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Abstract— The power flow equations model the steady-state
relationship between the power injections and voltage phasors
in an electric power system. By separating the real and
imaginary components of the voltage phasors, the power flow
equations can be formulated as a system of quadratic poly-
nomials. Only the real solutions to these polynomial equations
are physically meaningful. This paper focuses on the maximum
number of real solutions to the power flow equations. An
upper bound on the number of real power flow solutions
commonly used in the literature is the maximum number of
complex solutions. There exist two- and three-bus systems for
which all complex solutions are real. It is an open question
whether this is also the case for larger systems. This paper
investigates four-bus systems using techniques from numerical
algebraic geometry and conjectures a negative answer to this
question. In particular, this paper studies lossless, four-bus
systems composed of PV buses connected by lines with arbitrary
susceptances. Computing the Galois group, which is degenerate,
enables conversion of the problem of counting the number of
real solutions to the power flow equations into counting the
number of positive roots of a univariate sextic polynomial.
From this analysis, it is conjectured that the system has at
most 16 real solutions, which is strictly less than the maximum
number of complex solutions, namely 20. We also provide
explicit parameter values where this system has 16 real solutions
so that the conjectured upper bound is achievable.

I. INTRODUCTION

The power flow equations are at the heart of many electric
power system computations. These equations model the
steady-state relationship between the power injections and
voltage phasors in a power system. Power flow solutions cor-
respond to the equilibria of the differential-algebraic equa-
tions describing the power system dynamics. The power flow
equations also form the key constraints in many power sys-
tem optimization problems, such as optimal power flow [1],
unit commitment [2], and state estimation [3].

Despite their importance to power system analyses, there
are open theoretical questions regarding power flow solution
characteristics. This paper focuses on an open question
regarding the maximum number of power flow solutions.

For typical operating conditions, there is a single “high-
voltage” power flow solution which corresponds to a stable
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equilibrium of reasonable dynamical models. There exists
a voluminous literature of mature algorithms for calcu-
lating this solution for large-scale systems (e.g., Newton-
Raphson [4] and Gauss-Seidel [5]). The performance of
Newton-based algorithms is sensitive to the initialization.
While reasonable initializations (e.g., the solution to a related
problem or a “flat start” of 1∠0◦ per unit voltages) typically
converge to the high-voltage solution, Newton-based meth-
ods have fractal basins of attraction [6]. Initializing Newton-
based methods is thus challenging when parameters move
outside typical operating ranges. Accordingly, significant
research has been focused on modifications and alternatives
to Newton-based methods. See [7] for a discussion of some
recent developments.

It is well known that the power flow equations may have
multiple solutions [8]. While the high-voltage solution is
often of primary interest, other solutions are relevant for
certain stability assessments [9]–[13]. There may also exist
multiple stable solutions [14], [15]. Further, non-convexities
in the power flow feasible space related to multiple solutions
are associated with non-zero relaxation gaps for convex
relaxations of optimal power flow problems [16], [17].

The literature details a variety of methods for calculating
multiple power flow solutions. These include using a range
of initializations for a Newton-based method [18], [19],
a semidefinite relaxation [20], [21], an auxiliary gradient
approach [22], monotone operator theory [23], and a holo-
morphic embedding of the power flow equations [24]. While
these approaches can often find multiple power flow solu-
tions, they are not guaranteed to find all solutions.

The numerical continuation method of [25] scales with the
actual number of power flow solutions rather than an upper
bound on the potential number of solutions meaning that it
is computationally tractable for large test cases. Although it
is claimed in [25] that this method will find all power flow
solutions for all systems, [26] shows that the proof of this
claim is flawed with an explicit counterexample presented
in [27]. A recent modification of this method [28] formulates
the power flow equations as intersecting ellipsoids which
results in all continuation traces being bounded. The method
in [28] finds all solutions to a variety of small systems,
including the counterexample in [27]. However, there is
currently no known proof showing that this method always
succeeds in finding all power flow solutions.

There are several methods which are guaranteed to find all
power flow solutions. These methods formulate the power
flow equations as polynomials whose variables are the real
and imaginary parts of the voltage phasors. This enables the



application of algorithms which find all complex solutions to
these polynomials. Relevant algorithms include interval anal-
ysis [29], Gröbner bases [30], an eigenvalue technique [31],
“moment/sum-of-squares” relaxations [32], and numerical
polynomial homotopy continuation (NPHC) [33]–[37].

