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Motivated by the recently observed phenomenon of topology trivialization of potential energy landscapes (PELs)
for several statistical mechanics models, we perform a numerical study of the finite size 2-spin spherical model
using both numerical polynomial homotopy continuation and a reformulation via non-hermitian matrices. The
continuation approach computes all of the complex stationary points of this model while the matrix approach
computes the real stationary points. Using these methods, we compute the average number of stationary points
while changing the topology of the PEL as well as the variance. Histograms of these stationary points are
presented along with an analysis regarding the complex stationary points. This work connects topology trivi-
alization to two different branches of mathematics: algebraic geometry and catastrophe theory, which is fertile
ground for further interdisciplinary research.

I. INTRODUCTION

Recently, in two independent studies, it was observed that
the mean number of real stationary points of a certain class of
statistical models changes drastically when changing a certain
parameter µ [1, 3, 16, 20, 31]. It was shown that as µ tends to
a critical value µc, one observes a sharp phase transition, sep-
arating a region of exponential proliferation of critical points
from one of only finitely many.

Furthermore, in Refs. [16, 20, 21], the coupling parame-
ter of the nearest-neighbour φ4-model on the 2-dimensional
lattice was continuously varied and found that the number
of real stationary points changed from around 108 to O(1)
for the 4 × 4 lattice case. Independently, in Ref. [1], the
problem of computing the real stationary points of the func-
tion Eh(x) = − 1

2xTHx − hT x was considered. Here,
x = {x1, . . . , xN} are N real variables subject to the spher-
ical constraint

∑N
i=1 x

2
i = N , H is a random matrix from

the Gaussian Orthogonal Ensemble (GOE) and h is a vector
whose entries are i.i.d. random variables with zero mean and
variance σ2. It was shown that the mean number of real sta-
tionary points of Eh(x) can vary from 2N to 2. In between
these two extreme cases, two non-trivial regimes were iden-
tified: first, when σ ∼ O(N−1/2), the number of stationary
points is of order N and second, when σ ∼ O(N−1/6), the
number of solutions is of order one. This gradual decrease of
the complexity of the random manifold was termed topology
trivialization. A similar phenomenon is also recently reported
in random dynamical systems [4].
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In Ref. [3], the results were extended to a generalized class
of models, namely, to the p-spin spin glass model defined on
the sphere and a model of a Gaussian landscape in a confin-
ing parabolic potential. Interestingly, in the p-spin model with
p > 2, which naturally generalizes the p = 2 case, there ex-
ists a critical value of σ = σc such that for σ < σc the land-
scape [6, 7] has an exponentially large number of stationary
points. For σ > σc, the landscape behaves in much the same
way as in the p = 2 case, i.e., it is possible to find two dif-
ferent scaling regimes with system size interpolating between
a region with a large number of stationary points and a final
region with only two. The abrupt change in the number of
stationary points at σc can be formally related to a thermo-
dynamic phase transition in the Statistical Mechanics version
of the model. In the same work, the author also shows simi-
lar results for a random Gaussian landscape with a parabolic
non-random confinement. Surprisingly, this model behaves in
a qualitatively similar way as the p-spin model. Nevertheless,
the parameter which triggers the topology trivialization effect
is not an external field but a parameter related to the curva-
tures of the confining potential and the Gaussian manifold. A
unifying methodology of these works was to relate the prop-
erties of the mean number of stationary points and also of ex-
trema (minima and maxima) of Gaussian manifolds to known
properties of the eigenvalue distributions of random matrices,
specifically of matrices belonging to the GOE.

In this work, we use two different numerical algorithms to
compute several quantities related to the topology trivializa-
tion scenario in the 2-spin spin glass model with a spherical
constraint. The Numerical Polynomial Homotopy Continua-
tion Method [14, 28, 32] allows us to compute all the complex
stationary points of a polynomial function. This enables us to
make an exhaustive search of the (complex) stationary points.
We also use a method based on a link between the 2-spin
spherical model and non-Hermitian random matrices. This
second method, which does not readily generalize to p > 2,
only computes the real stationary points and allows for larger
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N . In particular, we present results for the mean number of
real stationary points for finite system sizes. Interestingly,
there exists in the literature analytic results for this quantity
in terms of the density of eigenvalues of the GOE for any fi-
nite N [10]. Our numerical results are in agreement with the
predictions of analytic calculations for finite N , and we also
show how the results approach the asymptotic prediction in
the limit N → ∞. In particular, our computations verify the
existence of the two scaling regimes predicted in [1]. We also
present calculations for the variance of the number of station-
ary points as a function of scaling parameters characterizing
the two regimes of topology trivialization together with re-
sults for the full probability distributions. To the best of our
knowledge, no theoretical results exist predicting the behavior
of these quantities.

