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Abstract

Let Z denote a finite collection of points in projective n-space and let I denote the
homogeneous ideal of Z. The points in Z are said to be in (i, j)-uniform position
if every cardinality i subset of Z imposes the same number of conditions on forms
of degree j. The points are in uniform position if they are in (i, j)-uniform position
for all values of i and j. We present a symbolic algorithm that, given I, can be
used to determine if the points in Z are in (i, j)-uniform position. In addition it can
be used to determine if the points in Z are in uniform position, in linearly general
position and in general position. The algorithm uses the Chow Form of various d-
Uple embeddings of Z and derivatives of these forms. The existence of the algorithm
provides an answer to a question of Kreuzer.

Key words: Uniform Position, Chow Variety, Chow Form, General Position,
Zero-scheme, Points

1 Introduction

Let k be a field, either of characteristic zero or of sufficiently large charac-
teristic (see below). Let R = k[x0, x1, . . . , xn] and let Pn = Proj(R). The
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set of all degree 1 monomials in R forms a basis for the k-vector space of
all forms of degree 1 in R. In terms of this basis, to each linear form (up to
scalar multiples), L = a0x0 + a1x1 + a2x2 + · · · + anxn ∈ R, we can associate
the point [a0 : a1 : · · · : an] ∈ Pn. In addition, we can associate to L the
hyperplane in Pn determined by L = 0. This gives the well-known bijection
between hyperplanes in Pn and points in Pn∗ (similarly, between points in Pn

and hyperplanes in Pn∗). In a similar way, letting Nd =
(

n+d
d

)
− 1, we have

the well-known bijection between degree d hypersurfaces in Pn and points in
PNd .

In this paper we are concerned with the question of what can be said about
the uniformity of a set of points in projective space. The notion of uniformity
appears in a variety of settings. For instance, on the theoretical side, it is
central to the study of curves in projective space, via hyperplane sections
and Castelnuovo theory (cf. for instance [3]). On the applied side, it has been
shown to be important in coding theory ([2]).

Given a homogeneous ideal, it is possible to determine if the ideal corresponds
to a zero-dimensional object. In this case, by taking the radical, it is pos-
sible to form the largest ideal that defines this zero-dimensional object set-
theoretically. However, due to Galois theory it is in general not possible to
determine the precise coordinates of the points (although there exist numer-
ical methods to approximate them). Without this information it would seem
at first glance to be difficult to determine what kind of uniformity properties
the set of points enjoys. We were thus a bit surprised at the level of detail that
can be extracted by symbolic methods and by the simplicity of the approach.

Let P be a point in Pn. For each fixed value of d, the collection of all degree
d hypersurfaces that contain P determines a hyperplane, HP,d ⊂ PNd (the
degree d Chow Form of P ). Thus, to a collection of r distinct points Z =⋃r

i=1 Pi ⊂ Pn, we can associate an arrangement of r distinct hyperplanes Γt =⋃r
i=1Hi,d ⊂ PNd (one for each point in Z). With this correspondence, questions

about finite collections of points in Pn can be rephrased as questions about
hyperplane arrangements in PNd for various choices of d. In this paper we will
utilize this correspondence to obtain a symbolic algorithm for determining
when a collection of points satisfies various types of uniformity conditions.
Because of the use of derivatives in some of the algorithms, we make the
further assumption that char(k) > r.

2 Ingredients

In what follows, Z will denote a reduced set of points in Pn, IZ will denote
the homogeneous ideal of Z and IZ will denote the associated ideal sheaf of

2



Z. There exists a symbolic algorithm for finding the radical of an ideal [1]. In
light of this, if I ⊂ k[x0, x1, . . . , xn] is an ideal which defines Z set theoretically,
we can determine the unique radical ideal IZ ⊂ k[x0, x1, . . . , xn] which defines
the reduced zero-scheme Z.

2.1 Uniform Position and General Position

If E is a sheaf on Pn then H0(Pn, E) will denote the vector space of all global
sections of E and h0(Pn, E) will denote the dimension of H0(Pn, E). Hence,
H0(Pn, IZ(t)) represents the vector space of all forms of degree t whose asso-
ciated hypersurfaces contain the scheme Z, and h0(Pn, IZ(t)) represents the
dimension of this vector space. This information is equivalent to knowing the
Hilbert function of Z,

hZ(t) = dim(R/IZ)t =

(
n+ t

t

)
− h0(Pn, IZ(t)).

