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Growth accounting exercises using standard human capital measures are limited in
their ability to attribute causal effects and to explain growth. This paper develops a
model of growth and schooling consistent with these decompositions but with less
unexplained growth. The theory distinguishes between three different sources of education
gains: (1) supply shifts, (2) skill-biased technical change increasing demand within
industries/occupations, and (3) skill-biased technical change caused by the introduction
of new skill-intensive industries/occupations. The third source leads to the large sectoral
shifts and the largest growth effects. Quantitatively, schooling contributions account for
24 percent of wage growth, with both the direct (i.e., supply driven) causal contribution of
schooling and the indirect causal (i.e., technology induced) contribution playing substantial
roles.
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1. Introduction

Is schooling an important and direct driving force of economic growth? One viewpoint in the literature, including theory
and growth accounting decompositions, attributes large direct gains in output to schooling and human capital investment
(e.g. Denison, 1974; Jorgenson et al., 1987; Krueger and Lindahl, 2001; Lucas, 1988; Young, 1995). More recently, another
viewpoint (e.g. Bils and Klenow, 2000; Klenow and Rodriguez-Clare, 1997) has claimed that the causal connection from
schooling investment to growth explains very little of overall growth.2 This proponents of this view argue persuasively that
the “contributions” from growth accounting decompositions cannot be interpreted as causal, and so models are necessary
to distinguish causal forces. This paper develops a model of human capital that does precisely this. The model distinguishes
between causal forces in the growth of education and yet is also consistent with salient features of growth accounting
exercises on U.S. wages from 1940 to 1970.

Section 2 highlights the limitations of growth accounting exercises and standard human capital measures—one, a measure
of human capital based on Mincerian returns and average schooling and, the other, a more flexible schooling-based measure.
These decompositions though not causal, are nonetheless informative. In short, decompositions show that reallocations of
workers toward higher levels of schooling are not positively associated with growth. However, allocations toward higher
paying and higher skill occupations and industries are strongly associated with growth. In the standard models, sector plays
no role.

* Address for correspondence: Ohio State University, 415 Arps Hall, Columbus, OH, USA.
E-mail address: kaboski.1@osu.edu.

1 I am grateful for helpful comments received from George Alessandria, Francisco Buera, Bill Dupor, Paul Evans, Kathryn Moran, Nancy Stokey, Bruce
Weinberg, the editor, and two anonymous referees.

2 Another similar debate exists about the relative importance of human capital and TFP in explaining cross-country variation in output per capita at
a point in time (e.g. Hall and Jones, 1999; Hendricks, 2002; Kaboski, 2007; Manuelli and Seshadri, 2005; Mankiw et al., 1992).
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In Section 3, I present a more nuanced concept of human capital, where workers with heterogeneous skills sort them-
selves into different sectors (empirically proxied by industry or occupation). The returns to skill endogenously respond to
the movements in supply and demand, and the model can therefore distinguish between different causal forces behind
schooling increases. These different causal forces affect not only the causal contribution of schooling, but also whether or
not rising schooling levels coincide with periods of high wage growth. Thus, the model can explain the relationship between
increases in schooling and contemporaneous growth.

In the model, there are three forces that can lead to changes in schooling levels. They are distinguished by their effects
on output, the returns to schooling, and the amount of schooling that can be explained by reallocations of labor across
sectors:

• An outward supply shift is modeled as a fall in the cost of schooling. These supply shifts cause relatively small output
gains, declining returns to schooling, and a reallocation of labor toward low-skill sectors.

• The second force is a type of skill-biased technical change (SBTC). This SBTC introduces new industries and occupations
with high demand for skills, and therefore involves structural transformation across sectors. This SBTC is consistent with
empirical findings that newer, higher technology industries, occupations and products are more skill-intensive.3 These
new skill-intensive sectors leads to strong growth, rising returns to schooling, and important reallocations of workers
toward high-skill, high-wage sectors.

• The third force is second type of SBTC that is simply a change in the relative productivity of skilled workers within ex-
isting sectors. It could be motivated by a fall in the relative price of physical capital for skilled workers across all sectors
in a story similar to Krusell et al. (2000). It is consistent with evidence that recent SBTC is not explained by sectoral
shifts, but by a pervasive increase in the demand for skill within industries and occupations.4 I assume technologies
that increase the productivity of the highly-skilled in these sectors, also decrease the productivity of the less skilled,
and so have relatively little net productivity effects. Hence, this second type of skill-biased technical change leads to
small output gains, increasing returns to schooling, and rising schooling levels that is explained almost exclusively by
growth in schooling within sectors, rather than reallocations toward high-skill sectors.

The focus on skill-biased technical change contributes to a large literature on the sources and growth effects of SBTC in
two novel ways.5 It presents a more plausible argument of capital-skill complementarity, in which certain capital goods are
complementary with skilled labor, those with a falling relative price. More importantly, it links skill-biased technical change
to observable sectoral shifts. Thus, it can be viewed as adding a human capital component to the literature on structural
transformation.6

The quantitative analysis of Section 4, calibrates the three forces above to match changes in average years of schooling,
changes in Mincerian returns to schooling, and the amount of schooling growth explained by sectoral reallocations in each
decade. Residual wage growth is substantially smaller and also less volatile than in the typical human capital models. The
calibration identifies that pre-1970 growth was characterized by rapid introduction of high skill sectors, technical change
within sectors that is biased toward low skill workers, and an outward shift in the supply of education, while the post-1970
has been characterized by slower introduction of new high skill sectors, SBTC within sectors, and a backward shift in the
supply schedule of education (particularly in the 1980s and 1990s).

Within such an interpretation, on average 24 percent of wage growth is attributed to increases in schooling, although the
sources of this vary by time period. The model attributes 33 percent of wage growth in the earlier period and −13 percent
in the later period to the direct (i.e. supply shift) contribution of education. The indirect contributions that come from
educational increases ultimately driven by technology are −21 and 52 percent, respectively. These indirect contributions are
policy relevant to the extent that frictions or policies might prevent workers from endogenously responding to changes in
technology.

2. Limitations of existing models and methods

This section examines the limitations of existing models and methods. The models discussed are two production func-
tions based on schooling that augments the efficiency units of human capital that are representative of the literature. The
methods involve measuring the growth of measured human capital stocks and attributes it to exogenous increases in ed-
ucation investments. I first introduce the data, then the two production functions, and finally the growth analyses. Finally,
alternative growth decompositions are used to motivate the sectoral model.

3 See Goldin and Katz (1998), Machin and Van Reenen (1998), Murphy and Welch (1993), and Xiang (2005).
4 See Berman et al. (1994, 1998), Juhn et al. (1993), Katz and Murphy (1992), and Machin and Van Reenen (1998).
5 Important contributions to the macrogrowth literature include Acemoglu (1998), Caselli (1999), Galor and Moav (2000), Galor and Tsiddon (1997), Galor

and Weil (2000), Greenwood and Yorukoglu (1997), and Krusell et al. (2000).
6 Recent contributions include Echevarria (1997), Acemoglu and Guerrieri (2005), Gollin et al. (2002), Kongsamut et al. (2001), Matsuyama (1992, 2002),

and Ngai and Pissarides (2004).
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Fig. 1. Average schooling levels and Mincerian returns, 1940–2000.