We also use our methods to obtain rather detailed statis-
tics on the global minimum of Eh(x). The distribution of
this random variable was investigated heuristically in [1] us-
ing the powerful technique of replicas. The authors obtained a
prediction for the large deviations function of the distribution
of Emin, valid for N � 1 and up to some critical value of
the energy Ec. This later inspired the recent work of Dembo
and Zeitouni [2] who rigorously derived a different large devi-
ations formula for Emin. Although the latter formula largely
confirms the heuristic predictions of [1], it revealed a small in-
terval of energies near Ec where the corresponding rate func-
tions are actually different. Remarkably, it turns out that the
difference between the two rate functions is small enough to
be virtually undetectable from a numerical point of view. Our
numerical results show good agreement with the large devia-
tions predictions in the region where these are valid.

In the last section we address the computation of all the
complex solutions in the different regimes of interest. This
clearly show how as the topology of the landscape becomes
simpler a corresponding growth of the imaginary parts of the
solutions emerge.

II. THE MEAN-FIELD 2-SPIN SPHERICAL MODEL

The 2-spin spherical model is defined by the Hamiltonian
or energy function:

Eh(x) = −
1

2
xTHx− hT x, (1)

where x = (x1, . . . , xN ) ∈ RN is a set of N real degrees of
freedom subject to the spherical constraint

N∑
i=1

x2i = N (2)

which restricts x to lie on an (N − 1)-sphere of radius
√
N .

The coupling constantsH areN×N real symmetric matri-
ces with elements Hij independently drawn from a Gaussian
distribution with zero mean and variance 〈H2

ij〉 = J2/N for
i < j and diagonal elements with zero mean and variance
〈H2

ii〉 = 2J2/N . The external field h is a real random vector

with each entry independently drawn from a Gaussian distri-
bution with zero mean and variance σ2.

In order to derive the equations for the stationary points
of the energy, it is convenient to introduce a Lagrange multi-
plier λ. With the spherical constraint and the energy function,
we obtain the Lagrangian function:

E(x, λ) = Eh(x) + λ

(
−N +

N∑
i=1

x2i

)
. (3)

The stationary points of the energy are defined by the system
of N + 1 equations:

∂E(x, λ)
∂xi

= −
N∑
j=1

Hijxj − hi + 2λxi = 0, i = 1, . . . , N ,

∂E(x, λ)
∂λ

=

N∑
i=1

x2i −N = 0. (4)

A. Known Results

In [1], the authors identified two scaling regimes as a func-
tion of the intensity of the external field. The first regime
is observed when σ2 ∝ N−1. In this regime, for any finite
γ = N σ2

2J2 , the mean number of real solutions of the station-
ary equations is of the order ofN (γ) ∼ O(N), i.e. the system
has a large number of solutions, if N is large. An explicit
expression for N (γ) was obtained in the asymptotic limit
N → ∞, equations (12) and (13) in [1]. The second scal-
ing regime is observed when σ2 ∝ N−1/3. In this regime, it
is useful to introduce another control parameter κ = N1/3 σ2

J2 .
Then, for any fixed κ, the number of real solutions turns out to
be of order N (κ) ∼ O(1). As κ increases without bound, the
number of stationary points converges to 2. This is the min-
imal possible number of real solutions, and these correspond
to a unique maximum and a minimum. One sees this phe-
nomena occur in both the γ and κ regimes, i.e., the number of
solutions gradually diminishes until the energy function has a
single minimum and a maximum. This process, driven by the
strength of an external field applied to the system, is called
topology trivialization [1, 3]. While analytical approaches are
usually limited to large-N calculations, an exact expression for
the real number of stationary points of processes in the GOE
ensemble is known for any N [1, 9]:

