geometry, polynomial system, algebraic sets, witness sets, projections, membership test, numerical irreducible decomposition, geometric genus, Lüroth quartic

AMS Subject Classification. 65H10, 68W30

Introduction

Given a polynomial system $f : \mathbb{C}^N \to \mathbb{C}^n$, an ℓ -dimensional irreducible component $V \subset f^{-1}(0)$, and a linear map $\pi : \mathbb{C}^N \to \mathbb{C}^K$, a "witness set" for $\overline{\pi(V)}$ was constructed in [7] from a witness set for V, hereafter called a *pseudo-witness set* for $\overline{\pi(V)}$. This approach reduces computations on $\overline{\pi(V)}$ to computations on V without using elimination theory to construct a polynomial system g such that $\overline{\pi(V)}$ is an irreducible component of $g^{-1}(0)$.

The main results of this article, presented in §2, are algorithms for performing a numerical membership test for both $\pi(V)$ and $\overline{\pi(V)}$.

^{*}Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (hauenstein@ncsu.edu, www.math.ncsu.edu/~jdhauens). This author was supported by North Carolina State University, Institut Mittag-Leffler (Djursholm, Sweden), and NSF grant DMS-1262428.

[†]Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556 (sommese@nd.edu, www.nd.edu/~sommese). This author was supported by the Duncan Chair of the University of Notre Dame, Institut Mittag-Leffler (Djursholm, Sweden), and NSF grant DMS-0712910.

Chevalley's Theorem [4] states that the image of a constructible set, e.g., $\pi(V)$, is a constructible set¹. Effective symbolic methods for performing computations with constructible sets are discussed in [5, 19].

In §3, we use these membership tests to compute a numerical decomposition of the irreducible components of $\overline{\overline{\pi(V)}} \setminus \pi(V)$ of codimension one in $\overline{\pi(V)}$ and use this to develop an approach for computing the geometric genus of a generic curve section of $\overline{\pi(V)}$.

The necessary background material is presented in §1 which also codifies the properties of our substitute for witness sets into the notion of a pseudo-witness set.

In §4, we present examples using our new membership tests.

1 Background material

We collect some background material in this section. Throughout, we assume $f : \mathbb{C}^N \to \mathbb{C}^n$ is a polynomial system and define $\mathcal{V}(f)$ to be the set of points in \mathbb{C}^N which f maps to 0. The algebraic set $\mathcal{V}(f)$ is reduced and, in particular, all of the irreducible components of $\mathcal{V}(f)$ have multiplicity one. We let $f^{-1}(0)$ denote $\mathcal{V}(f)$ with its underlying scheme structure, which includes the multiplicity information of the components of $\mathcal{V}(f)$ with regard to f.

1.1 Witness sets

Suppose that $V \subset f^{-1}(0)$ is an ℓ -dimensional irreducible algebraic set of degree d. A witness set for V is the triple $\{f, \mathcal{L}, W\}$ where \mathcal{L} consists of ℓ general linear polynomials on \mathbb{C}^N and $W = V \cap \mathcal{V}(\mathcal{L})$. The witness point set W consists of d points. A finite set \mathcal{W} with $W \subset \mathcal{W} \subset V$ is called a witness point superset for V.

The multiplicity of V with respect to f is the multiplicity of any $w \in W$ as a root of $\begin{bmatrix} f \\ \mathcal{L} \end{bmatrix}$. The component V is said to be generically reduced with respect to f if the multiplicity of V with respect to f is 1. Otherwise, V is said to be generically nonreduced, which we consider in the following section. See [23, Chap. 13] for more details regarding witness sets.

1.2 Deflation

If V is generically nonreduced with respect to f, then the deflation approach of [10] produces a polynomial system $F : \mathbb{C}^N \to \mathbb{C}^m$, with $m \ge n$, such that $F^{-1}(0)$ has an irreducible and generically reduced component \widehat{V} which, as a set, is equal to V. By renaming as necessary, we will assume without loss of generality that V is generically reduced with respect to f.

¹A constructible subset of an algebraic set X is any set in the Boolean algebra of subsets of X obtained by starting with algebraic subsets of X and closing up under the operations of finite unions and complementation.

It should be noted that more traditional versions of deflation (see also [8, 11, 12] and [23, §13.3.2, §15.2.2]) change the dimension of the ambient space and may replace V with an algebraic set V' that maps generically one-to-one onto a dense subset of V.

1.3 Randomization

Let $f: \mathbb{C}^N \to \mathbb{C}^n$ be a polynomial system and $1 \leq k \leq n$. For $A \in \mathbb{C}^{k \times (n-k)}$, let

$$\mathcal{R}(f;k) = [I_k \ A] \cdot f$$

where I_k is the $k \times k$ identity matrix. It is a consequence of Bertini's theorem, e.g., [22] or [23, §13.5], that any irreducible codimension k component of $\mathcal{V}(f)$ is an irreducible component of $\mathcal{V}(\mathcal{R}(f;k))$ for a nonempty Zariski open (and hence dense) set of matrices $A \in \mathbb{C}^{k \times (n-k)}$. Thus, we will assume without loss of generality that $f : \mathbb{C}^N \to \mathbb{C}^k$ is a polynomial system where $V \subset f^{-1}(0)$ is a codimension k irreducible component.

1.4 Pseudo-witness sets

Let $f : \mathbb{C}^N \to \mathbb{C}^n$ be a polynomial system and $\{f, \mathcal{L}, W\}$ be a witness set for an irreducible and generically reduced component $V \subset f^{-1}(0)$ of dimension ℓ . Suppose that $\pi : \mathbb{C}^N \to \mathbb{C}^K$ is a linear map and $B \in \mathbb{C}^{K \times N}$ such that $\pi(x) = Bx$.

Even though the set $\pi(V)$ might not be an algebraic set, it is very close to an algebraic set. More specifically, $\pi(V)$ is a *constructible algebraic set* which means that it is a member of the Boolean algebra of sets constructed from algebraic sets by the operations of finite unions, finite intersections, and complementation. A typical example is the projection onto (x, y) of $\mathcal{V}(x - yz)$: the image is $(\mathbb{C}^2 \setminus \mathcal{V}(y)) \cup \{(0, 0)\}$.

The closure of a constructible algebraic set C in the complex topology \overline{C} is the same as the closure of C in the Zariski topology. The same statement holds for the interior C° of C with $\overline{C^{\circ}} = \overline{C}$. In particular, since the dimensions of \overline{C} and C° are equal, the dimension of C is well-defined. Finally, if \overline{C} is pure k-dimensional, then $\overline{C} \cap L = C^{\circ} \cap L$ for a general affine linear space L of codimension k. Additional details for constructible algebraic sets is provided in [23, Appendix A].

