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Typically, there is no guarantee that a numerical approximation obtained using standard nonlinear
equation solvers is indeed an actual solution, meaning that it lies in the quadratic convergence
basin. Instead, it may lie only in the linear convergence basin, or even in a chaotic region, and
hence not converge to the corresponding stationary point when further optimization is attempted.
In some cases, these non-solutions could be misleading. Proving that a numerical approximation
will quadratically converge to a stationary point is termed certi�cation. In this report, we provide
details of how Smale's α-theory can be used to certify numerically obtained stationary points of a
potential energy landscape, providing a mathematical proof that the numerical approximation does
indeed correspond to an actual stationary point, independent of the precision employed.

I. INTRODUCTION

Given a potential V (x), with x = (x1, . . . , xn), the surface
de�ned by V (x) is called the potential energy landscape
(PEL) of the given system [1]. The special points of a PEL,
de�ned by the solutions of the equations ∂V (x)/∂xi = 0
for i = 1, . . . , n, provide important information about the
PEL. These special points, called critical points or station-
ary points (SPs) of the PEL, can be further classi�ed ac-
cording to the number of negative eigenvalues of the Hes-
sian matrix, Hi,j = ∂2V (x)/∂xi∂xj . The SPs at which H
is positive (negative) de�nite are called minima (maxima)
of the PEL and the SPs at which H has exactly I negative
eigenvalue are called saddles of index I. SPs at which H
has at least one zero eigenvalue, after removing the global
symmetries from the system corresponding to overall trans-
lation and rotation, are called singular SPs or non-Morse
points.

The SPs of the PEL can be employed to calculate or es-
timate certain physical quantities of interest. A variety
of techniques have been deveoped within the framework
of potential energy landscape theory [1, 2], with applica-
tions to many-body systems as diverse as metallic clusters,
biomolecules and their folding transitions, and glass form-
ers.

Except for rare examples, like the one-dimensional XY
model [3], it is not usually possible to obtain the SPs ana-
lytically because solving the nonlinear stationary equations
can be an extremely di�cult task. Hence, one has to rely
upon numerical methods. When a numerical method �nds
a solution of a given system, it essentially means that it
has found a numerical approximation of an exact solution.
After achieving a numerical approximate, one can heuris-
tically validate it by either monitoring iterations of New-
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ton's method or by substituting the approximations into
the equations to see if they are satis�ed up to a chosen tol-
erance. Usually, such a validation works well in practice.
However, as will be clear from the examples provided below,
such heuristic approaches do not guarantee that the numer-
ical approximation will indeed converge quadratically to the
associated solutions using arbitrary precision. More specif-
ically, even if a numerical approximation is heuristically
validated, it could turn out to be a nonsolution at higher
precision, or Newton iterations may have unpredictable be-
havior, such as attracting cycles and chaos, when applied to
points that are not in a basin of attraction [4�8] of some so-
lution.

We note that if the given system is a set of polynomial
equations, then one can use numerical polynomial homo-
topy continuation [9�22] to compute all the isolated solu-
tions (see e.g. [23�25] for some related approaches). Brie�y,
the method works as follows: �rst, one determines an up-
per bound on the number of isolated complex solutions of
the given system. The highest upper bound on the number
of solutions is the so-called Classical Bezout bound, which
is the product of the degree of each polynomial equation
of the system, but there are several other tighter upper
bounds available for structured systems. Then, one con-
structs another system that has exactly the same number
of solutions as the upper bound, such that the new system
is easy to solve. Finally, one uses continuation to track each
solution of the new system to the original one. Some of the
paths may diverge to in�nity, which will happen whenever
the upper bound is larger than the true number of solu-
tions. The paths that converge will tend to solutions of the
original system in appropriate limits. This method is quite
di�erent from conventional numerical approaches, in that
it is guaranteed to �nd all solutions, in principle. However,
due to the numerical computations used with this method
in path tracking, in the end, only numerical approxima-
tions are obtained, and hence the above mentioned di�cul-
ties may also arise. The goal of this paper is to develop a
rigorous way to validate the numerical approximates of the
SPs, independent of the numerical method used to obtain
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them.

