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Abstract

For a given mechanism type, the solution set of a body guidance synthesis
problem comprises all mechanisms whose end-effector can reach a set of pre-
scribed poses (position and orientation). For three-revolute spatial chains,
five general poses will yield a synthesis problem having only finitely many
solutions, while specifying fewer than five poses leads to higher-dimensional
solution sets. We use numerical algebraic geometry to compute solution sets
for two to five general poses, and in particular, we find, for the first time,
that the five-pose synthesis problem generically has 456 solutions. We also
show how our results agree with and extend results in the literature.

Keywords: Kinematics, mechanism synthesis, body guidance, numerical
algebraic geometry, polynomial continuation

1. Introduction

The problem of synthesizing mechanisms that guide their end-effector
through a number of prescribed discrete poses (position and orientation) has
a long tradition in kinematics with the some of the first formulations and
solutions by Schoenflies [1] and Burmester [2]. Beginning in the second half
of the 20th century, various planar and spatial synthesis problems were for-
mulated, e.g., see [3], with McCarthy [4] providing a good general overview.

In this paper, we consider the synthesis of serial three-revolute (3R) spa-
tial chains. A simple dimension count indicates that five is the maximum
number of general end-effector poses for which a solution will exist. Thus,
we consider the synthesis problems arising from 2, 3, 4, and 5 prescribed gen-
eral poses and solve them using numerical algebraic geometry. For 5 general
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poses, the synthesis problem has a finite number of solutions whereas fewer
poses yield an infinite number, i.e., a positive-dimensional solution set.

Previous work on the 3R synthesis problem has been published by Lee and
Mavroidis [5, 6, 7], also with Merlet in [8]. For the 3-pose and 4-pose cases,
they restrict to problems having a finite solution set by fixing certain design
parameters: six parameters for the 3-pose case and three parameters for
the 4-pose case. The resulting synthesis equations were solved using either
homotopy continuation [5, 6] or elimination methods [7]. Whereas those
efforts used the polynomial nature of the equations to compute complete
solution sets using complex numbers, the 5-pose case was treated in [8] by
using interval analysis to find all solutions in a specified interval box for one
particular 5-pose synthesis problem.

These prior publications all formulate the synthesis problems as a system
of polynomial equations arising from a matrix equation using the Denavit
and Hartenberg [9] convention of modeling spatial linkages. We develop an
alternative formulation, more amenable to numerical solution, based on a
direct determination of the location of the joint axes. This allows us to
solve the 3- and 4-pose problems in a more general way, without resorting
to pre-specifying mechanism parameters, and to completely solve the 5-pose
problem in the complex domain. We describe the relationship between the
two formulations and replicate the earlier results with this new formulation.

Our general solutions in the complex domain allow us to efficiently carry
out subsequent calculations by the methods of parameter continuation and
regeneration, which we also describe. In our computations, we use the soft-
ware package Bertini [10]. For more information about using homotopy
continuation and numerical algebraic geometry applied to kinematics, see
Wampler and Sommese [11] and Sommese, Verschelde and Wampler [12].

The remainder of the paper is as follows. Section 2 presents our reformu-
lation of 3R synthesis as a system of polynomial equations. We briefly review
numerical algebraic geometry in Section 3 and describe its use in Section 4,
to completely solve the synthesis problems of 3R spatial chains for 2, 3, 4,
and 5 general poses. We apply the methods to solve numerical examples in
Section 5. A discussion about the results and conclusion of this paper are
presented in Section 6.
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Figure 1: Denavit-Hartenberg parameters

2. Problem Formulation

We begin by reviewing the Denavit-Hartenberg (D-H) conventions for
modeling a serial-link chain. The works of Lee and Mavroidis on 3R synthesis
were formulated in terms of a product of transformation matrices populated
by D-H parameters, including joint angles. We start with the same underly-
ing link geometry, but eschew joint angles and instead use joint vectors that
directly indicate the linkage conformation at each specified pose.

Denavit-Hartenberg parameters describe the relative positions of two ar-
bitrary lines in space, see Figure 1, which will be the axes of adjacent revolute
joints in a serial chain. Two coordinate frames Σ and Σ′ are attached to the
two lines such that the z-axis of Σ is aligned with the first line and the x-axis
is parallel to their common normal. Coordinate frame Σ′ has its origin at the
footpoint of the common normal on the second line, with its z-axis aligned
with this line and its x-axis aligned with the x-axis of Σ. Parameter a denotes
the distance between the lines, d is the offset of the common normal on the
first line to the origin of Σ and α is the twist angle. The relative transforma-
tion from Σ to Σ′ can be written as consecutive transformations of the form:
translation along the z-axis with distance d, followed by a translation along
x-axis with distance a, and then a rotation around x-axis by an angle α.

When the D-H convention is used for the description of a serial chain
with n revolute joints, one is able to write the pose of the end effector
frame Σn+1 with respect to the base frame Σ0 in terms of relative transfor-
mations from Σi to Σ′i together with, for each i = 1, . . . , n, a transformation
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from Σ′i−1 to Σi that is a rotation around z-axis i by joint angle θi. For a
fully general chain, one must also include angle θ0 as a mechanism parameter
associated to the placement of the mechanism in the world frame and param-
eters θn+1 and dn+1 associated to the placement of the end-effector frame in
the final link. Altogether, there are 3n+ 6 mechanism parameters, namely

θ0, {(di, ai, αi), i = 0, . . . , n}, θn+1, dn+1

and there are n joint angles, θi, i = 1, . . . , n. For N general poses and
an n-revolute chain, the synthesis problem has 3n+6+Nn unknowns and 6N
constraints. In particular, these are equal when n = 3 and N = 5. For
comparison to the work of Lee and Mavroidis on 3R problems, we note that
they rename the last two parameters as φ = θ4 and d = d4.

