
MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000–000
S 0025-5718(XX)0000-0

REGENERATION HOMOTOPIES FOR SOLVING SYSTEMS OF
POLYNOMIALS

JONATHAN D. HAUENSTEIN, ANDREW J. SOMMESE, AND CHARLES W. WAMPLER

Abstract. We present a new technique, based on polynomial continuation,
for solving systems of n polynomials in N complex variables. The method
allows equations to be introduced one-by-one or in groups, obtaining at each
stage a representation of the solution set that can be extended to the next
stage until finally obtaining the solution set for the entire system. At any
stage where positive dimensional solution components must be found, they
are sliced down to isolated points by the introduction of hyperplanes. By
moving these hyperplanes, one may build up the solution set to an intermedi-
ate system in which a union of hyperplanes “regenerates” the intersection of
the component with the variety of the polynomial (or system of polynomials)
brought in at the next stage. The theory underlying the approach guarantees
that homotopy paths lead to all isolated solutions, and this capability can be
used to generate witness supersets for solution components at any dimension,
the first step in computing an irreducible decomposition of the solution set
of a system of polynomial equations. The method is illustrated on several
challenging problems, where it proves advantageous over both the polyhedral
homotopy method and the diagonal equation-by-equation method, formerly
the two leading approaches to solving sparse polynomial systems by numerical
continuation.

1. Introduction

A classical approach to computing the intersection of two algebraic sets A and B
in some larger algebraic set X is to replace A by a set A′, such that A′∩B is easier
to work with and may be deformed to A ∩ B. Such results, often called Moving
Lemmas [8, §11.4], underlie most of the traditional homotopies used to compute
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numerical solutions of polynomial systems. For example, consider a system

(1.1) f(x) =




f1(x)
...

fn(x)


 = 0.

of n polynomials of degrees d1, . . . , dn, respectively, on complex Euclidean space,
CN , and let Var(f) denote its solution set. When the system is square, i.e., n = N ,
a common objective is to find all isolated solutions, if any. A basic “total degree”
approach degenerates the solution set Var(fi) of the i-th equation to a union of di

linear hyperplanes, for i = 1, . . . , N . Assuming some genericity, the intersection
of the hyperplanes gives the total degree, D = d1 · · · dN , number of start points.
Homotopy continuation deforms the hyperplanes back to the original polynomials,
implicitly defining D solution paths emanating from the start points. The endpoints
of these paths solutions all lie in the closure of Var(f) and include all of its isolated
solutions. Numerical polynomial continuation computes approximations to these
endpoints by numerically tracking the paths from the start points.

A related problem, more representative of the current contribution, begins with
a representation of the solution set B = Var(f1, . . . , fk), in terms of a witness
set (explained in more detail below) and seeks the isolated points in Var(f) by
deforming from A′ ∩ B to A ∩ B, where A = Var(fk+1, . . . , fN ). This approach
hinges on finding an appropriate form of A′ such that A′ ∩B is easier to solve than
A∩B and yet the final deformation yields all isolated points in A∩B. An algorithm
which solves this problem can be adapted to also treat cases where n 6= N and to
find witness sets for all solution components of any dimension.

Besides a total degree homotopy of the sort outlined in the opening paragraph,
there exist other homotopies that take advantage of various special properties that
may be observed in the target system f . Such homotopies reduce the number of
paths to be tracked, hence reducing the computational cost of obtaining the solu-
tion set. Notable examples are multihomogeneous [18], set structures [35], product
decomposition [20], and polyhedral homotopies [9, 36, 15]. These homotopies de-
form all of the polynomials in f simultaneously to find its isolated solutions in one
stage. The method in [40] uses a two-stage approach to solving mixed polynomial-
trigonometric systems: the final stage is a product decomposition homotopy whose
start system is solved by multiple polyhedral homotopies. This has some resem-
blance to the more general method introduced here, which we call “regeneration.”

Regeneration finds a set of points that includes all isolated solutions in Var(f),
but does so in several successive stages. Instead of deforming the polynomials
all at once, we replace some of the Var(fi) by hyperplanes (that is, replace fi

by a linear function) and find the isolated solutions of this simpler system. The
hyperplanes can subsequently be moved to a succession of positions to regenerate
fi. The technique offers great flexibility in the order and number of the original
polynomials that are regenerated at any stage. In particular, one may choose to
regenerate the polynomials one-by-one to find the isolated points of Var(f) after
n stages of regeneration. Thus regeneration is an “equation-by-equation” method
[31].

It is important to note that the solution paths in a homotopy can all be tracked
independently. Consequently, homotopy algorithms tend to parallelize efficiently
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by distributing path tracking assignments to the available processors. This is an
advantage over symbolic methods, which tend to be difficult to parallelize.

Numerical algebraic geometry also includes methods to compute the numerical
irreducible decomposition of the solution set of a system of n polynomial equations
on CN [25, 33]. In this approach, a k-dimensional solution component, say Zk ⊂
Var(f), is represented by a witness set whose main constituent is the set of isolated
points Zk∩L, where L is a generic k-codimensional linear space. A witness superset
for Zk is a finite set of points, which is contained in L∩Var(f) and which contains
Zk ∩ L. Regeneration can be applied to find witness supersets, after which other
methods are used to remove junk points to obtain the true witness set for each
dimension and then break these into irreducible components using monodromy
[26] verified by linear traces [27]. Specifically, an equation-by-equation form of
regeneration builds a witness set for Var(f1, . . . , fk+1) out of one previously found
for Var(f1, . . . , fk), proceeding in this fashion to ultimately find a witness set for
Var(f1, . . . , fn).

An existing method, diagonal homotopy [29, 30], can also find witness sets work-
ing equation by equation [31]. We compare regeneration to a slightly improved ver-
sion of diagonal homotopy. We also compare it to polyhedral homotopy, currently
considered the most efficient method for attacking sparse polynomial systems.

This paper is organized as follows. After reviewing some background material in
§ 2, we formally state the problems addressed in this paper in § 3. Briefly, given a
system of polynomials, we may seek all nonsingular isolated solutions, or all isolated
solutions, or witness sets for all solution components at every dimension. In § 4, we
define the notions of a trackable path and a complete homotopy. Section 5 reviews
the basic constructions that are combined to form the new regeneration method:
parameter homotopy and product decomposition. These pieces are brought to-
gether in § 6 to form the regeneration method for finding isolated roots and in
§ 7 for finding sets at every dimension. In § 8 we introduce some improvements
to an existing algorithm, equation-by-equation diagonal homotopy, in preparation
for comparing it to regeneration. Then, in § 9, we compare the performance of
regeneration with the diagonal and polyhedral homotopies on some test examples.

2. Background

The book [33] overviews the entire field of numerical algebraic geometry, while
the survey [15] is a good reference on solving for isolated solutions, especially using
polyhedral homotopy.

2.1. Genericity. In this article, we often say that for a generic choice of a point
in an irreducible algebraic set Q, such as CM , some property holds true. This is
shorthand for saying that there is a nonempty Zariski open subset of Q for which
the property is true. An exception to this is when we say that some property holds
true for a general γ from S1 := {z ∈ C | |z| = 1}; in that case, we mean that the
property holds true except for a finite set of γ ∈ S1.

Genericity, e.g., generic points for a property of an irreducible algebraic set, and
Bertini Theorems are discussed thoroughly in [33], starting with [33, Chapter 4].
Often a homotopy depends on some parameters which must be chosen generically
for the desirable properties of the homotopy to hold. In practice, we select these
parameters using a random number generator, which results in a homotopy that
has the desired property with probability one.
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2.2. Varieties and Multiplicity. For a system of polynomials f on CN , we use
the notation Var(f), read as “variety of f ,” to mean

(2.1) Var(f) = {x ∈ CN |f(x) = 0}.
Hence, Var(f) is just a set of points that carries no multiplicity information. We
use f−1(0) to denote Var(f) with its natural structure of a possibly nonreduced
scheme. Though multiplicities may be defined, e.g., [8, §4.3], for any irreducible
algebraic subset Z ⊂ f−1(0), we only need the multiplicity for Z ⊂ f−1(0), where
Z is an irreducible component of Var(f). When Z is an isolated point x∗, the
multiplicity is the complex dimension of the algebraic local ring at x∗ coming from
the polynomials on CN quotiented by the ideal generated by the functions f . This
equals the quotient of the ring of convergent power series on CN centered at x∗

quotiented by the ideal generated by the functions f . Effective numerical methods
to compute multiplicities are given in [2, 7].

For an irreducible k-dimensional component Z of Var(f), the multiplicity of Z
as a component of f−1(0) equals the multiplicity of any of the isolated solutions
L ∩ Z for a general (N − k)-dimensional linear space Z, i.e.,

(1) choose generic affine linear equations L1, . . . , LN−k on CN ;
(2) choose a point x∗ ∈ Z ∩Var(L1, . . . , LN−k);
(3) compute the multiplicity of x∗ as a component of (f ∪ {L1, . . . , LN−k})−1 (0).

2.3. Numerical Irreducible Decomposition. For a system of polynomials f on
CN , the set Z := Var(f) is an affine algebraic set, and it decomposes into a union
of equidimensional algebraic sets Zi, where dim Zi = i, each of which decomposes
into a finite number of distinct irreducible components Zij :

(2.2) Z =
dim Z⋃

i=1

Zi =
dim Z⋃

i=1


 ⋃

j∈Ii

Zi,j


 ,

where
(1) for each i, Zi := ∪j∈IiZi,j ;
(2) the sets Ii are finite and each Zi,j is irreducible of dimension i;
(3) Zi,j is not contained in a union of a collection of the Za,b unless Zi,j occurs

in the collection.
The breakup of Z into the Zi,j is called the irreducible decomposition of Z.

Corresponding to the irreducible decomposition is the concept of a numerical
irreducible decomposition, which consists of a numerical witness set for each irre-
ducible component. Recall from the introduction that the main constituent of a
witness set for a k-dimensional algebraic set Zk ⊂ CN is the set of deg Zk isolated
points Zk ∩L where L ⊂ CN is a generic linear space of codimension k. In addition
to the points Zk ∩ L, the remaining elements of a witness set are the linear space
L and a system f of which Zk is a component. Any collection C of irreducible
components Zi,j of Var(f) having the same dimension, i, can be numerically rep-
resented by a witness set {f, L,C ∩ L}. An algebraic set having components of
different dimensions can be represented by a list of witness sets, at least one for
each dimension. A “numerical irreducible decomposition” is such a list having one
witness set Wi,j for the reduction of each irreducible component Zi,j . As there is
no confusion, we refer to such lists of witness sets also as witness sets, with the
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witness set for a single component being a list with just one element. In this way,
we may represent any algebraic set by a witness set.

For an equidimensional component Z having witness set W = {f, L, Z ∩ L}, a
witness superset is any set of the form {f, L, S}, where S ⊂ Var(f) ∩ L is a finite
list of points such that Z ∩ L ⊂ S. Generally, to compute a witness set, one first
computes a witness superset and then discards the junk points, which are any points
in S that are not isolated points in Z ∩L. Clearly, nonsingular points are isolated,
but a singular point in S might be isolated or it might be a member of a higher
dimensional component of Var(f). At present, the only published way to determine
which points are junk is to find all components of Var(f) at every dimension so
that one may perform membership tests, such as a homotopy membership test (see
below). In principle, the dimension at a point x of Var(f) could be determined
from purely local information, that is, from the germ of f at x. An algorithm to
accomplish this is provided in [1].