In the mathematics literature, proving that a given numeri-
cal approximation will converge quadratically to the nearby
associated solution using arbitrary precision is called certi-

�cation. It is well known that quadratic convergence dou-
bles the number of correct digits after each iteration. Hence
the associated solution can be approximated to a given ac-
curacy quite e�ciently after a certain number of Newton
iterations. Smale and others, in the 1980's, developed a
method that certi�es a numerical approximation as an ac-
tual solution of the system [26]. The method is now known
as Smale's α-theory. Interestingly, it turned out that the
certi�cation could be done via computing three numbers
from a given numerical approximate: for a given system
of equations f = 0 and a given point x∗, one computes
two numbers β(f, x∗) and γ(f, x∗), which guarantee that
Newton's method starting from x∗ will quadratically con-
verge to a solution of f = 0 if the number α(f, x∗) =

β(f, x∗)γ(f, x∗) is less than
(
13− 3

√
17
)
/4 ≈ 0.157671.

Applying this certi�cation scheme ensures that our numer-
ical solutions are good enough so that more accurate ap-
proximations can be obtained easily and e�ciently [27].

In this paper, we �rst give details of Smale's α-theory in
the context of the PELs in Section II. Then, by providing
examples in Section III, we show how numerical approxi-
mates may turn out to be non-solutions even in seemingly
simple situations. In passing, we certify the solutions of
the well-known examples of the Wilkinson polynomial un-
der a small perturbation and the roots of the Chebyshyv
polynomials of the �rst kind for the �rst time. In Section
IV, we consider a more physically relevant potential, i.e.,
the two-dimensional XY model without disorder. We cer-
tify all the known SPs of this model and provide a guide
for conventional numerical methods. Section V provides an
outlook and conclusions.

II. SMALE'S α-THEORY

In this section, we describe Smale's α-theory following
Ref. [28]. We restrict ourselves to square systems, i.e., sys-
tems that have the same number of equations as variables,
since SPs of a PEL satisfy a square system of equations.
Smale's α-theory is usually used to certify complex solu-
tions for systems of analytic functions, so we start by de-
scribing this approach [26]. We then discuss the certi�ca-
tion of real solutions separately. Finally, we will discuss
α-theory applied to polynomial systems and systems in-
volving exponentials and trigonometric functions.

We start by considering a system f of n multivariate ana-
lytic equations in n variables. We denote the set of solutions
of f = 0 as V(f) := {z ∈ Cn|f(z) = 0} and the Jacobian
of f at x as Jf (x). Consider the Newton iteration of f
starting at x de�ned by

Nf (x) :=

{
x− Jf (x)−1f(x), if Jf (x) is invertible,

x, otherwise.
(1)

For k ≥ 1, the k-th Newton iteration is simply

Nk
f (x) := Nf ◦ · · · ◦Nf︸ ︷︷ ︸

k times

(x). (2)

Now, a point x ∈ Cn is called an approximate solution of f
with associated solution z ∈ V(f) if, for each k ≥ 1,

∥∥Nk
f (x)− z

∥∥ ≤ (1

2

)2k−1

‖x− z‖ , (3)

where ‖ · ‖ is the standard Euclidean norm on Cn, i.e., x
is an approximate solution to f if it is in the quadratic
convergence basin de�ned by Newton's method of some so-
lution z. The following theorem provides a su�cient con-
dition for proving that a given point is an approximate
solution without knowledge about z.

Theorem: If α(f,x) <
(
13− 3

√
17
)
/4 for a square ana-

lytic system f and point x such that Jf (x)−1 exists, then
x is an approximate solution to f , where

α(f,x) := β(f,x)γ(f,x),

β(f,x) := ‖Jf (x)−1f(x)‖, and

γ(f,x) := sup
k≥2

∥∥∥∥Jf (x)−1Dkf(x)
k!

∥∥∥∥1/(k−1) .
(4)

If x is an approximate solution of f , then ‖x−z‖ ≤ 2β(f,x),
where z ∈ V(f) is the associated solution to x. Moreover,
in γ(f,x), the term Dkf(x) is the symmetric tensor whose
components are the partial derivatives of f of order k. Fi-
nally, for convenience, one can remove the condition on
Jf (x) by de�ning α, β, and γ appropriately. If x ∈ V(f)
such that Jf (x) is not invertible, de�ne α(f,x) := 0,
β(f,x) := 0 and γ(f,x) := ∞. If x /∈ V(f) such that
Jf (x) is not invertible, then α(f,x), β(f,x) and γ(f,x)
are taken as ∞.

Since this theorem provides a su�cient condition for a point
to be an approximate solution, the set of certi�able approx-
imate solutions is generally much smaller than the set of ap-
proximate solutions, as demonstrated in Figures 1 and 4.
However, if it is a true approximate solution, then a few
Newton iterations usually generate a point that can be cer-
ti�ed.