From this point forward, we focus our discussion on 3R spatial chains,
i.e., n = 3, with N given poses. For i = 1, . . . , N , let pose i be given by its
translational part pi ∈ R3 and rotational part Ri ∈ SO(3) with respect to
the base frame. The kinematic chain in pose i is shown in Fig. 2.

z1

z2i

Riz3

u

Riv

pi

x1i

x2i

base frame posei

Figure 2: Kinematic chain in pose i

We construct a system of synthesis equations by using a slight modifica-
tion of the formulation in Wampler and Morgan [13] for solving the inverse
kinematics of serial 6R spatial chains. Since the first joint axis is fixed in the
base frame, let z1 denote the (unknown) unit vector directed along the first
joint axis. Similarly, since the third joint axis is fixed in the the end-effector
frame, let z3 denote the (unknown) unit vector directed along the third joint
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axis in the end-effector frame. Thus, for pose i, Riz3 is the unit vector di-
rected along the third joint axis in the base frame. Also, for each pose i,
let z2i denote the (unknown) unit vector directed along the second joint axis
in the base frame.

Assuming that none of the axes are parallel, which will be true for solu-
tions of the synthesis problem for general poses, the unit vectors along the
common normals of the axes are

x1i =
1

sinα1

z1 × z2i, x2i =
1

sinα2

z2i ×Riz3, (1)

where αj denotes the twist angle between axes j and j + 1 for j = 1, 2.
Let u denote the vector pointing from the origin of the base frame to the

foot point of the common normal between axis one and axis two on axis one.
Similarly, let v denote the vector in the end-effector frame pointing from its
origin to the foot point of the common normal between axis two and axis
three on axis three. In the base frame, this vector is Riv as shown in Fig. 2.
Our computations will use u and v as variables in the synthesis problem.
Later, to confirm the results of Lee and Mavroidis, we will write these in
terms of D-H parameters.

Using as variables u, v, and the joint axis vectors, namely z1, z3, and
(z2i, i = 1, . . . , N), the remaining (unknown) design parameters are link
lengths a1 and a2, offset d2, and twist angles α1 and α2. For each pose
i = 1, . . . , N , these must satisfy the loop closure vector equation

u +
a1

sin(α1)
z1 × z2i + d2z2i +

a2
sin(α2)

z2i ×Riz3 = pi + Riv, (2)

while the definition of a twist angle implies

z1 · z2i = cosα1,

z2i ·Riz3 = cosα2.
(3)

Additionally, the joint axis vectors must all be unit length.
Instead of imposing unit-length conditions on the joint axis vectors, we

introduce new non-unit vectors aligned with the joint axes. Assuming that
the values d2, sinα1, and sinα2 are all nonzero, which is the case for general
poses, we can define the vectors

w1 :=
a1

d2 sin(α1)
z1, w3 :=

a2
d2 sin(α2)

z3, (4)

w2i := d2z2i, i = 1, . . . , n, (5)
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with which we rewrite Eq. (2) as

u + w1 ×w2i + w2i + w2i ×Riw3 = pi + Riv, i = 1, . . . , N. (6)

We can eliminate u as follows. Consider the vector function

f(w1,w2,w3,v,p,R) = w1 ×w2 + w2 + w2 ×Rw3 − p−Rv. (7)

Then, Eq. (6) is equivalent to

u = −f(w1,w2i,w3,v,pi,Ri), i = 1, . . . , N (8)

so that

f(w1,w21,w3,v,p1,R1) = f(w1,w2i,w3,v,pi,Ri), i = 2, . . . , N. (9)

Since the link lengths a1 and a2, the link twists α1 and α2, and link
offset d2 are independent of i, we additionally have for i = 2, . . . , N :

w1 ·w21 = w1 ·w2i,

w21 ·R1w3 = w2i ·Riw3,

w21 ·w21 = w2i ·w2i.

(10)

For N ≥ 2, the resulting system Eqs. (9) and (10) consist of 6(N − 1)
quadratic equations in 9 + 3N unknowns, which are the three coordinates
each for the vectors w1, w3, v, and w2i, i = 1, . . . , N . Comparing the number
of unknowns to the number of equations, for N ≥ 2, the dimension of the
solution set for N general poses is 3(5−N). Hence, N = 5 defines a system of
24 quadratic equations in 24 unknowns which has a zero-dimensional solution
set, i.e., finitely many solutions.

