(************** Content-type: application/mathematica ************** CreatedBy='Mathematica 5.1' Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 19651, 741]*) (*NotebookOutlinePosition[ 20613, 771]*) (* CellTagsIndexPosition[ 20569, 767]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["Answers to Exam IIa (Nov. 2005)", "Subtitle"], Cell[CellGroupData[{ Cell["Prob 1", "Subsection"], Cell[CellGroupData[{ Cell["LS coupling", "Subsubsection"], Cell[TextData[{ "For LS coupling of identical particles, we have the restriction L+S is \ even. As a first step, couple two particles\n(2s2s) \[RightArrow] ", Cell[BoxData[ \(TraditionalForm\`\^1\)]], "S (even parity)\n(2s2p) \[RightArrow] ", Cell[BoxData[ \(TraditionalForm\`\^1\)]], "P, ", Cell[BoxData[ \(TraditionalForm\`\^3\)]], "P (odd-parity) \n", Cell[BoxData[ \(TraditionalForm\`\(\((2 p2p)\)\( \[RightArrow] \^1\)\)\)]], "S, ", Cell[BoxData[ \(TraditionalForm\`\^3\)]], "P, ", Cell[BoxData[ \(TraditionalForm\`\^1\)]], "D (even-parity) \n \nFor an even parity 3-particle \ state couple two 2p states (2p2p)\nthen couple the resulting state with the \ 2s (2p2p)[LS]2s \nThe possible combinations are\n(2p2p) [ ", Cell[BoxData[ \(TraditionalForm\`\^1\)]], "S]2s ", Cell[BoxData[ \(TraditionalForm\`\^2\)]], "S 2\[Times]1 substates\n(2p2p) [ ", Cell[BoxData[ \(TraditionalForm\`\^3\)]], "P]2s ", Cell[BoxData[ \(TraditionalForm\`\^2\)]], "P 2\[Times]3 substates\n(2p2p) [ ", Cell[BoxData[ \(TraditionalForm\`\^3\)]], "P]2s ", Cell[BoxData[ \(TraditionalForm\`\^4\)]], "P 4\[Times]3 substates\n(2p2p) [ ", Cell[BoxData[ \(TraditionalForm\`\^1\)]], "D]2s ", Cell[BoxData[ \(TraditionalForm\`\^2\)]], "D 2\[Times]5 substates\nTotal number of substates = 2+6+12+10=30" }], "Text"] }, Open ]], Cell[CellGroupData[{ Cell["jj coupling", "Subsubsection"], Cell[TextData[{ "For jj coupling of identical particles J is even. The (2p2p) states are\n\ ", Cell[BoxData[ \(TraditionalForm\`\((3 p\_\(1/2\)\)\)]], " ", Cell[BoxData[ \(TraditionalForm\`3 p\_\(1/2\)\)]], ") \[RightArrow] [0] \n", Cell[BoxData[ \(TraditionalForm\`\((3 p\_\(1/2\)\)\)]], " ", Cell[BoxData[ \(TraditionalForm\`3 p\_\(3/2\)\)]], ") \[RightArrow] [1], [2] \n", Cell[BoxData[ \(TraditionalForm\`\((3 p\_\(3/2\)\)\)]], " ", Cell[BoxData[ \(TraditionalForm\`3 p\_\(3/2\)\)]], ") \[RightArrow] [0], [2]\n \nCombining these with a 2s state leads \ to\n\n [(", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(3 p\_\(1/2\)\)\)\)]], " ", Cell[BoxData[ \(TraditionalForm\`3 p\_\(1/2\)\)]], ") ", Cell[BoxData[ \(TraditionalForm\`\([0]\) 2 s\_\(1/2\)\)]], "] [1/2] 2 substates\n [(", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(3 p\_\(1/2\)\)\)\)]], " ", Cell[BoxData[ \(TraditionalForm\`3 p\_\(3/2\)\)]], ") ", Cell[BoxData[ \(TraditionalForm\`\([1]\) 2 s\_\(1/2\)\)]], "] [1/2] & [3/2] 2 + 4 = 6 substates\n [(", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(3 