Distinct Complex Solutions

Given two approximate solutions x1 and x2, one often needs
to verify that the corresponding associated solutions z1 and
z2 are distinct. One way to check this condition uses the
triangle inequality together with ‖xi − zi‖ ≤ 2β(f,xi).

A. Special Nonlinear Systems

For arbitrary analytic systems, γ(f,x) as described in the
above theorem may be di�cult to compute or bound above.
When f is polynomial, γ is de�ned as a maximum over
�nitely many terms and thus can be computed in the-
ory. Often, however, such as in the software package
alphaCertified [28], γ(f,x) is bounded above via Propo-
sition 8 of [30, � I-3], which depends on the degrees and
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coe�cients of the polynomials in f , ‖x‖, and Jf (x), which
we now brie�y summarize.

Let x ∈ Cn and g be a polynomial in n variables of degree d.
De�ne

‖x‖21 = 1 + ‖x‖2 = 1 +

n∑
i=1

|xi|2

and, by writing g(x) =
∑
|ρ|≤d aρx

ρ, de�ne

‖g‖2 =
∑
|ρ|≤d

ρ! (d− |ρ|)! |aρ|2.

For a system f of n polynomials in n variables, let

‖f‖2 =

n∑
i=1

‖fi‖2.

If Jf (x) is invertible, de�ne

µ(f,x) = ‖f‖ × ‖Jf (x)−1∆(d)(x)‖

where d = (d1, . . . , dn) with di = deg fi and

∆(d)(x) =

 d
1/2
1 ‖x‖

d1−1
1

. . .

d
1/2
n ‖x‖dn−1

 .
Proposition: If f is a polynomial system with di = deg fi,
D = max di, and x ∈ Cn such that Jf (x) is invertible, then

γ(f,x) ≤ µ(f,x)D3/2

2‖x‖1
.

An upper bound on γ(f,x) also exists for systems
of polynomial-exponential equations [31]. A system is
polynomial-exponential if it is polynomial in both the vari-
ables x1, . . . , xn and �nitely many exponentials of the form
eaxi where a ∈ C. Many standard functions such as sin(),
cos(), sinh(), and cosh() can be formulated as systems
of polynomial-exponential functions since they are indeed
polynomial functions of eax for suitable a ∈ C.

B. Real Solutions

The above theorem provides a bound on the distance be-
tween an approximate solution x and its associated solu-
tion z, namely 2β(f,x). Apart from certifying that x is
indeed an approximate solution, one often wants to prove
additional information about z. The theory of Newton-
invariant sets [33] provides one approach to this problem.
One particular Newton-invariant set of particular interest
is Rn when Nf de�nes a real map, that is, Nf (y) ∈ Rn for
y ∈ Rn, which was �rst observed in [28]. In this case, one
is able to certi�ably determine if z ∈ Rn or z ∈ Cn \ Rn
given any approximate solution x associated with z.

The Newton iteration corresponding to a potential energy
function V is a real map if V (x) is real for all real x.
Therefore, one is able to certi�ably determine if an associ-
ated solution is real or nonreal. This reality test and other
α-theoretic computations are implemented in the software
alphaCertified [28], which we describe next.

C. Certi�ed Region and Basins of Attraction

The basin of attraction of each minimum is an important
quantity in potential energy landscape studies since the
sum of the volumes of all the basins of attraction is re-
lated to the entropy of the system. There is a crucial dif-
ference between the basins of attraction and the certi�able
region of the same minimum. The basin of attraction of a
minimum cannot overlap with that of another minimum,
and aside from boundaries the union of all the basins of
attraction covers the whole con�guration space. However,
the certi�ed region of a minimum is contained within the
basin of attraction of the minimum. Hence, the sum of the
certi�able regions is generally a subset of this space.

D. alphaCertified

The software alphaCertified [28] performs computations
related to α-theory. The input system must be presented
exactly with rational coe�cients. When the internal com-
putations are performed using exact rational arithmetic via
GMP [29], all results are rigorous and thus provide a math-

ematical proof of the computed results. This framework pro-
vides an alternative to other analytic or symbolic compu-
tations for yielding computational proofs. Since each so-
lution can be independently certi�ed, the procedures are
parallelizable.

From the exact input system, which is either a system of
polynomial or polynomial-exponential functions, the Jaco-
bian is constructed exactly. For these systems, the value of
γ is bounded above, as discussed in � IIA, eliminating the
need to compute the higher-order derivatives. Hence, α is
also bounded above.