2.1. Data

The analyses are based on integrated use public microdata series (IPUMS) census data of individuals that contains annual
hours, annual labor earnings, industry, occupation, years of schooling, age and sex. Schooling and earnings are first available
in the 1940 U.S. census, so I focus on the seven decennial censuses from 1940 to 2000. Labor earnings exclude benefits,
and wages are deflated hourly wages calculated as earnings/hours. Average years of schooling are hours-weighted averages.
The Mincerian return is the estimated coefficient on schooling from a regression of log wages on years of schooling, years
of experience, and squared years of experience à la Mincer (1974). As is standard, years of experience is constructed as
age−years of schooling−6, and the Mincerian regressions include only full-time males in order to abstract from endogenous
labor supply issues.

For the decompositions, I aggregate schooling, industry, and occupation into broader categories, since classification errors
are particularly high for industry and occupation at disaggregate levels.7 The standard nine broad occupational categories are
used for occupation,8 while for industry, I grouped the standard sixteen broad industries into nine industry groups in order
to maintain comparability.9 The schooling classification also involves standard nine schooling level groupings.10 Appendix A
gives further details on the data.

Fig. 1 shows average schooling levels (solid line) and returns to schooling (dashed line) in the U.S. workforce from
1940 to 2000. Average educational levels rise throughout the period, and the growth is fairly stable over time. On average,
schooling levels rose 0.90 years per decade during the high economic growth from 1940 to 1970, and 0.73 during the slower
post-1970 growth period. In contrast to schooling levels, the returns to schooling fluctuate over time. The measured return
is the estimated coefficient on schooling from a regression of log wages on years of schooling, years of experience, and
squared years of experience à la Mincer (1974). Both the levels and time path of returns replicate the well-known pattern:
a large drop from 1940 to 1950, then a slow increase followed by a faster increase after 1980.

2.2. Standard models

Consider the following production function, where output is Cobb–Douglas in physical K (t) and human capital H(t):

Y (t) = A(t)K (t)α
[

H(t)
]1−α

.

7 My results presented are robust to using the more detailed classifications, however.
8 These are: (i) laborers, (ii) farmowners & farmworkers, (iii) service workers, (iv) operatives, (v) craftsmen & foremen, (vi) salesworkers, (vii) clerical

workers, (viii) managers, officials, & proprietors, and (ix) professional & technical.
9 The nine groups were grouped to keep industries with similar average educational levels together, but create groups of comparable size. The groupings

are: (i) agriculture/forestry/fishing, mining and personal services (grouped); (ii) nondurable manufacturing; (iii) construction; (iv) transportation, utilities,
and entertainment and recreational services (grouped); (v) durable manufacturing; (vi) wholesale trade; (vii) retail trade; (viii) telecommunications, busi-
ness/repair services, public administration and finance/insurance/real estate (grouped); and (ix) professional services. The results are both qualitatively and
quantitatively similar regardless of whether this nine-industry grouping or the original 16-industry classification is used.
10 The upper bounds on years of schooling for the nine standard categories are: (i) 0 years, (ii) up to 4 years, (iii) up to 8 years, (iv) 9 years, (v) 10 years,

(vi) 11 years, (vii) 12 years, (viii) less than 16 years, and (ix) 16 years or more.
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Human capital can be broken out into the amount of labor L(t) and the average human capital per unit of labor h(t),
H(t) = L(t)h(t). In perfect competition, marginal products of labor and capital equal their factor prices, w(t) and R , so that:

w(t) = (1 − α)A(t)

[
K (t)

h(t)L(t)

]α

h(t),

R = αA(t)

[
K (t)

h(t)L(t)

]α−1

.

Assuming further that capital accumulation keeps the rental rate of capital constant, yields the following wage equation:

w(t) = (1 − α)A(t)
1

1−α

[
R

α

] α
α−1

h(t) (1)

= ωh(t),

where I have defined ω ≡ (1 − α)A(t)
1

1−α [ R
α ] α

α−1 as the price on efficiency units of human capital.

2.2.1. Mincerian model
One typical approach is to construct human capital stocks using the Mincerian relationship and average years of school-

ing.11 A production function in which each (average) year of schooling s(t) yields an r(t) percentage increase in human
capital is often motivated by the relationship:

h(t) = h0er(t)s(t).

Inserting this into Eq. (1) yields the following wage equation:

w(t) = (1 − α)A(t)
1

1−α

[
R

α

] α
α−1

h0er(t)s(t).

Taking logs and differentiating yields a growth accounting equation:

dw/dt

w
= r

ds

dt
+ s

dr

dt
+ 1

1 − α

dA

A
,

to which a discrete approximation is:

�wt

wt
= rt�st + st�rt + 1

1 − α

�At

At
. (2)

Here variables with the upper bar indicate the time average over t and t + 1, while � indicates the difference between
t + 1 and t . The first two terms capture the wage growth explained by increases in human capital. In this setup, capital
accumulation is endogenous, and the endogenous capital accumulation is attributed to the changes in human capital or
technical change.

As can be seen from Fig. 1, although growth in st is relatively stable across decades, the Mincerian return rt is volatile.
Using the data in Fig. 1, one can easily construct the first two terms of Eq. (2). For the sake of brevity, I do not present
the data in table format, but merely discuss the results. The growth explained by these first two terms is large on average
(exceeding actual wage growth, 20.5 to 14.6%), but is unfortunately negatively correlated (−0.91) with actual wage growth.
Given this negative correlation, the volatility of residual wage growth is greater than that of actual wage growth with
standard deviations of 31.4 and 14.6%, respectively. That is, although the decomposition more than explains long-run wage
growth, it has apparently nothing to say about decade-by-decade variation in wages, which is a problem.

This model illustrates the volatility of the Mincerian return and the problem of the low correlation between schooling
investment and actual growth, but restricts the analysis in several ways. First, h0, the human capital of a person with
no education, is fixed so that changes in r(t) imply large changes in absolute levels of efficiency units for workers with
schooling, rather than just changes in relative human capital. Second, it does not allow for differences in human capital
across agents. Finally, it insists on a linear wage vs. schooling relationship.

2.2.2. More general model
A more general model would allow relative wages to vary non-parametrically across schooling levels and also over

time. I address this by modeling differentiated (imperfectly substitutable) human capitals indexed by n = 1 . . . N different
schooling categories:

h(t) = F
[
l(s1, t), . . . , l(sN , t)

]
.

