
 

Taking Advantage of PostScript

 

John F. Sherman





   
Taking Advantage of PostScript

John F. Sherman

University of Notre Dame

Art, Art History & Design

University of Notre Dame

Notre Dame, IN 46556 5639

FRPEXX@IRISHMVS.cc.nd.edu





 

Chapter 1

     

1.1
intro
Designers face a new requirement: to acquire and master a digital craft. The 
traditional crafts of color theory, design, typography and drawing have always 
been required for the designer. All of these are important and I do not advocate 
their dismissal. But the need for a digital craft is becoming more apparent as the 
innovations of technology arrive faster and faster.

Designers, however, cannot focus on simply being well-trained users of expensive 
pieces of hardware and software. By mastering the technology, they can reach a 
point where innovative new solutions to visual communication problems can be 
discovered.

The process by which an image can be made has changed dramatically. An image 
can be constructed by a combination of hand drawings, video capture, and 
computer programming. The finished image provides a solution by means of 
faster investigation, greater choices, and new creative possibilities.

Digital craft entails learning a new language — a visual language. The greater the 
depth of understanding and experience in a language, the greater the vision of 
what can exist in the mind of the creator. Different languages allow different 
realities to exist. Many of the images created for this book are visual ideas that have 
been made into images by writing them down. They can only be achieved by an 
intimate knowledge of the PostScript language. I find it exciting that there are 
images that can only be created by writing a PostScript program. Understanding 
PostScript is one major avenue to mastering the technology of producing graphics. 

why learn PostScript ?

Why learn PostScript when there are so many good graphics programs available 
that are much easier to use than programming? There are two answers.

First, knowing the PostScript Page Description Language (PDL) gives the designer 
an insight into graphics software based on the PostScript image mode. The 
PostScript PDL has strengths and weaknesses. Having this knowledge base builds 
confidence because it permits you to work with the strengths of software and not 
with false expectations. When something does not work as expected, you may be 
able to devise a way to work around or attack the problem from another direction.

Second, the PostScript language is a richer graphics language than what is made 
available by menu selections and dialog boxes in all the graphics software 
packages available. There are visual opportunities available to you that are only 
available by programming. A design you write in PostScript might supplement a 
packaged technique in a software program or be written totally in PostScript code. 

1chapterchapter
intro 1



 

Taking Advantage of PostScript

 

2

    

1.2

figure 1–1

figure 1–2
Either way, you are in control of the design process.

PostScript’s background

PostScript is a page description language developed by Adobe Systems 
Incorporated. PostScript resides within a printer and acts as an interpreter for the 
data sent to it by either a software program or an original program written by a 
programmer. A page description language is the means through which a printer 
prepares a page containing text, line art, and digitized images. The page is 
constructed pixel by pixel (dot by dot). The size of dot will depend on the printer, 
and ranges from 300 to 2540 dots per inch (dpi). A 300 dpi printer will draw a 1 
inch square 300 dots to a side, while a 2540 dpi printer will draw the square 2540 
dots per side. Figures 1–1 and 1–2 are the same shape; they have the same 
description. The dotted line is the true shape. What will be different is the quality 
of its presentation through either printing or a monitor’s display. The greater the 
resolution provided, the closer to the true description the shape will appear.

Figure 1–2 is the same shape with double the resolution.

The most widely known example of a 300 dpi printer is the Apple LaserWriter. The 
Linotron L100 has a maximum resolution of 1270 dpi and can be set to print at 600 
and 300 dpi. The Linotron L300 is also available with a maximum printing 
resolution of 2540 dpi. The advantage of using the increased resolutions of these 
printers is that a greater number of visually distinct grays can be produced. The 
Linotron L100 can produce about one hundred visually separate gray levels 
because of its fine dot pattern. 
intro



 

Chapter 1

     

1.3
The PostScript language is printer independent, enabling you to alternate from one 
brand of printer to another without making any changes to the original document. 
All the major original equipment manufacturers of high resolution printers have 
licensed PostScript for their printers making it the de facto industry standard. The 
designer can use a low cost laser printer for sketching and then later use the more 
costly high resolution imagesetters when the design is completed. The difference 
in the resolution changes the rendering quality and the number of distinct grays 
that can be depicted.

Until recently, a laser printer equipped with a PostScript interpreter was the only 
means to see the designs created by writing PostScript programs. Display 
PostScript is an adaptation of the PostScript PDL from Adobe Systems Inc. for use 
on computer monitors, and the NeXT computer is the only computer that uses it. 
Display PostScript is to the graphic display of computer monitors as the PostScript 
PDL is to different laser printers. It provides a common imaging model for the 
graphic display (screen description language) and the laser printer. The Macintosh 
uses the QuickDraw language for its screen display and a file’s data is converted 
from QuickDraw to PostScript for printing. Because of this, the full richness of the 
PostScript language cannot be used and then viewed on the Macintosh screen.

Display PostScript is monitor independent and automatically takes advantage of 
the full capabilities (gray levels or color) of the computer’s monitor without having 
to rewrite the part of the software responsible for the graphic display. Display 
PostScript has several advantages. Most importantly, what is seen on the screen 
very closely matches what is printed. The only difference is the resolution of the 
image on the monitor compared to the resolution of the image ultimately printed 
on the laser printer. For example, in drawing a 1 inch square, the square would be 
drawn with ninety-two pixels per side (resolution of the NeXT monitor) and the 
same information would be used again and sent to the laser printer to create the 
square at 300 dpi or more.

organization of this book

Taking Advantage of PostScript is divided into four major parts.

Chapters 2–7 of this book will introduce some basic PostScript concepts and 
drawing techniques. Chapter 4 will show how these simple programs can be saved 
as EPS files to be used within other programs. Most of the simple beginning 
programs are more easily drawn in a variety of graphics software programs, but 
they are the building blocks to the more complicated programming techniques that 
come in later chapters. 

Chapters 8–17 will cover advanced PostScript techniques that unleash the power 
of the PostScript Page Description Language. Much of what is covered here cannot 
be accomplished in available graphics software. Chapter 17 covers some advanced 
programming techniques and takes several designs step by step and explains how 
and why they were written as they are. Chapter 18 will touch on some of the new 
features of PostScript Level 2.

Chapters 19 and 20 of this book are libraries of numerous examples of PostScript 
programs that can be the starting point for new designs. They generally 
concentrate on one visual idea or programming technique. Chapter 21 is a gallery 
of images.

The final section of the book contains several reference appendixes.
intro 3



 

Taking Advantage of PostScript

 

4

                      

1.4

PSlearn
1–1

animation

1.5
formats used in this book

The main narrative of this book is in the font you are now reading.