Since the magnitude of the rational numbers can increase
during a sequence of exact computations, alphaCertified
also permits the use of arbitrary precision �oating-point
arithmetic via MPFR [32]. When using �oating-point
arithmetic, the round-o� errors are not explicitly controlled
but can be reduced by increasing the precision.

III. EXAMPLES

In this section, we provide several other example systems
illustrating many possible scenarios in which a conventional
numerical method may face di�culty in obtaining numer-
ical approximates. We start with a simple example of one
equation in one variable followed by a few other examples
exhibiting di�erent numerical issues.
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Table I. Convergence to z = 1 for f(x) = x4 − 1 starting at x = 1.1.

k 1 2 3 4 5

− log10

(
‖Nk

f (x)− z‖
)

1.89 3.62 7.06 13.94 27.70

− log10

(
‖x− z‖/22k−1

)
1.30 1.90 3.11 5.52 10.33

A. An Illustrative Example

For the system f(x) = x4 − 1, we demonstrate the explicit
computation of α, β and γ. Since f ′(x) = 4x3 is zero if
and only if x = 0 and f(0) 6= 0, we can safely assume
that x 6= 0. Thus, β(f, x) = |x − x−3|/4. Now, the term
Dkf(x) in γ(f, x) is simply the k-th derivative of f at x,
namely f (k)(x). Since f has degree 4, we only need to take
the maximum over k = 2, 3, 4 to compute γ(f, x). It is
easy to show that the maximum is attained at k = 2 with
γ(f, x) = 3|x−1|/2. Thus, α(f, x) = 3|1−x−4|/8 for x 6= 0.

For x = 2.5, we have α(f, 2.5) = 0.3654 and thus x = 2.5
cannot be certi�ed as an approximate solution. It is indeed
outside of all of the quadratic convergence basins. However,
at the point x = 1.1, α(f, 1.1) = 0.11887. Thus, x = 1.1 is
certi�ably an approximate solution of f = 0. In this case,
we know that the associated solution is z = 1, and Table I
con�rms the quadratic convergence for a few iterations.

Figure 1 plots the basins of convergence starting at points
a+bi for−2 ≤ a, b,≤ 2 of Newton's method applied to f . In
this plot, the white areas are the certi�able quadratic con-
vergence basins which lie inside of the respective quadratic
convergence basins. These quadratic convergence basins
lie inside of the respective linear convergence basins with
chaotic behavior separating the linear convergence basins.
The structure is similar to that observed for convergence of
alternative optimisation algorithms for atomic clusters in
previous work [6�8].

B. Sensitivity to Perturbations

Solutions of some polynomial equations are highly sensitive
to perturbations. Here, we consider the celebrated Wilkin-
son polynomial [34], the 20th degree de�ned by

W (x) =

20∏
j=1

(x− j) = 0. (5)

It is easy to see that the polynomial has 20 solutions,
namely x = 1, ..., 20. Figure 2 plots the basins of con-
vergence starting at points a + bi for 8.5 ≤ a ≤ 12.5 and
−2 ≤ b ≤ 2 of Newton's method applied to f . In this
plot, the white areas are the certi�able quadratic conver-
gence basins, which lie inside the respective quadratic con-
vergence basins, separated by chaotic behavior.

Figure 1. Basins of convergence for Newton's method applied
to x4 − 1 starting at a+ b

√
−1 for −2 ≤ a, b ≤ 2.

Figure 2. Basins of convergence for Newton's method applied
to the Wilkinson polynomial for starting at a+ b

√
−1 for 8.5 ≤

a ≤ 12.5 and −2 ≤ b ≤ 2.
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Upon expansion, the Wilkinson polynomial is

W (x) = 2432902008176640000− 8752948036761600000x

+13803759753640704000x2 − 12870931245150988800x3

+8037811822645051776x4 − 3599979517947607200x5

+1206647803780373360x6 − 311333643161390640x7

+63030812099294896x8 − 10142299865511450x9

+1307535010540395x10 − 135585182899530x11

+11310276995381x12 − 756111184500x13

+40171771630x14 − 1672280820x15

+53327946x16 − 1256850x17

+20615x18 − 210x19 + x20. (6)

Wilkinson showed that even if we change the coe�cient
of the monomial x19 in the above equation from −210 to
−210 − 2−23, a computer with 30-bit �oating point pre-
cision would not be able to distinguish the two numbers.
Hence, even with this change a numerical solver will give
the same 20 solutions as before. However, the perturbed
system evaluated at x = 20 is −2−23×2019 = −6.25×1017,
i.e., x = 20 is no longer a solution of the equation. In fact,
the solutions of the perturbed system are approximately

1, 2, 3, 4, 5, 6.00001, 6.99970, 8.00727, 8.91725,

10.09527± 0.64350i, 11.79363± 1.65233i,

13.99236± 2.51883i, 16.73074± 2.81262i,

19.50244± 1.94033i, 20.84691

.