Let $\ell' = \dim \overline{\pi(V)}$. For $i = 1, \ldots, \ell'$, let $b_i \in \mathbb{C}^N$ be general elements in the row span of B and, for $i = \ell' + 1, \ldots, \ell$, let $b_i \in \mathbb{C}^N$ be general elements in \mathbb{C}^N . We call the quadruple $\{f, \pi, \mathcal{L}', W'\}$ [7], where

$$\mathcal{L}'(x) = \begin{bmatrix} b_1 \cdot x - 1 \\ \vdots \\ b_{\ell} \cdot x - 1 \end{bmatrix} \text{ and } W' = V \cap \mathcal{V}(\mathcal{L}'),$$

a pseudo-witness set for $\pi(V)$ with deg $\overline{\pi(V)} = |\pi(W)|$.

A pseudo-witness set may be efficiently used to fulfill the same tasks for which a witness set for $\overline{\pi(V)}$ would be used if we had a set of polynomials on \mathbb{C}^K whose solution set contained $\overline{\pi(V)}$ as an irreducible component. One example is using pseudo-witness

sets in place of witness sets to work with the numerical irreducible decomposition [20] of the closure of the image of an algebraic map, e.g., $[1, \S 2.1.3]$.

1.5 Moving linear spaces

The membership tests developed in this article are based on moving linear spaces. Let $\{f, \mathcal{L}, W\}$ be a witness set for an irreducible and generically reduced $V \subset f^{-1}(0)$ of dimension ℓ where $f : \mathbb{C}^N \to \mathbb{C}^{N-\ell}$ and $\mathcal{L} : \mathbb{C}^N \to \mathbb{C}^{\ell}$. Given a system of linear polynomials $\widehat{\mathcal{L}} : \mathbb{C}^N \to \mathbb{C}^{\ell}$ with dim $\mathcal{V}(\widehat{\mathcal{L}}) = N - \ell$, we want to compute the set of points $\widehat{W} := V \cap \mathcal{V}(\widehat{\mathcal{L}}) \subset V$ by deforming \mathcal{L} to $\widehat{\mathcal{L}}$ using the "square" homotopy $H : \mathbb{C}^N \times \mathbb{C} \to \mathbb{C}^N$ defined by

$$H(x,t) = \begin{bmatrix} f(x) \\ (1-t)\widehat{\mathcal{L}}(x) + t\mathcal{L}(x) \end{bmatrix}.$$
 (1)

Starting at t = 1 with the points in W, continuation allows one to track the path defined by $H(x,t) \equiv 0$ as t goes from 1 to 0. Additional details are provided in [23].

Of the |W| paths tracked using the homotopy H, some of them may diverge as t approaches 0. The set \widehat{W} is the set of endpoints of the paths that converge to a point in \mathbb{C}^N as t approaches 0.

One application of moving linear spaces is the homotopy membership test, first described in [21], which replaced the more expensive interpolation test of [20]. Given a point $y \in \mathbb{C}^N$, let $\widehat{\mathcal{L}} : \mathbb{C}^N \to \mathbb{C}^\ell$ be a system of general linear polynomials such that $y \in \mathcal{V}(\widehat{\mathcal{L}})$. If \widehat{W} is the set of finite endpoints of the homotopy H defined in (1) starting at each point in W, then $y \in V$ if and only if $y \in \widehat{W}$.

1.6 Geometric genus of a curve

In [3], a numerical algorithm is given for computing the geometric genus of an irreducible one-dimensional component $R \subset \mathbb{C}^K$ of the solution set of a polynomial system. The geometric genus of R is the topological genus of the unique smooth compactification of the desingularization of R. Since the desingularizations of a curve and a generically one-to-one image of a curve are isomorphic, deflation of a component will not change its geometric genus. Therefore the component R may be assumed to have multiplicity one. The algorithm of [3], which is based on the Hurwitz theorem, starts with the restriction $p: R \to \mathbb{C}$ of a linear projection $A: \mathbb{C}^K \to \mathbb{C}$.

In that article p is assumed proper, but this is *easily modified* as will be shown below. We also show how the algorithm may be applied to an irreducible curve $R \subset \mathbb{C}^K$ arising as the closure of a constructible set $R' \subset \mathbb{C}^K$.

Let us explain the algorithm of [3].

We may regard A as the product projection $\mathbb{C}^{K-1} \times \mathbb{C} \to \mathbb{C}$. We let \overline{A} be the product projection of $\mathbb{P}^{K-1} \times \mathbb{P}^1 \to \mathbb{P}^1$. Taking the closure \overline{R} of R in $\mathbb{P}^{K-1} \times \mathbb{P}^1$, we have the proper map $\overline{p} := \overline{A}_{\overline{R}}$. Let $s : \widehat{R} \to \overline{R}$ denote the desingularization of \overline{R} and $\widehat{p} : \widehat{R} \to \mathbb{P}^1$ the map $s \circ \overline{p}$. Then, Hurwitz theorem tells us that

$$g = -2\deg(\widehat{p}) + \rho$$

where

- 1. g is the genus of \widehat{R} , which we want to compute;
- 2. deg (\hat{p}) is the degree of \hat{p} , which equals the degree of p; and
- 3. ρ is the ramification of \hat{p} .

From the above we see that we need to compute ρ . Let \mathcal{R} denote the images under \hat{p} of the branch points of \hat{p} . For any $y \in \mathcal{R}$, let Δ_y denote a contractible set with a continuous and piecewise differentiable boundary, e.g., a disk in a Euclidean patch $\mathbb{C} \subset \mathbb{P}^1$ containing y, such that no points of \mathcal{R} other than y are in Δ_y . Fix a point x_y on the boundary of Δ_y . We have a monodromy transformation $T_y : \hat{p}^{-1}(x_y) \to \hat{p}^{-1}(x_y)$ obtained by continuation around the boundary of Δ_y of the paths starting at points of $p^{-1}(x_y)$. The ramification ρ is a sum of contributions ρ_y for the points $y \in \mathcal{R}$.

The number ρ_y equals deg (\hat{p}) minus the number of orbits of the permutation group on $\hat{p}^{-1}(x_y)$ generated by T_y . There are two main observations of [3].

The first is that

• ρ_y may be computed using the monodromy transformation $T_y: \overline{p}^{-1}(x_y) \to \overline{p}^{-1}(x_y)$. (We use the same symbol T_y because $p^{-1}(x_y)$ is naturally identified with $\hat{p}^{-1}(x_y)$ and under this identification, the monodromy transformations are the same.)

Though computing \mathcal{R} is involved, it is straightforward (see [3]) to compute a finite set on \overline{R} that maps to a finite set of \mathbb{P}^1 containing \mathcal{R} . It suffices to work with this larger set instead of \mathcal{R} is a consequence of the second main observation:

• for any point y not in \mathcal{R} , the local monodromy contribution of ρ_y is zero.

Note also that we can work with $p: R \to \mathbb{C}$ as long as we also do a calculation of ρ_{∞} by going around a large enough circle on \mathbb{C} , so that any point of \mathcal{R} (except possibly for ∞) is contained within the circle.

If p is not proper, we simply need to add to \mathcal{R} the points over which p is not proper, i.e., we add to \mathcal{R} the image under \overline{A} of the set $\overline{R} \cap (\mathbb{P}^{K-1} \setminus \mathbb{C}^{K-1}) \times \mathbb{C}$. As above, this may add a finite number of extra points without any harm to the final result.