11 Bils and Klenow (2000) is an important example.



172 J.P. Kaboski / Review of Economic Dynamics 12 (2009) 168–182
Here, F (·) is homogeneous of degree one, h(t) is again the average human capital per worker, l(sn, t) is the fraction of
workers with education sn at time t . Their wage w(sn, t) is again their marginal product:

w(sn, t) = ω
∂ F

∂l(sn, t)
,

but the average wage is again:

w(t) = ωF
[
l(s1, t), . . . , l(sN , t)

]
= ω

∑
n

∂ F

∂l(sn, t)
l(sn, t),

where the second line follows from the homogeneity of F (·).

Substituting in ω = (1 − α)A(t)
1

1−α [ R
α ] α

α−1 , taking logs, and again totally differentiating with respect to time yields the
growth accounting equation:

dw(t)/dt

w(t)
=

∑
n

∂ F
∂l(sn,t)

dl(sn,t)
dt

h(t)
+ 1

1 − α

dA(t)/dt

A(t)
.

Since, ∂ F
∂n is held fixed at a point in time, fluctuations in r(t) (or any other measure of relative wages) over time do

not imply changes in wages, but only changes in the marginal value of shifting people across levels of schooling, sn . After
multiplying both the numerator and denominator of the first term on the right-hand side by the wage per efficiency unit ω,
one can rewrite the accounting equation in terms of wages. In discrete form:

�wt

wt
=

∑
n wt(sn)�lt(sn)

wt
+ 1

1 − α

�At

At
, (3)

where wt(si) indicates the wage of workers with schooling sn , averaged across t and t + 1.12

2.3. Decompositions

This section interprets Eq. (3) as a decomposition. I then use this result to introduce other decompositions with respect
to industry and occupation. While these decompositions are ad hoc at this point, they will be more successful in explaining
decade-to-decade changes in the data, and so they are of interest. Ultimately, these decompositions motivate a model
developed in Section 3 that is explicit about sector.

To see that Eq. (3) is a decomposition, note that algebraically, the change in wages can be expressed:

�wt

wt
=

∑
n wt(sn)�lt(sn)

wt
+

∑
n �wt(sn)lt(sn)

wt
. (4)

The first right-hand side term is the change in wages predicted from the compositional change of the workforce, and is
identical to the first term in Eq. (3). This is the “between” component of the decomposition—wage growth explained by
movement of workers between schooling levels. Similarly, the second right-hand side terms in the two equations must also
be equal. These residuals in the decomposition are the “within” component of the growth decomposition—growth in wages
within given levels of schooling.

The fact that growth accounting equations are simple decompositions highlights two known limitations of growth ac-
counting methods. First, as merely decompositions, they cannot identify true sources of growth, or causally distinguish
schooling-driven growth from technology-driven growth (see Klenow and Rodriguez-Clare, 1997). Second, although these
decompositions identify total factor productivity (TFP) innovations within the context of these models, they identify them
as a residual. These TFP innovations are unexplained measures of our ignorance as economists.

Decompositions are nonetheless interesting moments in the data, and one can perform a parallel decomposition with
respect to industry (or occupation) rather than schooling categories. The models above have no concept of sector, and so
these decompositions are ad hoc at this point, but the model in the next section justifies such a decomposition. Denoting
sector as i j (for industry j = 1 . . . J ), we have:

�wt

wt
=

∑
j wt(i j)�lt(i j)

wt
+

∑
j �wt(i j)lt(i j)

wt
. (5)

12 The standard growth accounting representation of Eq. (3) is:

�wt

wt
=

∑
i

σ (si)
�lt (si)

lt (si)
+ 1

1 − α

�At

At
,

where σ(si) is the share of wages going to workers of type si . However, Eq. (3) leads more easily into (4), which shows the “between” and “within”
interpretation of the decomposition.
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Table 1
Growth decompositions of U.S. data, 1940–2000

Time period: Explaining wage growth (per decade) Explaining schooling growth (per decade)

Avg.
percent
wage
growth

Schooling
decomposition

Industry
decomposition

Occupation
decomposition

Avg.
years of
schooling
growth

Industry
decomposition

Occupation
decomposition

“Explained”
growtha

Residual “Explained”
growtha

Residual “Explained”
growtha

Residual “Explained”
growtha

Residual “Explained”
growtha

% of
total

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii)

Pre-1970 34% 4% 30% 7% 28% 7% 27% 0.90 0.25 0.65 0.32 0.58
Post-1970 10% 5% 5% 0% 9% 2% 8% 0.73 0.09 0.64 0.14 0.59

1940–2000 21% 5% 17% 3% 18% 4% 21% 0.82 0.17 0.65 0.24 0.58

Standard deviationb 14.6% 0.1% 15.2% 4.5% 11.4% 3.9% 12.0% 0.31 0.10 0.26 0.11 0.24

Time correlation
w/actual wage growthb

−0.48 1.00 0.78 0.97 0.74 0.98 0.85 0.26 0.73 0.27

a “Explained” growth is the growth in wages (or schooling) explained by changes in quantities of labor inputs at given wages (or given schooling levels,
respectively). See Eqs. (4)–(6).

b The standard deviation is across the values of the six decade-to-decade values, while the correlation is the correlation of the values of actual wage
growth and explained wage (or schooling) growth across these six decade-to-decade values.

Finally, the increase in average schooling can be similarly decomposed into the increase explained by changes in the
sectoral composition of the workforce, and increases in schooling levels with sectors:

�st =
∑

j
st(i j)�lt(i j) +

∑
j
�st(i j)lt(i j). (6)

Although, one can construct all of the summations in (4)–(6) directly, I follow growth accounting terminology and refer to
the first term (the “between” component) as the “explained growth” and the second term (the “within” component) as the
“residual.”

2.4. Empirical results

Table 1 presents the empirical results for U.S. wages and schooling, 1940–2000. These results highlight the difficulties
with the model presented in 2.2.2, the limitations of decomposition (4), and the insights of decompositions (5) and (6).
I discuss each column in turn.13

• Examining column (i), wage growth averages 21 percent per decade over the six decades but shows considerable vari-
ation over time with a standard deviation of 14.6 percent. In particular, during the high growth of 1940–1970, wage
growth is over three times higher on average than the during low growth period of 1970–2000.14

• Columns (ii) and (iii) show the results for the decomposition in (4). The wage growth explained by schooling, while high,
shows very little variation (standard deviation) and is again negatively correlated (−0.48) with actual wage growth.
Indeed, in the 1970s (not shown) the wage growth “explained” by the schooling decomposition exceeds actual wage
growth. Moreover, given the negative correlation, the standard deviation of residual/TFP growth (15.2 percent) again
exceeds that of actual wage growth as in the Mincerian model.

• Columns (iv) through (vii), based on (5), show the results of the wage decompositions with respect to industry or
occupation. Explained growth using these measures of sector are closely associated with observed wage growth. In col-
umn (iv), the between-industry growth is highly correlated with actual growth (0.78), averaging 7 percent per decade
before 1970, and 0 percent after 1970. The relationship for occupation in column (vi) is nearly as strong with a correla-
tion of 0.74 between explained and actual growth and a drop from 7 percent to 2 percent from the pre- to post-1970
period.