Definition 1 Let Z denote a reduced collection of points in Pn and let |Z|
denote the number of points in Z. Then Z is said to be in (i, j)-uniform
position if for every pair of subsets X, Y ⊆ Z with |X| = |Y | = i it holds
that h0(Pn, IX(j)) = h0(Pn, IY (j)). Furthermore, Z is said to be in uniform
position if it is (i, j)-uniform for all integers i and j.

Remark 2 In [5], [6] Kreuzer introduced the concept of (i, j)-uniformity for
a set of points. In his definition, Z is (i, j)-uniform if whenever X and Y
are two sets of points obtained from Z by removing i points then the Hilbert
functions of the corresponding ideals agree in the jth spot. Our definition states
that Z is (i, j)-uniform if whenever X and Y are two sets of points obtained
by selecting i points from Z then the Hilbert functions of the corresponding
ideals agree in the jth spot. The difference is superficial in that knowing (i, j)-
uniformity for all values of i and j provides exactly the same information
regardless of which definition is used. The definition we have chosen provides
a notational advantage in the course of the paper.

Definition 3 Let Z denote a finite collection of points in Pn and let |Z|
denote the number of points in Z. Then Z is said to be in d-general position
if for every subset X ⊆ Z, it holds that h0(Pn, IX(d)) = max{0,

(
n+d

d

)
−|X|}.

Z is said to be in general position if it is in d-general position for all d > 0.
Z will be said to be in linearly general position if it is in 1-general position.

Remark 4 Let Z be a set of points. If Z has regularity r and if d ≥ r−1 then
Z is in d-general position. As a consequence, to determine if a set of points
is in general position, it is only necessary to determine if it is in d-general
position for 0 < d < r − 1. There is a symbolic algorithm for determining the
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regularity of a scheme. Thus, if we have a finite step algorithm to determine
if a scheme is in d-general position for any given d, then we have a finite step
algorithm to determine if it is in general position. Similarly, if we have a finite
step algorithm to determine if a scheme is in (i, j)-uniform position then we
have a finite step algorithm to determine if a scheme is in uniform position.

2.2 Chow Forms

Let Z be an equidimensional variety in Pn of codimension d. A general linear
space of dimension d−1 will not intersect Z. Consider the collection of all linear
spaces of dimension d− 1 which do intersect Z. These form a codimension 1
subvariety of GR(n, d − 1) (the Grassmannian of (d − 1)-dimensional linear
spaces in Pn). This codimension 1 subvariety is called the Chow Variety of Z.
If Z decomposes into s irreducible components then so will the Chow Variety
of Z.

Points in Pn have codimension n. To compute the Chow Variety of a set of
points in Pn we will use linear spaces of dimension n − 1 (i.e. hyperplanes).
The Grassmann variety of hyperplanes in Pn is a dual projective space Pn∗.
The correspondence is simply

A0x0 + A1x1 + · · · + Anxn ⇔ [A0 : A1 : · · · : An].

The Chow Variety of a set, Z, of s distinct points in Pn will be a hypersurface
of degree s in Pn∗. This hypersurface will be the union of s distinct hyperplanes
(the hyperplanes corresponding to the points of Z in the bijection described in
the introduction) and will be defined by a single equation. This equation is the
Chow Form of the set of points. The points can be recovered from the Chow
Form. Thus, in some sense, the Chow Form contains all of the information of
the original set of distinct points.

Proposition 5 The Chow Form of a set of points, Z, can be computed sym-
bolically from the ideal IZ, without knowing the coordinates of the points.

Proof. We first introduce a polynomial, H = A0x0 +A1x1 + ...+Anxn, repre-
senting a general hyperplane. We would like to determine algebraic conditions
on the coefficients, A0, ..., An, that force H to intersect Z. To do this, we
need to form the ideal J = IZ + H ⊆ k[x0, . . . xn, A0, . . . , An] and determine
conditions on A0, ..., An such that the resulting ideal (viewed as a subset of
k[x0, . . . , xn]) defines a non-empty scheme.