Extension to constructible sets Finally, assume $R' \subset \mathbb{C}^K$ is a constructible set whose closure is an irreducible curve $R \subset \mathbb{C}^K$. We fix a linear projection $A : \mathbb{C}^K \to \mathbb{C}$ and set p equal to A restricted to R. Possibly making a linear change of coordinates, we regard A as the product projection $\mathbb{C}^{K-1} \times \mathbb{C} \to \mathbb{C}$. We let \overline{A} denote the product projection $\mathbb{P}^{K-1} \times \mathbb{P}^1 \to \mathbb{P}^1$. Let \overline{R} denote the closure of R in $\mathbb{P}^{K-1} \times \mathbb{P}^1$, we have the proper map $\overline{p} := \overline{A}_{\overline{R}}$. We let $\widehat{p} : \widehat{R} \to \mathbb{P}^1$ denote the composition of the desingularization map $s : \widehat{R} \to \overline{R}$ and \overline{p} .

Looking over the argument sketched above for the algorithm to compute g in the case when R' = R, we see that the algorithm for a constructible set R' to work, we need to compute

- 1. the degree of p; and
- 2. a finite subset of \mathbb{P}^1 containing $\widehat{p}(\mathcal{R})$, where \mathcal{R} is the set of branch points of the \widehat{p} .

The set \mathcal{R} is contained in the union of $\infty \in \mathbb{P}^1$ and the images under p of

- 1. the singular points of R;
- 2. the points $R \setminus R'$;
- 3. $A((\mathbb{P}^{K-1} \setminus \mathbb{C}^K) \cap \overline{R});$ and
- 4. all of the branch points of the algebraic map $p: R \to \mathbb{C}$.

2 Membership tests for projections

Let $f : \mathbb{C}^N \to \mathbb{C}^n$ be a polynomial system and $V \subset f^{-1}(0)$ be an irreducible algebraic set of dimension ℓ . As developed in §1, we may assume without loss of generality that V is generically reduced and $n = N - \ell$.

Let $\pi : \mathbb{C}^{N} \to \mathbb{C}^{K}$ be a linear map and $y \in \pi(\mathbb{C}^{N}) \subset \mathbb{C}^{K}$. We will first use a pseudo-witness set $\{f, \pi, \mathcal{L}, \mathcal{W}\}$ for $\overline{\pi(V)}$ to determine if $y \in \overline{\pi(V)}$ and provide sufficient conditions for deciding if $y \in \pi(V)$. We will then use a witness set $\{f, L, W\}$ for V to determine if $y \in \pi(V)$.

2.1 Basic membership test

Let $\ell' = \dim \overline{\pi(V)}$ and $\mathcal{L} = [\mathcal{L}_1 \cdots \mathcal{L}_\ell]^T$ such that $\mathcal{L}_1, \ldots, \mathcal{L}_{\ell'}$ are general linear polynomials on $\pi(\mathbb{C}^N)$ and $\mathcal{L}_{\ell'+1}, \ldots, \mathcal{L}_\ell$ are general linear polynomials on \mathbb{C}^N . For $i = 1, \ldots, \ell'$, let $\widehat{\mathcal{L}}_i : \mathbb{C}^K \to \mathbb{C}$ be a general linear polynomial such that $y \in \mathcal{V}(\widehat{\mathcal{L}}_i)$ and define

$$\widehat{\mathcal{L}}(x) = \begin{bmatrix} \widehat{\mathcal{L}}_1(\pi(x)) \\ \vdots \\ \widehat{\mathcal{L}}_{\ell'}(\pi(x)) \\ \mathcal{L}_{\ell'+1}(x) \\ \vdots \\ \mathcal{L}_{\ell}(x) \end{bmatrix}.$$

Consider the homotopy H defined by (1) which deforms \mathcal{L} to $\widehat{\mathcal{L}}$. For each $w \in \mathcal{W}$, let $x_w(t)$ be the path defined by $x_w(1) = w$ and $H(x_w(t), t) \equiv 0$ for $t \in (0, 1]$. There are three possibilities for each path $x_w(t)$ as t approaches 0, namely

- 1. $x_w(t)$ converges to a point in \mathbb{C}^N yielding that $\pi(x_w(t))$ converges to a point in \mathbb{C}^K ;
- 2. $x_w(t)$ diverges but $\pi(x_w(t))$ converges to a point in \mathbb{C}^K ; or
- 3. $x_w(t)$ and $\pi(x_w(t))$ both diverge.

Consider the related sets:

- 1. $C_y = \{\lim_{t\to 0} \pi(x_w(t)) \mid w \in \mathcal{W} \text{ and } \lim_{t\to 0} x_w(t) \text{ converges}\}; \text{ and }$
- 2. $P_y = \{\lim_{t \to 0} \pi(x_w(t)) \mid w \in \mathcal{W} \text{ and } \lim_{t \to 0} \pi(x_w(t)) \text{ converges} \}.$

Clearly, $C_y \subset P_y \subset \overline{\pi(V)}$. The following lemma yields a membership test for $\overline{\pi(V)}$ using P_y and sufficient conditions for deciding if $y \in \pi(V)$ using C_y .

Lemma 1. With the setup described above, we have the following tests:

- 1. $y \in \overline{\pi(V)}$ if and only if $y \in P_y$;
- 2. if $y \in C_y$, then $y \in \pi(V)$; and
- 3. if $C_y = P_y$ or dim $\overline{\pi(V)} = 1$, then $y \in C_y$ if and only if $y \in \pi(V)$.

Proof. Define $\mathcal{L}_y(z) = \begin{bmatrix} \widehat{\mathcal{L}}_1(z) \\ \vdots \\ \widehat{\mathcal{L}}_{\ell'}(z) \end{bmatrix}$. By genericity, $\overline{\pi(V)} \cap \mathcal{V}(\mathcal{L}_y)$ consists of finitely many

points. It follows from [14] that $P_y = \overline{\pi(V)} \cap \mathcal{V}(\mathcal{L}_y)$. Since $y \in \mathcal{V}(\mathcal{L}_y)$, we know that $y \in P_y$ if and only if $y \in \overline{\pi(V)}$.

If $y \in C_y$, then there exists $w \in \mathcal{W}$ and $\alpha \in V \subset \mathbb{C}^N$ such that $\alpha = \lim_{t \to 0} x_w(t)$ and $y = \pi(\alpha) = \lim_{t \to 0} \pi(x_w(t))$. Since $\alpha \in V$, this implies $y = \pi(\alpha) \in \pi(V)$.

The only part remaining for the final statement is showing that $y \in \pi(V)$ implies $y \in C_y$. If $C_y = P_y$, this follows from the first statement. If $\dim \overline{\pi(V)} = 1$, we know that $y \in \pi(V)$ implies that $V \cap \pi^{-1}(y)$ is pure-dimensional of dimension $\dim V - 1$ since V is irreducible. Therefore, this case also follows from [14].