• Columns (viii)–(xii) present the schooling decompositions based on (5). Industry and occupation reallocations are able
to explain a substantial fraction of the growth in schooling before 1970 (0.25 and 0.32 years, respectively, out of 0.90
years), but little after 1970 (0.09 and 0.14 out of 0.73 years). Moreover, the amount of schooling growth explained by
industry or occupation decompositions is quite highly correlated with wage growth (0.85 and 0.73, respectively).

The models in Sections 2.2.1 and 2.2.2 have no concept of sector, and offer no way of interpreting sectoral decomposi-
tions, except perhaps as approximations to the schooling decompositions that yield quite different results. The results show

13 These results are quite robust to alternative decompositions including creating industry-occupation classes or using three-digit industry or occupa-
tion classes. Controlling for experience by subdividing groups by experience (e.g. schooling-experience classes) also produced similar results except that
explained growth from schooling was higher (6 vs. 5 percent) and less inversely correlated with actual wage growth (−0.21 vs. −0.48).
14 Although wage growth was much greater in the 1990s (averaging 1.5 percent/year) than in the 1970s (0.1 percent) or 1980s (1.2 percent), it was still

much lower than wage growth from 1940–1970, which averaged 3.0 percent/year. The same is true of output/worker.
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that decompositions based on industry and/or occupations appear to be more informative about the sources and time varia-
tion of growth compared to decompositions solely based on schooling levels. Therefore, the next section introduces a model
that is consistent with these decompositions and with sectoral allocations playing a key role in growth.

3. Model

In the model below, production involves differentiated sectors and differentiated levels of skill that are endogenously
chosen through the choice of schooling. The level and distribution of skills will be affected by three factors: the direct cost
of schooling that governs the supply of skill and the two skill-biased technology factors that determine the demand for skill.
Mincerian returns and relative wages fluctuate endogenously, and schooling increases can accompany either slow or rapid
growth.

3.1. Firms

Final output is produced from aggregating the output x̃ of a continuum of sectors (indexed by their level of complex-
ity i).15 These goods are produced by a continuum of heterogeneous workers using heterogeneous capital. Capital is specific
to the type of worker (so both workers and capital are indexed by their skill level h):

Y = Ã

( I∫
I

x̃(i)1−μ̃ di

) 1
1−μ̃

,

x̃(i) =
∞∫

0

ã(i,h)k(i,h)αl(i,h)1−α dh. (7)

Here l(i,h) indicates the amount of labor with human capital (or skill) level h that works in sector i. By normalizing the
total workforce to unity, l(i,h) becomes a density function. Likewise, k(i,h) is the amount of capital specific to h workers in
sector i. The level of productivity depends on three factors: a sector- and skill-neutral productivity parameter Ã, a sector-
and skill-specific productivity function ã(i,h), and I , the maximum complexity level of existing sectors. Notice that the
output produced by workers of different skills is perfectly substitutable only if they work in the identical sector.

If capital is fungible across (i,h) types, then production can be simplified (see Appendix B) and expressed as a function
of aggregate capital K and aggregate labor services L:

Y = ÃK α L1−α, (8)

L ≡
( I∫

I

x(i)1−μ di

) 1
1−μ

,

x(i) =
∞∫

0

a(i,h)l(i,h)dh. (9)

The transformed positive function a(i,h) represents the productivity that a worker of human capital level h has in a
sector of complexity level i. The transformed productivity functions now incorporate both inherent productivity differences
and differences in capital per worker, which may be caused by the price of complementary capital goods differing across
sectors and/or workers. I make the following three assumptions:

Assumption 1: ∂a(i,h)

∂h
> 0,

Assumption 2: ∂2 log a(i,h)

∂ i∂h
> 0,

Assumption 3: ∂2 log a(i,h)

∂h2
< 0.

Assumption 1 is that workers with higher levels of skills have an absolute advantage over less skilled workers, and ensures
that wages will be increasing in skill level. Assumption 2 is a statement of comparative advantage; workers with higher levels
of skill have a comparative advantage in more complex sectors. Assumption 2 is needed to ensure a sorting equilibrium, in
which more skilled laborers work in more complex sectors. This sorting is consistent with the fact that average levels of

15 In the context of the model, sectors are merely elements of the production process that are imperfectly substitutable and use different production
technologies. Industries and occupations are reasonable empirical proxies for these technologies.
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schooling differ substantially across industries and occupations (see Juhn et al., 1993). Assumption 3 is an assumption of log
diminishing returns—in any given sector, incremental gains in skill yield increasingly smaller percentage gains in productivity.
This assumption allows the returns to skill to decrease as the skill levels of the workforce increase.

A representative competitive firm takes the wage profile and the rental rate as given and maximizes profits. Since I am
interested primarily in the labor market, I further simplify by assuming a fixed world rental price of capital R . Given the
optimum choice of capital, production can be expressed:

Y = A(R)L, (10)

A(R) ≡ Ã
1

(1−α)

(
R

α

) α
(α−1)

. (11)

The first-order condition for labor for a firm taking the rental price and wage profile as given:

w(i,h) = (1 − α)A(R)

[
x(i)

L

]−μ

a(i,h). (12)

There is a component of wages, (1 − α)A(R), that is common to all workers and similar to the ω defined in (12), but
the worker-specific component, [ x(i)

L ]−μa(i,h), depends on both i and h and not simply a number of efficiency units as in

the standard model. As the output of a specific sector relative to total output, x(i)
L , decreases, the wage increases.

3.2. Agents

I assume a continuum of agents who are heterogeneous across a single dimension, θ , which represents inherent ability.
The parameter θ is distributed with positive density across a bounded interval [θ, θ ] according to a continuously differen-
tiable density function g(θ) and is constant over time. Together inherent ability θ and schooling s produce skill h.

Given their inherent ability θ and the direct cost of schooling η which is proportionate to the indirect cost of schooling
(i.e. w(i,h)), agents simply choose their schooling level s and their sector i to maximize lifetime income:

max
i,s

τ (s)w(i,h) − ηsw(i,h) s.t. h = θ + s,

where τ (s) is the amount of effective working time which is decreasing in s. The parameter governing direct schooling
costs η will be used as a supply shifter to endogenously change the levels of skill in the workforce.

Note that although θ and s are additive in producing h, h increases the log wage. Thus, ability and schooling are com-
plementary in increasing the wage, and so would be complementary in producing a standard stock of efficiency units of
human capital, as measured in Section 2.

Agent θ ’s first-order conditions are therefore:

[s]: −τ ′(s) + η

τ(s) − ηs
= w2(i,h)

w(i,h)
, (13)

[i]: w1(i,h) = 0. (14)

Substituting (12) into (13) yields:

−τ ′(s) + η

τ(s) − ηs
= a2(i,h)

a(i,h)
.