All PostScript program listings or the mention of a PostScript operator will be set 
in Courier Bold and look like this:

PostScript code % comment

Notes or comments (explained in more detail in section 2.5) will be set in regular 
Courier to help set them off from the program. At times, when more lengthy 
annotation is required, I’ll bracket the explanation like this for better legibility and 
to save space:

% --------------------------------------------------------
Extended comments; not part of the program.
% --------------------------------------------------------  

When you see this symbol in the margin, it means that the PostScript program is 
available on disk for experimentation within the companion LearnPS tutorial. 
There will be a version for both Macintosh and NeXT computers. The LearnPS 
symbol may also indicate that the PostScript program for an illustration is 
available or that an animation demonstrating a particular point is available. Use 
the number or title below the symbol to help you locate the file in LearnPS. Most of 
the PostScript examples in this book are written to appear on a grid representing 
the bottom left corner of a page.

A PostScript program will be listed below the graphic it produces. In this way, it 
will serve as a title for the graphic. Otherwise, a graphic title will be found in the 
left margin. 

Each chapter is divided into sections. We are now in section 1.4, meaning chapter 
1 section 4. Often in this book I’ll refer to other sections using this system. 

getting started

Writing a simple original PostScript program is a fairly easy task to accomplish. 
You most likely already have the tools needed if you have a Macintosh computer 
and PostScript equipped printer. The program file can be written with any word 
processing program that can save standard ASCII text files. An ASCII text file is a 
standard form of saving text that all computers understand. It cannot, however, 
contain specialized formatting that most applications provide, such as variable 
point sizes, font styles, or graphics.

On the Macintosh you will need:

Software to write the program. Microsoft Word, MacWrite, WriteNow and 
others will work fine. You may find it convenient to use a text editor designed 
for working only with text files.

A utility to send the file to the PostScript printer. The most common is SendPS 
from Adobe. 

A PostScript equipped printer, to interpret your files. 

On the NeXT:

The NeXT computer comes with all the software you’ll need to send the file to 
intro



 

Chapter 1

                              

1.6
the printer or monitor.

Chapter 2 covers getting started in more detail.

options for downloading files

There are quite a few utilities to send or download a PostScript file to a printer. On 
the Macintosh I have used these, but there are many others:

LaserStatus DA from CE Software

SendPS from Adobe Systems

Downloader from Adobe Systems

I have two favorite ways of working on the Macintosh. One option is to write the 
file using QUED (QUality EDitor) from Paracomp. QUED is a text editor; it only 
opens and saves files as text. I then send the PostScript file to the printer with 
LaserStatus. Since LaserStatus is a Desk Accessory, I can easily switch back and forth 
between editor and downloader while developing a design. It looks like this 
below: 

The second method is again to use QUED to write the program, but send the file to 
the printer using either Adobe’s SendPS or Downloader. The primary difference 
between the two utilities is where the standard output file is directed. This file may 
be an error message or feedback from the printer. With SendPS, the error messages 
and feedback are sent to a file on your computer’s disk. This is handy since at times 
the message can flash by quickly or you may need the information that is sent back. 
The advantage of Downloader is that those messages are sent to a window on the 
Macintosh screen. The standard output file will come up a number times later in 
section 16.1 and the utilities appendix.

You will be able to send PostScript files to your printer from within LearnPS.
intro 5



 

Taking Advantage of PostScript

 

6

 

overview of the basics



 

Chapter 2

     

2.1

figure 2–1
overview of the basics
This section is designed to cover the key points and terms used in PostScript 
programming. Even if PostScript is your first attempt at writing a computer 
program, you should find PostScript is not nearly as intimidating to learn as other 
programming languages. I believe the reason for this is that the goal is to get an 
image on paper, which is much more interesting than calculating some interest rate 
or personnel data base. Plus, the “Hello World” output, the classic first goal in 
other programming tutorials, can now be in a variety of fonts and placed anywhere 
on the page.

coordinate system

The page is a coordinate system based on an x and y axis. The origin, the 0 0, is 
usually the bottom left corner of the page. We’ll see later that this can be changed 
at any time.

Distance is measured in points with 72 points equaling an inch. Each square above 
in figure 2–1 represents 36 points. This is basically the same unit of measurement 
used by typesetters and printers in the graphic arts industry. Traditionally 72 
points equals 0.918 of an inch. In PostScript, however, 72 points equals 1 inch 
exactly. In some situations this difference can cause a great deal of trouble. If it is 
important that you match the traditional measurement scale, the coordinate 

2chapterchapter

0 0
x axis

y axis
overview of the basics 7



 

Taking Advantage of PostScript

 

8

              

2.2

2.3
system can be changed so that 72 points does equal 0.918 of an inch. This can be 
done with the scale  operator (see chapter 10). 

the PostScript program must be a text file

The PostScript program must be a text file, sometimes known as an ASCII file. A 
text file can be written by almost every kind of word processor. A text file is an 
agreed on standard format of saving words that all computers can accept and 
understand. Because it is a convenient means to exchange information between 
various computers, it cannot contain specialized formatting that is handled 
differently from one word processing application to another. A text file cannot 
contain variable font styles, point sizes, or any graphics. It can contain carriage 
returns, and tabs are at fixed, regular intervals.

If you are using Microsoft Word on the Macintosh, a text file would be saved by 
first choosing “Save” or “Save As ...” (if already saved) from the “File” menu. 
Notice the “File Format ...” button at the lower left corner. Choose it.

A second dialog box will appear.

Choose the “Text Only” option and then “OK.” The file will be saved as text.

MacWrite and other programs have similar options. You may try a text editor that 
only saves and works with text files. Their advantage is they usually come with 
features geared for easier programming. 

PostScript is case sensitive

The PostScript language is case sensitive. Case sensitive means uppercase 
characters are seen as different than lowercase characters. That is, “word ” is seen 
as a different word than “WORD” or “Word.” In some other programming 
overview of the basics



 

Chapter 2

                               

2.4

2.5
languages this is not the case.

the program format

A PostScript program can be formatted in any way convenient for legibility using 
tabs, returns, or extra spaces between words. These are seen as white space and do 
not affect the running of the program. For example,

gsave
100 100 translate

grestore

is the same as

gsave 100 100 translate grestore

which is the same as

gsave
100 100
translate
grestore

inserting comments

Titles and reference comments can be included in a PostScript program by entering 
them after the special character “%” (percent sign). Everything following a “%” and 
before the next “return” or line end is invisible to the PostScript interpreter. The 
“%” is also used for header information (the first lines of a program) of a file that is 
written in a standard way. This will be explained further in chapter 4, “EPS Files.” 
The space between the code and the “%” can either be tabs or any number of word 
spaces.

