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Abstract

The foundation of algebraic geometry is the solving of systems of polynomial
equations. When the equations to be considered are defined over a subfield of
the complex numbers, numerical methods can be used to perform algebraic ge-
ometric computations forming the area of numerical algebraic geometry. This
article provides a short introduction to numerical algebraic geometry with the
subsequent articles in this special issue considering three current research topics:
solving structured systems, certifying the results of numerical computations, and
performing algebraic computations numerically via Macaulay dual spaces.
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Introduction

Numerical algebraic geometry is concerned with “numerical computations” of
objects connected with algebraic sets defined over subfields of the complex num-
bers. Some examples of such objects include solution sets and irreducible decom-
positions [80], monodromy groups [56], and exceptional sets of an algebraic map
[35, 89]. The term “numerical” refers to computations which are potentially inex-
act, e.g., floating-point arithmetic. Another approach to compute similar quanti-
ties is to use a symbolic approach, e.g., based on Gröbner basis computations over
an algebraic number field or over a prime field of characteristic p > 0. There are
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advantages and disadvantages of each approach, e.g., see [5] for a comparison of
approaches to compute irreducible decompositions. A near-term goal is to design
hybrid symbolic-numeric methods that utilize advantages of both approaches.

Classically, the part of algebraic geometry defined over subfields of the com-
plex numbers is called transcendental algebraic geometry. The sets that arise are
highly structured and provide many of the basic objects inspiring complex anal-
ysis, differential geometry, algebraic topology, and homological algebra.

When floating-point computations are used, at a basic level, one has a finite
approximation to all data. A disadvantage of this can be seen with the equation

z2 − 2 = 0. (1)

Numerically, a solution may be represented by a numerical approximation such
as 1.412 or 1.414213562, neither of which is actually a solution to (1). Due to
this, one needs a notion of what it means to numerically compute a solution to
system of equations. For a polynomial system f : CN → CN , suppose that ξ ∈ CN

is a nonsingular solution of f = 0, i.e., f(ξ) = 0 and Jf(ξ) is invertible where
Jf(z) is the Jacobian matrix of f evaluated at z. One could use the notion of an
approximate solution associated to ξ based on Newton’s method [17, Chap. 8] as a
definition for “numerically computing” ξ. In this case, there is an open neighbor-
hood containing ξ, each point of which is an approximate solution of ξ, such that
Newton’s method is a quadratically convergent contraction mapping with ξ being
a fixed point of this map. Quadratic convergence yields that ξ can be effectively
approximated to any given accuracy starting from an approximate solution.

The two key aspects for defining what it means to “numerically compute”
a solution are (1) compute a sufficiently accurate numerical approximation, and
(2) have an algorithm that can effectively produce approximations of a true so-
lution to any given accuracy starting from the numerical approximation. Here,
“sufficiently accurate” is dependent on the algorithm used to refine the solution,
e.g., inside the quadratic convergence basin of Newton’s method. In situations re-
lated to computing solutions using homotopy continuation, the refining algorithm
could be an endgame, e.g., [8, 49, 65, 66, 67], where the region of interest is called
the endgame operating zone [88, § 3.3.1],[18]. Armed with this information, one
is able to recover information about the solution, e.g., deciding reality [42] and
recovering exact equations [6].

Disadvantages of not working with exact answers can be balanced by an in-
crease in the number of computational methods, e.g., parallelization and typically
less memory utilized due to rounding that avoids expression swell. Numerical
methods also have the advantage of computing and manipulating individual points
on an algebraic set.
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One way to generate large systems of polynomial equations is to discretize a
system of differential equations. This yields richly structured partially ordered sets
of sparse polynomial systems. Such systems are an important part of transcenden-
tal algebraic geometry, to which numerical algebraic geometry naturally applies.

The remaining sections of this introductory article are as follows. Section 1
contains a brief history of numerical algebraic geometry (which is not meant to be
exhaustive). Sections 2 and 3 provide a short summary of two main ideas used in
this area: path tracking and witness sets, respectively. We conclude in Section 4
with a short summary of the articles in this special issue.

1. A Brief History

The foundational method which led to the development of numerical alge-
braic geometry is continuation (often called homotopy continuation). In practice,
continuation is simply the ability to track along a solution path (see §2 below).