Remark 2. If $w_1, w_2 \in W$ such that $\pi(w_1) = \pi(w_2)$, then $\pi(\underline{x_{w_1}(t)}) = \pi(x_{w_2}(t))$ for all $t \in (0, 1]$. In particular, we only need to track at most deg $\pi(V) = |\pi(W)|$ paths in order to determine if $y \in \pi(V)$.

Remark 3. We note that the membership test of this section immediately applies to a wide class of projections of quasialgebraic sets². For example, consider the product

²A quasialgebraic set is a set of the form $A \setminus B$, where A and B are algebraic subsets of \mathbb{P}^N .

projection $\pi_{\mathbb{P}} : \mathbb{P}^{N-k} \times \mathbb{P}^K \to \mathbb{P}^K$. Let $X \subset \underline{\mathbb{P}^{N-k}} \times \mathbb{P}^K$ be a quasialgebraic set. Let $y \in \mathbb{P}^K$ be a point that we wish to check is in $\overline{\pi_{\mathbb{P}}(X)}$. Choose a generic Euclidean patch $U \subset \mathbb{P}^{N-k} \times \mathbb{P}^K$, i.e., choose generic hyperplanes $H_v \subset \mathbb{P}^{N-K}$ and $H_h \subset \mathbb{P}^K$ and let

$$U = \left(\mathbb{P}^{N-K} \setminus H_v\right) \times \left(\mathbb{P}^K \setminus H_h\right).$$

Then with probability one, $y \in (\mathbb{P}^K \setminus H_h)$ and if $y \in \overline{\pi_{\mathbb{P}}(X)} = \pi_{\mathbb{P}}(\overline{X})$, i.e., if there is an $x \in \overline{X}$ going to y, then $x \in (\mathbb{P}^{N-K} \setminus H_h)$.

2.2 Advanced membership test

We see from Lemma 1 that the one remaining case is deciding if $y \in \pi(V)$ given that $y \in P_y \subset \overline{\pi(V)}$, $y \notin C_y$, and $\dim \overline{\pi(V)} > 1$. The advanced membership test is based on the fact that $y \in \pi(V)$ if and only if $V \cap \pi^{-1}(y)$ is nonempty. That is, one simply computes the intersection of V with the linear space $\pi^{-1}(y)$. This can be accomplished starting with a witness set for V together with slice moving which we perform following a regenerative cascade approach [9]. Since we only need to decide if $V \cap \pi^{-1}(y)$ is empty, the test simply cascades down through the dimensions under consideration and terminates when either a point in $V \cap \pi^{-1}(y)$ is found or all of the possible dimensions are empty. As above, let $\ell = \dim V$ and $\ell' = \dim \overline{\pi(V)}$. Then, since $\ell - \ell'$ is the general fiber dimension, the possible fiber dimensions under consideration are $\ell - 1, \ell - 2, \ldots, \ell - \ell'$. Thus, this test tracks at most $\ell' \cdot \deg V$ paths. If we have already verified that $y \notin C_y$ from §2.1, then we do not need to consider the general fiber dimension. In this case, this test tracks at most $(\ell' - 1) \cdot \deg V$ additional paths.

Let $\{f, L, W\}$ be a witness set for V where $\hat{L} = [L_1, \ldots, L_\ell]^T$ and $\hat{\mathcal{L}}_1, \ldots, \hat{\mathcal{L}}_{\ell'}$ be general linear polynomials on \mathbb{C}^K such that $y \in \mathcal{V}(\hat{\mathcal{L}}_i)$. For $i = 0, \ldots, \ell'$, define

$$\mathcal{M}_{i}(x) = \begin{bmatrix} \widehat{\mathcal{L}}_{1}(\pi(x)) \\ \vdots \\ \widehat{\mathcal{L}}_{i}(\pi(x)) \\ L_{i+1}(x) \\ \vdots \\ L_{\ell}(x) \end{bmatrix}.$$

We have $\mathcal{M}_0 = L$ and define $S_0 = W$. If $0 \leq i < \ell'$ such that S_i is known, we compute S_{i+1} as follows. Let W_{i+1} be the finite endpoints of the modified homotopy H defined by (1) which deforms \mathcal{M}_i to \mathcal{M}_{i+1} with start points S_i . Let G_{i+1} be the subset of points of W_{i+1} which π maps to y and $S_{i+1} = W_{i+1} \setminus G_{i+1}$. In particular, it follows from [9, §2] that each point in S_{i+1} is a nonsingular root of $\begin{bmatrix} f \\ \mathcal{M}_{i+1} \end{bmatrix}$ and G_{i+1} is a witness point superset for the pure (i+1)-codimensional component of $V \cap \pi^{-1}(y)$.

Lemma 4. With the setup described above, $y \in \pi(V)$ if and only if $G_i \neq \emptyset$ for some $i \in \{1, \ldots, \ell'\}$. Moreover, if $y \notin C_y$, where C_y is defined as in §2.1, then $y \in \pi(V)$ if and only if $G_i \neq \emptyset$ for some $i \in \{1, \ldots, \ell'-1\}$.

Proof. This follows from the above discussion together with [9, Lemma 2.2 & Theorem 2.3] applied to this context. \Box

Remark 5. By working with generic Euclidean patches as in Remark 3, the membership test of this section extends to a wide class of projections of quasiprojective sets. We will use the version for the restriction of the product projection $\pi_{\mathbb{P}} : \mathbb{P}^{N-K} \times \mathbb{P}^{K} \to \mathbb{P}^{K}$ in the next section.

3 Codimension one components of $\overline{\overline{\pi(V)} \setminus \pi(V)}$

In order to compute more detailed invariants of $\pi(V)$, it may be necessary to have a numerical irreducible decomposition of $\overline{\pi(V)} \setminus \pi(V)$, i.e., a numerical irreducible decomposition of $\overline{\pi(V)} \setminus \pi(V)^{\circ}$, where the set \mathcal{C}° is the largest Zariski open set contained in the constructible algebraic set \mathcal{C} . The results of this article allow us to compute the decomposition of the codimension one components of $\overline{\overline{\pi(V)}} \setminus \pi(V)$. As an illustration, we describe how to use this partial decomposition to compute a basic invariant of $\overline{\pi(V)}$.