It’s a good habit to include comments in your programs for future reference. A 
month from now, you won’t remember why you did what you did. A few 
moments of your time now will pay off later when you need the information.

Examples of inserting comments are

% move origin one inch
gsave

72 72 translate
grestore

The comment can also be inserted in this way,

gsave % move origin one inch
72 72 translate

grestore

or in this way

gsave
72 72 translate % move origin one inch

grestore
overview of the basics 9



 

Taking Advantage of PostScript

 

10

                     

2.6

2.7
the graphic state

Many of the commands in PostScript describe some kind of graphic operation or 
change in the graphic state. The graphic state is the set of givens or the 
environment a graphic is drawn in. For example, it would be safe to assume the 
following:

The measurement system equals 72 points to the inch.

The origin is at the lower left corner of the page.

The default color is black.

The default line weight is 1 point.

There is no default font.

These are some of the default values that define the graphic state that you begin 
with. There is a possibility that a previous PostScript program may have changed 
all this, but normally these defaults are in effect. If you draw a 72 point filled 
square, it will be filled with black and be 1 inch square unless defined otherwise.

There are several more default values to be aware of, but these are enough to get 
started with. The important concept here is that as a PostScript program is 
interpreted by a printer, current values for a number of things (color, line weight, 
etc.) can be changed, and persist until another change. These changes are changes 
in the graphic state.

the current point & current path

Graphics and type are placed on the page by establishing a current point. The 
current point is the current position of a drawing action. Establishing a current 
point can be thought of as the initial act of positioning a pencil on paper to begin a 
drawing.

The moveto  operator creates the location for a character or the starting point for 
the drawing of a graphic. This is measured relative to the origin or 0 0 (zero zero) 
of the coordinate system. For example,

144 216 moveto

establishes a current point 2 inches to the right and 3 inches up from the location 
of the origin. There is nothing that will print yet, it is only the starting point or 
location. More on moveto  later in section 2.9.

If a line is drawn from this current point located at 144 216 ,

144 216 moveto 
288 288 lineto

a current path is created from the point 144 216  to the point 288 288 . Again, 
nothing will print yet because it is only a path. The path will need to be painted for 
something to print. The current path can be painted as a stroke to give it the values 
of the current line weight and color, or the path may be filled with the current color. 
As a path is created, the current point is the most recent point on the path. Once 
overview of the basics



 

Chapter 2

                              

2.8

stack demo

PSlearn

figure 2–2
the path is painted, the path is cleared or initialized. These are important points to 
remember. A typical sequence of events could be:

1 No current point or current path

2 Create current point

3 Create current path

4 stroke  or fill  the current path

5 Current path is cleared

the operand stack

PostScript is a stack based language. An operand stack is like a plate dispenser at a 
cafeteria. The first plate in is the last plate out and the last plate in is first plate out. 
In PostScript, the stack is an area of memory that values, operators, and other items 
are pushed onto. The first item in a line of PostScript code will be the first item on 
the stack and the last to be used. For example, moveto  will need two numbers 
already on the stack. In the case of 144 216 moveto , 144  is on the bottom and 
216  is next on top. moveto , the operator, then comes along on top of the two 
numbers and removes them to go off and make a current point. The lines of code

144 216 moveto 
288 288 lineto

could be seen entering the stack as in figure 2–2 below.

Another way of looking at

144 216 moveto 
288 288 lineto

would be to chart the stack as it changes. In figure 2–3, each white rectangle 
represents the stack as values are pushed onto it and removed by operators.

216

144

moveto

288 288 lineto
overview of the basics 11



 

Taking Advantage of PostScript

 

12

                 

figure 2–3

figure 2–4

2.9
The program could also be written like this:

288 288 144 216 moveto  lineto

It would produce the same results and the chart would look like figure 2–4.

This is not as convenient a way to write a program, but it works. It can be easy to 
lose track of which values go with what operator.

There are a number of PostScript operators that help manipulate the order of the 
stack. exch , for example, switches the top two items on the stack. More on this in 
later chapters.

creating a current point

As stated in section 2.7, moveto  is used to create a current point and expects two 
numbers on the stack for its x  and y  location on the page. The syntax for moveto  is

x y moveto

The x  and y  can be any two numbers, positive or negative. For example, the 
following can be used:

72 72 moveto
207.45 34.17 moveto
-34 17 moveto

Later we’ll learn to use variables so we can write

over up moveto
x1 y2 moveto

216

144

moveto

216

144

empty

stack

288

288

lineto

288

288

empty

stack

216

144

288

288

moveto

216

144

288

288

lineto

288

288

empty

stack
overview of the basics



Chapter 2

figure 2–5

2.10
1 inch 2 inch moveto

or even

x 12 add y 12 add moveto

The moveto operator expects to find two numbers waiting for it on the stack. 
How they arrive there is of no concern to it.

The +’s in the graphic in figure 2–5 mark the location of the current points at 72 
72  and 144 288  with 72 72 moveto  and 216 288 moveto .

A variation of moveto  is rmoveto  or relative moveto . rmoveto  is used to make a 
break in the current path as it is being constructed. An example of its use will be 
found at the end section 2.11.

creating a current path

To create a current path, moveto  is used to make a starting or current point. Then 
one of the PostScript path construction operators such as lineto  is used to 
identify a new point extending from that point.
overview of the basics 13



Taking Advantage of PostScript

14

figure 2–6

2.11
To draw a 1 inch square on the page, we would first need to establish a current 
point and then a current path. See figure 2–6. The path could start at 0.5 inch up 
and over 1 inch from the bottom left corner of the page and move right 1 inch, up 
1 inch, left 1 inch, and back down to the starting point. The path could also be 
drawn in the clockwise direction as well. The initial current could have been any 
one of the corners.

This description of the square is the current path; nothing has been painted yet. It 
is the road map for painting that comes later.

The lineto operator creates a current path to some new point from an existing 
current point. The new point becomes the new current point. The syntax for the 
lineto operator is:

x y lineto

where x  and y  are coordinates on the page. Also, lineto  requires a current point 
from either a previous moveto  or lineto . The PostScript program of our square 
up to this point would look like this:

144 72 moveto
288 72 lineto 288 216 lineto 144 216 lineto 144 72 lineto

This PostScript program fragment creates a current path. If we were to print at this 
moment, we would have a blank page. The next step of the program is to use the 
path either to stroke a line or as a container for a fill. It is also possible to use the 
path as a boundary or cookie cutter for images to appear within. This is done with 
clip , and will be explained in section 9.4.

painting the current path

Once a current path has been constructed, you have the choice of either stroking it 
or filling it with the current color. The two operators are stroke  and fill . These 
two operators paint the current path with the current line weight and current color. 
In addition, the stroke  and fill  operators consume the current path, meaning 
once the path is painted, it will no longer exist. Examples of a stroked square and 
a filled square with their PostScript programs follow.