This static model of schooling acquisition is an abstraction that yields a simple solution below. Solving a dynamic model
would require strong assumptions on the future path of exogenous variables, and would not add greatly to the analysis.
First, as with the models considered in Section 2, output, wages, and Mincerian returns can be determined solely from
technology and the distribution of different types of labor. That is, the demand for schooling is determined entirely by
technology. The supply of skill is determined by (13). At any point, η will be calibrated to match the observed amount of
schooling, while τ (s) will be chosen as a linearization from a lifecycle model, yielding the same local elasticity of schooling
decisions to relative wages as the lifecycle model.16

3.3. Equilibrium

The competitive labor market equilibrium is a set of prices w(i,h), quantities l(i,h), and optimal policy functions for
i(θ) and s(θ) that satisfy (12)–(14), and market clearing for labor inputs (of different skill level h and in different sectors i).

16 The one difference is that this would be the elasticity from a change in returns perceived to apply the entire career rather than just one decade. Given
the discounting that motivates the calibration of τ (s) in Section 4, the first decade out of school constitutes about half of the effective career for a person
with ten years of schooling. Also, agents may indeed choose their schooling based almost solely on current return, since changes in return may be difficult
to forecast.
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I solve equivalently for inverse policy mappings of sectors to abilities θ(i) and sectors to skill levels h(i), which are strictly
increasing by Assumptions 1 and 2.17

Labor market clearing simplifies to:

l(i,h) =
{

g(θ(i))θ ′(i)τ [s(i)] for h = θ(i) + s(i),
0 otherwise.

(15)

In words, the demand for labor of type h working in sector i must equal the supply. For sector-skill combinations that
satisfy h = h(i), the supply is the density of workers of the type θ that choose sector i, times the effective time that
these workers spend in the labor force given their optimal level of schooling. The θ ′(i) term is the Jacobian term from
transforming the density in terms of θ to a density in terms of i. For sector-skill combinations that are not optimal, the
supply is zero.

Given the amount of labor, output in sector i is therefore18:

x(i) = a
[
i,h(i)

]
g
(
θ(i)

)
θ ′(i)τ

[
h(i) − θ(i)

]
. (16)

Combining the expression for wages that comes from firm optimization (12) with the household optimality condition in
the choice of i (14), one can easily derive the constant elasticity of substitution expression:

a1(i,h)

a(i,h)
= μ

x′(i)

x(i)
. (17)

Taking logs and differentiating (16) and combining with (17) yields a second order differential equation in the matching
function θ(i). Omitting functional dependencies, this equation is:

θ ′′

θ ′ +
(

g′

g
− τ ′

τ

)
θ ′ +

(
a2

a
+ τ ′

τ

)
h′ +

(
μ − 1

μ

)
a1

a
= 0. (18)

This differential equation yields the optimal choice of i given θ . Given the Inada condition on each sector and As-
sumption 2, the required boundary conditions are that θ(I) = θ and θ(I) = θ . The corresponding optimal choice of s (and
therefore h) can be easily found by applying (13). These policy functions satisfy the labor market clearing conditions by
construction.

3.4. Skill-biased technical change

I model two forms of SBTC.
The first form involves an increase in I , that is, the introduction of new sectors that are more complex and hence

more complementary to skilled workers. The increase of I causes worker productivity to increase for two reasons. The first
reason is that the complexity level i increases for all (but a measure zero of) workers, and complexity causes the marginal
and average productivity of human capital to increase. The second reason is the Romer (1990) growth effect: the range of
sectors becomes larger, fewer workers work in each of the more differentiated sectors, and the marginal value of each sector
increases. Returning to the wage equation, but substituting θ + s in for h:

w(i, s) = (1 − α)A(R)

[
x(i)

L

]−μ

a(i, θ + s),

an increase in I will lower [ x(i)
L ]−μ for all i.

Given this effect, one can also understand the decomposition with respect to industry by discretizing the average wage
by i (and realizing the mapping of schooling s to sector i):

wt =
∑

j

wt
[
i j, st(i j)

]
lt(i j)

and deriving the terms in (5):

�wt

wt
=

∑
j wt(i j)�lt(i j)

wt
+

∑
i �wt(i j)lt(i j)

wt

=
∑

j wt(i j)�lt(i j)

wt
+ (1 − α)

�[A(r)( x(i)
L )−μat[i j, st(i j)]]

wt
. (19)

17 In principle, the mapping s(θ) need not be increasing, but because wages will be increasing in θ , and the calibration matches the positive Mincerian
relationship between wages and schooling, s(θ) is also increasing in the calibrated model.
18 Eq. (9) assumed that the mass of sectors was distributed across a two-dimensional (h, i) plane. This density would need to be integrated across h in

order to reduce the dimensionality to one (the i dimension). The existence of the function h(i) shows that the problem was already one-dimensional, and
the mass is distributed along the line h(i). Hence no integration is needed.
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Reallocations of workers toward high wage sectors, i.e.,
∑

j wt(i j)�lt(i j), will be large when [ x(i)
L ]−μ is increasing, so

that both the explained wage growth and the residual wage growth will be correlated. I show this numerically in the next
section. Furthermore, from this decomposition residual, only the changes in A(r) will be truly “unexplained,” since changes
in I and γ will be identified in the data.

The second form of SBTC is an increase in the skill-bias within sectors that increases the relative productivity of skilled
workers without changing the productivity of the average worker. The interpretation of this second type of technical change
as a fall in the relative price of physical capital for skilled workers across all sectors (see (7)) is shown in Appendix B.

The functional form used for the productivity function is:

a(i,h) = exp

(
i1+φh1−φ + γ (h − h̄)

(1 + φ)(1 − φ)

)
.

Here φ governs the relative weight given to sector and skill in determining an agent’s productivity. It also governs the
amount of log diminishing returns to skill, with higher φ implying more rapidly diminishing returns to skill within a given
sector. The parameter γ captures the additional return to skill h that is common to all tasks and governs the within-sector
SBTC. Since h̄ is the average skill level, γ has no net productivity effect on the average worker. A high γ increases the
relative productivity of workers with above average skill, while decreasing the productivity of workers with below average
skill.19

The derivative below shows that a(i,h) satisfies Assumptions 1–3 and illustrates how both of the skill biases work:

∂ log a(i,h)

∂h
= 1

(1 + φ)

(
i1+φ

hφ
+ γ

1 − φ

)
.

Higher I increases the marginal benefit of skill by increasing the i of workers, while higher γ increase the marginal benefit
of skill regardless of i.

4. Quantitative results

In this section, I calibrate the model and show comparative statics with respect to η, γ , and I . I then identify the
decade-by-decade shifts in these three factors between 1940 and 2000, and quantify the causal contribution of schooling
increases.

4.1. Baseline calibration

The parameters to be calibrated are: α, φ, μ, I , I , g(θ), τ (s), and η. In practice, φ, μ, I , I , τ (s), and η are all determined
jointly, but I discuss individual targets to illustrate the calibration strategy. I calibrate the model to U.S. data in 1970, the
middle of the relevant sample period.