The first modern uses of continuation, e.g., [46, 52, 72], were used to find
fixed points with the tracking schemes based on simplicial approximations of the
spaces the paths went through. Continuation then evolved into a general method
of finding roots of systems of equations, with a major focus in solving differential
equations [28, 50, 70]. A brief overview of this early history, which we followed
here, is given in the introduction of [1]. Allgower and Georg’s book [4] and arti-
cles [2, 3] provide surveys of this theory with the important case of polynomial
systems placed in the perspective of much more general systems.

Due to the special nature of polynomial systems, continuation has been an
extremely effective method for computing isolated roots of polynomial systems.
There was a flood of articles following [23, 30]. The book [64] and the survey [60]
provide an overview of the area when computing isolated solutions was the focus
with Shub and Smale addressing certification and yielding complexity estimates
[73, 74, 75, 76, 77, 78] in the nonsingular isolated case (see also [13, 14, 15, 17, 19]).

The term Numerical Algebraic Geometry was coined in [87] which showed how
techniques for finding isolated zeroes could be used to compute the dimension
of an algebraic set and, in particular, decide if the solution set was empty. This
article also provided an algorithm for finding a numerical version of general points.
A better algorithm for carrying out the basic computations of [87] was given
in [79]. This lead to a sequence of articles containing algorithms for computing
the numerical version of the irreducible decomposition [80, 81, 82, 83] with related
work in [29, 71]. During this period the concept of a witness set, which is the
fundamental data structure used in numerical algebraic geometry to represent
an algebraic set, was introduced and clarified (see §3 below). Algorithms for
intersecting algebraic sets [84, 85] (see also [44]) led to a new class of algorithms
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[40, 41, 86] for solving systems equation by equation as well as other notions of
witness sets [38, 39].

One fundamental concern with numerical methods is the ability to handle sin-
gularities. Endgames, such as [8, 49, 65, 66, 67], are algorithms for computing the
endpoint, which may be singular, of a solution path. Another important devel-
opment to handle singularities was the deflation algorithm of Leykin, Verschelde,
and Zhao [57] (see also [58]) that built on earlier work of [68, 69] (see also [53]).
Leykin, Verschelde, and Zhao demonstrated an algorithm for regularizing isolated
singular solutions thereby restoring the local quadratic convergence of Newton’s
method. This led to many refinements and extensions, e.g., [26, 31, 32, 37, 59, 63],
and development related to nonisolated cases, e.g., [7, 43].

A picture of numerical algebraic geometry up to the end of 2004 is provided
in the book [88]. The survey [61] from a year earlier is of particular interest due
to its extensive description of polyhedral methods for solving polynomial systems
(see also [47, 48, 91]). The book [10] surveys major developments up to 2013.

The are four main software packages associated with numerical algebraic ge-
ometry under ongoing development: BertiniTM [10], HOM4PS-2.0 & HOM4PS-3

[54, 20, 21], NAG4M2 [55], and PHCpack [90].

2. Path Tracking

Measured by either computer usage or the amount of numerical analysis used,
numerically tracking the lift of a single path is the major computation of numerical
algebraic geometry. To make this precise in a broad context, consider the map
π : X → Y from a reduced quasiprojective algebraic set X to an irreducible
reduced quasiprojective algebraic set Y . Let x1 ∈ X be a manifold point such
that y1 := π(x1) is a manifold point of Y and dπ is an isomorphism from the
tangent space of X at x1 to the tangent space of Y at y1. Suppose that y0 ∈ Y
and φ : (0, 1] → Y is a smooth map with φ(1) = y1 and limt→0+ φ(t) = y0. With

this setup, one aims to compute the smooth map φ̂ : (0, 1]→ X where φ̂(1) = x1
and π ◦ φ̂ = φ assuming such a map φ̂ exists. In relation to solving systems of
equations, the particular focus is on computing the endpoint limt→0+ φ̂(t).

By using appropriate genericity, the lifting φ̂ of φ may be broadly guaranteed.
One key maneuver in numerical algebraic geometry is to utilize a random num-
ber generator to make choices to achieve appropriate genericity. This maneuver
combined with computations performed using appropriate precision yields speed
and robustness at the cost of allowing some numerical error [9].