144 72 288 72

288 216144 216
overview of the basics



Chapter 2

PSlearn
2–1

PSlearnPSlearn
2–2

2–3

PSlearn
72 72 moveto
144 72 lineto 144 144 lineto 72 144 lineto 72 72 lineto
stroke

72 72 moveto
144 72 lineto 144 144 lineto 72 144 lineto 72 72 lineto
fill

As mentioned in section 1.4, if you want to experiment and print these first two 
programs, find examples 2–1 and 2–2 in the ExamplePS section of LearnPS.

Remember, the reason these examples look like this is because the default value for 
the current color is black and the current line weight is one point. Those values will 
remain until you change them. In the next chapter, we’ll run this square through 
all sorts of variations.

The current path does not need to be one continuous connected path. In this 
example, rmoveto  is used twice to continue the path after a break. The arrow in 
the graphic shows the movement of the current point with rmoveto . The point of 
the arrow is also drawn using rmoveto . 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:twoLines.eps
%%BoundingBox:72 34 144 110

0 0 72 144 216

72
overview of the basics 15



Taking Advantage of PostScript

16
3 setlinewidth  % parallel lines
72 36 moveto 144 36 lineto
-72 72 rmoveto 144 108 lineto  % second line
stroke

.25 setlinewidth  % arrow
138 42 moveto -60 60 rlineto
0 -6 rmoveto 0 6 rlineto 6 0 rlineto stroke
overview of the basics



Chapter 2
overview of the basics 17



Taking Advantage of PostScript

16 drawing a square



Chapter 3

3.1

figure 3–1

3–1

PSlearn
drawing a square
This chapter covers a number of different methods that can be used to draw a 
square. In doing so, various strategies are covered in a small scale that can be 
applied to a variety of programming situations. The PostScript language provides 
more than one way to create the same result. The reason to use one over another 
will depend on the situation and your writing style.

finishing the final corner of the square

In figure 3–1 below, the black line represents the path for the wide gray line. Notice 
the line does not extend beyond the path. Because of this, a square stroked with a 
thick outline would have a noticeable notch at the final corner.

The preferred way to write the PostScript program for the square drawn in the last 
chapter would be to include the closepath  operator. closepath  joins the 
current point on the path to the first point made by moveto  and finishes that 
corner. Other examples of its use will be seen in chapter 6. 

This example paints one square on top of another. The black square on top uses the 
closepath  operator to finish the corner at the location of the path’s beginning 
and ending. The PostScript program is listed below.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:closepath_1.eps
%%BoundingBox:0 0 84 84

.5 setgray 12 setlinewidth

6 6 moveto % gray thick line

3chapterchapter
drawing a square 17



Taking Advantage of PostScript

18
72 0 rlineto 0 72 rlineto -72 0 rlineto 0 -72 rlineto
stroke

% black square on top
0 setgray 4 setlinewidth

6 6 moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath stroke

This PostScript program introduces several new operators.

First, an explanation of the first three lines called the program header. These three 
lines are not necessary to create the actual graphic, but they are very important if 
the graphic will be placed in another document. This will be explained in more 
detail in the next chapter on EPS files.

The new PostScript operators introduced are:

setgray changes the current gray value.

setlinewidth changes the current line weight.

rlineto draws a line relative to the previous current point.

setgray  expects a number between 0 and 1 where 0 is black, 1 is white, and 
various grays are in between. Therefore, 0.2 is 80% black, 0.5 is 50%, and 0.9 is 10% 
black. setgray changes the current color used by stroke  and fill  for 
painting.

setlinewidth changes the current line weight used by stroke  and expects a 
positive number. It can be 0 and as high as 700 or higher. However, it is not 
advisable to use zero. 0 setlinewidth  paints the line as fine as the printer is 
capable of producing. On a 300 dpi that would be 0.24 inches, which can be seen 
easily. But on a 2540 dpi Linotron, however, it would be 0.000393 inches — not 
visible.

rlineto is an alternative to lineto . lineto  draws lines to points on the 
coordinate system relative to the origin. rlineto  draws its lines relative to the 
previous current point.

We have two ways to draw the path for a square. There is

72 72 moveto
144 72 lineto 144 144 lineto 72 144 lineto
closepath stroke

and

72 72 moveto
72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath stroke

Both of these program examples produce the same results.

Later, in chapter 18, two new operators for drawing rectangles in PostScript
Level 2 will be explained.
drawing a square



Chapter 3

3.2

3–2

PSlearn
defining procedures

A third way to draw the square is to define it as a procedure. Once defined, it can be 
used as often as needed. The definition for a square could look like this,

/square { 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath } def

and it could be used like this

72 72 moveto square stroke

or

144 144 moveto square fill

The “/ ” (slash) special character identifies the word “square ” as a name. The 
special characters “{ ” and “} ” contain the definition for the name. The def  
operator associates the definition with the name. The procedure’s name or key is 
stored in the PostScript interpreter’s user dictionary while the program is run.

When a PostScript interpreter encounters a name it does not recognize, the 
interpreter sees if there is a definition for it in the user dictionary. If there is none 
present, an error message will be sent. The PostScript interpreter will assume that 
something was misspelled. There will be more on user dictionaries in sections 
17.1–3. A complete program using the square procedure can look like this:

%!PS-Adobe-2.0 EPSF-1.2
%%Title:square_def1.eps
%%BoundingBox:72 72 360 504

/square { 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath } def

72 72 moveto square fill

72 288 moveto square fill
drawing a square 19



Taking Advantage of PostScript

20

3.3

3–3

PSlearn
216 144 moveto square fill

288 432 moveto square fill

stroking & filling the same path

As stated in section 2.11, the stroke  and fill  operators consume the current 
path. However, there is a way to use the current path for both a stroke  and a 
fill . The current path can be copied to be used twice by saving or by taking a 
“snapshot” of the graphic state. The PostScript operators gsave  and grestore  
save and restore the graphic state. The sequence for a graphicsave  and 
graphicrestore  would be:

1 No current point or current path

2 Create current path

3 Save the current path by saving the graphic state and making a copy

4 fill  the current path

5 Restore the previously saved current path

6 stroke  the restored current path

7 Current path is cleared

The graphic state contains the current values for the current gray, line width, 
current point, current path, location of the origin, and a number of other values not 
applicable here. Here’s an example:

%!PS-Adobe-2.0 EPSF-1.2
%%Title:gsave_1.eps
%%BoundingBox:36 36 144 108

72 36 moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath

gsave % save path, value black
0.5 setgray fill % 50% black & path filled

grestore % saved path restored

0 0 72 144 216

72
drawing a square



Chapter 3

3.4

PSlearn
3–4
stroke % restored path stroked

The gsave  saves the current path and the default value of black. Next, 0.5 
setgray fill changes the current value to 50% black and the current path is 
filled with it. grestore  restores the current gray back to 100% black and the 
current path. Finally, stroke  consumes the saved copy of the current path. The 
line weight of the stroke is the default value of one point.

moving the origin

The translate  operator moves the origin around on the page. For example,

72 72 translate

moves the location of the origin from the lower left corner of the page to 1 inch up 
and over. The advantage of moving the origin is that it may make it easier to place 
a number of graphic objects on the page. In an earlier example, /square  was 
defined to be:

72 0 rlineto 0 72 rlineto -72 0 rlineto closepath

It was moved around the page by establishing a current point at the desired 
location for the square, then using the procedure. A second method of placing a 
number of squares on the page is to have the current point always at the origin 
within the definition and move the origin around. For example:

/square
{ 0 0 moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath fill } def

72 144 translate square

Since changing the position of the origin is changing the graphic state, it will be 
helpful to bracket the changes with a gsave and grestore . There can be some 
unexpected results if the origin is changed within a program. It is important to 
emphasize that using the translate operator does not create a current point, 
but transforms the coordinate system that current points are made upon. 

The earlier example from section 3.2, square_def1.eps , can be rewritten two 
ways to demonstrate the use of translate . The first rewrite does not use gsave  
and grestore . The locations of the various squares are not immediately apparent 
and it gets rather difficult to visualize where they are because of the way the origin 
is changing its location.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:square_def2.eps
%%BoundingBox:72 72 360 504

/square { 0 0 moveto 72 0 rlineto 0 72 rlineto
-72 0 rlineto closepath fill } def

72 72 translate square % 72 72 from 0 0 = 72 72

0 216 translate square % 0 216 from 72 72 = 72 288
drawing a square 21



Taking Advantage of PostScript

22

3–5

PSlearn
144 -144 translate square % 144 -144 from 72 288 = -72 144

72 288 translate square % 72 288 from -72 144 = 0 144

The second version places the squares at the same location on the page but the 
program is written differently this time by using gsave  and grestore . Because 
of this, it is much easier to keep track of the location of the squares in this example. 
The location of the fourth square at 288 432 is 288 432 from the lower left corner of 
the page and not from an unknown point somewhere else on the page because of 
a change in the previous line of code.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:square_def3.eps
%%BoundingBox:72 72 360 504

/square { 0 0 moveto 72 0 rlineto 0 72 rlineto
-72 0 rlineto closepath fill } def

gsave % save location of origin
72 72 translate square % change location

grestore % restore location of origin

gsave
72 288 translate square

grestore

gsave
216 144 translate square

grestore

gsave
288 432 translate square

grestore
drawing a square



Chapter 3

PSlearn
3–6
Using gsave  and grestore  adds flexibility to the program. Changes to 
individual squares will not ripple throughout the rest of the program. Also, 
individual parts of a program bracketed by gsave  and grestore  can easily be 
copied and positioned into other programs.

In the next example, changes are made to the first and second squares. The third 
square is stroked with the default 1 point line weight and the fourth square is filled 
with the default color black. 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:square_def4.eps
%%BoundingBox:72 72 360 504

/square { 0 0 moveto 72 0 rlineto 0 72 rlineto
-72 0 rlineto closepath } def

gsave % save graphic state / current color & origin
.5 setgray
72 72 translate square fill

grestore % restore graphic state

gsave % save graphic state
4 setlinewidth
72 288 translate square stroke

grestore % restore graphic state

gsave % saves origin, uses default color
216 144 translate square stroke

grestore

gsave
288 432 translate square fill

grestore
drawing a square 23



Taking Advantage of PostScript

24

3.5

PSlearn
3–7
changing the size

The scale  operator makes the coordinate system larger or smaller. For example, 
2 2 scale  doubles the size of the graphic state. There will also be a more detailed 
discussion of the scale  operator in chapter 10.

If the procedure for square  is defined to be a 1x1 unit, scale  could be used to 
enlarge that square to whatever size is required. Note in the following example 
that the square is 1x1 and scale  is used to create three sizes of the square. The 
individual squares are bracketed by gsave  and grestore  so the scaling will not 
multiply from square to square.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:square+scale_1.eps
%%BoundingBox:72 72 576 648

/square { 0 0 moveto 1 0 rlineto 0 1 rlineto
-1 0 rlineto closepath } def

gsave
.5 setgray
72 72 translate
72 72 scale
square fill

grestore

gsave
288 360 translate
288 288 scale
square fill

grestore

gsave
.3 setgray
72 432 translate
drawing a square



Chapter 3

3–8

PSlearn
144 144 scale
square fill

grestore

The sequence of the PostScript operators is very important. If you are not careful, 
you can get yourself some unexpected results. It can make a difference if scale  is 
used before or after the creation of a current path. It will also make a difference 
whether the path is stroked or filled. Note where the 72 72 scale  is used for each 
square in the following example.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:square+scale_2.eps
%%BoundingBox:72 72 432 504

/square { 0 0 moveto 1 0 rlineto 0 1 rlineto
-1 0 rlineto closepath } def

gsave % small gray square
.5 setgray
72 144 translate
72 72 scale % scale graphic world 1 to 72
square
fill

grestore

gsave % lower square
2 setlinewidth
288 144 translate
72 72 scale
square
stroke

grestore

gsave % upper square
drawing a square 25



Taking Advantage of PostScript

26
288 432 translate
square
72 72 scale
stroke

grestore
drawing a square



Chapter 3
drawing a square 27



Taking Advantage of PostScript

26 EPS files



Chapter 4

4.1

4.2
EPS files
There are two different types of PostScript files: PostScript files that are sent to the 
printer and PostScript files that will be first incorporated into other documents 
before being sent to the printer. A good example of this is page composition 
software that imports PostScript illustrations. PostScript files intended to be 
included into another document are known as Encapsulated PostScript Files. The 
files are known as EPS files or EPSF files. These files may have an .eps  file 
extension, not required in the Macintosh environment but used on the NeXT.

.ps files

The expectation with a PostScript file or text file with a .ps  extension is that it will 
print one or more pages of a document. It may contain EPS files. It will contain the 
showpage  operator. 

showpage  is the PostScript print operator. It is necessary when sending a file to a 
printer. In order to save space, it is not used at the end of the PostScript examples 
in this book. If you use SendPS to download your programs, you can use the “Add 
showpage” option under the options menu to automatically add showpage  to 
your programs.