The share of capital α is set to the standard value of 1/3. The remaining technology parameters are φ, I0, and I . The
parameter μ = 0.65 implies an elasticity of substitution of 1.5, but this is between tasks. The elasticity between college
(s = 16) and high school labor (s = 12) is somewhat higher, since workers are perfect substitutes within tasks. Katz and
Murphy (1992) estimate an the elasticity of substitution between college and high school workers range of 1.4, but this
estimate is based on “effective” labor of each type. Using parallel techniques to construct effective labor of those with more
than twelve years of schooling and those with up to twelve years and estimating the identical regression on simulated data
from the model for the same period (1960–1990), μ = 0.65 yields an elasticity estimate of 1.4.

Together, the remaining technology parameters φ (which governs the extent of diminishing returns to skill), I and I
determine the variation in the relative demand for skill across sectors. Given the decomposition, I choose these three
parameters to match three facts: the estimated Mincerian return (6.4%), the standard deviation of wages across the N = 9
schooling categories (0.26), and standard deviation of wages across nine grouped industries (0.29) to that of J = 9 grouped
sectors, evenly spaced between I and I . The parameter γ is normalized to zero in 1970. The resulting values for I and I are
0.35 and 1.08. The calibrated value of the diminishing return parameter φ of 0.76, is identical to the 0.76 value estimated in
Kaboski (2007) using cross-country data.

For g(θ), Cawley et al. (1999) estimate that in log wage terms, the gain from being in a higher ability quartile is about
1.5 times the gain from an additional year of school in the United States. Since the available evidence is on ability quartiles,
the uniform distribution of ability θ was used with a range of ability equal to six (i.e. θ − θ = 4 ∗ 1.5 = 6).

The remaining parameters govern the supply of schooling. The parameter η = 0 is calibrated to match the average years
of schooling in the economy (11.5 in 1970), and actually equals zero in the baseline. The function τ (s) is calibrated as
32.8 − s. This is based on a linearization of discounted effective career length (with schooling beginning at age six and

19 Manipulation of terms and the redefinition of Â ≡ A(R)exp(
−γ h̄

(1+φ)(1−φ)
) and â(i,h) ≡ exp(

i1+φh1−φ+γ h
(1+φ)(1−φ)

) shows how skill-biased growth in γ can be

viewed as increasing the skill-biased productivity â, but decreasing the skill-neutral productivity Â.
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Table 2
Comparative statics results for various parameter changes causing increase in average schooling

Comparative
statics exercise:

Explaining wage increase Explaining schooling increase Change in
Mincerian
return (%)

Avg. percent
wage
increase (%)

Schooling decomposition Sectoral decomposition Avg. years
of schooling
increase∗

Sectoral decomposition

“Explained”
increasea (%)

Residual (%) “Between”
increasea (%)

Residual (%) “Between”
increasea

Residual

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Increase in I (A) 37 8 30 6 32 0.82 0.61 0.21 +0.2
Increase in γ (B) 5 8 −3 0 5 0.82 −0.04 0.86 +0.9
Decrease in η (C) 5 7 −3 0 5 0.82 −0.58 1.40 −0.3

∗ Parameter values were chosen to produce an increase of 0.82 in average years of schooling, the mean per decade increase experienced by the U.S.
workforce (1940–2000). Changes were 0.04 for I (from 1.09 to 1.13), 0.008 for γ (from 0 to 0.008), and −0.048 for η (from 0 to −0.048).

a The “explained” increase is the increase explained by changes in quantities of labor inputs at initial wages (or initial schooling levels, respectively). See
Eqs. (4)–(6).

retirement at age 65) around an average of 11.5 years of schooling with a discount rate of 4 percent.20 It implies that
for a person with average schooling (11.5), forgone earnings represent about 4.7 (= 1/(32.8 − 11.5)) percent of discounted
lifetime earnings at that time.

4.2. Comparative statics

I perform comparative statics exercises on the model21 in which one of the SBTC parameters I or γ , or the supply
parameter η are changed from the baseline calibration in order to produce an increase in the average amount of schooling
of 0.82 years, the average increase per decade from 1940–2000.22 In Table 2, I present only the results for changing each
parameter separately, since weighted combinations of parameter changes (leading to the same increase in schooling) yield
similarly weighted mixes of these results.

Column (i) shows that schooling increases driven by a pure increase in I are associated with large wage increases (37%),
while those coming from an increase in γ (within-sector SBTC) or a decrease in η are associated with smaller increases of
just (5%). The wage effects of γ are small because changes in γ do not change the productivity of the average worker. The
wage effects of η are even lower because of the diminishing returns in the gains from schooling.23

Columns (ii)–(iii) give the decompositions of wage growth with respect to schooling (Eq. (4)). The results for the school-
ing decomposition show that the explained growth is highest for η and γ , which lead to lower wage growth. Thus, the
model can potentially explain the puzzling negative correlation between explained growth from schooling decompositions
and actual wage growth in Table 1. Since η and γ lead to less actual growth than explained growth, the model can also
explain the same phenomenon in the data for the 1970s.

The results for the decomposition of wage growth with respect to sector (Eq. (5)) in columns (iv)–(v) contrast greatly.
The explained increases from sectoral decompositions in column (iv) are only substantial when I increases, and so they are
highest when wage growth is highest, and could potentially explain the positive correlation with growth.24

Column (vi) gives the schooling increase, 0.82 years by construction, while columns (vii)–(viii) give the decomposition
of this increase with respect to sector (Eq. (6)). The amount of the schooling increase that can be explained by sectoral
reallocations varies greatly and distinguishes the two different forms of SBTC. Increases in I cause shifts of labor toward
higher i (and higher s) sectors, and so much of the growth in schooling (0.56 years) is explained by sectoral reallocations. In
contrast, increases in γ occur within all sectors, and so they lead to growth within sectors rather than reallocations. Finally,
decreases in η actually lead to reallocations toward low schooling sectors.

Finally, column (ix) shows the resulting change in the Mincerian returns, which is crucial for identifying supply driven
increases from demand driven increases. Decreases in η lower the Mincerian return, while increases in I and, especially,
γ increase the Mincerian return.