p\_\(1/2\)\)\)\)]], " ", Cell[BoxData[ \(TraditionalForm\`3 p\_\(3/2\)\)]], ") ", Cell[BoxData[ \(TraditionalForm\`\([2]\) 2 s\_\(1/2\)\)]], "] [3/2] & [5/2] 4 + 6 = 10 substates \n [(", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(3 p\_\(1/2\)\)\)\)]], " ", Cell[BoxData[ \(TraditionalForm\`3 p\_\(3/2\)\)]], ") ", Cell[BoxData[ \(TraditionalForm\`\([0]\) 2 s\_\(1/2\)\)]], "] [1/2] 2 substates\n [(", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(3 p\_\(1/2\)\)\)\)]], " ", Cell[BoxData[ \(TraditionalForm\`3 p\_\(3/2\)\)]], ") ", Cell[BoxData[ \(TraditionalForm\`\([2]\) 2 s\_\(1/2\)\)]], "] [3/2] & [5/2] 4 + 6 = 10 substates \n Total number of \ substates = 2+6+10+2+10=30" }], "Text"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Prob 2", "Subsection"], Cell[TextData[{ "The energy of the (1s3p) state is \nE[ (1s3p) ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[\(\^3\), "TraditionalForm"], "P"}], TraditionalForm]]], "] = ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[\(\[Epsilon]\_\(1 s\)\), "TraditionalForm"], "+", \(\[Epsilon]\_\(3 p\)\)}], TraditionalForm]]], " ", Cell[BoxData[ \(TraditionalForm\`\(+\ R\_0\)\)]], "(1s3p1s3p) - ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[\(1\/3\), "TraditionalForm"], \(R\_1\)}], TraditionalForm]]], "(1s3p3p1s) - ", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(U\_\(3 p3p\)\)\)\)]], " \nwhere U = ", Cell[BoxData[ \(TraditionalForm\`1\/r\)]], " accounts for the screening of the 3p (or 2s) electron. \nThe energy of \ the (1s2s) state is\n E[ (1s2s) ", Cell[BoxData[ \(TraditionalForm\`\(\(\^3\)\(S\)\)\)]], "] = ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[\(\[Epsilon]\_\(1 s\)\), "TraditionalForm"], "+", \(\[Epsilon]\_\(2 s\)\)}], TraditionalForm]]], " ", Cell[BoxData[ \(TraditionalForm\`\(+\ R\_0\)\)]], "(1s2s1s2s) - ", Cell[BoxData[ \(TraditionalForm\`R\_0\)]], "(1s2s2s1s) - ", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(U\_\(2 s2s\)\)\)\)]], ".\nAs a first step we need lowest order energies and Coulomb wave \ functions:" }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(\[Epsilon]1s\ = \ \(-Z^2\)/2\)], "Input", CellLabel->"In[1]:="], Cell[BoxData[ \(\(-\(Z\^2\/2\)\)\)], "Output", CellLabel->"Out[1]="] }, Open ]], Cell["Let Zs = Z-1 be the screened charge.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(\[Epsilon]2s\ = \ \(-Zs^2\)/\((2\ 2^2)\)\)], "Input", CellLabel->"In[3]:="], Cell[BoxData[ \(\(-\(Zs\^2\/8\)\)\)], "Output", CellLabel->"Out[3]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\[Epsilon]3p\ = \ \(-Zs^2\)/\((2\ 3^2)\)\)], "Input", CellLabel->"In[40]:="], Cell[BoxData[ \(\(-\(Zs\^2\/18\)\)\)], "Output", CellLabel->"Out[40]="] }, Open ]], Cell[BoxData[ \(P1s[r_]\ := \ 2\ Z^\((3/2)\)\ r\ Exp[\(-Z\)\ r]\)], "Input", CellLabel->"In[6]:="], Cell[BoxData[ \(P2s[ r_]\ := \ \((Zs^\((3/2)\)/Sqrt[2])\)\ r\ \((1 - Zs\ r/2)\)\ Exp[\(-Zs\)\ r/2]\)], "Input", CellLabel->"In[5]:="], Cell[BoxData[ \(P3p[r_]\ := \ 8 Zs^\((5/2)\)/\((27\ Sqrt[6])\)\ r^2\ \((1 - Zs\ r/6)\)\ Exp[\(-Zs\)\ r/3]\)], "Input", CellLabel->"In[11]:="], Cell["Now evaluate the screening potentials and Slater Integrals", "Text"], Cell[BoxData[ \(v01s[ r_]\ := \ \ Integrate[P1s[x]^2, {x, 0, r}, Assumptions \[Rule] \ Z > 0]/r\ + Integrate[P1s[x]^2/x, {x, r, Infinity}, Assumptions \[Rule] \ Z > 0]\)], "Input", CellLabel->"In[23]:="], Cell[BoxData[ \(v01s2s[r_]\ := \ Integrate[P1s[x]\ P2s[x], {x, 0, r}, Assumptions \[Rule] \ {Z > 0, Zs > 0}]/r\ + Integrate[P1s[x] P2s[x]/x, {x, r, Infinity}, Assumptions \[Rule] \ {Z > 0, Zs > 0}]\)], "Input", CellLabel->"In[24]:="], Cell[BoxData[ \(v11s3p[r_] := Integrate[P1s[x]\ P3p[x]\ x, {x, 0, r}, Assumptions \[Rule] \ {Z > 0, Zs > 0}]/ r^2\ + \(\(r\)\(\ \)\(Integrate[ P1s[x] P3p[x]/x^2, {x, r, Infinity}, Assumptions \[Rule] \ {Z > 0, Zs > 0}]\)\(\ \)\)\)], "Input", CellLabel->"In[25]:="], Cell[BoxData[ \(G01s2s\ := \ Integrate[P2s[r]^2\ v01s[r], {r, 0, Infinity}, Assumptions \[Rule] \ {Z > 0, Zs > 0}]\)], "Input", CellLabel->"In[49]:="], Cell[BoxData[ \(G01s3p\ := \ Integrate[P3p[r]^2\ v01s[r], {r, 0, Infinity}, Assumptions \[Rule] \ {Z > 0, Zs > 0}]\)], "Input", CellLabel->"In[50]:="], Cell[BoxData[ \(F01s2s\ := \ Integrate[P2s[r]\ P1s[r]\ v01s2s[r], {r, 0, Infinity}, Assumptions \[Rule] \ {Z > 0, Zs > 0}]\)], "Input", CellLabel->"In[51]:="], Cell[BoxData[ \(F11s3p\ := \ Integrate[P3p[r]\ P1s[r]\ v11s3p[r], {r, 0, Infinity}, Assumptions \[Rule] \ {Z > 0, Zs > 0}]\)], "Input", CellLabel->"In[52]:="], Cell["Now evaluate the background potentials", "Text"], Cell[BoxData[ \(\(\(U2s\)\(\ \)\(:=\)\(\ \)\(Integrate[ P2s[r]^2\ /r\ , {r, 0, Infinity}, Assumptions \[Rule] \ Zs > 0]\)\(\ \)\)\)], "Input", CellLabel->"In[53]:="], Cell[BoxData[ \(\(\(U3p\)\(\ \)\(:=\)\(\ \)\(Integrate[ P3p[r]^2\ /r\ , {r, 0, Infinity}, Assumptions \[Rule] \ Zs > 0]\)\(\ \)\)\)], "Input", CellLabel->"In[54]:="], Cell[TextData[{ "Put things together: ", "E[ (1s3p) ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[\(\^3\), "TraditionalForm"], "P"}], TraditionalForm]]], "] = ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[\(\[Epsilon]\_\(1 s\)\), "TraditionalForm"], "+", \(\[Epsilon]\_\(3 p\)\)}], TraditionalForm]]], " ", Cell[BoxData[ \(TraditionalForm\`\(+\ R\_0\)\)]], "(1s3p1s3p) - ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[\(1\/3\), "TraditionalForm"], \(R\_1\)}], TraditionalForm]]], "(1s3p3p1s) - ", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(U\_\(3 p3p\)\)\)\)]], " " }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(e1s3p\ = \ \[Epsilon]1s + \ \[Epsilon]3p\ + \ G01s3p\ - \ F11s3p/3\ - U3p\)], "Input", CellLabel->"In[55]:="], Cell[BoxData[ \(\(-\(Z\^2\/2\)\) - Zs\/9 - Zs\^2\/18 - \(36\ Z\^3\ Zs\^5\ \((56\ Z\^2 - 28\ Z\ Zs + 5\ \ Zs\^2)\)\)\/\((3\ Z + Zs)\)\^9 + \(Z\ Zs\ \((243\ Z\^6 + 567\ Z\^5\ Zs + 