2.4. Membership Tests. A membership test for an algebraic set Y determines if
a given point, say x∗, is in Y . There are at least two types of membership tests that
may be used in the procedures we discuss. The simplest is if Y is given as Var(ξ)
for some (finite) set of polynomials ξ on CN . Then, the test of whether point x∗ is
in Y is merely to check if ξ(x∗) = 0. Another possibility is that Y is a component
of Var(ξ) given by a witness set, which might in turn be a collection of witness sets
for several dimensions. In this case, membership testing is done by a homotopy
membership test, see [26] and [33, §15.4]. That is, the witness points are tracked
as the linear subspace that slices out the witness set is moved by continuation to a
generic linear space containing x∗. If and only if at least one of these paths end at
x∗, then x∗ is in Y .

2.5. Randomizations. Suppose we have a system of n polynomials f on CN . A
randomization of f to size m ≤ n is a new polynomial system, say g, of the form
g = Pf , where P ∈ Cm×n is a generic matrix and f and g are treated as column
matrices whose entries are polynomials. For any nonsingular m × m matrix Q,
Var(Qg) = Var(g). Let P =

[
P1 P2

]
, where P1 is m ×m. Since P is generic, P1

is invertible, and so

(2.3) Var(g) = Var(Pf) = Var(P−1
1 Pf) = Var(

[
I R

]
f),

where R ∈ Cm×(n−m). Thus, any full randomization g = Pf has a special ran-
domization of the form of

[
I R

]
f that gives the same variety. The two forms

of randomization give the same generic properties, so we need not distinguish be-
tween them. In practice, the special form g =

[
I R

]
f is favored for requiring

fewer operations to evaluate and potentially having lower degree equations.
Randomization’s usefulness derives from the following properties, see [33, The-

orem 13.5.1]. Assume that A ⊂ CN is an irreducible algebraic set. Then, for a
generic randomization g of f to size m < n:

(1) if dim A > N−m, then A is an irreducible component of Var(f) if and only
if it is an irreducible component of Var(g);

(2) if dim A = N −m, then A is an irreducible component of Var(f) implies
that it is also an irreducible component of Var(g); and
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(3) if A is an irreducible component of Var(f) with dim A ≥ N −m, its multi-
plicity as a component of Var(g) is greater than or equal to its multiplicity
as a component of Var(f) with equality if either multiplicity is 1.

Of particular importance to us is the fact that for m ≥ N , subject to genericity,
the isolated (respectively, nonsingular) points in Var(g) include the isolated (re-
spectively, nonsingular) points in Var(f) [32][33, §13.5]. When g is “square,” that
is, when m = N , some of the isolated points in Var(g) may be extraneous, that is,
not in Var(f); these can be eliminated by casting out any point, say x∗, that gives
a nonzero evaluation f(x∗). Consequently, to find all isolated (resp. nonsingular)
points in Var(f), we may “square up” f to form g, a generic randomization f to
size N and find all isolated (resp. nonsingular) points in Var(g). After eliminating
extraneous roots, one has the desired points.

3. Problem Statement

Regeneration is applicable to several basic problems in numerical algebraic ge-
ometry.

Problem 1 (Isolated Roots). Let f be a square polynomial system, that is, f consists
of N polynomials on CN , let Y be a proper algebraic subset of CN , and let Z0 be
the set of isolated points in Var(f) \ Y . Given f and a membership test for Y , we
identify two problems:

(a) find all nonsingular points in Z0; and
(b) find a finite set S ⊂ Var(f) such that Z0 ⊂ S.

When seeking only the nonsingular isolated roots in Problem 1a, one may short-
cut the complexities of working with sets of multiplicity greater than one, e.g., avoid
using deflation described in § 4.1. Moreover, in practical problems, the nonsingular
roots are often the ones of highest interest. In contrast, Problem 1b asks us to find
all isolated roots, including those of multiplicity greater than one. As stated, it is
enough to find a superset S of these roots; eliminating the junk points (the points
in S that are not isolated in Var(f)) is a post-processing step not addressed here.

As noted in the final paragraph of § 2.5, the equivalent of Problem 1 for an
overdetermined system, i.e., one for which f is a system of n polynomials on CN

with n > N , can be treated by squaring up to size N . For an underdetermined
system, i.e., n < N , there can be no isolated roots. However, one could append
N−n generic linear equations to square up the system, thereby obtaining a witness
superset for the (N − n)-dimensional component of Var(f), which, if it exists, is
the component of lowest dimension.

Problem 2 (Witness Superset). Let Y, Z be algebraic subsets of CN . Given a witness
set for (Z \Y ) ⊂ CN , a polynomial system f on CN , and a membership test for Y ,
find a witness superset for (Z ∩Var(f)) \ Y .

Whereas Problem 1 seeks only isolated roots, Problem 2 seeks witness supersets
for components at every dimension, including the zero-dimensional points. Note
that if one desires a witness superset for Var(f), this comes as a special case of
Problem 2 with Z = CN and Y = ∅. (A witness set for CN is always available;
any generic point in CN suffices.) One way to find a witness superset for Var(f)
is to attack each dimension independently by appending the requisite number of
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general linear equations, squaring up, and applying any algorithm that solves Prob-
lem 1 to the squared-up system. We will give a more efficient algorithm based on
regeneration.

4. Homotopy

The purpose of a homotopy is to provide a finite set of one-real-dimensional
paths, i.e., parameterized by one real parameter, that lead to a desired zero-
dimensional algebraic set. The target set is not explicitly known at the outset,
but rather is defined implicitly by algebraic conditions on the variables. To be use-
ful, the homotopy specification must include a start point on each path so that a
path tracking algorithm can trace the path from the start points to the target set. It
is commonly the case that there are extra paths in the homotopy; the homotopy is
considered complete if the set of path endpoints is a superset of the target algebraic
set. Before formalizing the definition of a complete homotopy, we need a definition
of a trackable path, and some trackable paths require deflation, as described next.

4.1. Deflation. Suppose that we have a parameterized system

(4.1) F (x, q) : CN × CM → CN

that is polynomial in x and complex analytic in q. Suppose further that for a fixed
q∗ ∈ CM we have a point x∗ that is an isolated solution of F (x, q∗) = 0. It is com-
mon that we would like to numerically continue the solution of F (x, q) = 0 from
x∗ as q varies in the neighborhood of q∗. If x∗ is nonsingular, this is straightfor-
wardly accomplished by predictor-corrector methods. When x∗ is singular and the
multiplicity of nearby solutions of F (x, q) = 0 as q varies in a neighborhood of q∗

equals the multiplicity of x∗ as a solution of F (x, q∗) = 0, we know the continuation
exists, but since the Jacobian of F (x, q∗) is rank deficient at x∗, predictor-corrector
methods do not directly work.

One approach to handle such singular points is by using deflation. Deflation is a
regularization operation for polynomial systems in several variables. Introduced by
Ojika, Watanabe, and Mitsui [23], it was refined by Ojika [22], and brought to its
current form for isolated roots, which includes a proof of termination, by Leykin,
Verschelde, and Zhao [12, 13] (see also [10]).

If x∗ is an isolated solution of a polynomial system f : CN → CN , then the
deflated system is an associated polynomial system f̂(x, ξ) = 0 consisting of N +N ′

polynomials on CN+N ′
with a single nonsingular solution (x∗, ξ∗) lying over x∗.

A parameterized approach that works for components is presented in [33, §13.3.2,
§15.2.2]. This approach works if x∗ has the same multiplicity structure as the
other points in its neighborhood in the sense that the ranks of a finite number of
associated matrices for x∗ are the same as the corresponding ranks of the matrices
for the nearby points. This condition is true for general points, but we do not know
if it is true for certain points of interest arising in this article.

There is a second approach [13] to deflating systems with isolated solutions
based on using the Dayton-Zeng multiplicity matrix [7, 41]. This method takes
“larger steps” than with the usual deflation procedure in the hopes of reducing the
computational work involved in deflation. Extending this to components along the
exact same lines of [33, §13.3.2, §15.2.2], deflation works for the whole component
when done at a generic point of the component, but still can fail when carried out
at a specific point on the component.
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Happily, a straightforward modification of the procedure with the multiplicity
matrix works generically for a component when carried out at a specific point on
the component satisfying mild conditions that hold in the situations of this article.
The Macaulay Matrix. Let x∗ be an isolated solution of a polynomial system F :
CN → Cn with variables x = (x1, . . . , xN ). For a multiindex α = (k1, . . . , kN ) with
k1, . . . , kN nonnegative integers, let

|α| = k1 + · · ·+ kN

α! = k1! · · · kN !

Dα = 1
α!

(
∂
∂x1

)k1 · · ·
(

∂
∂xN

)kN

xα = xk1
1 · · ·xkN

N

(x− x∗)α = (x1 − x∗1)
k1 · · · (xN − x∗N )kN

The multiplicity matrix of Dayton and Zeng [7] of order d is

(4.2) Ad(x) :=
[(

Dα
(
(x− x∗)β · Fj

))
(x)

]

where the rows are indexed by the indices (β, j) and the columns by the indices α,
where |β| ≤ d − 1, 1 ≤ j ≤ n, and |α| ≤ d. We denote the evaluation of Ad(x) at
x∗ by Ad. Letting Pd,N denote the dimension of the vector space of polynomials of
degree at most d in N variables, this is an (n ·Pd−1,N )×Pd,N matrix. This matrix
has a lot of structure and its apparent size is greatly reduced in calculations [41].

In [13] a slight variant of Ad is used with the entries changed to Dα
(
xβ · Fj

)
(x∗)

and with α restricted not to have all entries zero. For us it is convenient to allow
the α to have all entries zero. By the Macaulay matrix, we mean the matrix

(4.3) Md(x) :=
[(

Dα
(
xβ · Fj

))
(x)

]

where the rows are indexed by the indices (β, j) and the columns by the indices α,
where |β| ≤ d− 1, 1 ≤ j ≤ n, and |α| ≤ d. We let Md denote Md(x∗).

Let µ(x∗) denote the multiplicity of x∗ as a solution of F (x) = 0. It is known
that the coranks cd of the Ad are strictly increasing with d until d∗, which equals
the smallest d ≥ 1 with cd = cd+1, and for d ≥ d∗ the cd equals the multiplicity
µ(x∗).

Consider the solutions ξ of

(4.4) Ad ·




ξ1

...
ξPd,N


 = 0.

Note that Ad+1 =
[ Ad B

0 C

]
. From this we see that each solution ξ∗ of Ad ·ξ∗ = 0

gives rise to a solution ξ =
[

ξ∗

0

]
of Ad+1 · ξ = 0. Thus, if cd∗+1 = cd∗ , then the

solutions obtained by tacking zeros onto the solutions ξ of Ad∗ · ξ = 0 are the
solutions of Ad · ξ = 0 for any d > d∗.

The matrices Md(x) may be used instead of the Ad(x) because the coranks are
easily seen to be the same. Indeed Md(x) = Gd · Ad(x), where Gd is a lower
triangular matrix with 1’s along the diagonal.

Motivated by the partial deflation system used in [13], we have the following
result.
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Theorem 4.1. Let x∗ denote an isolated solution of a system of polynomials F :
CN → Cn. Let cd be the corank of the Macaulay matrix Md for d ≥ 0. Let L1(ξ),
. . . , Lcd

(ξ) be generic inhomogeneous linear functions. If cd = cd+1, then, the
polynomial system

(4.5) F(x, ξ) :=




F (x)(
Dα

(
xβ · Fj

))
(x) · ξ

L1(ξ)
...