20 A typical lifecycle approach would express discounted lifetime earnings as:

T∫
s

e−r(t−savg) w(s + θ)dt = w(s + θ)

[
e−r(T −savg) − e−r(s−savg)

−r

]
,

where the discount rate r would encompass the interest rate net of wage growth and a linear return to experience, and savg is used as the point of reference
for discounting since that is the margin between school and work for the average student. Linearizing the bracketed term around savg yields the τ (s) that
is calibrated.
21 In these simulations, as in the data, when a baseline wage does not exist for a certain type of labor (e.g., j = 1), I use the wage of the next closest type

available ( j = 2). This occurs only for a very small fraction of workers in both the simulations and the data (see Appendix B).
22 The parameter changes yielding an increase in schooling of 0.82 years: are an increase in I from 1.08 to 1.13; an increase in γ from 0 to 0.0084; and a

decrease in η from 0.055 to 0.003.
23 A second reason this increase is smaller than the Mincerian return is because an upward ability bias in the Mincerian return because s(θ) is increasing.
24 Quantitatively, the six-decade correlations for explained growth and actual growth are −0.55 (model) vs. −0.48 (data) for the decomposition with

schooling, and 0.99 (model) vs. 0.78 (data: industry) and 0.74 (data: occupation).
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Table 3
Policy Relevant Growth Contributions of Schooling, 1940–2000

Avg. percent
wage growth (%)

Total contribution
of schooling∗ (%)

% of
total

Direct (supply shift)
contribution of
schooling∗∗ (%)

% of
total

Indirect (technology induced)
contribution of
schooling∗∗∗ (%)

% of
total

(i) (ii) (iii) (v) (v) (vi) (ii)

Pre-1970 34 4 12 11 33 −7 −21
Post-1970 10 4 40 −1 −13 5 52

1940–2000 21 5 24 5 22 1 7

∗ The total effect may not equal the sum of the direct and indirect effects because of rounding error.
∗∗ For each decade, the direct effect of schooling is the reduced growth effect of keeping the cost of schooling, η, fixed at its level at the beginning of

each decade.∗∗∗ For each decade, the total effect of schooling is calculated as the reduced growth had schooling levels remained fixed at their levels at the beginning
of each decade. The indirect effect is the total effect minus the direct effect.

4.3. Identification of driving forces

In order to identify the driving forces, I choose the combination of I , γ , and η values to match the growth in average
years of schooling, the amount of schooling growth explained by sectoral reallocations, and the change in Mincerian returns
in each decade. The rates of change of these parameters differ substantially in the pre-1970 and post-1970 periods.25 To
have a frame of reference, I present the average parameter changes as percentages of the single parameter changes required
to induce 0.82 years of schooling in Table 2. In the pre-1970 period, the changes imply schooling increases being driven
by an outward supply shift (an average decrease in η by 132 percent of the single parameter change) and a high rate of
introduction of new high skill sector (an increase in I by 48 percent), but being negated by technical change within sectors
that is biased toward low skill workers (a decrease in γ by 46 percent). In contrast, the post-1970 reflects on average an
inward supply shift (a decrease in η by 24 percent), a slower rate of new sector introduction (an increase in I by just
22 percent), and an increase in within-sector SBTC (an increase in γ by 97 percent). The larger total for the pre-1970 period
reflects the slightly larger average increase in years of schooling per decade (0.9 vs. 0.73).

The results of wage growth decompositions on the simulated data compare well, though not perfectly, with the em-
pirical decompositions of Section 2. In particular, the wage growth explained by sector is somewhat less than the growth
explained by schooling (simulated: 2 vs. 8 percent, empirically: 3 vs. 5 percent). The wage growth explained by sector is
significantly positively correlated with actual growth (simulated: 0.71, empirically: 0.78), while that explained by schooling
is negatively correlated with actual wage growth (simulated: −0.09, empirically: −0.48). Finally, residual wage growth has
lower volatility in sectoral decompositions than in schooling decompositions (simulated: 13.9 vs. 15.1 percent, empirically:
11.4 vs. 15.2 percent).

More importantly, unexplained wage growth—that is, the residual wage growth coming from A(r)—is just 6 percentage
points in the simulated data compared to 17 percentage points based on the decomposition from the general human capital
model in Section 2. Moreover, the standard deviation of residual wage growth is lower in the simulated model (13 vs.
15 percentage points). Hence, modeling the forces behind schooling increases the ability of theory to explain growth, despite
the fact that these forces are pinned down independently of growth, and so add no additional free parameters. Finally, these
residual A(r) shocks show very little correlation with γ over time (−0.05), which verifies that the assumption that γ has
little effect on average productivity is a reasonable one.

4.4. Policy relevant contributions of schooling

I now distinguish two policy relevant contributions of schooling to growth. First, I ask, “Given the shifts in technology
in a given decade, how much less (more) growth would have been observed without the decreases (increases) in η?”
Heuristically, this “direct contribution” comes from shifting the supply schedule for skilled labor. It is policy relevant because
a government policy to promote education, for example, might directly lower η by decreasing the costs of education that
students face. The second contribution is the indirect contribution, which answers, “How much additional wage growth
would have been lost (gained) had schooling not responded to increases (decreases) in demand driven by technology?”
Heuristically, this effect comes from movements along the supply schedule for skilled labor. This effect is policy relevant,
but only indirectly, since policies such as wage controls, enrollment limits, lack of access to schools, or other frictions could
prevent these endogenous responses in schooling.

Table 3 summarizes the average results for each subperiod and for the sample overall. On average, schooling contributed
six percentage points (or 29 percent) of total wage growth, with the direct effect contributing 5 percentage points and the

25 The 1940s and 1970s stand out from other decades in two ways. The 1940s has a rapid outward supply shift but also rapid technical change biased
toward low skill workers, which together account for the decline in Mincerian returns. The 1970s is actually characterized by an outward shift in supply.
These results are consistent with interpretations in the labor literature (see Katz and Murphy, 1992, and Goldin and Margo, 1992).
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indirect effect contributing 1 percentage point. The relative importance of these effects varied considerably over the period,
however. The direct effects were particularly important in the pre-1970 high growth period when the supply of schooling
shifted outward, but actually negative in the post-1970 period as the supply shifted backward (perhaps due to rising costs of
tertiary education). In contrast, the indirect effect was substantial in the post-1970 period, contributing 5 percentage points,
or 50 percent of overall wage growth. Hence, both direct and indirect effects have played important roles in wage growth,
but at different points in time.

5. Conclusion

This paper has developed a theory to understand and quantify the causal forces behind schooling and wage growth. The
model here helps distinguish between schooling increases that are distinguished by technological advance—i.e., the growth
of new industries and occupations—and high growth rates, and schooling increases driven from either supply shifts or by
within-sector growth in the demand for skill. When technological advance is the driving force, educational investments are
accompanied by the introduction of new skill-intensive sectors and large movements of labor toward these sectors. The
empirical evidence for the United States harmonizes with the model. Schooling increases have been relatively steady, but
growth has been greatest in decades when sectoral movements were away from low-skill sectors (such as agriculture or
household servants) toward new, high-skill sectors.

The quantitative results suggest that government programs increasing the supply of skill exogenously may be important,
but so may policies that enhance the ability of the labor force to respond endogenously to increased demand. On an
international level, the model may be important in explaining the varied growth experiences of countries, despite the fact
that almost all countries have witnessed substantial increases in education levels.

An avenue for further research would be to either apply the model in a similar fashion to other countries, or to perform
the cross-country analog of the time analysis here to see whether sectors are similarly important. Within the context of the
model, perhaps the education “miracles” of some countries, such as the East Asian tigers, is not simply their large increases
in human capital, but also their structural transformation from agrarian to industrial economies.