While these methods find all complex solutions, only the
real solutions are physically meaningful. Since the number
of complex solutions is typically much greater than the
number of real solutions, these methods are computationally
limited to small systems. Of the numerical methods known
to find all power flow solutions, NPHC is currently the most
computationally tractable. NPHC has been applied to power
system test cases with up to 14 buses [35], and up to the
equivalent of 18 buses for the related Kuramoto model [38].

NPHC computes solutions to the power flow equations
by tracking so-called solution paths. The number of such
paths is based on an upper bound on the number of complex
solutions to the power flow equations. Thus, this method can
be improved by deriving tighter upper bounds. Moreover,
such tighter upper bounds improve the characterization of
power flow feasible spaces and are therefore both inter-
esting in their own right and relevant to, e.g., analyzing
convex relaxations [16], [17]. For an n-bus system, one
upper bound on the number of complex solutions to the
power flow equations is based on Bézout’s theorem, namely
22n−2 complex solutions [39]. By exploiting structure in the
equations of lossless systems of PV buses, this upper bound
can be reduced to

(
2n−2
n−1

)
= (2n−2)!

((n−1)!)2 [39]. This bound
was extended to (potentially lossy) systems of PQ buses
in [40] and to general power systems in [41]. (See [42] for
an alternative proof of this bound.)

Whereas the bounds in [39]–[42] are network agnostic,
the monomial structure of the power flow equations is
determined by the network topology. Topology-dependent
upper bounds have the potential to be tighter than previous
bounds for specific problems. Recent work [43] uses exten-
sive numerical experiments to verify the topology-dependent
bound in [34] and conjecture a new bound for a different
class of topologies. Related work [44] proposes topology-
dependent bounds for a broader class of network topologies.
For generic parameter values, the approach in [44] tightly
bounds the number of complex solutions.

All known existing approaches have studied the maximum
number of complex solutions in order to bound the number of
real solutions. This paper addresses the question of whether
systems exist for which the number of real solutions is equal
to the number of complex solutions.1 Otherwise, the equa-
tions may have additional structure that could be exploited to
produce tighter bounds on the maximum number of real solu-
tions. Two-bus systems can have two real solutions and there
exist three-bus systems with six real solutions [45]–[47],
both of which match the upper bound provided by the
number of complex solutions. Thus, this question is answered
in the affirmative for these systems. For a lossless, four-bus
system of PV buses with unity voltage magnitudes and a

1This was first posed as Question 5.1 in [39].

restricted set of line susceptances, the maximum number of
real solutions is 14 [39], which is strictly less than the bound
of 20 provided by the number of complex solutions.

We consider lossless, four-bus systems of PV buses con-
nected by lines with arbitrary susceptances. The first contri-
bution of this paper is a choice of susceptance parameters
that has 16 real solutions, thus demonstrating that open
regions in the parameter space exist with more than 14 real
solutions. This choice, and many others, arose by solving
100,000 random instances of the susceptance parameters for
systems with zero power injections. The second contribution
of this paper is an analysis of the Galois group which allows
for one to count the number of real solutions of the power
flow equations in this particular case, namely lossless, four-
bus systems of PV buses with unity voltage magnitues and
zero power injections, by simply counting the number of
positive roots of a univariate sextic polynomial. Although we
are unable to explicitly compute this polynomial where the
coefficients are functions of the parameters, we can compute
it explicitly when the parameters are specified. This analysis
and computations lead to the conjecture that no choice of
parameters will produce more than 16 isolated real solutions.
If this conjecture holds, this would provide a negative answer
to the question of whether the number of real solutions can
be equal to the bound provided by the number of complex
solutions. In particular, this suggests that there is the potential
for developing tighter bounds on the maximum number of
real solutions to the power flow equations beyond the bounds
provided by the number of complex solutions.

The rest of this paper is organized as follows. Section II
overviews the power flow equations and presents the four-
bus test case studied in this paper along with a choice
of parameters, resulting from a computational experiment,
that yields 16 real solutions. Section III reviews computing
Galois groups and provides the reduction down to counting
the number of positive roots of a univariate polynomial.
Section IV concludes the paper and discusses future work.