We consider an example to cement the ideas using a common type of problem
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in numerical algebraic geometry. Suppose that z = (z1, . . . , zN) ∈ CN and

f(z) :=

 f1(z)
...

fN(z)

 (2)

is a system of N polynomials on CN . That is, f is a called a square system. Let
di = deg fi and consider the polynomial system

g(z) :=

 zd11 − 1
...

zdNN − 1

 . (3)

For any nonzero complex number γ, consider the family of polynomial systems

Hγ(z, t) := (1− t) · f(z) + γ · t · g(z) (4)

with solution set

V(Hγ) :=
{

(z, t) ∈ CN+1
∣∣ Hγ(z, t) = 0

}
.

For X := V(Hγ) and Y := C, we take π : X → Y to be the projection map

π(z, t) = t. Clearly, the solution set of g = 0, namely V(g), consists of D =
∏N

i=1 di
points where D is called the Bézout number of both f and g. The map π from a
neighborhood of V(g)× {1} ⊂ X to Y is a D-sheeted covering of a neighborhood
of 1 ∈ Y . For any γ ∈ C that does not lie on finitely many rays in C, i.e., for a
random γ, the path-lifting property holds with φ : (0, 1] → C given by φ(t) = t
starting at every point in V(g). That is, for each z∗ ∈ V(g), there is a smooth

path φ̂z∗ : (0, 1]→ X with φ̂z∗(1) = (z∗, 1) such that π ◦ φ̂z∗ = φ. The set of finite
endpoints of all the paths, namely{

x∗
∣∣∣∣ z∗ ∈ V(g) and lim

t→0+
φ̂z∗(t) = (x∗, 0) ∈ CN

}
contains at least one point on every connected component of V(f). In particular,
it is a classical result for each isolated point x ∈ V(f), the number of paths ending
at x is equal to the multiplicity of x with respect to f , e.g. [88, Theorem A.14.1].

This example is called the total degree (or Bézout) homotopy. The numerical

tracking along the path described by φ̂z∗(t) reduces down to solving the Davidenko
differential equation

∂Hγ

∂z
· dz

dt
+
∂Hγ

∂t
= 0
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with initial condition φ̂z∗(1) = (z∗, 1). Since Hγ

(
φ̂z∗(t)

)
≡ 0, the system Hγ

consists of first integrals for the Davidenko differential equation and is used to
control both the local and global error when numerically performing path tracking.

The following is a basic problem that deserves more study.

Problem 1. Compute the probability of error given numerical parameters, ran-
dom choices, and numerical algorithm.

In practice, different checks and dynamically changing the number of digits used
in the computations are made to reduce the probability of error in path tracking.
If the path φ̂z∗ is smooth on [0, 1], i.e., additionally at t = 0, then the path tracking
can be certified using an a priori, e.g., [13, 14, 15, 17, 19, 33, 73, 74, 75, 76, 77, 78],
or an a posteriori [36] certified tracking scheme.

3. Witness Sets

One key difference between numerical algebraic geometry and the use of sym-
bolic approaches is the representation of algebraic sets. Typically, in symbolic
approaches, an algebraic set is represented by a finite collection of polynomial
equations whose solution set is the algebraic set of interest. In this way, compu-
tations performed by symbolic approaches arise as the manipulation of equations.

Witness sets are general linear slices of algebraic sets. The intellectual under-
pinning of this notion is the rich classical study of the close relation of algebraic
sets and their linear sections [12]. Computations are performed on algebraic sets
using witness sets by manipulating points. In particular, suppose that f is a poly-
nomial system and X is a pure k-dimensional algebraic subset of V(f). A witness
set for X is the triple

{f, L,W}

where L is a system of k general linear polynomials and W = X ∩ V(L) is a set
consisting of degX points.

By using path tracking (see §2), given a witness set for X, it is computationally
inexpensive to compute X ∩ V(M) for any other system of k linear equations M
provided that |X ∩ V(M)| < ∞. This idea, for example, can be used to sample
points on X and decide membership in X, e.g., see [88, Chap. 15].