Appendix A. Description of data

The data is taken from the IPUMS census data project. Schooling and wage questions are first included in the 1940
census and so limit me to the seven censuses between 1940 and 2000. The variables of interest are annual hours, education,
occupation, industry, experience, and wages. Each is discussed in turn.

Annual hours is the product of the number of weeks worked in the previous year and the number of hours per week in
the previous week. Both weeks worked and hours per week are coded values.

There are two sources of schooling data: detailed schooling data that varies somewhat across decades and grouped
schooling data that is comparable across decades. The detailed data is used for the Mincerian return results and the
average education levels in Table 1. Although the answers are top coded, the high codes of 17, 17, 18, 20 and 20 in
decades 1940 through 1980 respectively, contain less than 2.6 percent of the total in any given year and so these high
codes are not viewed as extremely binding on the data. The 1990 and 2000 years of schooling have been recoded
from attainment data. The grouped education categories are: no schooling, 0 to 4 years, 5 to 8 years, 9 years, 10 years,
11 years, 12 years, up to 3 years of college, and four or more years of college. Clearly, these data do not suffer from top-
coding.

The standard nine broad occupational classes listed in Table 1 are used to classify occupations. The standard sixteen
broad industry categories are grouped into nine categories as described in footnote 10.

The Mincerian return regressions use potential experience calculated in the standard fashion (i.e. age − years of
schooling − 6). The alternative decompositions that control for experience used six grouped categories: less than 10, 10
to 19, 20 to 29, 30 to 39, 40 to 49, and over 50 years of experience.

Wages were calculated by dividing annual wage and salary income by annual hours worked. Wages that were either
unrealistically high or low were deleted. On the high end, hourly wages above 500 dollars were viewed as unreliable. On
the low end wages below fifty percent of the legal minimum wage at the time were dropped from the data set. Finally, real
wages were then obtained by deflating with the gross domestic product (GDP) deflator. I use the GDP deflator since I am
interested in real product wages rather than real consumption wages.

Finally, a small complication with the decompositions is that certain labor inputs (education-occupation-industry-
experience categories) exist in a given decade, but not in the previous decade. These totaled 3.3 percent of the observations
across the seven censuses. In these cases, wage data for the previous data must be imputed. The approach taken is to use
the average wage of the next level of aggregation—the necessary level of aggregation is determined by the availability of
wage data.26

26 The order of aggregation is: (1) aggregate to broader education categories, (2) aggregate to broad industry group, (3) aggregate across all industries,
and (4) aggregate across all occupations. No higher level of aggregation was needed.
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Appendix B. Heterogeneous capital

The initial production function for firm’s as given in Section 2 is:

Y = Ã

[ I∫
I

x̃(i)1−μ̃ di

] 1
1−μ̃

and μ̃ ∈ (0,1), (B.1)

where

x̃(i) =
∞∫

0

ã(i,h)k(i,h)αl(i,h)1−α dh. (B.2)

The capital and labor decisions of the competitive firm can be analyzed separately. The firm’s capital optimization is ex-
pressed:

max
k(i,h)

Ã

{ I∫
I

[ ∞∫
0

ã(i,h)k(i,h)αl(i,h)1−α dh

]1−μ̃

di

} 1
1−μ̃

− r̃(K )

I∫
I

∞∫
0

p(h)k(i,h)dh di,

where r̃(K ) is the rental rate of capital and p(h) is the relative cost of capital of skill-level h. Since capital is com-
pletely fungible, the rental rate must be constant across all capital and is, therefore, only a function of total capital,

K ≡ ∫ I
I

∫ ∞
0 p(h)k(i,h)dh di. The first-order condition for this problem is:

r(K ) = Ã1−μ̃Y μ̃ x̃(i)μ̃
ã(i,h)

p(h)

[
l(i,h)

k(i,h)

]1−α

∀i,h s.t. l(i,h) > 0,

where r(K ) ≡ r̃(K )
α . Using this first-order condition, one can solve for the optimal capital levels:

k(i,h) =
[

Ã1−μ̃Y μ̃

r(K )
x̃(i)−μ̃ ã(i,h)

p(h)

] 1
(1−α)

l(i,h).

Substituting this equation into (B.2) yields:

x̃(i) =
∞∫

0

ã(i,h)

[
A1−μ̃Y μ̃

r(K )
x̃(i)−μ̃ ã(i,h)

p(h)

] α
(1−α)

l(i,h)dh.

Since x̃(i) is constant with respect to h, it may be factored outside of the integral:

x̃(i) = [
x̃(i)−μ̃

] α
(1−α)

∞∫
0

[
A1−μ̃Y μ̃

r(K )

] α
(1−α)

ã(i,h)
1

(1−α) p(h)
α

(1−α) l(i,h)dh,

and x̃(i) can be isolated on the left-hand side:

x̃(i) =
{ ∞∫

0

[
Ã1−μ̃Y μ̃

r(K )

] α
(1−α)

ã(i,h)
1

(1−α) p(h)
α

(1−α) l(i,h)dh

} (1−α)
1−α+μ̃α

.

In addition, since each task is produced using a Cobb–Douglas technology, capital will be paid a constant fraction of
product within each task and thus a constant fraction of total final product. Mathematically, 1 = r(K )K

Y . This expression can
be used to substitute for the rental rate. Substituting in and simplifying yields:

x̃(i) =
[ ∞∫

0

[(
Y

Ã

)μ̃−1

K

] α
(1−α)

ã(i,h)
1

(1−α) p(h)
α

(1−α) l(i,h)dh

] (1−α)
1−α+μ̃α

.

Now after substituting this expression for x̃(i) into (B.1), Y and K can be factored out of the integrals. Isolating Y on the
left-hand side and manipulating the exponents yields:

Ỹ
1

1−α+μ̃α = Ã
1

1−α+μ̃α K
α

1−α+μ̃α

[ I∫
I

[ ∞∫
0

ã(i,h)
1

(1−α) p(h)
α

(1−α) l(i,h)dh

] (1−α)(1−μ̃)

1−α+μ̃α

di

] 1
1−μ̃

,

Y = ÃK α

{[ I∫ [ ∞∫
ã(i,h)

1
(1−α) p(h)

α
(1−α)

l(i,h)dh

] (1−α)(1−μ̃)

1−α+μ̃α

di

] 1−α+μ̃α
(1−μ̃)(1−α)

}1−α

.

I 0
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If I set p(h) equal to a constant one, this equation is identical to (8) and (9)∼ given the definitions of a(i,h) ≡
ã(i,h)1/(1−α) and μ ≡ μ̃

1−α+μ̃α
.

If instead I define:

p(h) ≡ [
exp

(
γ (h − h̄)/

[
(1 + φ)(1 − φ)

])] (α−1)
α ,

ã(i,h) ≡ [
exp

(
i1+φh1−φ/

[
(1 + φ)(1 − φ)

])](1−α)
,

it is clear how changes in γ can be viewed as changes in the relative price of capital.
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