Figure 3 plots the basins of convergence starting at points
a + bi for 8.5 ≤ a ≤ 12.5 and −2 ≤ b ≤ 2 of Newton's
method applied to the perturbed polynomial. In this plot,
the white areas are the certi�able quadratic convergence
basins which lie inside of the respective quadratic conver-
gence basins, separated by chaotic behavior.

Figure 3. Basins of convergence for Newton's method applied
to perturbed Wilkinson polynomial for starting at a+ b

√
−1 for

8.5 ≤ a ≤ 12.5 and −2 ≤ b ≤ 2.

After approximating all of the solutions to the perturbed
system to roughly 28 digits, we used alphaCertified to
prove that this perturbed system indeed has 20 distinct
roots, only 10 of which are real.

C. Close Roots

The nth Chebyshev polynomial of the �rst kind has n roots
between −1 and 1. These roots, called Chebyshev nodes,
are located at xi = cos [(2i− 1)π/2n] for i = 1, . . . , n. We
can use this example to demonstrate how small perturba-
tions in a numerical approximation can change the root
that Newton's method converges to. This chaotic behavior
can be avoided using certi�cation.

Figure 4 plots the basins of convergence starting at points
a+ bi for 0.75 ≤ a ≤ 1.05 and −0.2 ≤ b ≤ 0.2 of Newton's
method applied to the 20th Chebyshev polynomial, namely
f(x) = cos(20 cos−1 x). The white areas in this plot are the
certi�able quadratic convergence basins that lie inside of
the respective quadratic convergence basins. Along the real
line, i.e., for points with b = 0, the quadratic convergence
basins are relatively close to chaotic regions. Moreover, in
this plotted region, there is at least one point that converges
to each of the 20 Chebyshev nodes.

Figure 4. Basins of convergence for Newton's method applied to
20th Chebyshev polynomial starting at a+ b

√
−1: White areas

are the certi�ed region of quadratic convergence which lie inside
the respective quadratic convergence basins.

To further highlight the chaotic behavior, consider the 50th

Chebyshev polynomial f(x) = cos(50 cos−1 x). Table II
considers selected values near each other, which converge
to various Chebyshev nodes.
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Table II. Convergence to various roots for the 50th Chebyshev poly-

nomial of the �rst kind.

x∗ lim
k→∞

Nk
f (x
∗)

0.997 x2 = cos(3π/100)

0.9979 x3 = cos(5π/100)

0.99799 x5 = cos(9π/100)

0.997999 x6 = cos(11π/100)

0.998001 x6 = cos(11π/100)

0.99801 x9 = cos(17π/100)

0.9981 x1 = cos(π/100)

0.998 x6 = cos(11π/100)

IV. CERTIFYING THE MINIMA AND
TRANSITION STATES OF THE 2D XY MODEL

In our previous paper, we certi�ed the SPs of the Müller-
Brown potential as well as all the known minima and tran-
sition states [39, 41] of the Lennard-Jones potential for
atomic clusters of 7 to 14 atoms using the method described
above [27]. The potential of the former model consisted of
exponentials while the latter consists of rational polynomi-
als. In this Section, we choose another important model
whose potential energy landscape has attracted interest,
namely the XY model (without any disorder). The XY
model consists of trigonometric terms illustrating a di�er-
ent kind of model from those previously considered. The
XY model is among the simplest lattice spin models where
an energy landscape approach based on stationary points
of the Hamiltonian in a continuous con�guration space is
appropriate (unlike, for example, the Ising model whose
con�guration space is discrete). The potential energy land-
scape possesses a wide range of interesting features, and
proved to be very helpful in analyzing the characteristic
structure, dynamics, and thermodynamics. The XY model
also appears in many di�erent areas in theoretical physics,
especially statistical physics [42], where it is employed in
studies of low temperature superconductivity, super�uid
helium, hexatic liquid crystals, and Josephson junction ar-
rays. The XY model also corresponds to the lattice Landau
gauge functional for a compact U(1) lattice gauge theory
[3, 9, 43, 44]. Furthermore, it corresponds to the nearest-
neighbor Kuramoto model with homogeneous frequency,
where the stationary points constitute special con�gura-
tions in phase space from a non-linear dynamical systems
viewpoint [47].