Various computations can be performed using witness sets, such as computing
intersections [44, 84, 85], recovering exact defining equations [6], and describing
the set of real points [16, 62]. Two other computations of interest are computing
images of algebraic sets and deciding algebraic properties. In classical elimina-
tion theory, one aims to compute the closure of the image of an algebraic set
under an algebraic map. This computation can be performed from a geometric
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perspective using numerical algebraic geometry [39]. Another computation with
a more algebraic viewpoint that can be performed using a witness set is deciding
if an algebraic set is a complete intersection, arithmetically Cohen-Macaulay, or
arithmetically Gorenstein [24, 25].

4. Summary of Articles

The seven research articles included in this special issue focus on three topics:
solving structured systems, certifying the results of numerical computations, and
performing algebraic computations numerically via Macaulay dual spaces. The
following provides a brief summary of these articles.

4.1. Solving structured systems

One way to increase efficiency of homotopy methods and numerical algebraic
geometric algorithms in general is to exploit structure in the polynomial system
which is to be solved. The first four articles in this special issue exploit structure
in various ways, which we summarize briefly.

The first article [11] considers decomposing a large polynomial system into
smaller subsystems that only depend on a decoupled subset of the variables.

The second article [21] describes computations related to exploiting the poly-
hedral structure of a polynomial system.

In the third article [22], the authors consider systems consisting of binomials,
that is, systems consisting of polynomials having at most two terms.

The fourth article [27] considers exploiting the structure of polynomial systems
arising in the computation of critical points.

4.2. Certifying results of numerical computations

As mentioned in the Introduction, one needs a notion of what it means to nu-
merically compute a solution. When a system has the same number of equations as
variables, a so-called square system, and the solution is nonsingular, one can con-
sider computing approximate solutions based on Newton’s method, e.g., Smale’s
α-theory as summarized in [17, Chap. 8] and implemented in [42]. The next two
articles in this special issue consider aspects of certification in the square case.

In particular, the fifth article [34] considers the case of certifying numerical
computations arising from square systems of polynomial-exponential equations.

The sixth article [45] considers problems in Schubert calculus, which are typ-
ically formulated as an overdetermined system. The authors show that these
problems can be reformulated as a square system so that standard certification
techniques based on Smale’s α-theory can be employed.
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4.3. Algebraic computations using Macaulay dual spaces

As described in §3, a witness set is a data structure built on the geometry of
a solution set to a system of polynomial equations. For considering the algebraic
structure of a systems of equations from a numerical point of view, one needs
additional tools. The last article [51] in this special issue considers using Macaulay
dual spaces to perform algebraic computations numerically.

Acknowledgments

JDH was supported in part by NSF ACI 1460032, Sloan Research Fellowship,
and Army Young Investigator Program (YIP). AJS was supported in part by
NSF ACI 1440617 and the Vincent J. and Annamarie Micus Duncan Chair of
Mathematics.

Bibliography

[1] J. C. Alexander and J. A. Yorke, The homotopy continuation method:
numerically implementable topological procedures, Trans. Amer. Math. Soc.,
242 (1978), pp. 271–284.

[2] E. L. Allgower and K. Georg, Continuation and path following, in Acta
numerica, vol. 2, Cambridge Univ. Press, Cambridge, 1993, pp. 1–64.

[3] , Numerical path following, in Handbook of numerical analysis, Vol. V,
North-Holland, Amsterdam, 1997, pp. 3–207.

[4] , Introduction to numerical continuation methods, vol. 45 of Classics
in Applied Mathematics, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2003. Reprint of the 1990 edition [Springer-Verlag,
Berlin].

[5] D. J. Bates, W. Decker, J. D. Hauenstein, C. Peterson, G. Pfis-
ter, F.-O. Scheryer, A. J. Sommese, and C. W. Wampler, Proba-
bilistic algorithms to analyze the components of an affine algebraic variety,
Applied Mathematics and Computation, 231 (2014), pp. 619–633.

[6] D. J. Bates, J. D. Hauenstein, T. M. McCoy, C. Peterson, and
A. J. Sommese, Recovering exact results from inexact numerical data in
algebraic geometry, Exp. Math., 22 (2013), pp. 38–50.

[7] D. J. Bates, J. D. Hauenstein, C. Peterson, and A. J. Sommese,
A numerical local dimensions test for points on the solution set of a system
of polynomial equations, SIAM J. Numer. Anal., 47 (2009), pp. 3608–3623.