II. THE POWER FLOW EQUATIONS

This section provides an overview of the power flow
equations and then presents the lossless, four-bus system
of PV buses which is the main focus of this paper. We
conclude this section with a summary of a computational
experiment and a choice of parameters for which the power
flow equations have 16 real solutions.

A. Overview of the Power Flow Equations

Consider an n-bus electric power system with buses la-
beled 1, . . . , n. The network topology and electrical param-
eters are described via the admittance matrix Y = G+ jB,
where j =

√
−1. (See, e.g., [48] for details on the admittance

matrix construction.) Lossless systems have G = 0.
Each bus has two associated complex quantities: the active

and reactive power injections P + jQ where P,Q ∈ Rn
and the voltage phasors Vd + jVq denoted using rectangular
coordinates with Vd, Vq ∈ Rn. Let |Vi| denote the voltage



magnitude at bus i. The power flow equations are quadratic
polynomials in the voltage components:

Pi = Vdi

n∑
k=1

(
GikVdk −BikVqk

)
+ Vqi

n∑
k=1

(
BikVdk +GikVqk

)
(1a)

Qi = Vdi

n∑
k=1

(
−BikVdk −GikVqk

)
+Vqi

n∑
k=1

(
GikVdk −BikVqk

)
(1b)

|Vi|2 = V 2
di + V 2

qi. (1c)

Each bus is classified as PQ, PV, or slack. PQ buses, which
typically correspond to loads, enforce the active power (1a)
and reactive power (1b) equations with specified values for
Pi and Qi. PV buses, which typically model generators,
enforce (1a) and (1c) with specified Pi and |Vi|. The re-
active power Qi may be computed as an “output quantity”
via (1b).2 A single slack bus is selected with specified voltage
magnitude |Vi|. The voltage phasor at the slack bus is usually
chosen to provide a 0◦ reference angle, i.e., Vdi = |Vi| and
Vqi = 0. The active power Pi and reactive power Qi at the
slack bus are determined from (1a) and (1b), thus ensuring
conservation of power.

With the complex voltage phasors separated into real and
imaginary parts Vd and Vq , a solution to (1) is only physically
meaningful if all variables Vd and Vq are real valued.

B. Four-Bus Test Case

The case of interest in this paper is a lossless, four-bus
system of PV buses connected by lines with arbitrary suscep-
tances.3 Fig. 1 shows the one-line diagram for this system,
where bus 1 is chosen as the slack bus. The parameter bik
is the susceptance of the line connecting buses i and k.

The maximum number of real solutions for a system of
PV buses is non-increasing with increasing resistances [46].
Thus, allowing for losses is not necessary for the purposes
of this paper: the maximum number of real solutions for
lossy systems is bounded by the maximum number of real
solutions for lossless systems of the same size.

With the potential for load and generation at each bus,
the active power injection parameters P2, P3, and P4 may
be positive, negative, or zero. The voltage magnitude param-
eters |Vi|, i = 1, . . . , 4, are positive. The line susceptance
parameters may be positive (inductive), negative (capacitive)
or zero.4 Note that bik = bki.

A susceptance parameter bik = 0 indicates that there is
no connection between buses i and k. Thus, the formulation
we study allows for the possibility that the system is not
completely connected.5

2This paper does not consider reactive power limited generators.
3We follow a tradition of initially studying power flow related results for

this restricted class of power systems (e.g., [39] uses a related, more specific
class of systems to obtain initial results that were later generalized [40]–
[44]). Future work includes generalizing the results in this paper to four-bus
systems that may have PQ buses as well as larger systems.

4Shunt susceptance parameters are not necessary since all buses are PV.
5The network connectivity is reflected in the monomial structure of the

power flow equations. As discussed in [34], [43], [44], the upper bound on
the number of real power flow solutions provided by the maximum number
of complex solutions is non-increasing with increasing network sparsity.
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Fig. 1. Four-Bus System

The power flow equations for the system in Fig. 1 are∑
k=2,3,4
k 6=i

bik (VdkVqi − VdiVqk) + |V1|Vqib1i = Pi

i = 2, 3, 4 (2a)

V 2
di + V 2

qi = |Vi|
2

i = 2, 3, 4 (2b)

While there are 12 parameters in (2), the three voltage
magnitude parameters |Vi| can be set to 1 per unit without
loss of generality for this system. This is observed by refor-
mulating the power injection equations in polar coordinates:∑

k=1,...,4
k 6=i

|Vi| |Vk| bik sin (θi − θk) = Pi i = 2, 3, 4 (3)

where θi = arctan
(
Vqi

Vdi

)
is the voltage angle at bus i.