The XY model Hamiltonian reads as:

V =
1

Nd

d∑
j=1

∑
i

[1− cos(θi+µ̂j
− θi)], (7)

where d is the dimension of a lattice, µ̂j is the d-dimensional
unit vector in the j-th direction, i.e. µ̂1 = (1, 0, . . . , 0),
µ̂2 = (0, 1, 0, . . . , 0), etc., i stands for the lattice coordinate
(i1, . . . , id), and the sum over i represents a sum over all
i1, . . . , id each running from 1 to N , and each θi ∈ (−π, π].
Hence d is the dimension of the lattice, and N is the num-
ber of sites for each dimension, so the number of θ values
required to specify the con�guration is Nd. The boundary
conditions are given by θi+Nµ̂j

= (−1)kθi for 1 ≤ j ≤ d,

Table III. Summary of α, β, and γ for PBC with d = 2.

number average maximum maximum minimum

of time upper bound maximum upper bound pairwise

N points (sec.) of α(fN , ·) β(fN , ·) of γ(fN , ·) distance

4 180 0.02 1.39 · 10−9 3.84 · 10−14 3.63 · 104 0.16

5 25913 0.06 1.63 · 10−5 7.74 · 10−12 2.10 · 106 0.28

6 52140 0.18 6.12 · 10−4 3.50 · 10−11 1.75 · 107 0.22

7 72207 0.43 1.54 · 10−5 4.25 · 10−12 3.63 · 106 0.66

8 87889 1.00 2.76 · 10−6 2.15 · 10−12 1.28 · 106 0.90

9 106383 1.89 8.77 · 10−7 1.19 · 10−12 7.39 · 105 1.30

10 121164 3.51 5.11 · 10−6 2.43 · 10−12 2.10 · 106 1.97

Table IV. Summary of α, β, and γ for APBC with d = 2.

number average maximum maximum minimum

of time upper bound maximum upper bound pairwise

N points (sec.) of α(fN , ·) β(fN , ·) of γ(fN , ·) distance

4 542 0.02 3.35 · 10−9 1.61 · 10−13 2.17 · 104 0.56

5 26827 0.07 3.24 · 10−6 2.29 · 10−12 1.84 · 106 0.25

6 49956 0.19 3.02 · 10−6 2.52 · 10−12 1.34 · 106 0.47

7 64666 0.46 3.06 · 10−7 1.44 · 10−12 5.59 · 105 0.35

8 79402 1.07 1.03 · 10−6 9.48 · 10−13 1.08 · 106 0.62

9 99461 1.96 1.14 · 10−7 5.53 · 10−13 4.11 · 105 0.14

10 110702 3.74 1.98 · 10−6 8.71 · 10−13 2.27 · 106 2.00

where N is the total number of lattice sites in each dimen-
sion, with k = 0 for periodic boundary conditions (PBC)
and k = 1 for anti-periodic boundary conditions (APBC).
With PBC there is a global degree of freedom leading to
a one-parameter family of solutions, as all the equations
are unchanged under θi → θi + α,∀i, where α is an arbi-
trary constant angle, due to the global O(2) symmetry. The
global symmetry can be removed by �xing one of the vari-
ables to zero: θ(N,N,...,N) = 0. In the present contribution,
we certify all the available solutions found using the nu-
merical eigenvector-following method implemented in our
OPTIM program [45, 46]. The solutions include minima,
maxima and saddles of all the possible indices.

We can convert the gradient of V , ∇V , to a polynomial
system by de�ning si = sin(θi) and ci = cos(θi) and adding
the Pythagorean identities s2

i
+ c2

i
− 1 = 0. For d = 2 and

N = 4, . . . , 10, Tables III and IV lists the number of points
and the average time required to perform the certi�cation.
The di�erence in time is due to the reduction when �xing
the variable θ(N,N) in the PBC case. The triangle inequality
based on the maximum value of β and the minimum pair-
wise distance of the approximations yield an a posteriori

veri�cation that all of these points correspond to distinct
solutions. Moreover, the numerical approximations for the
known stationary points just need to be approximated cor-
rect to ten digits to have certi�able approximate solutions.
The values of 2β yields how close a numerical approxima-
tion is to the actual solution. The values of γ yields the
size of the certi�ed region around a numerical approxima-
tion. From the tables, we learn that the sizes of the certi�ed
regions remain fairly constant when increasing N .

To test if our set up �nds singular solutions, we included
some singular solutions in the list of SPs for smaller values
of N . alphaCerti�ed correctly found out all the singular
solutions. The data is summarized in Table V.