Let us denote by Pn
X the projective space with coordinate ring R = k[x0, . . . , xn],

by Pn
A the projective space with coordinate ring S := k[A0, . . . , An], and by
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P2n+1 the projective space with coordinate ring T := k[x0, . . . , xn, A0, . . . , An].
Let Q ⊂ P2n+1 be the quadric hypersurface defined by H. Note that in P2n+1,
Pn

X is defined by A0 = · · · = An = 0 and Pn
A is defined by x0 = · · · = xn = 0.

Also,

Z ⊂ Pn
X ⊂ Q ⊂ P2n+1 and Pn

A ⊂ Q ⊂ P2n+1.

The generators of IZ ⊂ R can also be viewed in T. Let Z̄ denote the subscheme
of P2n+1 defined by T · IZ ⊂ T. Z̄ is determined geometrically as follows: for
each point P of Z, let ΛP be the linear space spanned by P and Pn

A. Then
Z̄ =

⋃
P∈Z ΛP . Note that dim Z̄ = n+ 1.

We first claim that the hyperquadric Q does not contain any component ΛP

of Z̄. Indeed, if it did, this would say that every hyperplane H of Pn
X vanishes

at the point P (choose arbitrary values for the Ai), which is clearly nonsense.
So J corresponds to a proper hypersurface section of Z̄. Z̄ is arithmetically
Cohen-Macaulay since Z is arithmetically Cohen-Macaulay. As a result, J is
unmixed.

Fix again a component ΛP of Z̄. This contains Pn
A, which is also contained in

Q. So on this component, Q cuts out the union of Pn
A and some linear variety

λP of dimension n. We have that λP meets Pn
X at P and meets Pn

A in an
(n − 1)-dimensional linear space VP (since Pn

A and λP are both hyperplanes
in the (n + 1)-dimensional linear space ΛP ). Note that VP is precisely the
hyperplane in Pn

A dual to P . As such, VP �= VP ′ if and only if P �= P ′. VP is
defined by a linear form LP in k[A0, . . . , An]. The product of the LP is the
Chow Form of Z.

From this discussion it follows that the ideal J = IZ +(H) defines a subscheme
of P2n+1 that consists of the union of the λP and some subscheme supported
on Pn

A. Removing this latter component and restricting the result to Pn
A gives

the Chow form. ✷

This suggests two algorithms for determining the Chow form of Z. In the
first algorithm, we isolate the union of the λP , and then we intersect with the
plane defined by (x0, . . . , xn) to determine the Chow Form. Note again that
IPn

A
= (x0, . . . , xn).

Algorithm 1 for computing the Chow Form of a reduced zero-scheme:

• Start with an ideal I which defines Z set theoretically.
• Compute the radical of I to obtain the ideal IZ .
• Form the ideal J := IZ + (H) where H = A0x0 + A1x1 + ...+ Anxn.
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• For each i, saturate J with respect to the ideal (xi) to obtain a new ideal
Li. In other words, Li = J : (xi)

∞.
• Form the ideal Ci = Li + (x0, . . . , xn) and view the result in k[A0, . . . , An].

This yields a principle ideal C′
i = (Fi).

• Let (F ) = (F0) ∩ (F1) ∩ · · · ∩ (Fn).
• F is the Chow form of Z.

Remark 6 If no point of Z lies in the hyperplane in Pn
X defined by xi then we

do not need to iterate the above algorithm. We are finished after that particular
xi.

In the second algorithm we project the entire scheme defined by J to the
projective space Proj(k[xi, A0, . . . , An]). Note that this projective space is the
(n+ 1)-dimensional linear space spanned by Pn

A and the point in Pn
X defined

by x0 = · · · = x̂i = · · · = xn = 0.