Lcd
(ξ)




= 0,

with 1 ≤ j ≤ n, 1 ≤ |α| ≤ d, and |β| ≤ d, has a unique nonsingular solution of the
form (x∗, ξ∗) over x∗.

Remark 4.2. Note that unlike the deflation system in [13], |β| may equal d in this
result.

Proof. Let ξ∗ denote the unique solution of the system F(x∗, ξ) on {x∗} × Ccd−1.
It suffices to show that the Jacobian matrix of F(x, ξ∗) has an empty nullspace at
(x∗, ξ∗).

Suppose the nullspace is not empty, that is, suppose that there exists a vector
v 6= 0 with (

v1
∂F(x, ξ∗)

∂x1
+ · · ·+ vN

∂F(x, ξ∗)
∂xN

)

x=x∗
= 0.

This relation corresponds to a solution ξ′ of

Md+1 · ξ′ = 0

with ξ′ having at least one nonzero coordinate corresponding to a Dα with |α| =
d + 1. This contradicts the observations made about Eq. 4.4 discussed right after
that equation. ¤
Remark 4.3. Note that the converse of the above result is true.

Now let’s consider the parameterized version of Theorem 4.1.
In applications we have an M -dimensional irreducible component Z of the so-

lution set of a polynomial system F : CN+M → CN and a general N dimensional
linear space L meeting Z in a finite number of points. By genericity we know that

(1) the points Z ∩ L are smooth points of Z considered as a reduced algebraic
set;

(2) no point of Z ∩ L belongs to any other component of Var(F ); and
(3) the multiplicities of the points Z ∩L as isolated solutions of F restricted to

L equal the multiplicity of Z as a component of the solution set of F (x) = 0.
These properties remain true if we replace L = (L1(x), . . . , LM (x)) with any of
the parallel N -dimensional linear spaces Var(L1(x)− q1, . . . , LM (x)− qM ) for q :=
(q1, . . . , qM ) in a sufficiently small ball around the origin in CM . The following
result applies precisely to this situation.

Theorem 4.4. Let Z denote an M -dimensional irreducible component of Var(F ),
where F : CN×CM → CN is a system of polynomials. Let π1 : CN×CM → CN and
π2 : CN×CM → CM be the projection maps (x, q) 7→ x and (x, q) 7→ q, respectively.
Let Fq : CN → CN denote F (x, q) for a fixed point q ∈ CM . For z = (x, q) ∈ Z and
k ≥ 0, let ck(z) be the corank of the Macaulay matrix Mk for Fq(x). Let L1(ξ),
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. . . , Lcd
(ξ) be generic inhomogeneous linear functions. Assume that (x∗, q∗) ∈ Z;

that there are no other irreducible components of Var(F ) containing (x∗, q∗); and
that the map π2,Z : Z → CM induced by restricting π2 to Z gives an isomorphism
from a complex neighborhood U of (x∗, q∗) to its image in CM . Then, we have the
following.

(1) For every z ∈ Z ∩ U , the multiplicity of π1(z) as an isolated solution of
Fπ2(z)(x) = 0 is equal to the multiplicity of Z as a component of F−1(0).

(2) There is a finite integer d such that the polynomial system

(4.6) F(x, q, ξ) :=




F (x, q)(
Dα

(
xβ · Fj

))
(x, q) · ξ

L1(ξ)
...

Lcd
(ξ)




= 0,

with 1 ≤ j ≤ n, 1 ≤ |α| ≤ d, and |β| ≤ d, has an M -dimensional component
Z∗ mapping generically one-to-one to Z under the projection (x, q, ξ) →
(x, q).

(3) There is open set U ⊂ U that contains (x∗, q∗) such that for z ∈ U , the
inverse image of z on Z∗ is a nonsingular isolated solution of {F(x, q, ξ), q−
π2(z)} = 0.

(4) Z∗ has multiplicity one as a component of the solution set of F(x, q, ξ) = 0.

Proof. Item 1 is true for generic z ∈ Z ∩ U by the definition of the multiplicity of
a component. By assumption, there are no other components of Var(F ) passing
through (x∗, q∗) and since F has the same number of polynomials, N , as the codi-
mension of Z in CN × CM , there can be no embedded components either. Hence,
the multiplicity must be constant for every z ∈ Z ∩ U .

For item 2, Theorem 4.1 implies that for each point z ∈ Z ∩ U , there is a d
such that F(x, π(z), ξ) = 0 has a nonsingular solution that maps to z under the
projection (x, q, ξ) 7→ (x, q). Since d is an integer determined by the algebraic
condition cd(z) = cd+1(z), it must be constant on a Zariski open subset W of
Z ∩ U . Call this value d∗. By upper semi-continuity, on the complement of W ,
the codimensions ck(z) of Mk(z) for k < d∗ can increase, but cannot decrease,
compared to the corresponding ck(z) on W . But by item 1, for large enough k,
ck(z) is equal for all z ∈ Z ∩ U . This means that d ≤ d∗ on (z ∩ U) \W . But as
discussed after Eq. 4.4, for d larger than the minimum k where ck(z) = ck+1(z), the
system has the same nonsingular root as at the minimum such k, only with zeros
tacked onto ξ. Thus, the system F(x, q, ξ) for d = d∗ gives a nonsingular root for
all z ∈ Z ∩ U that projects to z. Since ξ is unique over each z, these form an M
dimensional nonsingular component Z∗ that maps one-to-one to Z ∩ U and hence
generically one-to-one on all of Z. The remaining items are consequences of the
nonsingularity of Z∗. ¤

To apply the above deflation, we can proceed as follows.
(1) Compute the coranks cd at point (x∗, q∗) until cd = cd+1.
(2) Construct the system F(x, q, ξ) and randomize it to a system of N + Pd,N

equations in the N + M + Pd,N variables (x, q, ξ).
(3) Use homotopy continuation on the randomized system to track points on

Z for a short distance starting at (x∗, q∗) over a random line through q∗.
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(4) If the tracked points are on Z, the deflation system has been found. If not
increment d by one and go back to step 2.

Theorem 4.4 implies that the procedure will terminate with d = d∗, where d∗ is as
defined in the proof of the theorem.

4.2. Trackable Paths.

Definition 4.5 (Trackable Path). Let H(x, t) : CN × C → CN be polynomial in
x and complex analytic in t and let x∗ be an isolated solution of H(x, 1) = 0. We
say that x∗ is trackable (or equivalently we say that we can track x∗) for t ∈ (0, 1]
from t = 1 to t = 0 using H(x, t) if

(1) when x∗ is nonsingular, there is a smooth map ψx∗ : (0, 1] → CN such that
ψx∗(1) = x∗ and ψx∗(t) is a nonsingular isolated solution of H(x, t) = 0 for
t ∈ (0, 1]; and

(2) when x∗ is isolated singular, letting Ĥ(x, t, ξ) = 0 denote the system that
arises through deflation, and letting (x∗, ξ∗) denote the nonsingular isolated
solution of Ĥ(x, 1, ξ) = 0 over x∗, we can track the nonsingular path starting
at (x∗, ξ∗) for Ĥ(x, 1, ξ) for t ∈ (0, 1] from t = 1 to t = 0, i.e., there is a
smooth map ψx∗ : (0, 1] → CN×CN ′

such that ψx∗(1) = (x∗, ξ∗) and ψx∗(t)
is a nonsingular isolated solution of H(x, t, ξ) = 0 for t ∈ (0, 1].

By the limit of the tracking using H(x, t) = 0 of the point x∗ as t goes to 0, we
mean limt→0 ψx∗(t) in case (1) and the x coordinates of limt→0 ψx∗(t) in case (2).

The actual tracking of a path can be carried out by numerical path tracking
methods, usually predictor-corrector algorithms. Notice that in Definition 4.5, the
path need only be nonsingular for t ∈ (0, 1], and thus the usual predictor-corrector
methods, based on Newton’s method, are not guaranteed to converge all the way
to t = 0. Endgame algorithms that can compute the limits lim

t→0
ψx∗(t) of the paths

overcome this difficulty [33, Chapter 10].

4.3. Endpoints at Infinity. The endpoints of some paths in a homotopy may di-
verge to infinity. Such paths are numerically difficult to track and they are infinitely
long. Fortunately, there is a simple maneuver that tames these paths [17]: homog-
enize polynomials on CN to get polynomials on PN and perform computations on
a generic patch of PN , which means restricting to a generic hyperplane in CN+1.
In this way, the formerly infinitely long paths to infinity become finite length and
their endpoints can be computed accurately. This allows us to clearly distinguish
between finite endpoints of large magnitude and true endpoints at infinity. The
endpoints at infinity may then be discarded.

4.4. Complete Homotopy. With the above definition of a trackable path, we are
ready to formalize the definition of a complete homotopy.

Definition 4.6 (Complete Homotopy). Let H(x, t) : CN ×C→ CN be polynomial
in x and complex analytic in t. Let S be a finite set of points in Var(H(x, 1)).
Then, H(x, t) with S is a complete homotopy for an algebraic set Y ⊂ CN if

(1) every point in S is trackable; and
(2) every isolated point in Y is the limit of at least one such path.
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A complete homotopy is a theoretical construct that begets a corresponding
numerical homotopy method. In the numerical method, we begin with numerical
approximations to the points in S and obtain numerical approximations to a set
of points that is a superset of the isolated points in Y . It is understood that any
singular points in S are handled by deflation as described in Definition 4.5 case (2).

5. Building Blocks

In this section, we review two theoretical building blocks that are the foundation
for regeneration: parameter continuation and product decomposition.

5.1. Parameter Continuation. We have the following basic result.

Theorem 5.1 (Parameter Continuation). Suppose that f(x, q) : CN × CM → CN

is a system of polynomials. Let U be a Zariski open dense subset of CN . There
is a Zariski open set U ⊂ CM of points q where the maximal number not counting
multiplicities of isolated (respectively, nonsingular) points in Var(f(x, q)) ∩ U for
q ∈ CM , is taken on. Let S be the set of isolated (respectively, nonsingular) solutions
to f(x, q1) = 0 on U for q1 ∈ U . Then, given any q0 ∈ CM and all but a finite
number of γ ∈ S1, the homotopy function H(x, t) = f(x, tq1 + (1 − t)q0), with
t = γτ/[1 + (γ − 1)τ ], τ ∈ (0, 1] with start points S is a complete homotopy for
finding the isolated (respectively, nonsingular) solutions of f(x, q0) = 0 contained
in U .

The nonsingular case was proven in [19] and the isolated case is proven in [33,
Theorem 7.1.6] for general q1, see also [33, Corollary A.14.2]. The case here with
q1 ∈ U follows from [33, Theorem 7.1.6] and the deflation algorithms after Theo-
rem 4.4.

These results show also the stronger fact, that we do not use in this article, that
there is a Zariski open set U of q, where the maximal number of isolated solutions
of fq(x) = 0 of given multiplicity contained in U for q ∈ CM , is taken on.

There are considerably more general versions [33, §A.14], replacing CN and CM

with more general sets and allowing the f(x, q) to be merely complex analytic in
the q variables.