3.1 Decomposition of codimension one components

Assume we have the standard setup, i.e., $f : \mathbb{C}^N \to \mathbb{C}^n$ is a polynomial system and $V \subset f^{-1}(0)$ is an irreducible ℓ -dimensional component. By §1.2 and §1.3, we may assume without loss of generality that V is generically reduced and $n = N - \ell$, respectively. For simplicity, assume that $\pi : \mathbb{C}^N \to \mathbb{C}^K$ is a linear projection onto the last K coordinates. Note that the projection π extends to the product projection $\pi_{\mathbb{P}} : \mathbb{P}^{N-K} \times \mathbb{P}^K \to \mathbb{P}^K$. Let $V_{\mathbb{P}}$ denote the closure of V in $\mathbb{P}^{N-K} \times \mathbb{P}^K$. \mathbb{C}^{K} . Let $V_{\mathcal{P}}$ denote the closure of \mathcal{E}^K and $\mathcal{E} = (\mathbb{P}^{N-K} \setminus \mathbb{C}^{N-K}) \times \mathbb{C}^K$. Let $V_{\mathcal{P}}$ denote the closure

Define $\mathcal{P} = \mathbb{P}^{N-K} \times \mathbb{C}^K$ and $\mathcal{E} = (\mathbb{P}^{N-K} \setminus \mathbb{C}^{N-K}) \times \mathbb{C}^K$. Let $V_{\mathcal{P}}$ denote the closure of V in \mathcal{P} and $\pi_{\mathcal{P}}$ denote the restriction of $\pi_{\mathbb{P}}$ to \mathcal{P} . We have the following:

- 1. $\pi_{\mathbb{P}}(V_{\mathbb{P}})$ is the closure of $\pi(V)$ in \mathbb{P}^{K} ; and
- 2. $\overline{\pi(V)}$, the closure of $\pi(V)$ in \mathbb{C}^K , equals $\pi_{\mathcal{P}}(V_{\mathcal{P}})$.

We first consider the case when $\dim \overline{\pi(V)} = 1$. In this case, all fibers of $\pi_{\mathcal{P}}$ restricted to $V_{\mathcal{P}}$, i.e., $\pi_{\mathcal{P}|V_{\mathcal{P}}}$, are of pure dimension $\dim \overline{V} - 1$. Since $\dim(V_{\mathcal{P}} \cap \mathcal{E}) = \dim \overline{V} - 1$, we conclude that the irreducible components of the fibers of $\pi_{\mathcal{P}|V_{\mathcal{P}}}$ over the finite set $\overline{\pi(V)} \setminus \pi(V)$ are irreducible components of $V_{\mathcal{P}} \cap \mathcal{E}$. That is, we can first compute the numerical irreducible decomposition of $V_{\mathcal{P}} \cap \mathcal{E}$ and then use the membership test of this article to determine the points of $\overline{\pi(V)} \setminus \pi(V)$.

Now assume that dim $\pi(V) \ge 2$. It is a consequence of a vanishing theorem of Picard-Kodaira type [18, Theorem 3.42] that, if dim $\overline{\pi(V)} \ge 2$, then for a general hyperplane

 \mathcal{H} of \mathbb{C}^{K} , $H = \pi_{\mathcal{P}}^{-1}(\mathcal{H}) \cap V_{\mathcal{P}}$ is irreducible. Since a general linear space of codimension dim $\overline{\pi(V)} + 1$ meets $\overline{\pi(V)}$ in an irreducible curve and meets each codimension one component A of $\overline{\overline{\pi(V)}} \setminus \overline{\pi(V)}$ in deg A points, we have constructed a pseudo-witness point set for the union of codimension one components of $\overline{\overline{\pi(V)}} \setminus \overline{\pi(V)}$. This shows in particular that for each codimension one irreducible component A of $\overline{\overline{\pi(V)}} \setminus \overline{\pi(V)}$, there is a dim V - 1 component of $V_{\mathcal{P}} \cap \mathcal{E}$ surjecting onto A.

We may compute a numerical irreducible decomposition of the dim $\overline{V}-1$ components \mathcal{A} of $V_{\mathcal{P}} \cap \mathcal{E}$ and then use the membership test for the images of the witness sets of these components to check which components have images in $\overline{\pi(V)} \setminus \pi(V)$. For the irreducible components \mathcal{A} with an image A in $\overline{\overline{\pi(V)}} \setminus \pi(V)$, the results of [7] using the map $\pi_{\mathcal{A}} : \mathcal{A} \to A$ yield a pseudo-witness set of A. Finally, we need to compute the dimensions of the fibers over the images of one point from the witness set of \mathcal{A} : those A of codimension one are precisely the ones where the fiber dimension is dim $V - \dim \overline{\pi(V)}$.

3.2 Application to the geometric genus of a curve section

As an application, we describe how we may use the pseudo-witness set for the codimension one boundary components to compute the geometric genus g of a general curve section of $\overline{\pi(V)} \subset \mathbb{C}^K$. The number g is, by definition, equal to the genus of the desingularization $s: \widehat{R} \to R$ of the intersection $R \subset \mathbb{C}^K$ of $\overline{\pi(V)}$ and a general affine linear space L of \mathbb{C}^K of dimension $K+1-\dim \overline{\pi(V)}$. Topologically, g is the usual genus of the unique smooth compactification of \widehat{R} . Equivalently, it is the genus of the desingularization of the closure in \mathbb{P}^K of the intersection of $\overline{\pi(V)}$ and a general affine linear space of \mathbb{C}^K of dimension $K+1-\dim \overline{\pi(V)}$.

Given a general affine linear space L of \mathbb{C}^K of dimension $K + 1 - \dim \overline{\pi(V)}$, we take $R = \overline{\pi(V)} \cap L$ and $R' = \pi(V) \cap L$. Using [18, Theorem 3.42], we can again reduce down to the case that $\dim \overline{\pi(V)} = 1$. We take the map $p: R \to \mathbb{C}$ to be the restriction to R to any linear projection from \mathbb{C}^K to \mathbb{C} . By taking the intersection of V with a general affine linear space of codimension $\ell - 1$, we may, by renaming if necessary, assume that V is one-dimensional. Let $q: V \to R$ be the map obtained by composing the restriction of π to V with the map p.

For Q, we take the union of the following sets:

- 1. the image under q of the branchpoints of q;
- 2. the image under q of the singular points of V;
- 3. the image under $p \circ \pi_{\mathcal{P}}$ of the set $V_{\mathcal{P}} \cap \mathcal{E}$ using the notation from §3.1; and
- 4. the image under p of the points in $\overline{\pi(V)} \setminus \pi(V)$.

The first three items require only standard computations. The last item follows from the computation of the finite set $\overline{\overline{\pi(V)} \setminus \pi(V)}$, which was computed in §3.1. Note the

third item is a finite set of points containing the points over which q is not proper and therefore also the points over which p is not proper.

To see that this set Q suffices, note that all the singular points of $\overline{\pi(V)}$ and branchpoints of p are either over $\overline{\overline{\pi(V)} \setminus \pi(V)}$ or in the image of the branchpoints of $p \circ \pi_{\mathcal{P}}$ and the singular set of $V_{\mathcal{P}}$.

The last item needed is the ability to track paths. We note that the paths on $\overline{\pi(V)}$ which are contained in $\pi(V)^{\circ}$ may be tracked using the pseudo-witness set of $\overline{\pi(V)}$.

4 Examples

We conclude by demonstrating the membership tests and codimension one decomposition on illustrative examples and then report on a more advanced example. The linear slice moving computations reported here were performed using Bertini v1.3.1 [2].