N = 2N

(
2(J2 + σ2)

2J2 + σ2

)1/2(
J2

J2 + σ2

)N/2
×∫ ∞

−∞
EGOE{ρN (λ)}e

Nσ2

2(2J2+σ2)
λ2

dλ, (5)

where EGOE{ρN (λ)} is the mean eigenvalue density of the
GOE ensemble for which there are exact expressions for arbi-
trary N in terms of Hermite polynomials [10]. We compared
our exact numerical results for finite N with this expression
in each regime. It is also of interest to compare numerical re-
sults for finiteN with the asymptotic result obtained in [1]. In
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the N → ∞ limit, the mean eigenvalue density of the GOE
ensemble leads to the well known semicircular law. Then, it
is easy to obtain the resulting limit of expression (5). In the γ
regime, it reduces to:

lim
N→∞

N
2N

= N (γ) = e−γ
∫ √2

−
√
2

√
2− λ2 e

γ
2 λ

2 dλ

π
(6)

which is equation (12) in [1]. In the κ regime, the integral
in (5) is dominated, in the large N limit, by the edge of
the mean eigenvalue density, ρedge. Performing the limit as
N → ∞ while keeping κ finite, one arrives at the asymptotic
expression for the mean number of solutions in this regime:

lim
N→∞

N (κ) = 4 e−κ
3/24

∫ ∞
−∞

e
κ
2 zρedge(z) dz (7)

as given by equation (15) in [1].

III. THE NUMERICAL POLYNOMIAL HOMOTOPY
METHOD SPECIALIZED FOR THE 2-SPIN MODEL

One approach for computing all of the stationary points
of the 2-spin model is by solving a system of multivariate
polynomial equtions using the numerical polynomial homo-
topy continuation (NPHC) method [12–20, 22–26, 28, 32]. In
particular, in Refs. [19, 24, 25], the method was used to ex-
plore the potential energy landscapes of different potentials
with random disorders, and in Ref. [27] in a different sta-
tistical setting. The NPHC method can find all the isolated
complex solutions of the system (see e.g. [33–35] for related
approaches). It works by first determining an upper bound
on the number of isolated complex solutions of the given sys-
tem. One such upper bound is the Bézout bound, which is
simply the product of the degree of each polynomial equation.
In many structured systems, such as (4), this upper bound is
much larger than the actual number of solutions. A refinement
of this is the multi-homogeneous bound, which will be used
below to obtain a sharp upper bound of 2N for (4).

From such a bound, one constructs another system that has
exactly that many isolated nonsingular solutions which is easy
to solve. A homotopy from this system to the given system is
constructed which defines solution paths. The endpoints of
convergent paths form a superset of the isolated solutions of
the given system.

A. Upper bound on the number of stationary points

The Bézout bound for the stationary equations (4) of the
2-spin model is 2N+1. However, due to the structure of the
system which has a natural partition of the variables, namely
x and λ, this Bézout count is far from sharp. In fact, a
well-known bound on the maximum number of real station-
ary points is 2N [1], which can be obtained, for example, by
taking h = 0. The following shows that 2N is also a sharp up-
per bound on the number of complex stationary points derived
via a 2-homogeneous Bézout bound.

The 2-homogeneous bound arises from the natural partition
of the variables, with the first group consisting of the N vari-
ables arising from x and the second group being λ. To com-
pute this bound, we first need to find the degrees of the poly-
nomials which respect to each group, in this case, called the
bidegree of each polynomial. The first N polynomials in (4)
have bidegree (1, 1) since they are linear in x and linear in λ.
The last polynomial has bidegree (2, 0) since it is quadratic
in x and λ does not appear.

Computing the 2-homogeneous bound now turns into a
combinatorial problem. In particular, one needs to determine
all the ways in selectingN nonzero entries in the first spot and
1 nonzero entry in the second spot. Here, N and 1 correspond
to the dimensions of the spaces, i.e., x ∈ CN and λ ∈ C,
respectively. The bound is simply the sum over the products
of the corresponding entries. In particular, since the last poly-
nomial has bidegree (2, 0) and the other N polynomials have
bidegree (1, 1), the 2-homogeneous bound is simply 2 times
the number of ways of selecting N − 1 items out of a total of
N items, i.e., 2N .