.eps files

The expectation with an Encapsulated PostScript File or text file with an .eps  
extension is that it is one page and may contain the showpage  operator and a print 
preview.

By definition, an EPS file is a single image that may be eventually placed in another 
document. It also includes information that tells the importing software what the 
dimensions are and other information that may be needed. This information is 
contained in the file’s header or first lines of code. More on this in the next section.

The showpage  operator is optional and will cause problems if the importing 
document is not set up to neutralize it. If it’s not, the page will print prematurely. 
This is handled by temporarily redefining showpage  to do nothing until the page 
is ready to print. Renaming PostScript operators is covered in more detail in 
section 17.2.

Often a print preview will be included with the Encapsulated PostScript File so it 
can be seen on the computer’s monitor. The basic reason for this is the PostScript 
information used to create the page isn’t compatible with how images are formed 

4chapterchapter
EPS files 27



Taking Advantage of PostScript

28

4.3
on a computer’s monitor. The exception is the NeXT computer, on which the same 
information is sent to both screen and printer. There is no need for a preview 
version of the graphic.

The Macintosh needs a print preview of the PostScript file. On the Macintosh, what 
is seen on the screen is drawn by QuickDraw, Apple Computer’s graphics 
language. Files created with QuickDraw are known as PICT files (short for 
PICTure). Even though a PICT version is seen on the screen, Adobe’s PostScript 
version is what is sent to the printer. Depending on the graphic, the overlap in the 
two graphic models will produce a rough or very accurate QuickDraw preview. In 
all cases, what is seen on the Macintosh screen is never what is sent to the printer. 
The EPS options on the Macintosh are:

PostScript information / no print preview

PostScript information / 1 bit PICT preview for basic positioning

PostScript information / color or gray scale PICT preview

On IBMs and compatibles, the same situation exists as with the Macintosh. What 
is seen on the screen is different than what is sent to the printer.

All the EPS files we will write as part of this book and in the HyperCard version of 
the LearnPS tutorial will not have a preview for the Macintosh screen.

the program header

There are two lines that must be present in a PostScript file to make it a 
Encapsulated PostScript File. It is these lines that make an EPS file an EPS file. They 
are:

%!PS-Adobe-2.0 EPSF-1.2
%%BoundingBox:72 72 216 216

There are a number of conventions in writing the beginning of a PostScript 
program. The following program, 2inSquare.eps , is an example using the most 
common comments. They are outlined in more detail in Adobe’s technical 
document #PN LPS5002, Encapsulated PostScript Structuring Conventions. The 
two above must be there, but it is a good habit to provide as much information as 
possible. These comment lines will be defined in section 4.6.

Notice that all of the first six lines begin with the “%” special character. These lines 
are not read or used by the PostScript interpreter. They contain information used 
by software that incorporate the file into a larger document. The software is 
designed to read this information as the file is imported.

The following PostScript program will look like this displayed on the NeXT or 
printed on a PostScript laser printer. 
EPS files



Chapter 4

PSlearn
4–1

4.4
%!PS-Adobe-2.0 EPSF-1.2
%%Title:2inSquare.eps
%%Creator:John F Sherman
%%CreationDate:June 1990
%%DocumentFonts:Times-Roman
%%BoundingBox:72 72 216 216

72 72 moveto
216 72 lineto 216 216 lineto 72 216 lineto closepath
fill

/Times-Roman findfont 36 scalefont setfont
1 setgray
90 100 moveto
(EPS file) show

2inSquare.eps  can be placed in a number of Macintosh applications as is. 
Because it is only PostScript code without a QuickDraw preview, it will appear on 
the screen as an outline box. The size of this outline box is taken from the 
%%BoundingBox comment. 2inSquare.eps  will print correctly, however, using 
the PostScript information.

placing EPS files into Macintosh documents

The file, 2inSquare.eps  can be placed as is into an Illustrator or PageMaker 
document. In fact, every PostScript example in this book can be placed into 
documents in the same way.

To place an EPS file into an Illustrator document, first create the text file with any 
word processor. Its name doesn’t have to have the .eps  file extension and its name 
doesn’t even have to match the %%Title:  comment. When “Place” under the 
“File” menu in Adobe Illustrator is chosen (see figure 4–1), a dialog box will appear 
to locate an EPS file. The dialog box will display TEXT and EPSF file types (more 
on file types in the next section).

EPS file
EPS files 29



Taking Advantage of PostScript

30

figure 4–1

figure 4–2
 

When a file is selected and opened, Illustrator will check the beginning of the file 
to see if the correct header information is present. Specifically, as mentioned in the 
previous section, these two lines:

%!PS-Adobe-2.0 EPSF-1.2
%%BoundingBox:72 72 216 216

Once placed, the contents of the file cannot be edited, but it can be moved to any 
location on the page. In addition, the scale, rotate, reflect, and skew transformation 
tools of Illustrator can be used on the file.

The placed 2inSquare.eps  will appear like figure 4–2 in Adobe Illustrator. 
When this file is printed, the PostScript information will be used.

In Aldus PageMaker, essentially the same steps are taken with the “Place” menu 
found under the File menu. Select the EPS file from within the dialog box in the 
usual way. The arrow cursor will become a PS cursor. Click the PS cursor on the 
page where you want the PostScript file to be located (see figure 4–3).
EPS files



Chapter 4

figure 4–3

figure 4–4

4.5

figure 4–5
Again, only a gray box will appear on the page but notice that the title, creator, and 
creation date appear within the box (see figure 4–4). This will be displayed if those 
lines are present in the header of the program.

The gray box for the EPS file can be moved wherever it’s needed once placed.

changing a TEXT to an EPSF file type

Some Macintosh applications can only import EPS files if their file type has been 
changed from TEXT to EPSF. Their file contents are not any different, just a tag that 
tells the importing software what kind of file it is.

Every Macintosh file has a file type and creator associated with it. This information 
is used by the Finder to determine what icon to display (file type) and what 
application to launch (file creator). In figure 4–5, Files A and B are made by Adobe 
Illustrator and Files C and D are made by Microsoft Word (the creators). These two 
applications can make the same file type. Files A and D are TEXT. Microsoft Word 
(as an option) and Adobe Illustrator (by default) can save their files as TEXT. File 
B is EPSF and File C is WDBN. This means you could open an Illustrator file with 
MS Word and look at the PostScript code it has written. It doesn’t work the other 
EPS files 31



Taking Advantage of PostScript

32

figure 4–6

figure 4–7

figure 4–8
way, however; Illustrator can’t open Microsoft Word’s files. Illustrator files are 
PostScript files. Illustrator gives you the option to include a preview to make the 
file an Encapsulated PostScript File. When this is done, Illustrator changes the file 
type from TEXT to EPSF. Because of this, the file will have a different icon. File A 
is a TEXT file, File B is an EPSF. File C is Microsoft Word’s default file type WDBN 
and File D is a TEXT file. Also, file types and creators are used in dialog boxes to 
filter away file names of other programs.