567\ \ Z\^4\ Zs\^2 + 315\ Z\^3\ Zs\^3 + 69\ Z\^2\ Zs\^4 + 21\ Z\ Zs\^5 + \ Zs\^6)\)\)\/\((3\ Z + Zs)\)\^7\)], "Output", CellLabel->"Out[55]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(e1s3p\ = \ e1s3p /. \ {Z \[Rule] \ 5, \ Zs \[Rule] \ 4} // N\)], "Input", CellLabel->"In[56]:="], Cell[BoxData[ \(\(-13.407311988341895`\)\)], "Output", CellLabel->"Out[56]="] }, Open ]], Cell[TextData[{ "E[ (1s2s) ", Cell[BoxData[ \(TraditionalForm\`\(\(\^3\)\(S\)\)\)]], "] = ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[\(\[Epsilon]\_\(1 s\)\), "TraditionalForm"], "+", \(\[Epsilon]\_\(2 s\)\)}], TraditionalForm]]], " ", Cell[BoxData[ \(TraditionalForm\`\(+\ R\_0\)\)]], "(1s2s1s2s) - ", Cell[BoxData[ \(TraditionalForm\`R\_0\)]], "(1s2s2s1s) - ", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(U\_\(2 s2s\)\)\)\)]], "." }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(e1s2s\ = \ \[Epsilon]1s + \ \[Epsilon]2s\ + \ G01s2s\ - \ F01s2s\ - U2s\)], "Input", CellLabel->"In[57]:="], Cell[BoxData[ \(\(-\(Z\^2\/2\)\) - Zs\/4 - Zs\^2\/8 - \(16\ Z\^3\ Zs\^3\ \((20\ Z\^2 - 30\ Z\ Zs + 13\ \ Zs\^2)\)\)\/\((2\ Z + Zs)\)\^7 + \(Z\ Zs\ \((8\ Z\^4 + 20\ Z\^3\ Zs + 12\ \ Z\^2\ Zs\^2 + 10\ Z\ Zs\^3 + Zs\^4)\)\)\/\((2\ Z + Zs)\)\^5\)], "Output", CellLabel->"Out[57]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(e1s2s\ = \ e1s2s\ /. \ {Z \[Rule] \ 5, \ Zs \[Rule] \ 4} // N\)], "Input", CellLabel->"In[58]:="], Cell[BoxData[ \(\(-14.76632246282222`\)\)], "Output", CellLabel->"Out[58]="] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\[CapitalDelta]E\ = \ \(\(e1s3p\)\(-\)\(e1s2s\)\(\ \)\)\)], "Input", CellLabel->"In[59]:="], Cell[BoxData[ \(1.3590104744803249`\)], "Output", CellLabel->"Out[59]="] }, Open ]], Cell[TextData[{ "Energy in ", Cell[BoxData[ \(TraditionalForm\`cm\^\(-1\)\)]] }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(decm\ = \ 219474.62\ \[CapitalDelta]E\)], "Input", CellLabel->"In[60]:="], Cell[BoxData[ \(298268.307462589`\)], "Output", CellLabel->"Out[60]="] }, Open ]], Cell["Wavelength in Angstrom", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(\[Lambda]\ = \ 10\^8/decm\)], "Input", CellLabel->"In[61]:="], Cell[BoxData[ \(335.2686071501`\)], "Output", CellLabel->"Out[61]="] }, Open ]], Cell["\<\ The NIST table gives 337.07 Angstrom so the difference with NIST \ is only 0.5 %\ \>", "Text"] }, Open ]], Cell[CellGroupData[{ Cell["Prob 3", "Subsection"], Cell[TextData[{ "The reduced matrix element ", Cell[BoxData[ \(TraditionalForm\`R\_E1\)]], " =", Cell[BoxData[ \(TraditionalForm\`\(\(<\)\((1 s2s)\)\)\)]], Cell[BoxData[ \(TraditionalForm\`\(\ \^2\)\)]], "S || r || (1s3p) ", Cell[BoxData[ \(TraditionalForm\`\(\(\ \^3\)\(\(P\)\(>\)\)\)\)]], " =", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(\@3\)\)\)]], " <0 ||C1||1> ", Cell[BoxData[ \(TraditionalForm\`R\_\(1 s\ 3 p\)\)]], " , where \n ", Cell[BoxData[ \(TraditionalForm\`R\_\(1 s\ 