We now show how to recover the Chow form from this projection, and we
will give the precise algorithm shortly. The discussion in the proof of Propo-
sition 5 shows that the projection gives an ideal defining the union of two n-
dimensional (hence hypersurface) subschemes of Proj(k[xi, A0, . . . , An]). One
is supported on Pn

A, hence is defined by x�
i for some !. The second subscheme

is a union of n-dimensional linear spaces, coming as the image under the pro-
jection of those λP for which P does not lie in the hyperplane of Pn

X defined
by xi = 0. But this projection leaves fixed the intersection of λP and Pn

A.
Therefore the second scheme is defined by a form Fi only in the variables
A0, . . . , An, which is the Chow form of those points of Z that do not lie in
the hyperplane of Pn

X defined by xi = 0. Since there are no points of Z that
lie on xi = 0 for every 0 ≤ i ≤ n, we can determine the Chow form of Z by
finding the least common multiple of the Chow forms that show up in each
projection.

Algorithm 2 for computing the Chow Form of a reduced zero-scheme:

• Start with an ideal I which defines Z set theoretically.
• Compute the radical of I to obtain the ideal IZ .
• Form the ideal J := IZ + (H) where H = A0x0 + A1x1 + ...+ Anxn.
• For each i, compute Pi := J ∩ k[xi, A0, . . . , An].
• Pi = (xli

i Fi) where Fi ∈ k[A0, . . . An]. Determine Fi.
• Let (F ) = (F0) ∩ (F1) ∩ · · · ∩ (Fn).
• F is the Chow form of Z.

Remark 7 If there exists an i such that no points of Z lie on the hyperplane
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xi = 0 then F = Fi. This simple observation can save a substantial amount of
time in the two algorithms.

Example 8 Let I = (x2 + y2 + z2, x3 + y3 + z3) ⊆ C[x, y, z]. I is a complete
intersection and defines 6 reduced points in P2

C. Form the ideal J = (x2 +y2 +
z2, x3 + y3 + z3, Ax+By+Cz) ⊆ C[x, y, z, A,B,C]. A quick check shows that
none of the six points lie on the hyperplane z = 0. If we were to use the second
algorithm, we would compute Pz = J ∩ C[z, A,B,C] (and determine that
Pz = (z4F )). Alternatively, we can compute C′ = (F ) by the first algorithm.
In either case we find

F = A6 +B6 + C6

+3
2
(A4B2 + A2C4 +B4C2 + A2B4 + A4C2 +B2C4)

+3(A4BC + AB4C + ABC4)

+3(A3B2C + AB3C2 + A2BC3 + A3BC2 + A2B3C + AB2C3)

−(A3B3 + A3C3 +B3C3).

F is the Chow Form of the zero-scheme defined by I. F factors as a product
of 6 linear forms in C[A,B,C] (corresponding to the Chow Forms of the six
individual points). The 6 linear forms determine 6 hyperplanes (lines) in P2∗.
These hyperplanes are the Chow Varieties of the six individual points.

2.3 Degree d Chow Forms and d-Uple Embeddings

The Chow form describes precisely which hyperplanes contain at least one
of the points of Z. In the sequel we will be very interested in the analogous
problem for hypersurfaces of degree d. The algorithm to achieve this is strongly
related to the one in the previous section.

Let R = k[x0, . . . , xn] and let Pn = Proj(R). For a given d > 0, let v0, . . . vNd

be a monomial basis for the vector space of forms of degree d in R (where

Nd =
(

n+d
d

)
−1). The d-Uple embedding of Pn into PNd is the image of the

map which sends a = [a0 : a1 : · · · : an] to [v0(a) : v1(a) : · · · : vNd
(a)] (i.e.

evaluate each of the monomials at a).

Let Z denote a scheme in Pn. Let IZ denote its saturated ideal. To determine
the ideal of the image of the d-Uple embedding of Z, we can use the following
well-known algorithm.
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Algorithm for computing the d-Uple embedding of a scheme:

• Start with the ideal IZ ⊆ k[x0, x1, . . . , xn].
• Let v0, v1, . . . , vNd

be a monomial basis for the forms of degree d.
• Let S = k[x0, x1, . . . , xn, X0, X1, . . . , XNd

] with the degrees of x0, x1, . . . , xn

set equal to 1 and the degrees of X0, X1, . . . , XNd
set equal to d. Let J =

(X0 − v0, X1 − v1, . . . , XNd
− vNd

) + IZ ⊆ S.
• Let L = J ∩ k[X0, X1, . . . , XNd

].
• L is the ideal of the d-Uple embedding of Z.