In some other Macintosh applications, such as Letraset’s Ready, Set, Go, the file 
type of 2inSquare.eps  will need to be changed from “TEXT” to “EPSF.” This can 
be done with a number of utilities, such as CE’s DeskTop or MacTools. In 
Illustrator and PageMaker, the Place dialog box displays all TEXT files, EPS 
formatted or not. In other software, the dialog box displays EPSF or other graphic 
file formats, but not TEXT files.

The steps involved in changing a file that’s a TEXT file type to an EPSF file type can 
be done with several utilities. I’ll demonstrate how its done using DiskTop, a desk 
accessory from CE Software. The process will be similar with other utilities, such 
as MacTools from Central Point Software.

After opening DiskTop, select the file you wish to change. Notice that in this case 
the file is of type TEXT and is created by ???? (see figure 4–6). It is ???? because the 
file was not originally written on a Macintosh and the Macintosh therefore doesn’t 
know who made it. Your file may show MSWD as the creator if the file was made 
by Microsoft Word or MACA if it was written by Claris MacWrite. For our 
purposes, it does not matter what the creator ID is.

Select “Get Info ...” from the DiskTop menu. In the upper right hand corner you 
will see two boxes to enter new Type and Creator IDs (see figure 4–7).

Change TEXT to EPSF and save the changes (see figure 4–8). The file is now ready 
EPS files



Chapter 4

4.6
to be used by programs such as Ready, Set, Go or DesignStudio that look for the 
EPSF file type. Unfortunately, you will need to reverse the steps taken and change 
the file back to TEXT should you need to edit the file.

It’s important to note that just changing the file type to EPSF from TEXT doesn’t 
automatically make a file an Encapsulated PostScript File. The correct info must be 
present in the header of the file. Also, not all Macintosh software will be able to take 
advantage of EPS files. Check the manual of the software in question.

the program header, line by line

Here is a brief explanation of each of the header lines used in section 4.3. All of 
these lines are seen as comments by the PostScript interpreter. They aren’t used to 
make a mark on the page, but to give information to either importing software or 
print servers. They do not have to be in a certain order except the following should 
always be the first line:

%!PS-Adobe-2.0 EPSF-1.2

This line identifies that the PostScript program conforms to the standard Adobe 
structuring conventions. More often than not, it must be present for the file to be 
properly used by an application. Some programs will not be able to use the file if 
it isn’t present.

%%Title:2inSquare.eps

This line is useful, as seen earlier in the PageMaker example (figure 4–4). There, the 
file name is shown in the gray box. In other applications, it may be listed when 
information is requested.

%%Creator:John F Sherman

This line might read

%%Creator:Adobe Illustrator 88(TM) 1.6

if it was created by Adobe Illustrator.

%%CreationDate:June 1990

This is a record of when the file was created.

%%DocumentFonts:Times-Roman

This line can be very important in some print environments. This line may be used 
to let a printer know it has to get a font from its hard disk or server. If more than 
one font is being used in a file, it would be written as follows:

%%DocumentFonts:Times-Roman
%%+ AvantGarde-Demi
%%+ Helvetica
EPS files 33



Taking Advantage of PostScript

34

4–2

PSlearn
%%BoundingBox:72 72 216 216

This is the most important line in the file header because it describes the smallest 
rectangle that the graphic would fit in. This information is used for positioning the 
EPS file into other files. In the example below, the shape fits in a rectangle whose 
lower left is at x and y 36 36 and upper right is at 192 171. Its bounding box would 
therefore be:

%%BoundingBox:36 36 192 171

%!PS-Adobe-2.0 EPSF-1.2
%%Title:BBox_1.eps
%%CreationDate:June 1990
%%BoundingBox:36 36 192 171

36 36 translate
12 90 moveto
36 131 65 149 91 115 curveto
113 85 71 89 62 71 curveto
53 53 71 25 97 38 curveto
123 51 114 90 140 78 curveto
171 63 148 31 116 16 curveto
84 1 40 -5 21 18 curveto
2 41 -6 59 12 90 curveto
fill

If BBox_1.eps  were to be brought into TopDraw on the NeXT computer, it would 
appear as in figure 4–9.

0 0 72 144 216

72

144

36 36

192 171
EPS files



Chapter 4

figure 4–9
The eight little squares that surround the shape appear when the object is selected 
for an edit in TopDraw. These are handles that can be used for stretching and 
scaling the picture and lay on the border that corresponds to the BoundingBox.

There is more information on the BoundingBox in section D.5.
EPS files 35



Taking Advantage of PostScript

36 understanding error messages



Chapter 5

5.1

5–1

PSlearn
understanding error messages
As with any programming language, mistakes of all kinds can happen. There can 
be misspellings, missing arguments, or operators out of sequence. The PostScript 
interpreter provides feedback to help the programmer locate the mistake.

Depending on the means you are using to download the PostScript file, the error 
message can be received in a number of different ways. The error message can be 
sent to a text file on your disk drive or sent to a window on the computer’s monitor.

An error message will look like this:

%%[Error: undefined; OffendingCommand: movto]%%

It will appear on the Macintosh monitor like this when using SendPS:

This message may appear briefly on the monitor and then be sent to a text file on 
disk under the name of the printer. It might be named “LaserWriter Log” and be 
found in the same folder as SendPS. Following are some of the most common error 
messages and where to look when they occur.

undefined

undefined  is one of the most common error messages to receive.