2 p\)\)]], " = \[Integral] ", Cell[BoxData[ \(TraditionalForm\`P\_\(2 p\)\)]], "(r) r ", Cell[BoxData[ \(TraditionalForm\`P\_\(1 s\)\)]], "(r) dr is the radial dipole integral." }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(Rsp\ = \ Integrate[P3p[r] r\ P2s[r], {r, 0, Infinity}, Assumptions \[Rule] \ Zs > 0]\)], "Input", CellLabel->"In[62]:="], Cell[BoxData[ \(\(27648\ \@3\)\/\(15625\ Zs\)\)], "Output", CellLabel->"Out[62]="] }, Open ]], Cell["Let cps = <0 ||C1||1>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(cps\ = \ Sqrt[3]\ ThreeJSymbol[{0, 0}, {1, 0}, {1, 0}]\)], "Input", CellLabel->"In[63]:="], Cell[BoxData[ \(\(-1\)\)], "Output", CellLabel->"Out[63]="] }, Open ]], Cell["Then, we find that the reduced matrix element is:", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(RE1\ = \ Sqrt[3]\ cps\ Rsp\)], "Input", CellLabel->"In[65]:="], Cell[BoxData[ \(\(-\(82944\/\(15625\ Zs\)\)\)\)], "Output", CellLabel->"Out[65]="] }, Open ]], Cell["The associated line strength is", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(SE1\ = \ RE1^2\)], "Input", CellLabel->"In[66]:="], Cell[BoxData[ \(6879707136\/\(244140625\ Zs\^2\)\)], "Output", CellLabel->"Out[66]="] }, Open ]], Cell[TextData[{ "The transition rate is A = ", Cell[BoxData[ \(TraditionalForm\`\(2.02613\ 10\^18\)\/\[Lambda]\^3\)]], " ", Cell[BoxData[ \(TraditionalForm\`SE1\/g\_a\)]], " in 1/s, where ", Cell[BoxData[ \(TraditionalForm\`g\_a\)]], " is the initial state degeneracy (9 for a triplet P state) and \[Lambda]= \ 335.269 from previous problem" }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"A", " ", "=", " ", RowBox[{ RowBox[{ FormBox[\(\(2.02613\ 10\^18\)\/\[Lambda]\^3\), "TraditionalForm"], " ", FormBox[\(SE1\/g\_a\), "TraditionalForm"]}], " ", "/.", " ", \({Zs \[Rule] 2, \ g\_a \[Rule] \ 9}\)}]}]], "Input", CellLabel->"In[67]:="], Cell[BoxData[ \(4.208390529806159`*^10\)], "Output", CellLabel->"Out[67]="] }, Open ]], Cell["", "Text"] }, Open ]], Cell[CellGroupData[{ Cell["Prob 4", "Subsection"], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ \(TraditionalForm\`5 d\_\(5/2\)\)]]], "Subsubsection"], Cell["\<\ This state decays to the ground state by M1 emission \[Lambda] = 62374 Angstrom\ \>", "Text"] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ Cell[BoxData[ \(TraditionalForm\`4 f\_\(5/2\)\)]], " & ", Cell[BoxData[ \(TraditionalForm\`4 f\_\(7/2\)\)]] }], "Subsubsection"], Cell[TextData[{ "These states decay by E1 emission to the 5d levels\n", Cell[BoxData[ \(TraditionalForm\`4 f\_\(5/2\)\)]], " \[RightArrow] ", Cell[BoxData[ \(TraditionalForm\`5 d\_\(3/2\)\)]], " \[Lambda] = 13898 Angstrom\n", Cell[BoxData[ \(TraditionalForm\`4 f\_\(5/2\)\)]], " \[RightArrow] ", Cell[BoxData[ \(TraditionalForm\`5 d\_\(5/2\)\)]], " \[Lambda] = 17883 Angstrom\n", Cell[BoxData[ \(TraditionalForm\`4 f\_\(7/2\)\)]], " \[RightArrow] ", Cell[BoxData[ \(TraditionalForm\`5 