Any valid change to the voltage magnitudes can be compen-
sated by modifying the corresponding suceptance parameters
such that the products of voltage magnitudes and electrical
parameters are unchanged. In other words, for any choice
of |Vi| and bik, we can construct an equivalent system
with susceptances b̂ik = |Vi| |Vk| bik and 1 per unit voltage
magnitudes such that |Vi| |Vk| bik = 1 · 1 · b̂ik.

In the particular case of lossless, four-bus systems with
zero power injections (Pi = 0), unity voltage magnitudes
(|Vi| = 1), and a restricted set of susceptance parameters bik
(see [39, Prop. 2.14]), it is shown in [39] that the maximum
number of real power flow solutions is 14. In a computa-
tional experiment, we also take zero power injections and
unity voltage magnitues but allow the electrical parameters
to be generic. Using the NPHC method implemented in
Bertini [49], we find all complex solutions for 100,000
random instances of the 6 line susceptance parameters bik
which were selected from a normal distribution with mean 0
and standard deviation 8. In this experiment, 750 of the
100,000 instance had 16 real solutions. Table I presents line
susceptances for a test case that has 16 real solutions, which
are listed in Table II. (The characteristics of these solutions
are discussed in Section III.) From this example, we can



apply the implicit function theorem to guarantee that there
is an open set of parameters for which there are 16 real
solutions to the power flow equations for each value of the
parameters in this set. This statement also naturally extends
to the case with non-zero power injections as well as non-
unity and non-equal voltage magnitudes.

TABLE I
SUSCEPTANCES (PER UNIT) FOR A CASE WITH 16 REAL SOLUTIONS.

b12 b13 b14 b23 b24 b34
1.612 -4.649 -5.472 -7.504 10.05 -13.571

TABLE II
THE 16 REAL SOLUTIONS FOR THE SYSTEM DESCRIBED IN TABLE I

Sol. # Vd2 Vq2 Vd3 Vq3 Vd4 Vq4

1 1 0 1 0 -1 0
2 -1 0 1 0 -1 0
3 1 0 1 0 1 0
4 1 0 -1 0 -1 0
5 -1 0 1 0 1 0
6 -1 0 -1 0 -1 0
7 -1 0 -1 0 1 0
8 1 0 1 0 1 0
9 .30976 -.95082 -.82212 -.56932 -.97906 .20359

10 -.88313 .46912 .97310 .23039 .99834 -.05754
11 .57067 -.82118 -.61912 .78530 .41658 -.90910
12 .89239 -.45127 .84624 -.53281 -.94751 .31973
13 -.88313 -.46912 .97310 -.23039 .99834 .05754
14 .57067 .82118 -.61912 -.78530 .41658 .90910
15 .30975 .95082 -.82212 .56932 -.97906 -.20359
16 .89239 .45127 .84624 .53281 -.94751 -.31973

III. GALOIS GROUPS AND STRUCTURE

The test case in Section II-B shows that there exist four-
bus systems with at least 16 real solutions. We next use
Galois groups to provide evidence for an upper bound of 16
real solutions for four-bus systems of PV buses.

One way to possibly understand the maximum number
of real solutions to a parameterized system of polynomial
equations is to consider the Galois group, which corresponds
geometrically to the monodromy group, e.g., see [51], [52].
For a general set of the parameters, the implicit function the-
orem guarantees that the solutions are analytic functions of
the parameters locally. As one extends the domains of these
analytic functions, the Galois group encodes the relationships
between these analytic extensions. For example, consider the
equation x2 − t = 0 with solutions x±(t) = ±

√
t. Although

these functions are not analytic at the origin, one can extend
them to analytic functions on, say, the complex unit circle
t(θ) = ejθ. Hence, x±(t(θ)) = ±ejθ/2. These analytic
extensions are the same since x±(t(θ)) = x−(t(θ + 2π)).
In this case, the Galois group is the full symmetric group
on 2 elements, S2, i.e., the plus and minus branches of the
square root function are equivalent.