Since there is a system which has 2N real solutions, i.e.,
taking h = 0, it follows that, with probability 1, (4) has ex-
actly 2N complex solutions. Therefore, the 2-homogeneous
bound is (generically) sharp. That is, from a corresponding
start system with precisely 2N solutions, there is a bijection,
defined by the solution paths of the homotopy, between the
2N solutions of the start system and the 2N solutions of each
system that corresponds to the selected random data.

We obtained the data via parallel computing which is based
on the independence of solving each random instance and the
independence of tracking each of the 2N paths. In particular,
we solved using Bertini [28, 29] on a cluster of 9 proces-
sors, each with 8 cores running at 2.3 GHz.

IV. ALTERNATIVE REFORMULATION VIA
NON-HERMITIAN MATRICES

Although the NPHC method described in the previous sec-
tion applies quite generally to solving systems of multivari-
ate polynomial equations, we can exploit the structure of the
2-spin spherical model to develop another solving approach.
This method is based on non-Hermitian random matrices,
which are matrices A such that AT 6= A, that was suggested
in [1] but has not yet been exploited for numerical purposes.

The first step is to note that after diagonalizing the GOE
matrix H , the stationarity condition (4) can be solved:

x∗ =
N∑
j=1

x̃juj , x̃j =
h̃j

λ̃− λj
(8)

where h̃j = hTuj and uj are the sequence of orthonormal
eigenvectors ofH with corresponding eigenvalues λ1 < λ2 <
. . . < λN and λ̃ = −2λ.

Next, we have to obtain an equation for λ̃. From the spher-
ical constraint ‖x∗‖2 = N , formula (8) gives the condition
hT(H − λ̃)−2h = N . This is equivalent to the determinantal
equation det((H − λ̃)2 − N−1hhT) = 0. Finally, using the
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well-known formula for the determinant of a block matrix, we
see that λ̃ satisfies (4) if and only if λ̃ is a real eigenvalue of
the following non-Hermitian block matrix

A =

(
H N−1hhT

IN H

)
(9)

where IN is the N × N identity matrix. Notice that when
h = 0, A has the same eigenvalues of H , and there are 2N
stationary points. Then, the external field h 6= 0 breaks the
symmetry of A and pushes a non-trivial fraction of the eigen-
values into the complex plane.

In summary, we see that to compute the real solutions of
(4), it is sufficient just to calculate the real eigenvalues of the
matrix A to obtain all possible values of λ̃. The total number
of such real eigenvalues gives the total number of stationary
points. Then, the positions of the stationary points can be
obtained by inserting all possible real values of λ̃ into (8) to
obtain x∗. The energy of each stationary point can then be
computed from (1). The numerical results of such a procedure
are described in Section V. We also compare with the general
purpose NPHC method from the previous section.

To calculate the mean and the variance, as well as the fre-
quency distribution of the total number of stationary points, it
suffices to generate enough realizations of the matrix A in (9)
and to count the real eigenvalues for each realization. This
was done by setting up the block matrix A in Matlab and
each time computing the eigenvalues using the built-in func-
tion eig. The number of realizations used for the data pre-
sented here was 100,000 except for N = 200 in which only
50,000 realizations were used.

V. RESULTS

In the following we present the results of the compu-
tations based on the numerical approaches outlined above.
When investigating the behavior of the real solutions, the non-
Hermitian matrix method is preferred due to the speed of the
computation. We did, however, verify the results matched
computations using NPHC method. When investigating the
behavior of both the real and imaginary parts of the Hamilto-
nian, this involved using the NPHC method.

A. Mean number of stationary points

In Figures 1 and 2, the average number of real solutions are
shown as a function of γ and κ, respectively. Each point in the
plots represents the average over 100,000 samples. Numeri-
cal results from the non-Hermitian eigenvalue problem (9) are
plotted for several different values of the dimension N , to-
gether with the theoretical results in the asymptotic limit from
(6) and (7) and also with the exact expression from (5).