Using α-theory, one can also certi�ably determine the in-
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Table V. Number of singular solutions identi�ed for PBC and APBC

with d = 2.

N PBC APBC

4 9 22

5 2 5

6 6 14

dex. This certi�cate would protect against a true solution
having a small eigenvalue that changes sign when using
an approximation of the solution. Due to complications of
expanding determinants for large matrices, we use a eigen-
value vector/value formulation at the expense of increasing
the size of the system. The resulting system is of the form[

∇V
H(V )v − λv

]
= 0

where H(V ) is the Hessian of V . Since v is de�ned up
to scaling, we dehomogenize using a su�ciently random
patch and then convert to a polynomial system with the
same subsitution as above.

V. CONCLUSIONS

Solving nonlinear equations is one of the most frequently
arising mathematical problems in theoretical chemistry,
e.g., in �nding minima and transition states of a poten-
tial energy function or �nding steady states of chemical
rate equations, etc. It is customary to resort to a numer-
ical method to solve such systems, aside from the rare in-
stances when the equations can be solved exactly. For a
numerical method, a solution of a given system means a
numerical approximation of an actual solution. It is quite
likely that such a numerical approximation is a nonsolu-
tion of the system, i.e., it may lie in the linear convergence
basin or in a chaotic region, instead of the quadratic re-
gion of convergence. In many cases, such false numerical
approximations may leave us with fundamentally di�erent,
and incorrect conclusions. In our previous paper [27], we
employed Smale's α-theory which certi�es if a given nu-
merical approximation is in the quadratic convergence re-
gion of an actual solution of the system. In the present

work, we have elaborated the mathematical concepts and
a related software called alphaCerti�ed. We then used the
certi�cation procedure to explore the solution space of a
simple problem, x4 − 1 = 0, where x ∈ C, which already
shows several regions where a numerical method may fall
into chaotic regions. We also showed the certi�ed regions
of the known four solutions of this system. Then, we picked
two celebrated examples, the Wilkinson polynomial and a
Chebyshev polynomial of the �rst kind. For both systems,
we explored the solution spaces and identi�ed the certi�ed
regions as well as regions of linear convergence and chaotic
convergences. Finally we considered the XY model in two
dimensions without disorder. There, we took the already
known numerical approximations of the saddles of all the
possible indices, for the lattice sizes up to 102 and tried to
certify the solutions. We chose this system to demonstrate
the applicability of the α-theory to systems that are not
in the polynomial form. In these systems, the higher the
lattice dimension is the higher the required accuracy from a
numerical method, otherwise the numerical approximations
do not fall into the quadratic convergence region, as for the
Lennard-Jones (LJ) potential [45]. We used alphaCerti-
�ed to re�ne the numerical approximations whenever they
were not in the quadratic convergence regions of the cor-
responding solutions. We also observe that, in contrast to
the LJ case [27], for the XY model, the size of the quadratic
convergence region (or the certi�ed region) remains fairly
constant as N increases. One needs to be careful here be-
cause this di�erence may also arise if the technique used to
�nd the SPs did not �nd the more ill-conditioned solutions
(the ones with smaller quadratic convergence basins).

We anticipate that the certi�cation method presented in
this paper will turn out to be a standard tool to verify the
numerical SPs obtained from various numerical methods.
Another possible application is to make rigorous statements
about SPs random potential surfaces, such as the ones stud-
ied in statistical physics and cosmology, as well as in pure
mathematics [20, 21].

VI. ACKNOWLEDGEMENT

DM and JDH were supported by DARPA Young Faculty
Award. JDH was also supported by the National Science
Foundation through DMS-1262428. DJW and DM grate-
fully acknowledge support from the EPSRC and the ERC.

[1] D. J. Wales, Energy Landscapes, Cambridge University
Press, 2004.

[2] M. Kastner, Rev. Mod. Phys. 80, 167 (2008).
[3] D. Mehta and M. Kastner, Annals Phys. 326, 1425 (2011).
[4] P. G. Mezey, Theo. Chim. Acta 58, 309 (1981).
[5] P. G. Mezey, Potential Energy Hypersurfaces, Elsevier,

Amsterdam, 1987.
[6] D. J. Wales, J. Chem. Soc. Faraday Trans. 88, 653 (1992).
[7] D. J. Wales, J. Chem. Soc. Faraday Trans. 89, 1305 (1993).
[8] D. Asenjo, J. Stevenson, D. J. Wales, and D. Frenkel, J.