In the homotopy of Theorem 5.1, the re-parameterization of t in terms of τ avoids
the possibility that the path in parameter space might intersect CM \ U enroute
from q1 to q0 [33, Lemma 7.1.3 (“Gamma Trick”)]. If q1 is chosen randomly in
CM , then the straight-line parameter path tq1 + (1 − t)q0, t ∈ (0, 1], suffices with
probability one [33, Lemma 7.1.2].

Let #isol(U) (respectively #reg(U)) be the maximal number, not counting mul-
tiplicities, of isolated (respectively, nonsingular) points in Var(f(x, q)) ∩ U . Let
#isol(q∗, U) (respectively #reg(q∗, U)) denote the number, not counting multiplici-
ties, of isolated (respectively, nonsingular) points in Var(f(x, q∗)) ∩ U .

Remark 5.2. There are two ways in which Theorem 5.1 is typically used.
The first use, and the focus of [19], is to justify a procedure to solve systems

with parameters which need to be solved many times. The procedure is to solve
F (x, q1) = 0 once for a generic q1 and thereafter only track the solutions found for
q = q1 using homotopies over curves in the q-parameter space starting at q1 and
ending at the q0. In engineering problems it is common for the cost of solving the
system for special values after solving for a general q∗ to be orders of magnitude
cheaper than the solution of the general q∗, e.g., [39].
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The second use, which is the way we will use this result, is to construct a ho-
motopy to find the isolated or nonsingular solutions on a nonempty Zariski opens
set U ⊂ CN of specific system f(x) = 0, where f(x) : CN → CN is a polynomial
system. This is done by embedding f(x) into a family of polynomial systems, i.e.,
constructing a polynomial system F (x, q) : CN × CM → CN with F (x, q0) = f(x),
and then showing that for some q1 ∈ CM with F (x, q1) of a particular form,
#isol(q1, U) = #isol(U) (respectively #reg(q1, U) = #reg(U)).

5.2. Product Decomposition. The idea of a homotopy based on a product de-
composition was introduced in [20] with related ideas in [35]. Suppose that V1 and
V2 are vector spaces of polynomials on CN , in other words, each polynomial in V1

is a linear combination, with coefficients in CN , of a given set of basis polynomials,
and similarly for V2. It is convenient to write V1 = 〈α1, . . . , αk〉, where the αi are
the basis polynomials for V1. Similarly, let’s write V2 = 〈β1, . . . , β`〉. Then, the
image of V1⊗V2 in the space of polynomials is another vector space of polynomials
whose basis is all products αiβj , αi ∈ V1, βj ∈ V2.

By a product decomposition of polynomials on CN , or a product decomposition
on CN for short, we mean a list V = {V, V1, . . . , Vm} of vector spaces V, V1, . . . , Vm

of polynomials on CN such that V is the image of V1 ⊗ · · · ⊗ Vm in the space
of polynomials. We say that a product decomposition V := {V, V1, . . . , Vm} is a
product decomposition of a polynomial f on CN if f ∈ V .

Suppose we have a product decomposition of polynomials {V, V1, . . . , Vm} and
form a polynomial g as a product of one generic polynomial from each Vi. Clearly,
g is also in the image V . Call any such g a generic product member of V .

For example, consider f(x1, x2) = 3 − 2x1 + 5x2 − x1x2 + 3x1x
2
2. Let V =

〈1, x1, x2, x1x2, x1x
2
2〉, V1 = 〈1, x1, x1x2〉, and V2 = 〈1, x2〉. Then, V = {V, V1, V2}

is a product decomposition of f and g = (a1 + a2x1 + a3x1x2)(b1 + b2x2) is a
generic product member of V provided that ai, bj ∈ C are random for i = 1, 2, 3
and j = 1, 2.

Another product decomposition for this polynomial f is V̂ = {V̂ , V̂1, V̂2, V̂3}
where V̂ = 〈1, x1, x2, x1x2, x

2
2, x1x

2
2〉, V̂1 = 〈1, x1〉, and V̂2 = V̂3 = 〈1, x2〉. This

product decomposition is called a linear product decomposition since each vector
space forming the product has a basis that is a subset of {1, x1, x2}. In the re-
generation method as described below, we will use a linear product decomposition
in the product decomposition phase. It should be noted that such linear products
are nearly identical to the set structures described in [35], although the theory
presented there only covers nonsingular solutions on X = CN and each set must
contain 1.

Given a setD = {V1, . . . ,Vk} of product decompositions Vi = {Vi, Vi,1, . . . , Vi,di}
of polynomials on CN for i = 1, . . . , k, there is a universal family F (x, v) of polyno-
mial systems on CN . The parameter space for the system is the complex Euclidean
space V(D) = V1 × · · · × Vk. Noting that each vi ∈ Vi is a polynomial on CN

and setting Fi(x, v) = vi(x) for 1 ≤ i ≤ k, we have the universal system for this
parameter space

F (x, v) = {F1(x, v), . . . , Fk(x, v)}.
We also have the irreducible subset P(D) of the parameter space equal to the image
of Πk

i=1

(
Πdi

j=1Vi,j

)
in V. We call P(D) the decomposable systems of the family

F (x, v).
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If some of the Vi are one dimensional, that is, if some of the Vi are of the
form 〈fi(x)〉, it is convenient to simplify the parameter spaces. Assuming that
k < N and that we have a set D = {V1, . . . ,Vk, fk+1, . . . , fN} where the Vi are
product decompositions on CN and where the fj are polynomials on CN . Then
V(D) = V1 × · · · × Vk is the parameter space for the polynomial systems

F (x, v) = {F1(x, v), . . . , Fk(x, v), fk+1(x), . . . , fN (x)}.
The irreducible set of decomposable systems of the family is the image P(D) of
Πk

i=1

(
Πdi

j=1Vi,j

)
in V(D).

Let g be a generic product member of V . Since g is already factored into a
product, unlike a general member of V which is a sum of products, replacing f
with g in a system of polynomials makes a new polynomial system that is easier to
solve. Product decomposition methods use this new system as the start system in
a homotopy to solve the original system that contains f . We state this precisely in
the following theorem.

Theorem 5.3 (Product Decomposition). Let F = {f1(x), . . . , fN (x)} be polyno-
mials on CN . Fix an integer k in [1, N ]. Let U be a nonempty Zariski open subset
of CN . For i = 1, . . . , k, let Vi = {Vi, Vi,1, . . . , Vi,di} be a product decomposition
for polynomials on CN such that fi(x) ∈ Vi, i = 1, . . . , k, and let gi be a generic
product member of Vi. Assume that for any point x ∈ U and any 1 ≤ i ≤ k, there
is at least one element of Vi not zero at x. Let S be the set of isolated (respectively,
nonsingular isolated) points in Var({g1, . . . , gk, fk+1, . . . , fN}) ∩ U . Then, for all
but a finite set of γ ∈ S1, the homotopy

(5.1) H(x, t) = {(1− t)f1(x) + tγg1(x), . . . , (1− t)fk(x) + tγgk(x),

fk+1(x), . . . , fN (x)} = 0

with start set S is a complete homotopy for the isolated (respectively, nonsingular
isolated) points in Var(F ) ∩ U .

Proof. The theory presented in [20] covers the case where k = N and we seek only
nonsingular isolated solutions.

The Theorem for k = 1 is shown in the Appendix A below. Here we reduce to
that result.

Fixing k, we have a universal family of polynomial systems as above consisting
of

(1) the parameter space Vk = V1 × · · · × Vk;
(2) the universal system F (x, v) = {F1(x, v), . . . , Fk(x, v), fk+1(x), . . . , fN (x)};

and
(3) the irreducible set Pk of decomposable systems, which is equal to the image

of Πk
i=1

(
Πdi

j=1Vi,j

)
in Vk.

By Theorem 5.1 it suffices to prove that for at least one p ∈ Pk, #isol(p, U) =
#isol(U). Note if we show it for one, then the Zariski open set of V where #isol(U)
is taken on will have nonempty intersection with the irreducible algebraic set Pk,
and therefore will meet it in a nonempty Zariski open set.

To show #isol(p, U) = #isol(U), it suffices to show that the theorem is true
where v = {f1(x), . . . , fk(x)} is a generic point of Pk. Indeed, if the theorem is
true for this system, then there is at least one p ∈ Pk with the number of isolated
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solutions of the system {p1(x), . . . , pk(x), fk+1, . . . , fN (x)} on U at least equal to
#isol(v, U), which is equal to #isol(U).

To prove this we can use induction. The essential case when k = 1 is proven
in Appendix A. Starting with general v = {f1(x), . . . , fk(x)}, we successively con-
struct k homotopies of the sort in the theorem: from the first homotopy, which
starts at v1 = {p1(x), f2(x) . . . , fk(x)} and ends at v, up to the last homotopy,
which starts at vk = {p1(x), . . . , pk(x)} and ends at vk−1. We have

#isol(U) = #isol(v, U) ≤ #isol(v1, U) ≤ . . . ≤ #isol(vk, U).

¤

6. Regeneration for Isolated Roots

This section addresses Problem 1, in which we seek the isolated roots of a square
system, that is, a system where the number of polynomials is equal to the number
of variables. We have already explained in § 3 that the ability to solve a square
system extends to the ability to also solve nonsquare systems.

6.1. Support Linears. An intermediate step to an efficient solution of Problem 1
requires a new definition. In practice, in a system of polynomials on CN , say
f(x) = {f1(x), . . . , fn(x)}, it often happens that not all variables {x1, . . . , xN}
appear in all the polynomials. This leads to the following definition.

Definition 6.1. Let g(x1, . . . , xN ) be a polynomial. The support base of g is:
• if g is homogeneous, the subset of variables that appear in g;
• otherwise, the union of the subset of variables that appear in g with 1.

Definition 6.2. The support base of a collection of polynomials is the union of the
support bases of the individual polynomials.

Recall that the support of g is the set of all monomials that appear in g. For
sets of monomials C and D, let C ⊗D denote the set consisting of the products of
monomials in C and D. If G is the support of g, B is the support base of g, and d
is the degree of g, then

G ⊂ B ⊗ · · · ⊗B︸ ︷︷ ︸
d times

.

Associated to the concept of a support base is a support hyperplane.

Definition 6.3. For a collection of polynomials g1, . . . , gk ∈ C[x1, . . . , xN ], a linear
support set for g1, . . . , gk is any subset of {1, x1, . . . , xN} that includes the support
base g1, . . . , gk. Associated to a linear support set, say Σ, is a linear support vector
space, say V = 〈Σ〉, i.e., the basis elements of V are the monomials in Σ. A
support linear for g1, . . . , gk is a linear function in a linear support vector space
for g1, . . . , gk, and it is said to be a generic support linear if its coefficients are
generic. The zero set of a support linear is called a support hyperplane. A minimal
support linear for g1, . . . , gk is one whose monomials are exactly the support base
of g1, . . . , gk, and its zero set is called a minimal support hyperplane.

As an example, suppose g1 = 2x3
1 + 3x1x3 + 1.2 and g2 = x3

1 + 2x1x
2
3 + x2

3x4

in C[x1, . . . , x4]. The support of g1 is G1 = {1, x3
1, x1x3} with support base B1 =

{1, x1, x3}. Additionally, the support of g2 is G2 = {x3
1, x1x

2
3, x

2
3x4} with support

base B2 = {x1, x3, x4}. The support of g1, g2 is G = {1, x3
1, x1x3, x1x

2
3, x

2
3x4} with
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support base B = {1, x1, x3, x4}. One may easily confirm that G ⊂ B ⊗B ⊗B. A
minimal support hyperplane for g1, g2 is Var(α+βx1 +γx3 +δx4) for any constants
(α, β, γ, δ) ∈ C4 and Var(α + βx1 + γx2 + δx3 + ζx4) is a support hyperplane of
g1, g2 but not a minimal one.