In Fig. 1, the finiteN numerical results show a qualitatively
similar trend to the asymptotic results, approaching this in a
relatively fast rate as N grows. The results are also compared
with the exact analytic formula (5) for a fixed size N = 20.

FIG. 1. Mean number of stationary points as a function of γ.

FIG. 2. Mean number of stationary points as a function of κ.

The numerical calculations agree excellently with the analyt-
ical expressions. The same observations are valid for Fig. 2
which shows the results for the κ regime. HereN (κ)→ 2 for
large κ, which is the limiting regime of topology trivializa-
tion as described above. In summary, these results show both
the correctness of the analytical approaches for computing the
mean number of stationary points in the GOE ensemble, and
also the correctness of the numerical calculations from the
non-Hermitian eigenvalue problem (9).

B. Variance of the number of real stationary points

While it is often possible to compute analytical expressions
for the mean number of real solutions of a random system of
equations, obtaining analytical expressions for the variances
or higher order moments of the distribution is often a very dif-
ficult task, if not impossible. Indeed, for the 2-spin spherical
model, analytical expressions for the variance for both finite
N and N → ∞ are completely unknown. It is here where
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numerical methods can be most useful.
By means of the non-Hermitian matrix (9), we can find all

the real solutions for each sample of the 2-spin model, and
then we can straightforwardly compute the variance of the
number of real solutions. This quantity, which is a measure
of the fluctuations of the mean number of real solutions, is of
particular relevance as it gives information on the occurrence
of real versus complex solutions of the system of equations in
the different regimes.

FIG. 3. Variance of the number of stationary points as a function of γ.

The variance as a function of γ and κ for different values of
N is plotted in Figures 3 and 4, respectively. In Figure 3, as
we increase through higher values of N , the variance shows a
clear convergence to a well defined limiting curve, confirming
our normalization of Ntot by N−1/2 in this context. An im-
portant open problem is to provide a theoretical justification
for this normalization and the resulting limiting curve. In the
κ regime, shown in Figure 4, the number of stationary points
is characterized by large fluctuations near the origin κ = 0+

which are quickly suppressed for increasing values of κ.

FIG. 4. Variance of the number of stationary points as a function of κ.

C. Frequencies of the no. of stationary points

Going beyond the mean and variance, we can also obtain
the full distribution of the number of stationary points. The
results are plotted in Figure 5 in the γ regime for N = 75.
The plots were generated from 100,000 realizations of the ma-
trix A in equation (9). For increasing values of γ, we note
the spread of the distribution behaving in accordance with the
variance plot in Figure 3. As with the variance, there is not

FIG. 5. Probability densities of the number of stationary points for
different values of γ.

yet any analytic results about the full distribution of the num-
ber of stationary points. Its theoretical investigation may be
of broader interest to practitioners of random matrix theory,
as the number of real eigenvalues were investigated by sev-
eral authors when the underlying matrix is composed of inde-
pendent, identically distributed entries [5] or satisfies invari-
ance [30] with respect to the action of an appropriate compact
group. In these simpler cases, it was proven that the fluctua-
tions of the real eigenvalue count are Gaussian whenN →∞,
with mean and variance of order

√
N . In contrast, our study

shows that for the matrix A in the γ-regime, the real eigenval-
ues instead have mean and variance of order N .

D. Distribution of global minima

In order to obtain the distribution of the global energy min-
imum with our methods, one simply takes the obtained values
of the Lagrange multipliers (namely, the eigenvalues of the
matrix A in (9)) and inserts the results into (8). Then, numeri-
cally, it’s a simple task to evaluate the energyEh(x) at the 2N
critical points and minimize over all outputs. The correspond-
ing probability histogram is depicted in Figure 6 for N = 50,
J = 1, γ = 2 with 100,000 realizations.

The statistical properties of the ground state energy of the
2-spin spherical model were investigated analytically in [1]
and later in [2]. In [1], a large deviations asymptotic expres-
sion for the probability density function of Emin was derived,
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FIG. 6. Probability density of Emin for γ = 2 and N = 50.

FIG. 7. Probability density of Emin for σ = 1 and N = 100.