8



[8] D. J. Bates, J. D. Hauenstein, and A. J. Sommese, A parallel
endgame, in Randomization, relaxation, and complexity in polynomial equa-
tion solving, vol. 556 of Contemp. Math., Amer. Math. Soc., Providence, RI,
2011, pp. 25–35.

[9] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler,
Adaptive multiprecision path tracking, SIAM J. Numer. Anal., 46 (2008),
pp. 722–746.

[10] , Numerically solving polynomial systems with Bertini, vol. 25 of Soft-
ware, Environments, and Tools, Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA, 2013.

[11] D. J. Bates, A. J. Newell, and M. E. Niemerg, Decoupling highly
structured polynomial systems, J. Symbolic Comput., (to appear).

[12] M. C. Beltrametti and A. J. Sommese, The adjunction theory of com-
plex projective varieties, vol. 16 of de Gruyter Expositions in Mathematics,
Walter de Gruyter & Co., Berlin, 1995.

[13] C. Beltrán and A. Leykin, Certified numerical homotopy tracking, Exp.
Math., 21 (2012), pp. 69–83.

[14] , Robust Certified Numerical Homotopy Tracking, Found. Comput.
Math., 13 (2013), pp. 253–295.

[15] C. Beltrán and L. M. Pardo, On Smale’s 17th problem: a probabilistic
positive solution, Found. Comput. Math., 8 (2008), pp. 1–43.

[16] G. M. Besana, S. Di Rocco, J. D. Hauenstein, A. J. Sommese,
and C. W. Wampler, Cell decomposition of almost smooth real algebraic
surfaces, Numerical Algorithms, (2012), pp. 1–34.

[17] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real
computation, Springer-Verlag, New York, 1998. With a foreword by Richard
M. Karp.

[18] D. A. Brake, J. D. Hauenstein, and A. J. Sommese, Numerical local
irreducible decomposition, Lecture Notes in Computer Science, (to appear).

[19] P. Bürgisser and F. Cucker, On a problem posed by Steve Smale, Ann.
of Math. (2), 174 (2011), pp. 1785–1836.

9



[20] T. Chen, T.-L. Lee, and T.-Y. Li, Mathematical Software – ICMS 2014:
4th International Congress, Seoul, South Korea, August 5-9, 2014. Proceed-
ings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, ch. Hom4PS-3:
A Parallel Numerical Solver for Systems of Polynomial Equations Based on
Polyhedral Homotopy Continuation Methods, pp. 183–190.

[21] , Mixed cell computation in Hom4PS-3, J. Symbolic Comput., (to ap-
pear).

[22] T. Chen and D. Mehta, Parallel degree computation for binomial systems,
J. Symbolic Comput., (to appear).

[23] S. N. Chow, J. Mallet-Paret, and J. A. Yorke, A homotopy method
for locating all zeros of a system of polynomials, in Functional differential
equations and approximation of fixed points (Proc. Summer School and Conf.,
Univ. Bonn, Bonn, 1978), vol. 730 of Lecture Notes in Math., Springer, Berlin,
1979, pp. 77–88.

[24] N. S. Daleo and J. D. Hauenstein, Numerically deciding the arithmeti-
cally Cohen-Macaulayness of a projective scheme, J. Symbolic Comput., 72
(2016), pp. 128–146.

[25] , Numerically testing generically reduced projective schemes for the arith-
metic Gorenstein property, Lect. Notes. Comp. Sci., (to appear).

[26] B. H. Dayton and Z. Zeng, Computing the multiplicity structure in solv-
ing polynomial systems, in Proc. of ISSAC 2005, New York, 2005, ACM,
pp. 166–123.

[27] A. M. del Campo and J. Rodriguez, Critical points via monodromy and
local methods, J. Symbolic Comput., (to appear).

[28] B. C. Eaves and H. W. Scarf, The solution of systems of piecewise linear
equations, Math. Oper. Res., 1 (1976), pp. 1–27.

[29] A. Galligo and D. Rupprecht, Irreducible decomposition of curves, J.
Symbolic Comput., 33 (2002), pp. 661–677. Computer algebra (London, ON,
2001).
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