6.2. Incremental Regeneration. Our strategy for solving a square polynomial
system will consist of several stages of regeneration, starting with a subset of the
polynomials and bringing in new ones at each subsequent stage until finally we
have the solutions to the full system. Each regeneration stage has two main steps.
First, parameter continuation is used to obtain start points for a product decompo-
sition homotopy. Tracking the corresponding paths for this product decomposition
homotopy completes the regeneration stage.

The parameter continuation step regenerates a linear product form related to
the new polynomials to be introduced at that stage. This regeneration step is
summarized in the following lemma.

Lemma 6.4 (Regeneration of a Linear Product). Let U ⊂ CN be a nonempty
Zariski open set, let f1, . . . , fm be polynomials on CN , and suppose that for i =
m + 1, . . . , m̂, m < m̂ ≤ N , we have gi = `i,1 · · · `i,di , where di ≥ 1 and each
`i,j is a linear function on CN . Further, let Sm be the isolated (resp., nonsingular
isolated) points of

Var(f1, . . . , fm, hm+1, . . . , hN ) ∩ U,

where for i = m + 1, . . . , m̂, hi is a generic support linear for `i,1, . . . , `i,di and
hm̂+1, . . . , hN are polynomials on CN . Let Tm,m̂ be the isolated (resp., nonsingular
isolated) points of

Var(f1, . . . , fm, gm+1, . . . , gm̂, hm̂+1, . . . , hN ) ∩ U.

Finally, let Im,m̂ ∈ Nm̂−m+1 be the index set [1, dm+1] × · · · × [1, dm̂]. Then, for
any particular a = (am+1, . . . , am̂) ∈ Im,m̂, the start points Sm, and the homotopy
function

(6.1) Hparm
m,m̂,a(x, t) = {f1, . . . , fm,

(1− t)`m+1,am+1 + thm+1, . . . , (1− t)`m̂,am̂
+ thm̂,

hm̂+1, . . . , hN} = 0

form a complete homotopy for Tm,m̂,a, the isolated (resp., nonsingular isolated)
points of

Var(f1, . . . , fm, `m+1,am+1 , . . . , `m̂,am̂
, hm̂+1, . . . , hN ) ∩ U.

Furthermore, Tm,m̂ is contained in ∪a∈Im,m̂
Tm,m̂,a.

Remark 6.5. The homotopy Hparm
m,m̂,a moves the linear slice defined by hm+1 = · · · =

hm̂ = 0 to the linear slice defined by `m+1,am+1 = · · · = `m̂,am̂
= 0.

The proof follows immediately from Theorem 5.1, since each homotopy at Eq. 6.1
is a parameter homotopy in the coefficients of the linear functions hm+1, . . . , hm̂.

The procedure implied by Lemma 6.4 allows us to extend a solution for f1, . . . , fm

into one for f1, . . . , fm̂, m̂ > m. The following lemma establishes the secondary
step of regeneration that accomplishes this.
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Lemma 6.6 (Incremental Product Decomposition). Adopt all the notations of
Lemma 6.4. Further, let Vi = {Vi, Vi,1, . . . , Vi,di

} be a linear product decomposition
for fi, i = m + 1, . . . , m̂, and assume that each gi, i = m + 1, . . . , m̂, is a generic
product member of Vi. Then, the start set Tm,m̂ with the homotopy function

(6.2) Hprod
m,m̂(x, t) = {f1, . . . , fm,

(1− t)fm+1 + tgm+1, . . . , (1− t)fm̂ + tgm̂,

hm̂+1, . . . , hN} = 0

is a complete homotopy for Sm̂.

This lemma follows immediately from Theorem 5.3.
To apply Lemma 6.6, we need a linear product decomposition Vi,1 ⊗ · · · ⊗ Vi,di

for each fi with di ≥ deg fi, i = m + 1, . . . , m̂. (Usually we choose di = deg fi,
but for example, the trilinear quadratic 1 + xy + yz + zx admits the decomposition
〈1, x〉 ⊗ 〈1, y〉 ⊗ 〈1, z〉, which might be useful in some instances.) We know that it
is sufficient to choose each Vi,j as the vector space whose elements are the support
base fi, but often some of the Vi,j may omit some variables that appear in fi

and still suffice. For example, the polynomial xy + 1 admits the linear product
decomposition 〈x, 1〉 ⊗ 〈y, 1〉, whereas its support base is {x, y, 1}.

6.3. Extrinsic vs. Intrinsic Homotopy. In our application of Eq. 6.1 and Eq. 6.2,
hm̂+1, . . . , hN are all linear functions that do not change during the path tracking
from t = 1 to t = 0. We refer to this as the extrinsic regeneration homotopy. The
intrinsic formulation, which is more efficient to use when m̂ ¿ N , proceeds by
forming a linear basis for the m̂ dimensional linear space Var(hm̂+1, . . . , hN ). That
is, we use linear algebra once at the beginning of each incremental stage to find
A ∈ CN×m̂, b ∈ CN such that rank A = m̂ and hi(Au + b) = 0 for all u ∈ Cm̂,
i = m̂ + 1, . . . , N . Then, the homotopies H(x, t) = 0 (where H is either Hparm

or Hprod) can be replaced by H̃(u, t) = H(Au + b, t) = 0, whereupon the linear
functions are always zero and may be dropped. This reduces the number of func-
tions to be tracked to m̂ instead of N . For efficiency, the polynomials should not
be expanded, but evaluated in a straightline manner, e.g., evaluate φ = Au+ b and
then evaluate H(φ, t). When m̂ is not sufficiently small, the extra arithmetic in
evaluating φ cancels out the savings of tracking on Cm̂ instead of CN , so it is better
to work extrinsically. When m̂ is small enough for the straightline intrinsic formu-
lation to be advantageous, our software package Bertini [3] automatically invokes
it.

6.4. Full Regeneration. With Lemmas 6.4 and 6.6 in hand, it is straightforward
to solve Problem 1. One merely specifies any set of strictly increasing integers
ending at N , say 0 = m0 < m1 < · · · < mr = N . Then, one solves r incremen-
tal problems for (m, m̂) = (0, m1), (m1,m2), . . . , (mr−1, N), using the isolated (or
nonsingular) solutions of one incremental problem as the start points for the next
incremental problem. To be most clear, we summarize the steps in pseudocode
below.

Theorem 6.7 (Regeneration of Isolated Roots). Subject to genericity, the proce-
dure Regenerate below solves Problem 1.
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The validity of each homotopy step in Regenerate is established by Lemmas 6.4
and 6.6. The only elaboration necessary is to observe that some of the endpoints of
the homotopies Eq. 6.1 and Eq. 6.2 might lie on higher dimensional sets, so these
must be cast out to obtain just the set of isolated solutions needed for the subsequent
homotopy. When it is needed, [1] gives a local dimension test that can differentiate
between the isolated and nonisolated solutions. Without a local dimension test,
we can only solve the more limited, but highly relevant, case of finding just the
nonsingular solutions at each stage. These are easily identified by checking the rank
of the Jacobian matrix of partial derivatives for each point. “Subject to genericity”
acknowledges that the algorithm must make generic choices of coefficients in the
linear functions hm1 , . . . , hN , the linear functions that form the linear products
g1, . . . , gN , and generic choices required in any homotopy membership test.

Procedure S = Regenerate(F, Y, σ):
Inputs: A set F = {f1, . . . , fN} of N polynomials on CN , a proper subset Y

of CN in a form suitable for membership test, and σ ∈ {True, False}.
Output: When σ = True (resp., when σ = False), the set S of all isolated

(resp., nonsingular isolated) points in Var(F ) ∩X, where X = CN \ Y .
Begin:

(1) Reorder the polynomials f1, . . . , fN in any advantageous order (see
§ 6.5).

(2) Pick a set of r + 1 strictly increasing integers starting at 0 and ending
at N , say 0 = m0 < m1 < · · · < mr = N .

(3) Specify a linear product decomposition Vi,1 ⊗ · · · ⊗ Vi,di for each fi,
i = 1, . . . , N . One alternative that always suffices is di = deg fi with
Vi,j , j = 1, . . . , di, generated by the support base of fi.

(4) Choose a generic linear form `i,j in each Vi,j , i = 1, . . . , N , j =
1, . . . , di. Let gi =

∏di

j=1 `i,j .
(5) For i = 1, . . . , N , choose a generic linear hi that supports all `i,j ,

j = 1, . . . , di.
(6) For i = 1, . . . , r, let (m, m̂) = (mi−1, mi), let

Gm,m̂ = {f1, . . . , fm, gm+1, . . . , gm̂, hm̂+1, . . . , hN}(6.3)

Fm̂ = {f1, . . . , fm̂, hm̂+1, . . . , hN},(6.4)

and do the following:
(a) Solve for Tm,m̂, a superset of the set of isolated (resp., nonsin-

gular isolated) points of Var(Gm,m̂) ∩ X. There are two cases,
as follows.

Case m = 0.: Use numerical linear algebra to solve G0,m̂.
Since each gi is a product of di linear factors, there are at
most D1,m1 =

∏m1
i=1 di solutions, all of which can be found

by linear algebra. Since the linear factors may be sparse,
there may be fewer than D1,m1 solutions. The solution set
is called T0,m1 .

Otherwise.: Use the homotopies Hparm
m,m̂,a from Eq. 6.1 with

start set Sm. There is a homotopy for each a ∈ Im,m̂ and
Tm,m̂ is the union of the solutions from all of these.

(b) Use a membership test to expunge any points of Tm,m̂ that are
in Y .
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(c) If σ = True, use a local dimension test to expunge any singular
points that are not isolated.

(d) If σ = False, eliminate any singular points from Tm,m̂.
(e) Solve for Sm̂, a superset of the set of all isolated (resp., nonsingu-

lar isolated) points of Var(Fm̂)∩X using the product homotopy
Hprod

m,m̂ from Eq. 6.2 with start solutions Tm,m̂.
(f) Use a membership test to expunge any points of Sm̂ that are in

Y .
(g) If σ = True, use a local dimension test to expunge any singular

points of Sm̂ that are not isolated.
(h) If σ = False, eliminate any singular points from Sm̂.
(i) Expunge any points from Sm̂ that solve any of fm̂+1, . . . , fN .

Return S = SN :

Step 6(i) is not necessary, but rather is a measure added to improve efficiency; it is
justified because such points can never lead to isolated solutions of the final system.

If we are seeking all isolated roots (i.e., if σ = True), then Steps 6c and 6g may
require a local dimension test (see [1]). Without such a test, one can only reliably
find all nonsingular isolated roots.

Steps 1–3 of the regeneration procedure allow many freedoms that can be used
to adapt the procedure to more efficiently solve a given problem. We discuss how
to use these freedoms in the next few paragraphs.

6.5. Ordering of the Functions. At Step 1, one may choose to reorder the poly-
nomials. In general, this changes the number of paths that need to be tracked. One
way to attempt to minimize the number of paths is to minimize the maximum num-
ber of possible paths to track. Suppose we are working equation by equation (that
is, r = N) and that the linear product decompositions have dj = deg fj factors.
Then, the maximum number of paths to track is p = d1 + d1d2 + . . . + d1d2 · · · dN .
By reordering the functions so that d1 ≤ d2 ≤ . . . ≤ dN , the maximum number of
paths p is minimized.