d\_\(5/2\)\)]], " \[Lambda] = 14100 Angstrom" }], "Text"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ \(TraditionalForm\`6 s\_\(1/2\)\)]]], "Subsection"], Cell[TextData[{ "The 6s decays to the lower 5d levels b E2 emission\n", Cell[BoxData[ \(TraditionalForm\`6 s\_\(1/2\)\)]], " \[RightArrow] ", Cell[BoxData[ \(TraditionalForm\`5 d\_\(3/2\)\)]], " \[Lambda] = 7358 Angstrom\n", Cell[BoxData[ \(TraditionalForm\`6 s\_\(1/2\)\)]], " \[RightArrow] ", Cell[BoxData[ \(TraditionalForm\`5 d\_\(5/2\)\)]], " \[Lambda] = 8342 Angstrom" }], "Text"] }, Open ]], Cell[CellGroupData[{ Cell["Prob 5", "Subsection"], Cell[TextData[{ "The only lower state in Be is the ", Cell[BoxData[ \(TraditionalForm\`\(\(\^1\)\(S\_0\)\)\)]], " ground state. \n\nThe J=0 sublevel cannot decay by single-photon \ emission since the angular momentum triangle relations require |0-0| \ \[LessEqual] J \[LessEqual] 0+0 and there is no multipole with J=0!. \n\nThe \ J=1 sublevel could decay to the ground state by E1 emission; however, for \ this transition ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[\(S\_F\), "TraditionalForm"], "\[NotEqual]", \(S\_I\)}], TraditionalForm]]], " so the transition is forbidden nonrelativistically.\n\nThe J=2 sublevel \ could decay by M2 emission. As above, ", Cell[BoxData[ FormBox[ RowBox[{ FormBox[\(S\_F\), "TraditionalForm"], "\[NotEqual]", \(S\_I\)}], TraditionalForm]]], ", so the transition is forbidden nonrelativistically." }], "Text"] }, Open ]] }, Open ]] }, FrontEndVersion->"5.1 for X", ScreenRectangle->{{0, 1280}, {0, 1024}}, WindowSize->{955, 651}, WindowMargins->{{79, Automatic}, {Automatic, 66}}, PrintingPageRange->{Automatic, Automatic}, PrintingOptions->{"PaperSize"->{612, 792}, "PaperOrientation"->"Portrait", "PostScriptOutputFile":>FrontEnd`FileName[{"afs", "nd.edu", "users", \ "johnson"}, "anex3.nb.ps", CharacterEncoding -> "iso8859-1"], "Magnification"->1}, Magnification->1.5, StyleDefinitions -> "ArticleModern.nb" ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1776, 53, 52, 0, 59, "Subtitle"], Cell[CellGroupData[{ Cell[1853, 57, 28, 0, 82, "Subsection"], Cell[CellGroupData[{ Cell[1906, 61, 36, 0, 62, "Subsubsection"], Cell[1945, 63, 1497, 47, 337, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[3479, 115, 36, 0, 62, "Subsubsection"], Cell[3518, 117, 2171, 68, 337, "Text"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[5738, 191, 28, 0, 82, "Subsection"], Cell[5769, 193, 1482, 51, 172, "Text"], Cell[CellGroupData[{ Cell[7276, 248, 86, 2, 61, "Input"], Cell[7365, 252, 74, 2, 87, "Output"] }, Open ]], Cell[7454, 257, 52, 0, 37, "Text"], Cell[CellGroupData[{ Cell[7531, 261, 98, 2, 61, "Input"], Cell[7632, 265, 75, 2, 87, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7744, 272, 99, 2, 61, "Input"], Cell[7846, 276, 77, 2, 87, "Output"] }, Open ]], Cell[7938, 281, 105, 2, 61, "Input"], Cell[8046, 285, 161, 4, 61, "Input"], Cell[8210, 