2.1. Backsolving

After solving the system consisting of Eqs. (9) and (10), one can recover
the description of the serial chain in terms of its link parameters. First,
Eq. (8) directly yields u, while Eqs. (4) and (5) imply the following formulas
for the unit direction vectors along the axes and the offset on the second axis:

z1 =
w1

||w1||
, z21 =

w21

||w21||
, z3 =

w3

||w3||
, d2 = z21 ·w21. (11)
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Using Eq. (3), the twist angles can be computed via

α1 = arccos(z1 · z21), α2 = arccos(z21 ·R1z3). (12)

Finally, from Eq. (4), we recover the link lengths via

a1 = d2 sinα1w1 · z1, a2 = d2 sinα2w3 · z3. (13)

We note that this backsolving procedure does not yield a unique set of
D-H parameters as each direction vector z1, z21, and z3 and the twist angles
can be negated. These choices result in compatible changes in the signs of the
link lengths and the link offset, but do not change the underlying geometry
of the 3R mechanism. That is, each solution in the variables (w1,w21,w3,v)
represents a unique 3R mechanism even though the corresponding D-H pa-
rameters have several arbitrary choices of signs.

This backsolving procedure can run into trouble if any of α1, α2, d2, a1,
or a2 are equal to zero. This is not of concern if the given poses are general,
but it could be a problem for special poses.

3. Numerical Algebraic Geometry

Every equation in the system (9,10) is a polynomial. Numerical alge-
braic geometry is a collection of algorithms for finding and manipulating
the solutions of such systems. Let z ∈ Cn be a set of n unknowns and let
F (z) = {f1(z), . . . , fm(z)} : Cn → Cm be a set of m polynomial functions
in z. Suppose m = n, in which case one usually expects the set of solutions
to the system F (z) = 0 to consist of a finite number of isolated points. Poly-
nomial continuation, as developed primarily in the 1980s, finds all isolated
roots of such a system by creating a start system G(z) = 0 and a homotopy
function H(z, t), where t is a new variable. The polynomial systems G and H
are constructed to match the structure of F in a way that guarantees that
G(z) = 0 has at least as many isolated solutions as F (z) = 0 and that start-
ing at the solutions of G(z) = 0, the system H(z, t) = 0 has smooth paths
progressing monotonically with t to the roots of F . One then finds the roots
of F by tracking these paths numerically. As described in [14], a re-issue of
Morgan’s 1987 book, the homotopy function is usually of the form

H(z, t) = F (z)(1− t) + γtG(z) = 0,
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where choosing γ as a random complex number ensures, with probability
one, the smoothness of the solution paths for 0 < t ≤ 1.

Numerical algebraic geometry builds on basic polynomial continuation
to also treat cases where the solution set has components that are positive
dimensional, i.e., curves, surfaces, etc., which is always the case when m <
n and may happen for m ≥ n if the equations are not general. Systems
having solution components of several different dimensions can also be solved.
To find a solution component, say S ⊂ Cn, of dimension k, the essential
maneuver is to append to F (z) an additional k linear equations, say L(z) =
{`1(z), . . . , `k(z)} = 0 where the coefficients in L have been chosen as random
complex numbers. Then, with probability one, among the set of all isolated
solutions of the “sliced” system {F (z), L(z)} = 0 there is a subset, say W ,
that are in S, and the number of these points is equal to the degree of S.
The set W is called a witness point set, and the ordered collection W =
{F,L,W} is a witness set for S. Since we are once again in the position of
finding isolated roots, traditional polynomial continuation can be employed
although more advanced techniques are often more efficient. In any case,
once a witness set has been found, the slices can be moved based on input
parameters to yield solutions of interest as demonstrated in Sections 5.2
and 5.3. The component can also be sampled by moving the coefficients of L,
and one can do many other operations, such as intersecting the component
with other algebraic sets. A full exposition of the fundamentals of numerical
algebraic geometry can be found in [15] while [10] describes more recent
developments along with details of how to use the software package Bertini

to do calculations.
Suppose, as above, that S ⊂ Cn has dimension k and we slice it down to

isolated points by intersecting it with k linear equations, L(z) = 0. Instead of
using general linear equations, which are functions of all n coordinates of z,
suppose we intersect it with special ones that depend only on r < n of the
coordinates. An extreme example is a linear equation in just one variable, say
`(z) = z1 − a = 0, for some constant a. This fixes z1 and effectively removes
that variable from the equations, which can have the effect of lowering the
degree of the system. For example, the equation xy − 1 = 0 describes a
hyperbola, a quadratic algebraic set. The intersection of this hyperbola with
a general line in (x, y) yields two points, where 2 is equal to the degree of
the polynomial xy − 1. In contrast, the intersection with the vertical line
x− a = 0 for a 6= 0 gives just one point, namely (x, y) = (a, 1/a).
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For another example, consider the pair of quadratic equations

F (x, y, z) = {xy − z, xz − y2} = 0, (14)

whose solution is the twisted cubic, C = {(x, y, z) = (t, t2, t3) | t ∈ C} and
the line {(x, y, z) = (t, 0, 0) | t ∈ C}. Intersecting C with a general plane
gives three points, but intersecting it with a linear function of just (x, y) gives
only two points. This reflects the fact that although C is a degree 3 curve,
its projection onto the (x, y)-plane is the parabola y = x2, a mere quadric.
In general, intersecting a k-dimensional algebraic set S ⊂ Cn with k linear
equations involving only r < n of the variables but otherwise general gives a
pseudowitness point set for the projection of S onto those r coordinates, and
that projection may have a lower degree than S itself. (For further discussion
of projections in numerical algebraic geometry, see [16] and [10, Ch. 16].)