It is common that some endpoints at intermediate stages are cast out for lying
on positive dimensional components or on the excluded set Y . In fact, it is to our
advantage to arrange for this to happen as early and as often as possible. This goal
may sometimes conflict with an ordering having monotonically increasing degrees.
It is generally impossible to know ahead of time how the number of paths depends
on the ordering, but one simple observation seems to help. When the functions
are sparse, often only a subset of the variables appear in some equations. A good
strategy is to order the functions so that the functions involving roughly the same
collection of variables are introduced consecutively thereby enforcing the maximum
number of conditions on the variables involved in the functions.

When these two strategies are compatible, a good ordering of the polynomials
is easily decided. (There may be more than one equally good ordering.) Unfortu-
nately, we do not yet have good rules for picking an ordering when the strategies
conflict. We suggest first ordering by degree, and if some polynomials have the same
degree, order them to minimize the rate of accumulation of new variables. When
neither of these criteria decides the ordering of some subgroup of the polynomials,
our early experience indicates that the ordering within such a group has a minimal
effect.
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6.6. Equation grouping. At Step 2, one may choose how many polynomials to
introduce at each stage. One far extreme is to choose r = 1, in which case we
introduce all of the polynomials at once, resulting in only one stage of homotopy
that is effectively a traditional linear product homotopy on the whole system. At the
other extreme, one may choose r = N , which means m0, . . . , mr = 0, 1, 2, . . . , N −
1, N . We call this “solving equation by equation,” because only one new polynomial
from F is introduced at each pass through the main loop. We often prefer to take
this extreme, but sometimes equations appear in related subgroups that we elect
to introduce group by group. The example in Section 9.4 has this character: the
polynomials arise naturally as subsystems, each consisting of 2 polynomials. For
that problem, introducing the equations two at a time results in fewer paths to
track than an equation-by-equation approach.

Another consideration comes into play in an implementation on multiple parallel
processors. The number of paths to track usually increases at each stage (often
dramatically so), and if there are many processors available, it could happen that
some of them sit idle in the early stages. To put this resource to best use, it may
also be advantageous to introduce groups of equations in the early stages to make
enough paths to keep all processors busy, then drop back to working equation by
equation as the solution set increases in size.

6.7. Choosing linear products. The freedom to choose a linear product de-
composition at Step 3 can have a noticeable effect. To illustrate this, there is a
comparison between two different linear products in Section 9.2. One may also
take advantage of multilinearity and other forms of sparseness and structure here.
For example, regeneration was setup to exploit the 4-homogeneous structure and
two-fold symmetry for the polynomial system presented in Section 9.3

7. Regeneration for Witness Sets

Let us now consider Problem 2, in which one seeks the witness sets for all solution
components, both positive dimensional ones and the isolated roots. Recall that at
the outset, a witness set is provided for algebraic set Z \ Y , and we wish to update
this to a witness set for (Z ∩ Var(f)) \ Y . It is sufficient to be able to do this
when f is a single polynomial, because to address a system f = {f1, . . . , fn},
one may repeat the procedure introducing one new equation each time. Let Zk =
(Z∩Var(f1, . . . , fk))\Y . The procedure RegenWitness (see below) for intersecting
with a single polynomial generates a witness set for Zk from one for Zk−1 (where
Z0 = Z). We use this to successively generate witness sets for Z1 through Zn.

Except where stated otherwise, in this section, we assume that f is a single
polynomial on CN . Then, Var(f) is either CN (if f is trivial) or it is a hypersurface.
If a generic point w of irreducible algebraic set X satisfies f(w) = 0, then X ⊂
Var(f) and so X ∩Var(f) = X.

Recall that a witness set for an algebraic set Z is a collection of witness sets for
each k dimensional component Zk, as in Eq. 2.2. A witness set Wk for Zk ⊂ CN

is in the form Wk = {P,Lk, S}, where P is a polynomial system on CN such that
Zk is one of its components, Lk = {h1, . . . , hk} is a set of k generic linear functions
on CN , and S is the finite set of points Zk ∩Var(Lk). In the following, we assume
that the same linear functions hi, i = 1, . . . , N , are used in every witness set, that
is, L1 = {h1} for every one dimensional component, L2 = {h1, h2} for every two
dimensional component, and so on. If one is given a composite witness set where
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this is not true, it can be made so by choosing a generic LN = {h1, . . . , hN} and
moving each of the given linear sets to the appropriate subset of LN using parameter
continuation.

The notation w ∈ W = {P, L, S} means w = {P, L, s}, where s ∈ S. We use the
shorthand f(w) to mean the evaluation f(s).

Procedure Ŵ = RegenWitness(W, f, Y ):
Inputs: A witness set W for quasiprojective algebraic set (Z \ Y ) ⊂ CN ,

where Y, Z are algebraic sets. A polynomial f on CN . A membership test
for Y . Let Wk be the k dimensional component of W .

Output: A witness set Ŵ for (Z ∩Var(f)) \ Y .
Begin:

(1) Initialize Ŵk, k = 0, . . . , N , as empty.
(2) Specify a linear product decomposition V1⊗ · · · ⊗ Vd for f . One alter-

native that always suffices is d = deg f with each Vi generated by the
support base of f .

(3) Choose a generic linear form `i in each Vi, i = 1, . . . , d. This means `i

is a linear function with generic coefficients. Let g =
∏d

i=1 `i.
(4) For k = N, N − 1, . . . , 0, do the following:

(a) For each w = {P, Lk, w∗} ∈ Wk, (P is a polynomial system, Lk

is a set of k generic linear functions, and w∗ ∈ Var(P, Lk)) do
the following:
(i) Evaluate e = f(w∗).
(ii) If e = 0, then append {{P, f}, Lk, w∗} to Ŵk.
(iii) If e 6= 0 and k = 0, discard w.
(iv) If e 6= 0 and k > 0, do the following:

(A) If necessary, square down P to N − k polynomials (see
Eq. 2.3). For simplicity, call the result P again.

(B) For i = 1, . . . , d, start at w and track the continuation
path of

H1(x, t) = {P (x),h1(x), . . . , hk−1(x),

thk(x) + (1− t)`i(x)} = 0.
(7.1)

Let T be the set of d endpoints of these paths.
(C) Use a membership test to expunge any points of T that

are in Y .
(D) Use a local dimension test [1] to expunge any points of

T that are not isolated points of Var(H1(x, 0)).
(E) Track all paths starting at T for the homotopy function

H2(x, t) = {P (x),h1(x), . . . , hk−1(x),

tg(x) + (1− t)f(x)} = 0.
(7.2)

Call the set of endpoints S.
(F) Use a membership test to expunge any points of S that

are in Y .
(G) Append {{P, f}, {h1, . . . , hk−1}, S} to Ŵk−1.
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(b) Remove from Ŵk−1 any points on higher than k−1 dimensional
sets of Var(P, f). This can be done either by homotopy mem-
bership tests for each Ŵj , j > k − 1, or it can be done using a
local dimension test [1].

Return Ŵ = {ŴN , . . . , Ŵ0}:
Suppose we wish to find a witness set for Var(f1, . . . , fn)\Y starting from scratch.

LettingWk denote a witness set for Var(f1, . . . , fk)\Y , we seekWn. With this nota-
tion,W0 is a witness set for CN \Y which has a single witness point Var(h1, . . . , hN ).
To find the witness set Wn, one may proceed using the recursion

Wk = RegenWitness(Wk−1, fk, Y ) for k = 1, . . . , n.

Problem 2 is solved similarly, beginning with W0 as the witness set for Z \ Y .
The justification of this procedure is similar to that for procedure Regenerate.

One significant difference is that there is not an option to choose only components
of multiplicity one. This is because the multiplicity of a component can decrease as
new polynomials are introduced. In Regenerate this was not a problem, because
we considered only the case n = N , which means that to get an isolated point
at the end of the procedure, we only need the isolated points at the end of each
stage. (Each new polynomial can either reduce multiplicity or reduce dimension of
a component, but not both, so if n = N , a component of multiplicity greater than
1 at an early stage can only lead to final components that are either multiplicity
greater than 1 or dimension greater than zero.) Here, we are keeping track of
solution sets at every dimension.

A second difference between RegenWitness and Regenerate is Steps 4(a)ii–iii
in RegenWitness, which avoid the homotopies of Step 4(a)iv in certain circum-
stances. Step 4(a)ii recognizes when a component that a witness point lies on is
contained in the hypersurface Var(f), and so the component will not be altered
by intersection with Var(f). Hence, it can be sent to Ŵk without alteration. This
action corresponds to Step 6(i) of Regenerate, where such points are expunged
because they cannot lead to isolated roots in the final output. Step 4(a)iii of
RegenWitness eliminates any isolated point of Z that does not lie on Var(f).
This is not relevant to the case n = N in Regenerate, where isolated solutions
cannot appear until the last equation is already used.

Finally, in Step 4(a)iv.D and Step 4(b), we know the dimension of the sets that
are relevant and remove points of the wrong dimension. For Step 4(a)iv.D, we only
want isolated endpoints in Tm,m̂ (see Lemma 6.4). For Step 4(b), Ŵk−1 is the
witness set for dimension k− 1. Points eliminated in Step 4(b) are known as “junk
points” [33, §13.6].

8. Diagonal Homotopy

Like regeneration, an existing method, diagonal homotopy, can also solve systems
incrementally. In § 9, we compare regeneration to a slightly improved version of
diagonal homotopy which we describe here.

The extrinsic diagonal homotopy in [29] and its intrinsic reformulation in [30]
compute the intersection of two components given by witness sets. Either of these
can be used as the core computational step in an equation-by-equation approach to
solving Problems 1 and 2 [31]. In brief, to find Var(f)∩Var(g), diagonal homotopy
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finds a witness set for the composite system {f(x), g(y), x−y}. In the equation-by-
equation approach, g is always a single polynomial, the one for the new equation
being introduced.

The previous formulations of diagonal homotopy had an unnecessary random-
ization which adds cost to their implementation. Since we wish to compare regen-
eration to the best possible formulation of the diagonal homotopy, we give a revised
formulation here that eliminates the unneeded randomization. We only present the
equation-by-equation case, as that is the most relevant for the present comparison.

As in procedure RegenWitness, the main loop for equation-by-equation di-
agonal homotopy begins with Wk = {P, {h1, . . . , hk}, X}, a witness set for a k
dimensional algebraic set Z ⊂ CN . If polynomial system P has cardinality more
than N − k, we can randomly square it to N − k polynomials without changing Z
or Wk. Consequently, without loss of generality we may assume that P has exactly
N − k polynomials, say P = {p1, . . . , pN−k}. Set Z is a component of Var(P ) and
X is the set of isolated points in Z ∩Var(h1, . . . , hk). We wish to introduce a single
new polynomial f on CN and find the witness set for Z ∩ Var(f). As in Regen-
Witness, witness points w ∈ Wk such that f(w) = 0 go directly to the output set
Ŵk with f added to their list of functions, while the others enter into a stage of
diagonal homotopy. The output of the diagonal homotopy will be witness points
for the next dimension down, Wk−1, cut out by {h1, . . . , hk−1}.