4.1 A parameterized circle

Consider the rational parameterization $(x(s), y(s)) = \left(\frac{1-s^2}{1+s^2}, \frac{2s}{1+s^2}\right)$ of an open dense subset the unit circle. Clearing denominators, this parameterization yields the system

$$f(s, x, y) = \begin{bmatrix} x(1+s^2) - (1-s^2) \\ y(1+s^2) - 2s \end{bmatrix}$$

with the accompanying projection $\pi(s, x, y) = (x, y)$ defined by the matrix $B = \begin{bmatrix} 0 & I_2 \end{bmatrix}$ where I_2 is the 2 × 2 identity matrix. It is easy to verify that $V = f^{-1}(0)$ is a irreducible curve of degree 3 that is generically reduced with respect to f. We will first use a witness set for V to construct a pseudo-witness set for $\overline{\pi(V)}$ and then determine if $z_j \in \pi(V)$ and $z_j \in \overline{\pi(V)}$ where

$$z_1 = (0,1), \quad z_2 = (-1,0), \quad z_3 = (\sqrt{2},i), \text{ and } z_4 = (1+i,1/3-i/2)$$

with $i = \sqrt{-1}$. Finally, we will compute $\overline{\overline{\pi(V)} \setminus \pi(V)}$.

Pseudo-witness set construction: Let $\{f, L, W\}$ be a witness set for V where $L : \mathbb{C}^3 \to \mathbb{C}$ is a general linear polynomial and |W| = 3. Since, for any $w \in W$,

$$\left[\begin{array}{c}Jf(w)\\B\end{array}\right]$$

is full rank, where Jf(w) is the Jacobian matrix of f evaluated at w, Lemma 3 of [7] yields that $\dim \overline{\pi(V)} = 1$. Let $\mathcal{L}(s, x, y) = \alpha x + \beta y - 1$ where $\alpha, \beta \in \mathbb{C}$ are random, which is a linear polynomial in the image of π . Consider the three paths defined by modifying the homotopy H from (1) to move from L to \mathcal{L} starting at the three points in W. Two paths converge with their endpoints mapping to distinct points under π . This implies that the degree of $\overline{\pi(V)}$ is 2. If W is the set consisting of these two endpoints, then $\{f, \pi, \mathcal{L}, W\}$ is a pseudo-witness set for $\overline{\pi(V)}$.

j	$ C_{z_j} $	$z_j \in C_{z_j}$?	$ P_{z_j} $	$z_j \in P_{z_j}$?	Result from Lemma 1
1	2	Yes	2	Yes	$z_1 \in \pi(V)$
2	1	No	2	Yes	$z_2 \in \overline{\pi(V)} \setminus \pi(V)$
3	2	Yes	2	Yes	$z_3 \in \pi(V)$
4	2	No	2	No	$z_4 \notin \overline{\pi(V)}$

Table 1: Summary of basic membership test for unit circle

Basic membership test: For each j = 1, ..., 4, let $z_j = (z_j^x, z_j^y)$ and consider the linear polynomial $\widehat{\mathcal{L}}_j(s, x, y) = \alpha(x - z_j^x) + \beta(y - z_j^y)$. The basic membership test described in §2.1 uses a modification of the homotopy H from (1) to move from \mathcal{L} to $\widehat{\mathcal{L}}_j$ starting with the two points in \mathcal{W} . Since dim $\overline{\pi(V)} = 1$, Lemma 1 provides membership tests for both $\pi(V)$ and $\overline{\pi(V)}$. Table 1 summarizes the results. Here, the sets C_{z_j} and P_{z_j} are the sets as in §2.1 arising from this basic membership test.

Codimension one components: The codimension one components of $\overline{\pi(V)} \setminus \pi(V)$ correspond to the points in $\pi_{\mathcal{P}}(V_{\mathcal{P}} \cap \mathcal{E})$ (as defined in §3.1). By working on a random patch in \mathbb{P}^1 , this reduces to tracking paths in \mathbb{C}^4 . We homogenize f and L with respect to s, namely

$$F(s_0, s_1, x, y) = s_0^2 \cdot f\left(\frac{s_1}{s_0}, x, y\right)$$
 and $M(s_0, s_1, x, y) = s_0 \cdot L\left(\frac{s_1}{s_0}, x, y\right)$,

and fix an affine patch in \mathbb{P}^1 defined by the equation $P(s_0, s_1, x, y) = p_0 s_0 + p_1 s_1 - 1$ where $p_0, p_1 \in \mathbb{C}$ are random. Let \widehat{M} be a general linear form and $M_0(s_0, s_1, x, y) = s_0$. Starting with the points

$$S = \left\{ \left(\frac{1}{p_1 + p_2 s}, \frac{s}{p_1 + p_2 s}, x, y \right) \ \middle| \ (s, x, y) \in W \right\},\$$

we first compute the finite endpoints of the homotopy H from (1) modified to deform from $[M, P]^T$ to $[\widehat{M}, P]^T$ and then use those as start points as we deform from $[\widehat{M}, P]^T$ to $[M_0, P]^T$. The resulting finite endpoints correspond to the points in $V_{\mathcal{P}} \cap \mathcal{E}$. In particular, the first had three finite endpoints while only one of the three paths converged for the second. This endpoint corresponds to the point $(0, 1, -1, 0) \in \mathbb{P}^1 \times \mathbb{C}^2$. Since this point projects to (-1, 0) under $\pi_{\mathcal{P}}$ (as defined in §3.1), we know that $\overline{\pi(V)} \setminus \pi(V) = \{(-1, 0)\}$.

4.2 A two-dimensional constructible set

Consider the example from §1.4, namely the image of $V = f^{-1}(0)$ under the projection $\pi(s, x, y) = (x, y)$ where f(s, x, y) = x - sy. The projection π is defined by the matrix $B = \begin{bmatrix} 0 & I_2 \end{bmatrix}$ where I_2 is the 2 × 2 identity matrix. Clearly, V is an irreducible surface of degree 2 that is generically reduced with respect to f. After constructing a pseudo-witness set for $\overline{\pi(V)}$, we will use the membership tests to determine if $p_j \in \pi(V)$ where

$$p_1 = (1,1), p_2 = (0,0), \text{ and } p_3 = (1,0),$$

j	$ C_{p_j} $	$p_j \in C_{p_j}$?	$ P_{p_j} $	$p_j \in P_{p_j}$?	Result from Lemma 1
1	1	Yes	1	Yes	$p_1 \in \pi(V)$
2	1	Yes	1	Yes	$p_2 \in \pi(V)$
3	0	No	1	Yes	$p_3 \in \overline{\pi(V)}$, inconclusive on $\pi(V)$

Table 2: Summary of basic membership test

and then compute a decomposition of the codimension one components of $\overline{\pi(V)} \setminus \pi(V)$.