These observations are made to clarify the relation between the results of
this paper and the prior work on the 3R synthesis problem. Given N ≤ 5 gen-
eral poses, the solution set has dimension 3(5−N), i.e., it is six-dimensional
for N = 3 and three-dimensional for N = 4. In [5, 7], the N = 3 problem is
reduced to one having a finite number of roots by fixing six link parameters.
Similarly, in [6], three link parameters are fixed. (In both [5, 6], two variants
are considered, picking different parameters to fix.) As just discussed, fixing
a variable is equivalent to intersecting the solution set with a special linear
equation, a coordinate-aligned hyperplane.

In contrast, instead of using specially aligned linear equations, we will
compute a witness set for the positive-dimensional solution set by intersect-
ing it with the appropriate number of general linear equations. These linear
equations can subsequently be specialized in a homotopy to fix any subset of
the variables; having computed the witness set, we will be prepared to apply
numerical algebraic geometry to perform many other operations. In particu-
lar, since Section 2.1 shows that (w1,w21,w3,v) represents a unique 3R spa-
tial chain, we will specialize to general linear equations involving just the vari-
ables (w1,w21,w3,v). This gives a pseudowitness set, say Ŵ = {F, L̂, Ŵ},
for this projection that can be used in further computations, where L̂ is a set
of general linear equations in (w1,w21,w3,v) and Ŵ is the set of solutions

to system {F, L̂} = 0.
One powerful technique for performing further computations is regener-

ation [17]. For example, suppose that for N = 3 or 4 poses, one wishes to
fix certain D-H parameters as was done in [5, 6, 7]. One might make the
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same choices as in one of those papers, but any other choice can be accom-
modated by our approach as well. To simplify the discussion, we assume
for the moment that the number of parameters to fix is exactly the num-
ber required to reduce the problem to a finite number of isolated solutions.
For brevity, let us introduce q := (w1,w21,w3,v) to denote the subset of
variables used in the projection. Since each point q represents a unique 3R
spatial chain, fixing D-H parameters is equivalent to imposing a set of alge-
braic conditions on these variables, say F̂ (q) = 0. If the new equations were

linear, say M̂(q) = 0, then one may find the solutions using the homotopy

H(t) = {F, tL̂+ (1− t)M̂} = 0 starting at t = 1 from the solution points Ŵ

for {F, L̂} = 0 and tracking solution paths as t → 0. In the case of fixing

D-H parameters, however, the entries in F̂ (q) can have degree larger than

one, and we need a start system Ĝ(q) whose degrees match it, so that the

homotopy H(t) = {F, tĜ+ (1− t)F̂} = 0 will have solution paths leading to

all the solutions of {F, F̂} = 0. For this purpose, it suffices for each entry

in Ĝ to be a product of linear factors in q, the number of factors matching the
degree of the corresponding entry in F̂ . Choosing one factor in each polyno-
mial of Ĝ results in a system of the form {F, L̂j} = 0 to solve, where index j
ranges over all possible ways of choosing the factors. Since we can solve each
of these, the total solution set for {F, Ĝ} = 0 can be assembled as a union

of their solutions, and we are then ready to proceed to solve {F, F̂} = 0.
We leave the precise details of regeneration to the references [17] and [10,
Ch. 12]. The key point of this discussion is that once a pseudowitness set
is on hand for the projection onto variables q, one is ready to solve a wide
range of problems related to 3R synthesis, including all the ones treated by
Lee and Mavroidis, as described below.

Finally, we note that once a general example1 for a problem with isolated
roots has been solved, the isolated roots of any other problem of that type
can be computed very efficiently by parameter continuation. In 3R synthesis,
this applies to the 5-pose problem or to any 3-pose or 4-pose problem having
the requisite number of link parameters pre-specified. One merely forms a
homotopy that moves the pose data and pre-specified link parameters con-
tinuously from the general example to the target example and follows paths

1“General example” means all pre-specified parameters are chosen at random in com-
plex Euclidean space.

10



from the solution points for the general example to those of the target. Once
the solution set for the general example is in hand, it no longer matters how
many homotopy paths were tracked to find it: all future problems in the
class are solved by tracking just the root count number of paths. To be con-
crete, we find that the 5-pose problem has in general 456 isolated solutions.
Although we track many more than that number to find this, once the first
complete solution set is in hand, all isolated solutions to any other 5-pose
3R synthesis problem can be solved by tracking just 456 paths. We give
examples of this below.

4. General Solving

With the formulation from Section 2 and using numerical algebraic geom-
etry as summarized in Section 3, we are able to solve the synthesis problems
for 3R spatial chains. In Table 1, we summarize the dimension and degree of
the solution set for N = 2, . . . , 5 general poses in all of variables used, namely
(w1,w21, . . . ,w2N ,w3,v), as well as in only the variables (w1,w21,w3,v),
these being sufficient to define a unique 3R mechanism. In particular, Table 1
shows that the 3R synthesis problem for 5 general poses has 456 solutions.
It remains an open question to determine if all 456 solutions can be real.

Table 1: Dimension and degree of 3R synthesis solution sets for N general poses.

(w1,w21, . . . ,w2N ,w3,v) (w1,w21,w3,v)
N Dimension Degree Dimension Degree
2 9 63 9 35
3 6 1704 6 672
4 3 6612 3 3132
5 0 456 0 456

We note that in the N = 4 and N = 5 cases, there are several degenerate
components for which either w1 or w3 is zero. We ignore these components
and do not count them in the degree table.