FIG. 8. Probability density of Emin near the critical energy, again
with σ = 1 and N = 100.

valid up to a critical value of the energy Ec := −N
√

1+2σ2

1+σ2

and depending on the parameter Etyp = −N
√
1 + σ2, the

typical value of Emin. Recently the corresponding rate func-
tion was obtained rigorously in [2], revealing a surprising
difference with the one obtained in [1]. Specifically, it was

FIG. 9. Probability density of Emin for κ = 1 and N = 50.

shown in [2] that there is a different critical parameter EL :=

−N
(
1 + σ2

2(1+σ2)

)
for which the two rate functions disagree

on the interval [EL, Ec].

In Figure 6, we plot the large deviations functional in [1]
that was also proved rigorously in [2]. The results show a
good consistency between the two approaches in the regime
of validity of large deviations E � Ec. The values of Ec, EL
and Etyp are almost identical here.

On the other hand, if we consider the regime of topology
trivialization, where σ > 0 is fixed, we get an almost perfect
agreement with large deviations, see Figure 7, where we set
σ = 1, J = 1 and N = 100. The reason seems to be that for
fixed σ, the threshold Ec moves far out into the right tail of
the distribution, giving a wider range of validity. The triangles
show the Gaussian

P (E) ∝ exp

(
(E − Etyp)

2

σ2N

)
(10)

giving a good approximation to the tails of the distribution [1].

For σ = 1, the critical parameters also begin to separate
out more and one can ask how the two large deviations ex-
pressions differ on [EL, Ec]. As seen in Figure 8, this differ-
ence is very small and is hard to detect numerically. Below
Ec, the triangular data points are based on the rigorous large
deviations formula in [2] and circles the one in [1]. At the
level of rate functions, their difference is upper bounded by
10−4 on the interval [EL, Ec]. Away from this interval, the
two expressions are identical [2]. The plot also shows that as
one approaches Ec the pre-exponential factor in [1] diverges
and should be replaced by a different expression beyond the
threshold Ec.

Finally, we plot the results for the κ-regime in Figure 9.
Now, the large deviation expressions gives an agreement
somewhere in between the last two regimes, as expected from
the fact that σγ � σκ � 1, where σγ and σκ denote the σ
values corresponding to the γ and κ regimes respectively.
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FIG. 10. Plots of the real and imaginary parts of the energy function Eh(x) evaluated at the complex stationary points for different values of
γ and κ.

E. Complex Stationary Points

As stated before, the NPHC method finds all complex so-
lutions of (4). Since, with probability 1, there are always 2N

complex solutions for any random sample, only the number
of real solutions varies with γ and κ. In other words, while
increasing γ and κ, some of the real stationary points become
complex solutions. One way of studying this phenomenon
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is by plotting real vs imaginary parts of Eh(x), see Figure
10. The plots show that at small γ and κ, the imaginary part
of Eh(x) evaluated at all the 2N complex stationary points
is zero. As the parameters increase, the imaginary parts of
Eh(x) increases meaning that some of the real solutions be-
came nonreal.

VI. DISCUSSION AND CONCLUSION

Exploring potential energy landscapes of various models
arising in physics and chemistry is a very active area of re-
search in different fields of science and mathematics. Re-
cently, a curious feature of the potential energy landscapes
of a class of statistical mechanics models has been observed,
namely, topology trivialization: while varying one or more
parameters of the potential, either continuously or varying the
variance of the random distribution the parameter values are
drawn from, the mean number of real stationary points of the
potential varies fromO(1) toO(N) or even higher. In the for-
mer case, the topology of the N -dimensional landscape can
be viewed as being trivialized. These two phases are shown
to be related to phase transitions of the systems. In this work
we have done a numerical study of the topology trivializa-
tion scenario in the 2-spin spherical model. While the mean
number of real stationary points can be computed analytically
using random matrix theory tools, computing other quantities
such as the variance of the number of real stationary points
and the full distribution are prohibitively difficult for current
analytical computation techniques.