To start the diagonal homotopy, we begin by finding a witness set R for Var(f),
which consists of the points Var(f, h1, . . . , hN−1). Notice that R, Wk, and Wk−1 all
lie in the linear space Φ = Var(h1, . . . , hk−1), which is (N −k +1) dimensional. An
extrinsic form of diagonal homotopy works on a doubled set of variables (x, y) ∈
CN × CN , which are forced to satisfy the conditions P (x) = 0, f(y) = 0, and
x − y = 0. In a manner similar to § 6.3, we can keep the number of variables
smaller by using N − k + 1 intrinsic variables for Φ restricting our computations to
(x, y) ∈ Φ×Φ. Since there is an independent set of intrinsic variables for each copy
of Φ, this would result in 2(N − k + 1) variables altogether. We call a formulation
of the diagonal homotopy that works on Φ × Φ “semi-intrinsic.” An even more
efficient approach is to work fully intrinsically on a linear space of just dimension
N − k + 1, as we describe next.

The fully intrinsic approach works along the lines of [30], which also takes ad-
vantage of the linearity of the diagonal equations x − y = 0. For convenience,
let κ = N − k. We compute a basis for Φ, say φ(u) = Au + b, where u ∈ Cκ+1

is a set of intrinsic variables and A ∈ CN×(κ+1) and b ∈ CN are constants. Let
φ̂ : Cκ+1 → C2N be defined as φ̂(u) = (φ(u), φ(u)). Thus φ̂(u) is a parameterization
of the target linear space of the diagonal homotopy. At the beginning of the diag-
onal homotopy, the witness points for Z and Var(f) are cut out by smaller linear
spaces of dimension κ and 1, respectively. We use parameterizations of these as
well. Specifically, let ψ1(u) = A1u1:κ + b1 parameterize Ψ1 = Var(h1, . . . , hk) and
let ψ2(u) = A2uκ+1 + b2 parameterize Ψ2 = Var(h1, . . . , hN−1), where A1 ∈ CN×κ,
A2 ∈ CN×1, and b1, b2 ∈ CN . From these, we form the linear map ψ : Cκ+1 → C2N

as ψ(u) = (ψ1(u), ψ2(u)). Note that any point (x, y) ∈ Ψ1 × Ψ2 has a unique
preimage u = ψ−1(x, y) ∈ Cκ+1. Finally, let π1, π2 : CN × CN → CN be pro-
jections defined as π1 : (u, v) 7→ u and π2 : (u, v) 7→ v. Then, a fully intrinsic
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homotopy function H2 : Cκ+1 × C→ Cκ+1 is

H2(u, t) = {P (
π1[(1− t)φ̂(u) + γtψ(u)]

)
,

f
(
π2[(1− t)φ̂(u) + γtψ(u)]

)} = 0,
(8.1)

where γ ∈ S1 is chosen generically. The set of starting points is S′ = ψ−1(R×Wk)
and among the path endpoints, each isolated point of H2(u, 0), say u∗, gives a
witness point {{P, f}, {h1, . . . , hk−1}, φ(u∗)} that is appended to Ŵk−1. This is
the version of diagonal homotopy that we use in our experiments below.

As in the procedure RegenWitness, the singular endpoints of the diagonal
homotopy paths must be checked for possible membership in higher dimensional
components. Since we work down dimension-by-dimension, we always have on hand
witness sets for the higher dimensional components, so it is feasible to perform
homotopy membership tests. A local dimension test can be used as an alternative.

9. Computational Experiments

Regeneration is implemented in the software package Bertini [3]. All the ex-
amples discussed here were run on an 2.4 GHz Opteron 250 processor with 64-bit
Linux. The parallel examples were run on a cluster consisting of a manager that
uses one core of a Xeon 5410 processor and 8 computing nodes each containing two
2.33 GHz quad-core Xeon 5410 processors running 64-bit Linux, i.e., one manager
and 64 workers. PHCpack v2.3.39 [34] and HOM4PS-2.0.15 [14] were used in the
examples described below.

9.1. Illustrative Example. To demonstrate the regeneration approach described
in this paper to find nonsingular isolated solutions, consider the following system
used in [25, 31]:

f(x, y, z) =




f1(x, y, z)
f2(x, y, z)
f3(x, y, z)


 =




(y − x2)(x2 + y2 + z2 − 1)(x− 0.5)
(z − x3)(x2 + y2 + z2 − 1)(y − 0.5)

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 0.5)


 .

As this is a square system and we seek only nonsingular isolated solutions, we
apply algorithm Regenerate. Since f1 has degree 5, 5 paths are tracked using
Hprod

0,1 defined by Eq. 6.2 to compute solutions of F1 defined by Eq. 6.4. All of these
solutions are nonsingular, but 4 satisfy either f2 or f3 and are removed at Step 6(i),
leaving only one point, which corresponds to x = 0.5.

Since f2 has degree 6, we take the linear slice h2 = l2,1 and regenerate to the
linear slices l2,2, . . . , l2,6 by tracking 1 path for each Hparm

1,2,i defined by Eq. 6.1,
i = 2, . . . , 6. This creates 6 paths that need to be tracked using Hprod

1,2 to compute
solutions of F2. Of these paths, 2 diverge, 3 have endpoints that satisfy f3, and the
remaining endpoint corresponds to x = y = 0.5.

Since f3 has degree 8, we take the linear slice h3 = l3,1 and regenerate to the
linear slices l3,2, . . . , l3,8 by tracking 1 path for each Hparm

2,3,i , i = 2, . . . , 8. This creates
8 paths that need to be tracked using Hprod

2,3 to compute solutions of F3 = f . Of
these paths, 4 diverge, 3 lead to singular endpoints which lie on positive dimensional
components, and the remaining endpoint corresponds to the only isolated solution
(0.5, 0.5, 0.5).
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total degree diagonal regeneration (generic lin. prod.)
paths paths Hprod paths Hparm pathssetup

tracked
time,s

tracked
time,s

tracked tracked
time, s

order A 1024 92.23 649 78.84 628 313 20.29
order B 1024 92.23 949 90.48 928 463 22.97

Table 1. Comparison for solving the general 6R, serial-link robot
system using different solving methods

9.2. A comparison of the methods. To compare the diagonal and regeneration
equation-by-equation approaches, consider a polynomial system arising from the
inverse kinematics problem of general six-revolute, serial-link robots described in
[38][33, §9.4]. The polynomial system, available at [3], consists of 2 linear and
10 quadratic polynomials in 12 variables. The system was setup using random
parameter values and has 16 nonsingular finite isolated solutions.

As discussed in §6.5, the ordering of the quadratic polynomials can effect the
total number of paths that need to be tracked. In this problem, the 12 variables
correspond to the entries of 4 vectors in C3. Four of the quadratics correspond
to normalizing each of these vectors to unit length. The other six quadratics pro-
vide conditions on the interaction between two or more vectors. In ordering the
equations, it is clear that the two linear equations should come first, but after that
the best ordering of the quadratics may not be obvious. To illustrate the impact
of different orderings, we tried two of them: in “order A”, the four normalizing
quadratics were placed last; in “order B”, they were placed immediately after the
linear equations. We experimented with other orderings of the quadratics and found
none whose number of paths was outside the range established by orders A and B.

These two orderings of the polynomial system were solved using a generic total
degree homotopy, the diagonal approach, and the regeneration approach using a
generic linear product decomposition, i.e. each linear factor has a support set con-
sisting of the 12 variables and 1. Since the diagonal approach intersects witness sets
which utilize generic linear spaces, it is natural to compare it with the regeneration
approach using a generic linear product decomposition. These methods were run
using adaptive precision [4, 5] with tracking tolerance of 10−6 and a final tolerance
of 10−10. The results are summarized in Table 1, which shows a difference in both
time and number of paths tracked between the two orderings. However, the choice
of method is seen to be more significant than the choice of ordering.

Table 2 presents the regeneration approach using a linear product decomposition
consisting of minimal support hyperplanes using the two orderings. For “order
A”, the minimal support linear product significantly reduces the number of paths
tracked and time needed compared with the generic linear product. For “order
B”, even though the same number of paths are tracked by both linear product
decompositions, the sparseness in the linear algebra computations using the minimal
support accounts for the slight reduction in time compared with the generic linear
product.

The problems were first run using the diagonal approach implemented in PHC-
pack [34]. Various settings were tried, including the default settings, changing the
tracking tolerances and changing the order of the endgame, but PHCpack was only
able to produce at most 15 of the 16 solutions, taking at least 3 minutes for each
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regeneration (minimal lin. prod.)
Hprod paths Hparm pathssetup

tracked tracked
time, s

order A 272 135 8.49
order B 928 463 21.61

Table 2. Summary for solving the general 6R, serial-link robot
system using regeneration with a minimal support linear product
decomposition

method regeneration polyhedral

paths tracked Hprod 136,296 87,639
Hparm 66,888

time, hrs 8.065 11.656
Table 3. Comparison of regeneration and polyhedral homotopy
for the nine-point path synthesis problem

attempt. The diagonal implementation in Bertini consistently found all 16 solutions
and always ran faster than PHCpack. The times reported in Table 1 are those for
the Bertini implementation.

9.3. A multivariate system from robotics. One benefit of equation-by-equation
methods is their ability to numerically discover structure in a problem to reduce the
number of paths that need to be tracked as demonstrated in [31] and the examples
above. One advantage of regeneration over the diagonal approach is the ability to
easily incorporate known structure of the problem into the regeneration homotopies
to help further reduce the total number of paths that need to be tracked.

Consider the nine-point path synthesis problem for four-bar linkages. The origi-
nal formulation of Roth and Freudenstein [24] consists of 8 seven degree polynomials
in 8 variables with a natural two-fold symmetry. Utilizing the symmetry, the results
of [39] show that this system has 4326 nondegenerate solutions appearing in 1442
cognate triples.

The Bezout count for the Roth and Freudenstein system utilizing the 4-homoge-
neous structure and two-fold symmetry is 322, 560. Regeneration is easily setup
to exploit both the symmetry and multi-homogeneous structure. The regeneration
method finds the 4326 nondegenerate solutions by tracking 136, 296 paths using
Hprod homotopies and tracking 66, 888 paths using Hparm homotopies. Table 3
compares solving this system with regeneration utilizing adaptive precision [4, 5]
and a polyhedral homotopy using HOM4PS-2.0 [14].

We also used our parallel processor to solve this problem using regeneration.
This decreased the computation time to 7.785 minutes.

Regeneration could also be adapted to use the product decomposition structure
of this system that is described in [20]. Although we did not test this option, it
promises to further reduce both the total number of paths tracked and the time.

9.4. A large sparse polynomial system. Equation-by-equation methods can be
used to solve large polynomial systems when other methods are impractical. To
illustrate this, consider a sparse polynomial system arising from ongoing research
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by the first two authors and Bei Hu (University of Notre Dame) related to the
discretization of the stationary Lotka-Volterra population model with diffusion [16,
37].