As outlined in Section 3, each entry in Table 1 corresponds to a witness or
pseudowitness set, which enables subsequent computations via regeneration
or parameter homotopy. In particular, by tracking 456 solutions paths in
a parameter homotopy, one is able to compute all isolated solutions to any
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5-pose synthesis problem as will be illustrated in Section 5.1. Moreover, by
using regeneration, one may solve any version of the 3- or 4-pose problems
treated by Lee and Mavroidis [5, 6, 7], as we shall do in Sections 5.2 and 5.3.

When we solve a general problem, the pose data is picked by a random
number generator as are certain other quantities, such as the coefficients of
the general linear equations used for slicing out a witness set. Since the cor-
rectness of our answers are subject to some uncertainty due to the interplay
between random number generation, numerical round-off, and various toler-
ance settings, it is advisable to perform certain checking procedures. The
simplest approach is to run each problem several times with new random
numbers and confirm that the results are consistent. To be even more confi-
dent, we can validate aspects of the computation. Section 4.1 describes using
α-theory to prove that the numerically computed points actually correspond
to distinct solutions. Section 4.2 then uses trace test computations to verify
the degrees presented in Table 1.

4.1. Validation using alpha-theory

Let F (z) be a system of n polynomials in n unknowns z. A natural ques-
tion when using numerical computations is to decide how accurate one needs
to numerically represent the solutions. For nonsingular solutions, i.e., for
ξ ∈ Cn such that F (ξ) = 0 and rank JF (ξ) = n where JF (z) is the n × n
Jacobian matrix of F (z), one approach is to make this decision based on the
quadratic convergence basin of Newton’s method surrounding ξ. A sufficient
condition that a given point lies in the quadratic convergence basin of some
solution is provided by α-theory [18] (see also [19, Ch. 8]) and can be tested
locally at the given point. In short, α-theory relies upon the fact that a point
is in the quadratic convergence basin of Newton’s method associated with
some nonsingular solution if the Newton residual is small compared with a
condition number based on the higher order derivatives of F at the point.

The software package alphaCertified [20] uses α-theoretic tools to de-
cide which points are certifiably in distinct quadratic convergence basins of
Newton’s method thereby corresponding to distinct solutions. When the
polynomial system F (z) has real coefficients, it can also certifiably catego-
rize each corresponding solution as real or nonreal as described in [20]. In
all of the examples presented in Section 5, the a posteriori validation using
alphaCertified took less time than the path tracking using Bertini.
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4.2. Validation using trace test

The trace test derived in [21], which can be efficiently computed via [22],
is a method for verifying that a collection of solutions form a witness point
set thereby validating degrees of components. The underlying foundation is
to consider the centroid of the paths which arise by intersecting a component
with a family of parallel slices. As shown in [21], one has a valid witness
point set for a component if and only if as the slice moves parallel to itself
the centroid of the corresponding paths moves linearly.

To illustrate this, reconsider the hyperbola A defined by xy − 1 = 0. For
simplicity, consider intersecting A with the family of slices defined by

L(x, y; t) = 3x+ 2y − t = 0.

As t varies, this line moves parallel to itself and its intersection with A defines
2 solution paths, namely(

t

6
+

√
t2 − 24

6
,
t

4
−
√
t2 − 24

4

)
and

(
t

6
−
√
t2 − 24

6
,
t

4
+

√
t2 − 24

4

)
.

Clearly, each path is not linear in t. However, the centroid of the two paths:(
t

6
,
t

4

)
,

is indeed linear in t thus confirming degA = 2.
The Bertini software package always performs the trace test when com-

puting witness sets for positive-dimensional sets. This serves to verify the
results for N = 2, 3, 4 in the left-hand column of Table 1. In addition, when
using slices that only involve a subset of the variables, one must consider
the trace test only in the coordinates of the centroid which involve those
variables. This variant of the trace test verified the results for N = 2, 3, 4 in
the right-hand column of Table 1.

For the N = 5 case, whose solution set consists of finitely many points,
there is no higher-dimensional set to slice, so a modification of the trace test
is needed. As proposed in [23], the key maneuver is to create a problem that
has a positive-dimensional solution set by allowing one or more of its fixed
parameters to vary. One then may perform a multihomogeneous trace test
in which slices respect the distinction between the original variables and the
parameters that became variables. Specifically, in our test, we let the third
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coordinate of p5, denoted p
(3)
5 , be a free variable, where p5 is the position

vector for the fifth pose. This gives a system with a one-dimensional solution
set. We slice it with an equation of the form

L1(w1,w21, . . . ,w25,w3,v) · L2(p
(3)
5 ) = t

where L1 and L2 are general linear functions in their respective variables.
As t varies, the trace test showed that there are now 5556 paths, with 5100
satisfying L1 = 0 and 456 satisfying L2 = 0 at t = 0 thereby confirming the
result for N = 5 in Table 1.

5. Examples

In the following, we utilize the setup described above to solve various
problems involving the synthesis of 3R spatial chains. All computations were
performed using Bertini [10] and alphaCertified [20] running on 2.4 GHz
Opteron 6378 processors with 64-bit Linux and 128 GB of memory.