The size of the Galois group is inversely related to the
structure in the solutions. That is, the smaller the Galois
group, the more structure there is. The structure identified by
the Galois group can then be exploited, for example, to help
solve the system more efficiently or to aid in the derivation
of upper bounds on the number of real solutions.

We start with the lossless, four-bus systems of PV buses
with unity voltage magnitudes (|Vi| = 1). With this, the
system defined by (2) has 9 free parameters (six line sus-
ceptances bik and three active power injections Pi) and
6 variables (Vdi, Vqi, i = 2, 3, 4). The values in Table I with
Pi = 0 corresponds to an instance of the parameters p∗ ∈ C9.
The bound from [39] indicates that there exist a maximum
of
(
2n−2
n−1

)
=
(
6
3

)
= 20 complex solutions for this system

which is sharp for parameters p∗. Upon fixing an ordering
of the 20 complex solutions, the relationship between the
Galois group and the monodromy group describe all the
ways that the 20 solutions can be permuted, i.e., reordered,
as the parameters are moved along a loop starting and ending
at p∗. This computation can be performed using numerical
algebraic geometry, e.g., see [53], [54]. In this case, the
Galois group is as large as possible, namely the symmetric
group on 20 elements, S20. That is, for any permutation,
i.e.., reordering, of the 20 solutions, there is a loop starting
and ending at p∗ which realizes this permutation. As in the
case with the square root function, each of the 20 solution
branches are equivalent meaning that there is no structure
that we can ascertain from the Galois group in this case.

We now restrict to the case of zero active power injections,
i.e., Pi = 0 for i = 2, 3, 4. While systems with zero active
power injections are a special case, the number of real power
flow solutions decreases as the power injections approach the
network’s maximum loadability limit, beyond which no real
solutions exist [18]. We therefore expect that the maximum
number of real solutions is achieved with small or zero
active power injections. Future work includes generalizing
the following results to cases of active power injections that
are not near zero.

After specifying zero active power injections, the remain-
ing parameter space is 6 dimensional. The approach in [55]
yields that the Galois group is a subgroup of S20 of order
46,080. Since S20 has order 20! ≈ 2.43 · 1018, this Galois
group is degenerate which means that there is a significant
amount of structure in the solutions as a function of the six
parameters that we now aim to determine and exploit.

There are two reasons for this degeneracy, both of which
can be observed in the real solutions in Table II. First, eight
of the solutions are always Vqi = 0 and Vdi = ±1 for
i = 2, 3, 4. These solutions are associated with all choices
of voltage angle differences of 0◦ or 180◦ between each pair
of buses. This results in the sine of the angle differences
in (3) being equal to zero, and thus both zero active power
injections and zero active power flows in the network.

Second, the other 12 solutions are in a two-way symmetry,
i.e., if (Vd, Vq) is a solution, so is (Vd,−Vq). This arises from
the odd symmetry of the sine function in (3). With angle dif-
ferences that are not equal to 0◦ or 180◦, active power flows
in loops around the network in these solutions, but no active
power is injected at any of the buses. Related phenomena
have been observed in practical power systems [50].

These two observations impose restrictions on the Galois
group. The first shows that only 12 of the 20 complex
solutions are nonconstant with respect to the parameters. The



second shows that these 12 nonconstant solutions arise in
six pairs. The largest order that the Galois group could be
with these two restrictions is 26 · 6! = 46,080. Since the
Galois group indeed has this order, these two observations
completely describe the degeneracy.

We ignore the 8 solutions that are constant with respect to
parameters and focus on the other 12 (potentially complex)
solutions. Since every coordinate Vqi for i = 2, 3, 4 is
generically distinct for these 12 solutions, we select the
coordinate Vq4. With this setup, there is a univariate sextic
polynomial r6(x) whose coefficients are polynomials of the
parameters bik such that r6(V 2

q4) = 0 exactly on the 12
solutions. That is, the Vq4 coordinates of the 12 solutions
arise by taking the positive and negative square roots of
the solutions of r6(x) = 0. Therefore, the real solutions of
the original system can be counted and computed from the
positive roots of r6(x). For example, with the setup from
Table I, the sextic polynomial r6 is

x6 + 13.4913x5 + 136.2685x4 − 144.4123x3

+ 18.9004x2 − 0.5871x+ 0.0017.