Let n ∈ N. For 1 ≤ i ≤ n and 1 ≤ j ≤ 4, define

fij =
1

25
(ui+1,j − 2ui,j + ui−1,j)

+
1

(n + 1)2
(ui,j+1 − 2ui,j + ui,j−1) +

1

25(n + 1)2
ui,j (1− vi,j)

gij =
1

25
(vi+1,j − 2vi,j + vi−1,j)

+
1

(n + 1)2
(vi,j+1 − 2vi,j + vi,j−1) +

1

25(n + 1)2
vi,j (ui,j − 1)

(9.1)

with u0,j = v0,j = un+1,j = vn+1,j = ui,0 = vi,0 = ui,5 = vi,5 = 0.
These systems consist of 8n quadratic polynomials in 8n variables and have 24n

nonsingular isolated solutions. The system has a natural 2-homogeneous structure,
with each polynomial being of type (1, 1), but as shown in Table 4, the number
of paths grows too quickly with n to consider using a traditional 2-homogeneous
homotopy for n larger than 3. The mixed volume of the system is the same as the
number of solutions, 24n, but even so, current implementations of the polyhedral
method failed to solve the system in less than 45 days for n = 5.

To solve the system using regeneration, we used the natural ordering of the
equations and introduced the equation two at a time as suggested by Eq. 9.1. The
linear product decomposition of the polynomials used was:

fij ∈ 〈{1, ui+1,j , ui,j , ui−1,j , ui,j+1, ui,j−1, vi,j} × {1, vi,j}〉,
gij ∈ 〈{1, vi+1,j , vi,j , vi−1,j , vi,j+1, vi,j−1, ui,j} × {1, ui,j}〉.

(9.2)

This decomposition was used so that the elements of the first vector space in fij

is its support base, and similarly in gij . Furthermore, in Regenerate, the generic
linear selected in Step 5 was taken as the first linear selected in Step 4. This means
that in Step 6(a) of Regenerate, one-fourth of the Hparm homotopies are trivial as
they start and end at the same linear coefficients. Thus, these homotopies require
no computation.

With the above choices, regeneration tracks roughly 4 times as many paths as the
number of solutions. Table 4 compares the number of paths for various methods and
Table 5 contains timings for the various software packages. For n ≤ 4, regeneration
can solve the system using only double precision, and for n = 5, regeneration utilized
adaptive precision tracking [4, 5] to track the paths since double precision was not
adequate for some of the paths. Using the current implementation of regeneration
in parallel, it took 7.28 minutes for n = 4 and 3.63 hours for n = 5.

10. Conclusions

Regeneration builds up the solution set of a polynomial system equation by equa-
tion or subsystem by subsystem using a sequence of parameter and linear product
homotopies. An existing method, diagonal homotopy, also allows this sort of incre-
mental solution of a system. By revealing the structure of the solution sets of subsets
of the polynomials in the system, these incremental methods eliminate paths in the
later, more expensive stages of homotopy. This tends to save overall computation.
We compare the new regeneration algorithm with both the diagonal homotopy and
with polyhedral homotopy, considered the most efficient non-incremental way to
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total degree 2-homogeneous polyhedral regeneration

n paths paths paths Hprod paths Hparm paths

1 256 70 16 60 42

2 65,536 12,870 256 1020 762

3 16,777,216 2,704,156 4096 16,380 12,282

4 4,294,967,296 601,080,390 65,536 262,140 196,602

5 1,099,511,627,776 137,846,528,820 1,048,576 4,194,300 3,145,722

Table 4. Comparison of various methods for solving systems re-
lated to the Lotka-Volterra population model

n PHC polyhedral HOM4PS-2.0 polyhedral Bertini regeneration
1 0.56s 0.06s 0.34s
2 4m57s 7.33s 17.30s
3 18d10h18m56s 9m32s 10m3s
4 - 3d8h28m30s 5h5m50s
5 - - 6d10h32m12s
Table 5. Single-processor timings for polyhedral method and re-
generation for solving systems related to the Lotka-Volterra popu-
lation model

solve sparse polynomial systems. Our tests show that regeneration is on average
better than diagonal homotopy. For small systems, polyhedral homotopy is often
the best, but for large systems, regeneration takes less computation. The mixed
volume computations used to create the start system for polyhedral homotopy is
combinatorial in nature. It appears that regeneration reveals much of the same
sparse structure without a mixed volume computation, giving it the edge in large
problems.

Appendix A. Theory

In this appendix we finish the proof of Theorem 5.3 by proving the remaining
case when k = 1.

Before we start the proof of this result, we need to recall some standard defini-
tions and notation. We refer to [33] for more details about algebraic sets.

Recall that a quasiprojective algebraic set is a Zariski open set U of a projective
algebraic set X. All algebraic sets are complex and quasiprojective. An algebraic
set in which all of whose irreducible components are dimension one is called an
algebraic curve. By an algebraic function on U , we mean a rational function which
is holomorphic, e.g., if U is a closed algebraic subset of CN , these are restrictions
of polynomials from CN .

We denote the singular set of the reduction of an algebraic set X by Sing(X).
Given a vector space V of algebraic functions on an algebraic set X, the base

locus of V (denoted Bs(V)) is the set of common zeros of V on X. Bs(V) is an
algebraic subset of X. If Bs(V) is the empty set, we say V is basepoint free. Note
basepoint freeness is exactly the condition that we have assumed for the Vi on U in
Theorem 5.2.1 and Lemma 5.2.2. Bertini’s Theorem, e.g., see [33] for an extensive
discussion, guarantees that the solution set Var(g) of a general element g of V has
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various strong properties outside Bs(V), e.g., the intersection of Var(g) with the
reduction of X \ (Bs(V) ∪ Sing(X)) is smooth.

Now let us turn to Theorem 5.3 in the case k = 1. In that case we showed that
it was sufficient to prove the result to compute the isolated singular points in the
case when f1 is generic. As noted in the discussion of Theorem 5.3, the result for
nonsingular isolated solutions is the main theorem in [20].

If N = 1, the result is trivial. Indeed, we have a polynomial f which is a
random sum of products of polynomials chosen from vector spaces of polynomials
V1,1, . . . , V1d1

. Any general product g1 of general elements p1,j will have degree
equal to the degree of f , which is the easiest case of the most classical homotopy
solution result for solving a polynomial system.

The difficulty when N > 1 comes from having to deal with the possible pres-
ence of positive dimensional components of the solution set of f(x) = 0 and the
possibility of solution components at infinity.

The key is to think of Var(f) as Var(f1(x)) ∩ Var({f2(x), . . . , fN (x)}). For any
irreducible component Z of Var({f2(x), . . . , fN (x)}), it follows (see [33, Theorem
12.2.2]) that dim Z ≥ 1 and that either Z ⊂ Var(f1(x)) or dim Z ∩ Var(f1(x)) =
dim Z − 1. From this we conclude that the only components Z that can lead to
isolated solutions of Var(f) are those of dimension one.

Except for some technical details, restricting to components Z of dimension one
is pretty much the same as the case when N = 1. Indeed, the degree computation
when N = 1 translates directly into the basic statement that the degree of a tensor
product L1⊗· · ·⊗Lm of line bundles on a smooth compact Riemann surface equals
the sum of the degrees deg(L1) + · · · + deg(Lm). The technical details are that
Z might be singular, it is non-compact, and there might be some points in the
complement of Z in its closure in projective space, where all the functions in one
or more of the Vi of Theorem 5.3 are identically zero.

Since we need to show that given the generic product g1(x)

#isol(g1, U) ≥ #isol(f, U),

we can replace Z with Z ∩ U with no loss of generality. Moreover since we are
counting isolated points without multiplicities, the nonreduced structure of Z is
irrelevant, i.e., we may work on the reduction of Z.

Thus we have reduced to the following Theorem.

Theorem A.1. Let Z be a reduced algebraic curve. For i from 1 to m, let Vi be
a finite vector space of algebraic functions on Z. Assume that each Vi is basepoint
free. Let f ∈ V , where V is the image of V1 ⊗ · · · ⊗ Vm in the space of algebraic
functions on Z. Choose general elements gi ∈ Vi and let g denote the element in V
that is the image of g1 ⊗ · · · ⊗ gm. Then #isol(g, Z) ≥ #isol(f, Z).

Proof. Without loss of generality we may assume that Z is smooth. To see this, let
π : Z ′ → Z denote the desingularization of Z, i.e., π is a holomorphic finite-to-one
map from a nonsingular algebraic curve Z ′ onto Z, which maps Z ′ \ π−1(Sing(Z))
isomorphically onto Z \ Sing(Z). Let V ′ denote the vector space of algebraic func-
tions induced by composition of functions in V with π. For each i from 1 to m,
let V ′

i denote the vector space of algebraic functions induced by composition of
functions in Vi with π. The space of functions V ′ is isomorphic to the image of
V ′

1 ⊗ · · · ⊗V ′
m in the space of algebraic functions on Z ′. Note by Bertini’s Theorem

the solutions of the gi and g in Z are nonsingular and thus miss Sing(Z). Therefore
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we may identify the solutions of g (respectively gi for i from 1 to m) on Z with
the solutions of g′ = g ◦ π (respectively g′i = gi ◦ π for i from 1 to m) on Z ′, and
these points are also nonsingular. Thus we have #isol(g, Z) = #isol(g′, Z ′). Also
since #isol(f, Z) ≤ #isol(f ′, Z), it follows that #isol(g′, Z) ≥ #isol(f ′, Z) implies
#isol(g, Z) ≥ #isol(f, Z). Thus Z may be assumed to be smooth.

Let K be the unique smooth compact algebraic curve, which contains Z as
a Zariski open dense set. All the functions in Vi for i from 1 to m extend to
rational functions on K. We regard Vi as a space of rational functions, which are
holomorphic on Z. For each i, all of the functions in a nonempty Zariski open set
of Vi have the same pole set Di with multiplicities, i.e., Di =

∑
j∈Ji

µi,jki,j with
all of the points ki,j corresponding to poles lying in the finite set K \ Z and with
µi,j being the order of the pole ki,j . Finite formal sums of integers times points
of a curve are called divisors. Let Li denote the algebraic line bundle associated
to the divisor Di; and let pi denote the tautological section of Li (unique up to
multiplication by a nonzero constant) vanishing precisely at Di. Sending h ∈ Vi to
h·pi gives an isomorphism of Vi with a vector space of algebraic sections of Li which
we also denote by Vi. Similarly, sending the functions h ∈ V to h · p1 · · · pm gives
an isomorphism of V with a vector space of algebraic sections of L = L1⊗· · ·⊗Lm,
which we also denote by V .

All algebraic sections of an algebraic line bundle L on a compact smooth curve
have the same number (counting multiplicities) of zeroes, and this number is de-
noted deg(L). We have deg(L) = deg(L1) + · · · deg(Lm).

Let Bi denote the base locus of the elements of Vi, i.e., let Bi be the divisor
ni,1zi,1 + · · · + ni,kizi,ki , where zi,1, . . . , zi,ki are the points on K where all the
elements vi of Vi are zero and where for each j, ni,j is the minimum over the vi ∈ Vi

of the multiplicities zi,j as a solution of vi(x) = 0. Note that a general element
gi ∈ Vi vanishes at the zi,j with multiplicity exactly ni,j for each j from 1 to ki. Thus
by Bertini’s Theorem, a general gi has zero set consisting of ni,1zi,1 + · · ·+ni,kizi,ki

plus a set of nonsingular points with empty intersection with the set (K\Z)∪Var(f).
In particular, for a general product g

#isol(g, Z) = deg(L)−
m∑

i=1

ki∑

j=1

ni,j .

Since f is in V , it vanishes on the points zi,j to a multiplicities greater than or
equal to the multiplicities of g at the points. Thus

#isol(f, Z) ≤ deg(L)−
m∑

i=1

ki∑

j=1

ni,j .

Putting these inequalities together we have #isol(g, Z) ≥ #isol(f, Z), which proves
the theorem. ¤
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