We used two numerical methods, namely, the numerical
polynomial homotopy continuation (NPHC) method and non-
Hermitian matrix method. One first translates the problem of
finding stationary points into an algebraic geometry problem
of solving a system of polynomial equations. This interpre-
tation yields an upper bound on the number of complex solu-
tions, namely 2N which is equal to the known upper bound
on the number of real solutions for this system. In fact, 2N
is equal to the number of complex solutions, with probabil-
ity 1, and only the number of real solutions varies with each
instance. Hence, we have found a more general result for the
number of solutions of the 2-spin model.

The second method, though apparently only specific to the
2-spin case, works more efficiently in this case by finding all
the real solutions for a given random instance and hence giv-
ing an opportunity to reach much higher dimension N and
sample size. The method does not find complex solutions
which were analyzed using the NPHC method.

With the two powerful methods at our disposal, we first re-
produced the analytical predictions on the mean number of
real solutions with an excellent agreement. We also addressed
the issue of fluctuations of the number of solutions, showing
that for the γ-regime, the variance of the number of critical
points is of order N as N → ∞. To show this analytically
seems to us an important open problem. Little is known in
general about fluctuations of the number of critical points in
random Gaussian fields, although in a different context results
in this direction were obtained in [11].

We also investigated statistics of the global energy mini-
mum Emin. When σ > 0 is fixed and large enough that
Ec � Etyp (corresponding to the regime of topology trivial-
ization), our findings give a strong agreement with the heuris-
tic arguments in [1]. Remarkably, it seems that in this regime,
the entire distribution of Emin yields precise agreement with
the large deviations expression in [1]. In the γ and κ regimes,
the agreement with large deviation theory is limited to the left
tail of the distribution. The reason seems to be that when
σ → 0, the critical energy threshold Ec moves further into the
bulk of the distribution and we know that the pre-exponential
factors from [1] are not valid if E > Ec. Analytical under-
standing of the statistics of Emin in the right tail for the γ and
κ regimes therefore remains an outstanding issue.

We note that the topology trivialization phenomenon, at
least in the simple case of continuously varying parameters,
shares a deep connection with Catastrophe theory, which is
now absorbed in a more general mathematical framework of
singularity theory and bifurcation theory. From Catastrophe
theory, it is known that varying the parameters of the po-
tential continuously the real stationary points may appear or
disappear, or change their stability properties [37, 38]. In
Refs. [16, 20, 21], it was observed that while continuously
varying the parameter of the two-dimensional nearest neigh-
bor φ4 model, some of the real stationary points would merge
to become complex solutions and vice versa.

The fact that the topology trivialization occurs when vary-
ing the variance of the random distributions from which the
parameters are drawn, rather than varying the parameters
themselves, makes such a description more subtle. In the
present work, however, we have observed that a similar phe-
nomenon of real stationary points transforming to complex
and vice versa is occurring in the 2-spin model too when vary-
ing γ and κ.

Another description of the topology trivialization phe-
nomenon may come from our algebraic geometry interpreta-
tion of the 2-spin model: for a simple system ax2+bx+c = 0,
where a, b and c are real parameters, the discriminant b2−4ac
decomposes the 3D parameter space in to three phases, i.e.,
no real roots, two distinct real roots and double roots. Thus,
the number of real solutions goes from the highest possible
to zero. Similarly, a discriminant can be defined for multi-
variate polynomials case and a similar classification of the pa-
rameter space based on the number of real solutions can be
worked out using the so-called discriminant variety method
[39–41]. From this, one can study the topology trivialization
fairly straightforwardly for the case of continuously varying
parameters. However, the case of varying variances of the ran-
dom distributions of the parameters is still subtle and largely
unexplored even from the Mathematics point of view.

Thus, we anticipate that our results will merge the topol-
ogy trivialization phenomenon with the emerging mathemati-
cal areas called Statistical Topology, or perhaps inspire a new
subbranch that may be called statistical catastrophe theory or
stastical discriminant variety.

We also note that for higher N , numerical instabilities be-
come profound when finding stationary points of the p-spin
model using the above numerical methods. To resolve this



9

issue, one can employ, for example, Smale’s alpha theorem
to certify if a numerical approximate is provably within the
quadratic convergence region of the nearby exact root. Com-
bining this certification with the NPHC method then gives a
result equivalent to the exact result for each random instance
[42, 43]. In the future, we plan to use this combination to
prove concrete results for higher values of N .
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