By Descartes’ rule of signs, r6 has at most 4 positive roots,
which is sharp in this case, yielding that the original system
has exactly 8+2 · 4 = 16 real solutions as listed in Table II.

Suppose now that we additionally set one of the param-
eters bik to zero, i.e., no line directly connects buses i
and k. Then, the system generically has only 16 complex
solutions.6 For example, consider taking b12 = 0 and the
other parameters as in Table I. With this setup, the 8
nontrivial solutions correspond with the square roots of the
roots of a quartic polynomial r4, namely

x4 − 1.438x3 + 0.611x2 − 0.070x+ 0.002.

Since all four roots are positive, the corresponding system
has 8+2 ·4 = 16 real solutions showing that all 16 complex
solutions can all be real.

There are 20 complex solutions when the parameters bik
are generic, but only 16 complex solutions when one of them
is zero and the others are generic. Therefore, for concrete-
ness, we consider the case as we take the parameter b12
towards 0. Since there are only 16 solutions with b12 = 0, the
other four solutions must diverge to infinity as b12 → 0. The
solutions at infinity are not identically zero and satisfy the
system of homogeneous equations resulting from the highest
degree terms in each of the polynomials. For example, the
finite solutions satisfy V 2

di + V 2
qi = 1 for i = 2, 3, 4,

while the infinite solutions must satisfy the corresponding
homogeneous equations V 2

di + V 2
qi = 0.7 Since the only real

solution satisfying V 2
di+V

2
qi = 0 for i = 2, 3, 4 is the origin,

the 4 solutions at infinity arising from the four divergent
paths must be nonreal. In particular, these four solutions must

6A maximum of 16 complex solutions for this case was first shown by
a similar argument in [39, Prop. 3.2]. We show that all 16 solutions can be
real for this case.

7For f(x, y) = x2 + y2− 1, the homogenization of f is the polynomial
fh(x, y, z) = z2f(x/z, y/z) = x2 + y2 − z2. Solutions at infinity have
z = 0, i.e., satisfy fh(x, y, 0) = x2 + y2 = 0.

be nonreal for all values of b12 near zero. The same argument
applies to any parameter bik near zero.

In summary, in the lossless, four-bus systems of PV buses
with unity voltage magnitudes and zero power injections, we
have shown that the maximum number of real solutions is
16 when any of the parameters bik is at or near zero (i.e., a
pair of buses i and k have a “weak” direct connection). The
implicit function theorem extends this result to more general
cases. For example, in the lossless, four-bus systems of PV
buses with unity voltage magnitudes, the maximum number
of real solutions is 16 when the power injections are at or
near zero and any one of the parameters bik is at or near zero.

Due to this result together with facts that no real so-
lutions exist for sufficiently large injections and that the
number of real solutions do not increase with increasing
resistances [46], we conjecture that the upper bound of 16
real solutions extends to general four-bus systems of PV
buses. This conjecture is further supported by the numerical
experiment described in Section II-B,which did not restrict
any of the line susceptances to be near zero.

IV. CONCLUSIONS AND FUTURE WORK

The power flow equations are key to many power system
computations, and the characteristics of their solutions are
relevant to problems in dynamics and optimization. The two
main contributions of this paper are related to the maximum
number of real power flow solutions. First, a test case with
16 real solutions surpasses the previously known maximum
of 14 real solutions for a four-bus system. Second, Galois
group theory is used to analyze the system and leads to
the conjecture that the power flow equations for a lossless,
four-bus system of PV buses has no more than 16 real
solutions. If true, this conjecture suggests that the number of
real solutions for this class of problems is strictly less than
the upper bound of 20 provided by the maximum number
of complex solutions. This result provides evidence for an
affirmative answer regarding the open question of whether
there exists a gap between the maximum number of real
solutions and the upper bound provided by the number of
complex solutions for systems with more than three buses.

Future work includes completing the proof of the conjec-
ture that there are at most 16 real solutions for lossless, four-
bus systems of PV buses by considering cases that do not
restrict any of the parameters to be near zero. Other future
work includes considering systems with PQ buses as well
as developing tighter upper bounds on the number of real
power flow solutions for larger test cases and other network
topologies.
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