Pseudo-witness set construction: Let $\{f, L, W\}$ be a witness set for V where $L : \mathbb{C}^3 \to \mathbb{C}^2$ is a system of general linear polynomials and |W| = 2. Since, for any $w \in W$,

$$\left[\begin{array}{c} \nabla f(w)^T \\ B \end{array}\right]$$

is full rank, where $\nabla f(w)$ is the gradient of f evaluated at w, Lemma 3 of [7] yields that $\dim \overline{\pi(V)} = 2$. Therefore, $\overline{\pi(V)} = \mathbb{C}^2$ and $\deg \overline{\pi(V)} = 1$. For random $\alpha, \beta \in \mathbb{C}$, let

$$\mathcal{L}(s, x, y) = \left[\begin{array}{c} x - \alpha \\ y - \beta \end{array} \right].$$

A pseudo-witness set for $\overline{\pi(V)}$ is the quadruple $\{f, \pi, \mathcal{L}, \mathcal{W}\}$ where $\mathcal{W} = \{(\alpha/\beta, \alpha, \beta)\}$.

Basic membership test: Even though $\overline{\pi(V)} = \mathbb{C}^2$ and hence $p_j \in \overline{\pi(V)}$, we can still use the basic membership test of §2.1 to determine which points to further investigate using the advanced membership test of §2.2. For each j = 1, 2, 3, we used the system of linear polynomials $\widehat{\mathcal{L}}_j(s, x, y) = (x, y) - p_j$. Table 2 summarizes the results. Here, the sets C_{p_j} and P_{p_j} are the sets as in §2.1 arising from this basic membership test.

Advanced membership test: Since the basic membership test was inconclusive for deciding if $p_3 = (1,0) \in \pi(V)$, we now apply the advanced membership test of §2.2. Let $L = [L_1, L_2]^T$ where L is the linear system in the witness set $\{f, L, W\}$ for V. For i = 1, 2, let $\hat{\mathcal{L}}_i(s, x, y) = r_{i1}(x - 1) + r_{i2}y$ for random $r_{ij} \in \mathbb{C}$ and consider

$$\mathcal{M}_0 = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}, \quad \mathcal{M}_1 = \begin{bmatrix} \widehat{\mathcal{L}}_1 \\ L_2 \end{bmatrix}, \text{ and } \mathcal{M}_2 = \begin{bmatrix} \widehat{\mathcal{L}}_1 \\ \widehat{\mathcal{L}}_2 \end{bmatrix}.$$

Starting with $S_0 = W$, tracking the paths for the modified homotopy H from (1) that deforms from \mathcal{M}_0 to \mathcal{M}_1 produces two points, neither of which projects to p_3 . Since we have already performed the basic membership test and found that $p_3 \notin C_{p_3}$, Lemma 4 provides that $p_3 \notin \pi(V)$. If the basic test was not already performed, one would need to track the two paths arising from moving \mathcal{M}_1 to \mathcal{M}_2 . Since both of these paths diverge, the same conclusion is reached.

Since the endpoint of the path for $p_2 = (0,0)$ was singular when performing the basic membership test, it is instructive to perform the advanced membership test on this point as well. In this case, we take $\hat{\mathcal{L}}_i(s, x, y) = r_{i1}x + r_{i2}y$. The deformation from \mathcal{M}_0 to \mathcal{M}_1 also produces two points, one of which does project to p_2 . Therefore, we know that $V \cap \pi^{-1}(p_2)$ contains a line. Tracking from the other point as \mathcal{M}_1 moves to \mathcal{M}_2 produces another point on this line. Therefore, $V \cap \pi^{-1}(p_2)$ is a line, namely $\{(s, 0, 0) \mid s \in \mathbb{C}\}$.

Codimension one components: We now turn to computing the curves in \mathbb{C}^2 contained in $\overline{\pi(V)} \setminus \pi(V)$ which correspond to the curves in $\pi_{\mathcal{P}}(V_{\mathcal{P}} \cap \mathcal{E})$ (as defined in §3.1). As in §4.1, we perform this computation on a random patch in \mathbb{P}^1 which reduces to tracking paths in \mathbb{C}^4 . We homogenize f and L with respect to s, namely

$$F(s_0, s_1, x, y) = s_0 \cdot f\left(\frac{s_1}{s_0}, x, y, \right) = s_0 x - s_1 y \text{ and } M(s_0, s_1, x, y) = s_0 \cdot L\left(\frac{s_1}{s_0}, x, y\right),$$

and fix an affine patch in \mathbb{P}^1 defined by the equation $P(s_0, s_1, x, y) = p_0 s_0 + p_1 s_1 - 1$ where $p_0, p_1 \in \mathbb{C}$ are random. Let $\widehat{M} = [\widehat{M}_1, \widehat{M}_2]^T$ be a system of two general linear forms and $M_0(s_0, s_1, x, y) = [s_0, \widehat{M}_2(s_0, s_1, x, y)]^T$. Starting with the points

$$S = \left\{ \left(\frac{1}{p_1 + p_2 s}, \frac{s}{p_1 + p_2 s}, x, y \right) \ \middle| \ (s, x, y) \in W \right\},\$$

we first compute the finite endpoints of the homotopy H from (1) modified to deform from $[M, P]^T$ to $[\widehat{M}, P]^T$ and then use those as start points as we deform from $[\widehat{M}, P]^T$ to $[M_0, P]^T$. We can use the resulting finite endpoints to produce a witness set for the curves in $\mathcal{V}_{\mathcal{P}} \cap \mathcal{E}$. In particular, the first had two finite endpoints while only one of the two paths converged for the second. This endpoint corresponds to the point $(0, 1, x^*, 0) \in \mathbb{P}^1 \times \mathbb{C}^2$ where $x^* \in \mathbb{C}$. This point projects to $(x^*, 0)$ under $\pi_{\mathcal{P}}$ (as defined in §3.1) which forms a witness point set for the line in $\overline{\pi(V)} \setminus \pi(V)$, namely $\mathcal{V}(y)$.

4.3 Lüroth hypersurface

Classically, a plane quartic is called a Lüroth quartic if it contains the ten vertices of a complete pentalateral [13]. The closure of the set of classical Lüroth quartics is a hypersurface \mathcal{H} in the space of plane quartics, called the Lüroth hypersurface, that was showed by Morley in 1919 to have degree 54 [15]. The degree 54 polynomial equation defining this hypersurface is called the Lüroth invariant and, according to Ottaviani [16], it is still unknown. Without the defining equation, deciding if a given quartic lies on the Lüroth hypersurface requires another approach. The approach in [16] provides a partial test which builds on classical results of White and Miller [24]. We will use a pseudo-witness set for \mathcal{H} and the membership test of §2.1 to provide a complete test for deciding if a given plane quartic lies on \mathcal{H} by tracking at most 54 homotopy paths.