With this algorithm in hand, we now define:

Definition 9 The degree d Chow Form of a reduced zeroscheme, Z, is the
Chow Form of the d-Uple embedding of Z.

The d-uple embedding embeds Pn into PNd as a non-degenerate, smooth
projectively normal subvariety X of dimension n. A hyperplane section of
X corresponds to a hypersurface in Pn of degree d. Let P be a point of
Pn and let P ′ ∈ PNd be the image of the d-uple embedding of P . Then
h0(Pn, IP (d)) = h0(PNd , IP ′(1)) = Nd. Thus P corresponds to a hyperplane
in (PNd)∗. This hyperplane in (PNd)∗ parameterizes the degree d hypersurfaces
of Pn that contain P . For any reduced zeroscheme Z in Pn, then, the degree d
Chow form of Z parameterizes the degree d hypersurfaces of Pn that contain
at least one point of Z.

Thus, to compute the degree d Chow Form of a zeroscheme, we need only
compute a d-uple embedding of the zeroscheme and then apply the algorithm
for computing the Chow Form. Alternatively, we can skip the computation
of the d-Uple embedding if we modify the algorithm for computing the Chow
Form. All that has to be done is to replace H = A0x0 +A1x1 + ...+Anxn with
H = A0v0 + A1v1 + · · · + ANd

vNd
.

By computing the degree d Chow Forms of a set of points, we have transformed
questions about the set of points into questions about hyperplane arrange-
ments in PNd for various d. We now need to understand how the geometry of
these hyperplane arrangements relates to the geometry of the original set of
points and we need to understand how to extract this information from the
hyperplane arrangement.
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2.4 Geometry of the Hyperplane Arrangements

Let R = k[x0, . . . , xn]. Let Z =
⋃r

i=1 Pi ⊂ Pn be a reduced set of r points
with saturated ideal IZ . Let Gd =

∏r
i=1 Li,d be the degree d Chow form of Z.

Let Γd =
⋃r

i=1Hi,d be the union of hyperplanes in (PNd)∗ defined by Gd. Hi,d

is the projective space parameterizing the linear system of hypersurfaces of
degree d passing through Pi.

Consider two hyperplanes Hi,d and Hj,d corresponding to two points Pi and
Pj. The points in the intersection of Hi,d and Hj,d correspond to the degree
d hypersurfaces in Pn which contain both Pi and Pj. Considering all pairs
of hyperplanes in Γd, we see that the singular locus of Γd corresponds to the
collection of all degree d hypersurfaces in Pn which contain 2 or more points
of Z.

The singular locus of Γd is determined set theoretically by the ideal of all first
partial derivatives of Gd. More generally, we now show that the locus of all
degree d hypersurfaces which contain t or more points of Z is determined set
theoretically by the ideal of all t− 1 partial derivatives of Gd.

Proposition 10 Let F = L1L2 · · ·Lr be a product of linear forms over a
field of characteristic > r or characteristic zero. Let P ∈ Pn be a point. Let
Li1 , . . . , Lik be the factors of F that vanish at P . Then

(a) The ith derivatives of F vanish at P , for 1 ≤ i ≤ k − 1;
(b) There is at least one kth derivative of F that does not vanish at P .

Proof. We have F = L1L2 · · ·Lr, where each of the Li is a linear form. Note
that any second or higher derivative of an Li is 0. Hence any jth derivative

∂jF

∂x
j0
0 ···xjn

n

is a sum of terms of the form M1 · · ·Mr where each Mi is either equal

to the corresponding Li or else is a suitable first derivative of the corresponding
Li. There are exactly j such first derivatives among the Mi in each term of

∂jF

∂x
j0
0 ···xjn

n

. Then (a) follows since for j ≤ k−1 each term must have at least one

of Li1 , . . . , Lik undifferentiated. Similarly, for (b) we can choose a kth derivative
that differentiates each of Li1 , . . . , Lik yielding a non-zero constant. ✷

Corollary 11 The locus of all degree d hypersurfaces that contain t or more
points of Z is determined set-theoretically by the ideal of all (t − 1)st partial
derivatives of the degree d Chow form.