291, 169, 4, 61, "Input"], Cell[8382, 297, 74, 0, 37, "Text"], Cell[8459, 299, 252, 6, 84, "Input"], Cell[8714, 307, 281, 6, 130, "Input"], Cell[8998, 315, 326, 7, 130, "Input"], Cell[9327, 324, 173, 4, 84, "Input"], Cell[9503, 330, 173, 4, 84, "Input"], Cell[9679, 336, 181, 4, 84, "Input"], Cell[9863, 342, 181, 4, 84, "Input"], Cell[10047, 348, 54, 0, 37, "Text"], Cell[10104, 350, 188, 4, 61, "Input"], Cell[10295, 356, 188, 4, 61, "Input"], Cell[10486, 362, 724, 28, 42, "Text"], Cell[CellGroupData[{ Cell[11235, 394, 144, 3, 61, "Input"], Cell[11382, 399, 333, 6, 152, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11752, 410, 126, 3, 61, "Input"], Cell[11881, 415, 83, 2, 60, "Output"] }, Open ]], Cell[11979, 420, 537, 21, 37, "Text"], Cell[CellGroupData[{ Cell[12541, 445, 142, 3, 61, "Input"], Cell[12686, 450, 290, 5, 152, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13013, 460, 128, 3, 61, "Input"], Cell[13144, 465, 82, 2, 60, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13263, 472, 114, 2, 61, "Input"], Cell[13380, 476, 78, 2, 60, "Output"] }, Open ]], Cell[13473, 481, 99, 4, 37, "Text"], Cell[CellGroupData[{ Cell[13597, 489, 96, 2, 61, "Input"], Cell[13696, 493, 76, 2, 60, "Output"] }, Open ]], Cell[13787, 498, 38, 0, 37, "Text"], Cell[CellGroupData[{ Cell[13850, 502, 84, 2, 69, "Input"], Cell[13937, 506, 74, 2, 60, "Output"] }, Open ]], Cell[14026, 511, 106, 3, 37, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[14169, 519, 28, 0, 82, "Subsection"], Cell[14200, 521, 770, 28, 62, "Text"], Cell[CellGroupData[{ Cell[14995, 553, 159, 4, 61, "Input"], Cell[15157, 559, 88, 2, 88, "Output"] }, Open ]], Cell[15260, 564, 38, 0, 37, "Text"], Cell[CellGroupData[{ Cell[15323, 568, 113, 2, 61, "Input"], Cell[15439, 572, 65, 2, 60, "Output"] }, Open ]], Cell[15519, 577, 65, 0, 37, "Text"], Cell[CellGroupData[{ Cell[15609, 581, 85, 2, 61, "Input"], Cell[15697, 585, 88, 2, 82, "Output"] }, Open ]], Cell[15800, 590, 47, 0, 37, "Text"], Cell[CellGroupData[{ Cell[15872, 594, 73, 2, 61, "Input"], Cell[15948, 598, 91, 2, 82, "Output"] }, Open ]], Cell[16054, 603, 385, 12, 76, "Text"], Cell[CellGroupData[{ Cell[16464, 619, 344, 9, 100, "Input"], Cell[16811, 630, 81, 2, 65, "Output"] }, Open ]], Cell[16907, 635, 16, 0, 37, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[16960, 640, 28, 0, 82, "Subsection"], Cell[CellGroupData[{ Cell[17013, 644, 87, 1, 61, "Subsubsection"], Cell[17103, 647, 104, 3, 62, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[17244, 655, 165, 6, 62, "Subsubsection"], Cell[17412, 663, 613, 20, 112, "Text"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[18074, 689, 84, 1, 83, "Subsection"], Cell[18161, 692, 436, 14, 87, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[18634, 711, 28, 0, 82, "Subsection"], Cell[18665, 713, 958, 24, 237, "Text"] }, Open ]] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)