5.1. 5-pose problem

Lee, Mavroidis, and Merlet [8] use interval methods to compute solutions
to a 5-pose synthesis problem. They report that 5 days of computations
on a cluster yielded 6 real solutions inside their search domain and 20 real
solutions outside. Their approach was guaranteed to find all solutions inside
the search domain, with no guarantee about what it would find outside that
domain. We will consider this problem using a parameter homotopy that
tracks 456 solution paths and finds all solutions.

To facilitate the parameter homotopy, we represent matrices in SO(3)
using quaternions. Accordingly, our parameter space is a linear space of
dimension 5(4 + 3) = 35 (five poses, each having four quaternion coordinates
and three position coordinates). To get the count of 456 solutions for 5-
poses as reported in Section 4, we solved the system for five general poses.
With those solutions in hand, we take a parameter homotopy defined by the
straight line between our general 5 poses and the following 5 poses from [8]

14



in quaternion form:

q1 =
[
−0.3938225625 0.1584268617 −0.7620982874 0.4888874299

]
,

q2 =
[
−0.4982569794 −0.6821984629 −0.1514278639 −0.5132395558

]
,

q3 =
[

0.2880644106 −0.7219903545 0.07665279784 −0.6243982478
]
,

q4 =
[

0.5848734779 −0.1591869762 0.5080877441 −0.6119063374
]
,

q5 =
[
−0.08487799894 −0.4692735393 0.4400168937 −0.7608963161

]
,

p1 =
[

8.310644971 −1.993959918 4.52564663
]
,

p2 =
[

8.46243208 3.909344844 3.781393231
]
,

p3 =
[

8.213357066 4.720930002 1.906020548
]
,

p4 =
[

6.61008808 −0.9786178219 7.933012701
]
,

p5 =
[

7.498628082 −2.362107226 −0.5803329915
]
.

The 456 paths were tracked in approximately 3 minutes using a single process-
ing core (3 seconds when using 64 cores) and validated using alphaCertified

as discussed in Section 4.1 to show that this synthesis problem has 28 real
solutions and 428 nonreal solutions. Upon backsolving for the D-H parame-
ters, we find the 26 real solutions reported in [8] plus two others. Numerical
approximations of these two additional solutions are shown in Table 2 in the
variables of this article and in Table 3 in D-H parameters.

solution 27 solution 28

v [−9.1211,−63.1593, 11.2619] [0.2905, 2.9166,−5.1925]
w1 [−6.7541,−10.6480,−7.7532] [−0.4602,−0.3576, 0.2614]
w21 [−0.4275, 3.2653,−4.2770] [9.2547,−7.6281,−3.2358]
w22 [−4.4717, 2.9986,−0.3877] [10.7207,−6.1127, 1.4178]
w23 [−4.8099, 1.5482, 1.8989] [8.2235,−7.7296,−5.1900]
w24 [−4.0426,−0.1579, 3.5735] [9.2516,−7.6290,−3.2424]
w25 [−3.9427, 3.4069,−1.4092] [6.9043,−7.4587,−7.1419]
w3 [11.1844,−0.3805, 0.2417] [−0.0113, 0.0734, 0.1121]

Table 2: Two additional real solutions for the 5-pose problem from [8]

5.2. 4-pose problems

To synthesize mechanisms to reach 4 general poses, Lee and Mavroidis [6]
consider two different ways of fixing three D-H parameters, thereby defining
problems having finitely many solutions. Both formulations fix α0 and θ0,
whereas the first way fixes a0 and the second way fixes d0. Each choice gives
36 solutions.
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solution 27 solution 28

θ0 −0.5653 −0.9102
α0 2.1221 1.1491
α1 1.5548 1.8751
α2 1.5848 0.5460
α3 1.5492 0.5849

φ = θ4 1.6048 −0.1522
a0 12.2344 −11.9659
a1 79.8919 7.5699
a2 60.4154 0.8676
a3 −63.4329 −0.7294
d0 89.4297 −1.7058
d1 44.8209 1.3618
d2 5.3979 12.4221
d3 6.9700 −5.1415

d = d4 −11.4125 9.4792

Table 3: D-H parameters for the two additional real solutions for the 5-pose problem
from [8] (angles in radians)

To address these same problem specifications using our choice of variables,
we begin by expressing z1 and u in terms of D-H parameters:

z1 =

 sinα0 sin θ0
− sinα0 cos θ0

cosα0

 and u =

 a0 cos θ0 + d1 sinα0 sin θ0
a0 sin θ0 − d1 sinα0 cos θ0

d0 + d1 cosα0

 .
Since w1 points in the direction of z1, fixing α0 and θ0 to general values
imposes the following two linear conditions:[

cos θ0 sin θ0 0
cosα0 0 − sinα0 sin θ0

]
w1 = 0. (15)

One can directly deform two of the general linear slices involving the vari-
ables w1,w21,w3,v to these two slices, leaving the third unchanged. Track-
ing the 3132 paths (see Table 1, line N = 4) of this homotopy yields 242
non-degenerate isolated solutions.