Pseudo-witness set construction: We construct a pseudo-witness set for \mathcal{H} by first identifying the space of plane quartics with \mathbb{P}^{14} so that $\mathcal{H} \subset \mathbb{P}^{14}$. The set \mathcal{H} is the closure of the set of plane quartics Q for which there exists nonzero linear polynomials

j	$ C_{Q_j} $	$Q_j \in C_{Q_j}$?	$ P_{Q_j} $	$Q_j \in P_{Q_j}$?	Result from Lemma 1
1	54	No	54	No	$Q_1 \notin \mathcal{H}$
2	54	No	54	No	$Q_2 \notin \mathcal{H}$
3	54	No	54	No	$Q_3 \notin \mathcal{H}$
4	54	No	54	No	$Q_4 \notin \mathcal{H}$
5	54	Yes	54	Yes	$Q_5 \in \mathcal{H}$
6	38	No	39	Yes	$Q_6 \in \mathcal{H}$

Table 3: Summary of membership in the hypersurface of Lüroth quartics

 ℓ_j for $j = 1, \ldots, 5$ such that

$$Q = \mathcal{V}\left(\sum_{\substack{j=1\\k\neq j}}^{5} \prod_{\substack{k=1\\k\neq j}}^{5} \ell_k\right).$$

This parameterization allows us to use Lemma 3 of [7] to confirm that \mathcal{H} is a hypersurface and compute a pseudo-witness set for \mathcal{H} using Bertini [2]. From this pseudo-witness set, we are able to verify Morley's result that the degree of \mathcal{H} is 54 and, following Remark 2, we chose 54 points from the pseudo-witness point set that correspond to distinct quartics to be used as the starting points for our basic membership test.

Basic membership test: We applied the basic membership test of §2.1 to the quartics $Q_i = \mathcal{V}(q_i)$ defined by the following polynomials:

- $q_1 = (x^2 + y^2 + z^2)^2;$
- (Edge quartic [6, 17]) $q_2 = 25(x^4 + y^4 + z^4) 34(x^2y^2 + x^2z^2 + y^2z^2);$
- (Klein quartic [16, §5]) $q_3 = x^3y + y^3z + z^3x;$
- (Vinnikov curve [17, Ex. 4.1]) $q_4 = 2x^4 + y^4 + z^4 3x^2y^2 3x^2z^2 + y^2z^2;$
- ([16, §5]) $q_5 = xyz(x+y+z) + (x+2y+3z)(xyz+(xy+xz+yz)(x+y+z))$; and
- $q_6 = x^3y + x^2z^2 + xz^3$.

Table 3 summarizes the results of this test. Here, the sets C_{Q_j} and P_{Q_j} are the sets as in §2.1 arising from this basic membership test. We note that since $\mathcal{H} \subset \mathbb{P}^{14}$, compactness yields that P_{Q_j} , as a list, must consist of 54 points. However, in the j = 6 case, 16 of these points coincided with Q_6 .

Acknowledgement

The first author would like to thank Giorgio Ottaviani for his helpful comments regarding Lüroth quartics.

References

- D.J. Bates, J.D. Hauenstein, C. Peterson, and A.J. Sommese. Numerical decomposition of the rank-deficiency set of a matrix of multivariate polynomials. In *Approximate Commutative Algebra*, ed. by L. Robbiano and J. Abbott, Texts and Monographs in Symbolic Computation, Vol. 14, Springer (2010), pp. 55–77.
- [2] D.J. Bates, J.D. Hauenstein, A.J Sommese, and C.W. Wampler. Bertini: software for numerical algebraic geometry. Available at www.nd.edu/~sommese/bertini.
- [3] D.J. Bates, C. Peterson, A.J. Sommese, and C.W. Wampler. Numerical computation of the genus of an irreducible curve within an algebraic set. J. Pure Appl. Algebra, 215 (2011), 1844–1851.
- [4] A. Borel. Linear algebraic groups. Notes taken by H. Bass. W. A. Benjamin, Inc., New York-Amsterdam, 1969.
- [5] C. Chen. Solving Polynomial Systems via Triangular Decomposition. Ph.D. Thesis, University of Western Ontario, 2011.
- [6] W.L. Edge. Determinantal representations of x⁴ + y⁴ + z⁴. Math. Proc. Cambridge Phil. Soc., 34 (1938), pp. 6–21.
- [7] J.D. Hauenstein and A.J. Sommese. Witness sets of projections. Appl. Math. Comp., 217(7) (2010), pp. 3349–3354.
- [8] J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Regeneration homotopies for solving systems of polynomials. *Math. Comp.*, 80 (2011), pp. 345–377.
- [9] J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Regenerative cascade homotopies for solving polynomial systems. *Appl. Math. Comput.*, 218(4) (2011), pp. 1240–1246.
- [10] J.D. Hauenstein and C.W. Wampler. Isosingular sets and deflation. Preprint, 2011. Available at www.math.ncsu.edu/~jdhauens/preprints.
- [11] A. Leykin, J. Verschelde, and A. Zhao. Newton's method with deflation for isolated singularities of polynomial systems. *Theor. Comp. Sci.* 359 (2006), pp. 111–122.
- [12] A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for polynomial systems with isolated singular solutions. In *IMA Volume 146: Algorithms in Algebraic Geometry*, edited by A. Dickenstein, F.-O. Schreyer, and A.J. Sommese, Springer (2008), 79–97.
- [13] J. Lüroth. Einige Eigenschaften einer gewissen Gattung von Curven vierter Ordnung. Math. Annalen, 1 (1868), pp. 37–53.

- [14] A.P. Morgan and A.J. Sommese. Coefficient-parameter polynomial continuation. Appl. Math. Comput., 29(2) (1989), pp. 123–160. Errata: Appl. Math. Comput., 51 (1992), pp. 207.
- [15] F. Morley. On the Lüroth Quartic Curve. Amer. J. Math., 41 (1919), pp. 279–282.
- [16] G. Ottaviani. A computational approach to Lüroth quartics. Preprint, 2012. Available at arxiv.org/abs/1208.1372.
- [17] D. Plaumann, B. Sturmfels, and C. Vinzant. Quartic curves and their bitangents. J. Symbolic Computation, 46 (2011), pp. 712–733.
- [18] B. Shiffman and A.J. Sommese. Vanishing theorems on complex manifolds. Progress in Mathematics, Vol. 56. Birkhäuser Boston Inc., 1985.
- [19] W. Sit. Computations on quasi-algebraic sets. In Electronic Proceedings of IMACS ACA98, ed. by R. Liska, 1998.
- [20] A.J. Sommese, J. Verschelde and C.W. Wampler. Numerical decomposition of the solution sets of polynomials into irreducible components. SIAM J. Numer. Anal. 38 (2001), pp. 2022–2046.
- [21] A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical irreducible decomposition using projections from points on the components. In Symbolic computation: solving equations in algebra, geometry, and engineering (South Hadley, MA, 2000), volume 286 of Contemp. Math., pp. 37–51. Amer. Math. Soc., Providence, RI, 2001.
- [22] A.J. Sommese and C.W. Wampler. Numerical algebraic geometry. In *The Mathe-matics of Numerical Analysis: Real Number Algorithms, Park City, Utah, Summer 1995*, ed. by J. Renegar, M. Shub, and S. Smale, Lectures in Applied Math. 32 (1996), pp. 749–763, Amer. Math. Soc.
- [23] A.J. Sommese and C.W. Wampler. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore, 2005.
- [24] H.S. White and K.G. Miller. Note on Lüroth's type of plane quartic curves. Bull. Amer. Math. Soc., 15(7) (1909), pp. 347–352.