Phys. Chem. B, 117 42 12717-12723 (2013).

[9] D. Mehta, Ph.D. Thesis, The Uni. of Adelaide, Australasian
Digital Theses Program (2009).

[10] D. Mehta, A. Sternbeck, L. von Smekal, and A. G.
Williams, PoS QCD-TNT09, 025 (2009).

[11] D. Mehta, Phys.Rev. E (R) 84, 025702 (2011).
[12] D. Mehta, Adv.High Energy Phys. 2011, 263937 (2011).
[13] M. Kastner and D. Mehta, Phys.Rev.Lett. 107, 160602

(2011).
[14] M. Maniatis and D. Mehta, Eur.Phys.J.Plus 127, 91

(2012).
[15] D. Mehta, Y. -H. He, and J. D. Hauenstein, JHEP 1207,

018 (2012).



8

[16] C. Hughes, D. Mehta, and J.-I. Skullerud, Annals Phys.
331 188 (2013).

[17] D. Mehta, J. D. Hauenstein, and M. Kastner, Phys.Rev.
E85, 061103 (2012).

[18] D. Martinez-Pedrera, D. Mehta, M. Rummel and A. West-
phal, JHEP 1306, 110 (2013)

[19] Y.-H. He, D. Mehta, M. Niemerg, M. Rummel, and
A. Valeanu, JHEP 1307, 050 (2013).

[20] D. Mehta, D. A. Stariolo and M. Kastner, Phys. Rev. E 5
87 052143 (2013).

[21] B. Greene, D. Kagan, A. Masoumi, D. Mehta, E. J. Wein-
berg and X. Xiao, Phys. Rev. D 88, 026005 (2013).

[22] A. J. Sommese and C. W. Wampler, The numerical solu-
tion of systems of polynomials arising in Engineering and
Science, World Scienti�c Publishing Company, 2005.

[23] K. Kowalski and K. Jankowski, Phys. Rev. Lett. 81, 1195
(1998).

[24] A. J. W. Thom and M. Head-Gordon, Phys. Rev. Lett.
101, 193001 (2008).

[25] L. Piela, J. Kostrowicki, and H. A. Scheraga, J. Phys.
Chem. 93, 3339 (1989).

[26] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity
and real computation, Springer-Verlag, New York, 1998,
With a foreword by Richard M. Karp.

[27] D. Mehta, J. D. Hauenstein and D. J. Wales, J. Chem.
Phys., 138, 171101 (2013).

[28] J. D. Hauenstein and F. Sottile , ACM TOMS 38, 28
(2012).

[29] T. Granlund, Available at gmplib.org.
[30] M. Shub and S. Smale, J. Amer. Math. Soc. 6 (1993).

[31] J. D. Hauenstein and V. Levandovskyy, arXiv:1109.4547
(2011).

[32] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zim-
mermann, ACM Trans. Math. Software, 33(2), 13, 2007.

[33] J. D. Hauenstein. Avaiable at www.math.ncsu.edu/
~jdhauens/preprints (2013).

[34] J. H. Wilkinson. Rounding Errors in Algebraic Processes.
Englewood Cli�s, New Jersey: Prentice Hall (1963).

[35] K. Müller and L. Brown, Theoretica Chimica Acta 53, 75
(1979).

[36] J.-Q. Sun and K. Ruedenberg, J. Chem. Phys. 98, 9707
(1993).

[37] J.-Q. Sun and K. Ruedenberg, J. Chem. Phys. 100, 1779
(1994).

[38] D. J. Wales, J. Chem. Phys. 101, 3750 (1994).
[39] J. P. K. Doye and D. J. Wales, J. Chem. Phys. 116, 3777

(2002).
[40] J. E. Jones and A. E. Ingham, Proc. Roy. Soc. London A

107, 636 (1925).
[41] J. P. K. Doye and C. P. Massen, J. Chem. Phys. 122,

084105 (2005).
[42] J. M. Kosterlitz and D. J. Thouless. J. Phys. C: Solid State

Physics, 6 1181 (1973).
[43] D. Mehta and M. Schroeck, arXiv:1403.0555 [hep-lat].
[44] A. Maas. Phys. Rept., 524 203 (2013).
[45] D. Mehta, C. Hughes, M. Schroeck and D.J. Wales, J.

Chem. Phys. 139 194503 (2013).
[46] D. Mehta, C. Hughes, M. Kastner and D. Wales To appear.
[47] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort and

R. Spigler. Rev. Mod. Phys., 77 137 (2005).