That takes care of the first two D-H parameters, α0 and θ0. In the first
set up of Lee and Mavroidis, the third parameter to be fixed is a0. This
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introduces the constraint[
cos θ0 sin θ0 0

]
u− a0 = 0. (16)

Since u is quadratic in the variables w1,w21,w3,v, we must first regener-
ate [17] a quadratic starting polynomial to match it. We do this starting
from the solution set found in the previous paragraph and now moving the
third linear slice to a new general position, generating a second solution set
of size 242. Combining these two gives a quadratic polynomial (the product
of two linears) and 484 solution point (the union of the two solution sets).
Deforming the quadratic to (16) constitutes a homotopy with 484 paths that
36 solutions. This is in agreement with [6].

The second setup of Lee and Mavroidis fixes d0 instead of a0. This leads
to replacing (16) with the constraint[

cosα0 sin θ0 − cosα0 cos θ0 − sinα0

]
u + sinα0d0 = 0, (17)

which is again a quadratic. We place this as the target of the final homotopy
preceding, and again the 484 paths lead to 36 solutions as in [6].

We note that with this setup, each new instance of these synthesis prob-
lems can now be solved using a parameter continuation that tracks only 36
paths. As an illustration, we consider the numerical example in [6] which
fixes the second set of parameters, namely

d0 = −5, α0 = 0.6435011, and θ0 = 0.3947911.

Lee and Mavroidis report the average time to compute the 36 solutions as 33
days. As in Section 5.1, we utilized a quaternion representation for matrices
in SO(3) with the following 4 poses from [6]:

q1 =
[
−0.03360779745 −0.6915500603 −0.7212239947 0.02156338409

]
,

q2 =
[

0.4774989481 −0.8512909324 −0.106624952 −0.1895511079
]
,

q3 =
[
−0.1874552152 0.8351297956 0.3625630704 −0.3687367445

]
,

q4 =
[

0.643435552 −0.3641213401 −0.5763108741 −0.3482414629
]
,

p1 =
[
−0.2446998 4.946913 4.610238

]
,

p2 =
[

12.06793 5.833343 3.247047
]
,

p3 =
[

9.567735 8.133992 3.10951
]
,

p4 =
[

3.660175 1.031613 7.988142
]
.

We note that this setup corrects a typo in the (1, 2) entry of the rotation
matrix R1 from [6] — it should be .9989744. In our experiment, the tracking
of the 36 paths required 4 seconds using a single processing core. Validating
the results using alphaCertified yielded 8 real and 28 nonreal solutions as
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reported in [6]. Table 4 lists the real solutions using the variables of this
article which correspond to the real solutions presented in [6, Table 1] using
D-H parameters.

Solution v w1 w21 w3

1

 −3.0988
3.6612
−0.41177

  0.98076
−2.3538
3.4000

  1.2760
−1.1048
1.0729

  0.77205
2.6470
−1.4706


2

 −5.6285
−0.51606
−0.15248

  0.15952
−0.38285
0.55300

  3.7433
0.94592
6.5842

  0.84557
−0.17929
−1.1483


3

 4.0551
27.174
−1.0552

  0.082364
−0.19767
0.28553

  75.543
108.23
−131.48

  0.015603
0.073782
−0.0001514


4

 −0.278206.6037
−0.30204

  0.40533
−0.9728
1.4052

  5.4343
2.2961
−0.099582

  0.19194
1.5229
−0.26632


5

 −14.3386.7435
−6.5585

  0.25753
−0.61807
0.89276

  −2.18131.8668
2.9063

  −1.1822−2.4120
−1.4908


6

 2.0137
14.238
−3.6496

  0.090172
−0.21641
0.31259

  6.2732
4.0777
1.8517

  −0.39455−1.4309
0.89787


7

 −5.81149.6122
1.4676

  −0.130270.31265
−0.45160

  6.9366
3.9225
−0.51028

  1.1200
0.29303
0.25628


8

 −5.0094
−1.3690
−0.028369

  0.11031
−0.26473
0.38239

  1.8348
1.8555
7.6947

  0.79594
−0.31294
−0.84242


Table 4: Real solutions for the 4-pose problem from [6] numbered as in [6, Table 1]

5.3. 3-pose problems

In [5, 7], to address the case of 3 general poses, Lee and Mavroidis consider
two different ways of fixing six D-H parameters generally to yield finitely
many solutions. Both fix a0, d0, α0, and θ0, with the first fixing a1 and d1,
and the second fixing d = d4 and φ = θ4. Each choice results in 8 solutions.

In the first case, the vector u is known which yields three quadratic
equations in w1,w21,w3,v. The vector z1 is also known yielding the two
linear constraints in Eq. (15) together with the quartic constraint

‖w1‖2(‖w21‖2 − (z1 ·w21)
2)− a21 = 0.

Using regeneration [17] starting from the witness set computed in Section 4
with general slices in w1,w21,w3,v, our approach verifies the results in [5, 7]
that this synthesis problem generically has 8 solutions.
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We can now use parameter continuation to track 8 solution paths to solve
instances of this synthesis problem, which in the examples tested took about
one second using a single processing core. For example, [7] considers fixing

a0 = −2, d0 = −4, α0 = 0.9272952180, θ0 = −0.6435011088, a1 = 2, d1 = −2.

Using quaternions, the 3 poses are

q1 =
[

0.006527140016 0.8963938272 0.1653542019 0.4112097893
]
,

q2 =
[

0.9012958544 −0.35536808 −0.08755445437 −0.2317617918
]
,

q3 =
[

0.3838000391 0.8510348734 −0.07509131152 −0.3504261251
]
,

p1 =
[

2.1230391 4.5332828 −6.8794793
]
,

p2 =
[
−3.0281379 4.4823767 3.0253581

]
,

p3 =
[
−4.4258684 1.6855691 −5.2240167

]
.