Proof. The desired locus is precisely the locus of points where t or more of
the hyperplanes Hi,d meet. By Proposition 10 this locus is determined by the
(t− 1)st derivatives of Gd. ✷
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With this preparation we now turn to the description of the geometry of Γd

and how it relates to geometric properties of Z. We will talk about (s, d)-
uniform position rather than (i, j)-uniform position simply for convenience of
exposition.

Lemma 12 a. Γd is reduced.
b. If m ≤ d+ 1 then any m components meet in a linear space of codimension
m.

Proof. The first statement is clear. The second follows from the fact that
when m ≤ d+ 1, m points impose independent conditions on forms of degree
d. ✷

Proposition 13 Let Vd =
⋂r

i=1Hi,d. Then

a. The value of the Hilbert function in degree d is hR/IZ
(d) = codimVd.

b. The points of Z impose independent conditions on forms of degree d if and
only if codimVd = r.

c. The points of Z are in (s, d)-uniform position if and only if for every choice
{Pi1 , . . . , Pis} of s points of Z, either

codim
s⋂

j=1

Hij ,d = s or codim
s⋂

j=1

Hij ,d = codimVd.

Proof. The number of independent forms of degree d vanishing on Z ⊂ Pn

is equal to the number of independent linear forms vanishing on the d-uple
embedding of Z. This number is 1+dimVd. Parts a. and b. follow immediately
from this observation (see also the following example).

For c., recall that (s, d)-uniform position means that for every subset Y of Z
of cardinality s ≤ r, we must have

hR/IY
(d) = min{|Y |, hR/IZ

(d)}.

In other words, for each Y with |Y | = s, either Y imposes independent con-
ditions on forms of degree d or else (IY )d = (IZ)d. (Note that it can’t hap-
pen that some Y impose independent conditions and others don’t but satisfy
(IY )d = (IZ)d, so there is no ambiguity in the statement of c.) This means that
every choice of s of the hyperplanes Hi,d satisfies one of the two conditions
given in c. ✷

Example 14 Let Z ⊂ P2 consist of 20 points on a conic. We consider the
2-uple embedding of Z in P6−1 = P5. This consists of 20 points lying in a
single hyperplane. Then V2 is a single point in (P5)∗ (dual to this hyperplane),
and hR/IZ

(2) = 5.
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In order to implement these ideas, we now give an interpretation in terms of
derivatives. Let Di

d be the ideal defined by the i-th partial derivatives of Gd.
Note that

Gd = D0
d ⊂ D1

d ⊂ · · · ⊂ Dr−1
d ⊂ Dr

d = (1)

(by Euler’s theorem).

Thanks to Corollary 11 and Proposition 13 we can make the following obser-
vations, which lead immediately to algorithms for (s, d)-uniform position and
its special cases (e.g. linear general position, uniform position, etc.)

a. Dr−1
d defines the linear variety Vd, so the Hilbert function hR/IZ

(d) is just
the codimension of the variety defined by Dr−1

d .
b. The points of Z impose independent conditions on forms of degree d if and

only if the linear variety defined by Dr−1
d has codimension r.

c. Z ⊆ Pn is in linearly general position if and only if one of the following is
true:

(i) r ≥ n+ 1 and the variety defined by Dn
1 has codimension n+ 1;

(ii) r < n+ 1 and the variety defined by Dr−1
1 has codimension r.

d. Z ⊆ Pn is in d-general position if and only if one of the following is true:
(i) r ≥

(
n+d

d

)
and the variety defined by DNd

d has codimension
(

n+d
d

)
;

(ii) r <
(

n+d
d

)
and the variety defined by Dr−1

d has codimension r.
e. Z is in general position if and only if Z is in d-general position for all

1 ≤ d ≤ t where t is the regularity of Z.
f. Z is in (s, d)-uniform position if and only if one of the following is true:
(i) The variety defined by Ds−1

d has codimension s;
(ii) The variety defined by Ds−1

d has the same codimension as the variety
defined by Dr−1

d .
g. Z is in uniform position if and only if for every s ≤ r and for every d with

1 ≤ d ≤ t where t is the regularity of Z, one of the following is true:
(i) The variety defined by Ds−1

d has codimension s;
(ii) The variety defined by Ds−1

d has the same codimension as the variety
defined by Dr−1

d .
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