The validation of the solutions using alphaCertified, shows this problem
has 4 real and 4 nonreal solutions verifying [7]. Table 5 lists the real solu-
tions using the variables of this article which correspond to the real solutions
presented in [7, Table 1] using D-H parameters.

Solution v w1 w21 w3

1

 1.8225
2.9391
−4.7929

  0.41724
0.55632
−0.52155

  −0.511540.22856
2.8868

  −0.011012−0.016837
−0.012494


2

 0.96665
3.3693
−4.7659

  −0.39060−0.52080
0.48825

  1.3533
−1.8394
1.8981

  −0.14264−0.22997
−0.38769


3

 1.8462
2.0000
−6.2308

  −0.80000−1.0667
1.0000

  0.19200
−1.744
0.96000

  0.92308
−1.0341 · 10−7

0.38462


4

 0.68041
2.1330
−6.6324

  −1.1642−1.5522
1.4552

  −0.58069−1.8703
0.76160

  1.3884
−0.055464
0.16352


Table 5: Real solutions for the 3-pose problem from [7] numbered as in [7, Table 1]

Using a similar approach, we also verified that the corresponding problem
in [5] has 4 real and 4 nonreal solutions.

We now turn to the second case. The fixing of a0, d0, α0, and θ0 yield
the four constraints in Eqs. (15,16,17). Since

z3 =

 sinφ sinα3

cosφ sinα3

cosα3

 , v =

 −a3 cosφ− d3 sinφ sinα3

a3 sinφ− d3 cosφ sinα3

−d− d3 cosα3

 ,
and w3 points in the direction of z3, the fixing of d and φ yield the constraints[

cosφ − sinφ 0

(d+ v(3)) sinφ (d+ v(3)) cosφ −v(1) sinφ− v(2) cosφ

]
w3 = 0.
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As above, regeneration [17] starting from the witness set computed in Sec-
tion 4 with general slices in w1,w21,w3,v yields 8 solutions verifying [5].

We use this setup to solve the corresponding problem in [5], namely

a0 = d0 = d = 2, α0 = θ0 = φ = π/2.

Using quaternions, the 3 poses are

q1 =
[
−0.2241440446 −0.1294095605 0 −0.9659257802

]
,

q2 =
[
−0.270598115 −0.270598115 0 −0.9238794945

]
,

q3 =
[

0 0.7071067812 0 0.7071067812
]
,

p1 =
[

2.63397 8.78109 4.45096
]
,

p2 =
[

4 8.24264 5.41421
]
,

p3 =
[

6 6 6
]
.

Tracking the 8 solution paths took about one second using a single processing
core compared with 70 hours reported in [5]. We again use alphaCertified

to validate the solutions yielding 4 real and 4 nonreal solutions. Table 6 lists
the real solutions using the variables of this article which correspond to the
real solutions presented in [5, Table 2] using D-H parameters.

Solution v w1 w21 w3

5

 −9.233314.653
−2.2982

  −0.212350
0

  4.4313
−6.1108
2.2898

  1.4452
0

0.04667


6

 −1.45951.1958
−2.1357

  0.77721
0
0

  −0.869861.6210
−2.1025

  0.93937
0

0.087364


7

 39.179
−66.268
−1.9845

  0.029224
0
0

  −34.19043.851
−24.800

  1.2950
0

0.00051168


8

 −2.00002.0000
−2.0000

  0.99996
0
0

  −8.2051 · 10−5

1.0000
−1.7321

  1.0000
0

−1.3567 · 10−6


Table 6: Real solutions for a 3-pose problem from [5] numbered as in [5, Table 2]

6. Conclusions

After developing a new formulation for the synthesis of 3R spatial chains
for body guidance, we show how numerical algebraic geometry can be used
to solve several such synthesis problems. In particular, for the first time, this
formulation and solving procedure shows that the 5-pose synthesis problem
generically has 456 solutions. The output provides all the information needed
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to completely solve any particular 5-pose problem by using a parameter ho-
motopy that starts from the solutions of our randomly chosen problem and
continuously moves its five poses to the new ones. We used such a procedure
to compute all solutions to the 5-pose problem from [8]. Our approach is
much more efficient, producing full solution sets in 3 minutes (1 core) or 3
seconds (64 cores) compared to obtaining a partial solution set in 5 days.

When less than 5 poses are specified, the solution set of the synthesis
problem consists of infinitely many points. We use numerical algebraic ge-
ometry to compute a witness set for the solution set in all variables as well
as a pseudowitness set for the projection of the solution set onto a subset
of variables that suffice to define a unique 3R mechanism. This information
can be used to solve other synthesis problems, including those formulated in
terms of three or four poses and along with the specification of some of the
Denavit-Hartenberg parameters. In particular, starting with the pseudowit-
ness sets, we used the method of regeneration to verify the results in [5, 6, 7].
Moreover, in each of these cases we end up with a parameter homotopy that
can solve such problems in seconds compared to previous reports requiring
several days to get the same results.

With the complete solution to the 3R synthesis problems described here,
the next open case in this direction is the synthesis of 4R spatial chains.
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