For example, with this PostScript program,

%!PS
%%Title:mistake1.ps

72 72 movto % moveto is misspelled

5chapterchapter
understanding error messages 37



Taking Advantage of PostScript

38

5–2

PSlearn

5.2

5–3

PSlearn

5–4

PSlearn
144 72 lineto 144 144 lineto 72 144 lineto 72 72 lineto fill

this error message is sent back:

%%[Error: undefined; OffendingCommand: movto]%%

This message could be read as “I cannot run this PostScript program because I 
don’t understand movto.” In this case, it will be immediately recognized that we 
misspelled moveto . Another example is the following:

%!PS
%%Title:mistake2.ps

/Box {72 72 moveto
144 72 lineto 144 144 lineto 72 144 lineto 72 72 lineto
fill} def

box % Box, not box, is defined above

The program fragment produces this error message:

%%[Error: undefined; OffendingCommand: box]%%

This is a situation similar to the previous error. In both examples, when the 
PostScript interpreter encounters a word it doesn’t understand, it searches first the 
dictionary of user defined procedures, and then the system dictionary to see if the 
questionable word is defined there. If not, the interpreter creates the undefined  
error. In the first example moveto  was misspelled; movto  will not be found in any 
dictionary. The second example has the same basic problem: box  is not the same 
as Box , and Box  is what is defined and located in the user dictionary.

typecheck

Another common mistake is the case when an operator isn’t misspelled but is 
missing from a certain PostScript operator sequence. For example:

%!PS
%%Title:mistake3.ps

/Helvetica-Bold 100 scalefont setfont % findfont is missing

36 36 moveto
(Type) show

The program fragment produces this error message:

%%[Error: typecheck; OffendingCommand: scalefont]%%

Here, findfont was forgotten after the /Helvetica-Bold. scalefont was 
in error because there wasn’t anything to scale. Another example is this program 
that creates a pattern.

%!PS
%%Title:mistake4.ps

/word (LearnPS) def
20 20 1 [.1 0 0 .1 0 0] {word} imagemask % boolean not 1
understanding error messages



Chapter 5

5.3

5–5

PSlearn

5–6

PSlearn

5.4

5–7

PSlearn
The program fragment produces this error message:

%%[Error: typecheck; OffendingCommand: imagemask]%%

The error here is not what is missing, but that the 1 located after the 20 20 
should be either a true or a false . With the related image operator, the 1 
would be correct in that position.

stackunderflow

The stackunderflow  error occurs when an operator does not have the expected 
number of arguments on the stack. In the following line of PostScript, arc  needs 
five numbers on the operand stack to do its work and there are only four present 
waiting to be used.

%!PS
%%Title:mistake5.ps

72 36 0 270 arc stroke % missing the value for radius

The program fragment produces this error message:

%%[Error: stackunderflow; OffendingCommand: arc]%%

In this next example, the height argument is missing for the image  operator.

%!PS
%%Title:mistake6.ps

/picStr 2 string def
/Mickey {16 1 [.2 0 0 .2 0 0] % missing height

{currentfile picStr readhexstring pop} image} def
Mickey
FE 0F FD B3 FD 7D F5 F8 F7 F8 F6 D3 80 D3 00
F7 00 CF 06 1F 04 0F 8C 0F FC 0F FC 0F FE 1F

The program fragment produces this error message:

%%[Error: stackunderflow; OffendingCommand: image]%%

This message states that one of the arguments for the image  operator is missing. 
Had the matrix array or procedure been missing, the error would have been a 
typecheck  error.

rangecheck

The rangecheck  error is caused when an expected value is outside of the 
required range. In the example below, the matrix array for the image  operator is 
missing the last zero in the array, which should read [.2 0 0 .2 0 0] .

%!PS
%%Title:mistake7.ps

/picStr 2 string def
understanding error messages 39



Taking Advantage of PostScript

40

5.5

5–8

PSlearn
/Mickey { 16 15 1 [.2 0 0 .2 0] % array missing last 0
{currentfile picStr readhexstring pop} image} def

Mickey
FE 0F FD B3 FD 7D F5 F8 F7 F8 F6 D3 80 D3 00
F7 00 CF 06 1F 04 0F 8C 0F FC 0F FC 0F FE 1F

The program fragment produces this error message:

%%[Error: rangecheck; OffendingCommand: image]%%

limitcheck

The most common reason for a limitcheck  error is that a current path has 
become too complex. For example, the maximum number of points that can be 
created in a current path before an error on the Apple LaserWriter Plus is fifteen 
hundred. This number will be different depending on the printer. The resolution 
that the printer is set to can also have a bearing on whether this error will occur.

%!PS
%%Title:mistake8.ps

/Helvetica-Bold findfont 100 scalefont setfont
/fountstring 256 string def
0 1 255 { fountstring exch dup put } for

36 36 translate
0 0 moveto
(abcdefghijklm) true charpath clip

620 150 scale
255 1 8 [255 0 0 1 0 0] {fountstring} image

The program fragment produces this error message:

%%[Error: limitcheck; OffendingCommand: clip]%%

What can be difficult about this error is anticipating when it will be made. A 
PostScript program might run error free on an Apple LaserWriter but fail on a high 
resolution Linotron. The program mistake8.ps  above, for example, fails on an 
Apple LaserWriter Plus but runs without problem on a NeXT laser printer.

There are two solutions when this error occurs. In the example above, the clip 
could be done in several parts, clipping first “abcde,” then the“fghi,” and then the 
“jklm.” This can be accomplished by using the stringwidth  operator.

The syntax for stringwidth  is:

string stringwidth  returning xw yw

where string  is the string to be measured, and xw is the returned width of 
string . The returned yw value is usually discarded because the vertical 
measurement in roman fonts is always zero.
understanding error messages



Chapter 5

5–9

PSlearn
 %!PS-Adobe-2.0 EPSF-1.2
%%Title:fix8.eps
%%Date:17 Dec 1990
%%DocumentFonts:Helvetica-Bold
%%BoundingBox:0 0 355 70

0 0 355 70 rectstroke

/Helvetica-Bold findfont 50 scalefont setfont
/fountstring 256 string def
0 1 255 { fountstring exch dup put } for
/x1 (abcde) stringwidth pop 12 add def
/x2 (abcdefghi) stringwidth pop 12 add def

gsave
12 24 moveto
(abcdefghijklm) true charpath clip

350 70 scale
255 1 8 [255 0 0 1 0 0] {fountstring} image

grestore

gsave
x1 24 moveto
(fghi) true charpath clip

350 70 scale
255 1 8 [255 0 0 1 0 0] {fountstring} image

grestore

gsave
x2 24 moveto
(jklm) true charpath clip

350 70 scale
255 1 8 [255 0 0 1 0 0] {fountstring} image

grestore

The second way is to use the setflat  operator. To get the program above to work 
on the Apple LaserWriter Plus, 9 setflat  is added to the beginning of the 
program. setflat  controls the accuracy of curved paths. The larger the number, 
the coarser the curve. In mistake8.ps  above, the better solution might be to 
divide the clipping operation because the 9 setflat  makes the letterform’s 
curves very rough. Following is an example of what a section of the print would 
look like with setflat  used.

abcdefghijklmfghijklm
understanding error messages 41



Taking Advantage of PostScript

42

hijlm
5.6

5–10

PSlearn

5–11

PSlearn

5–12

PSlearn
Another common reason for getting a limitcheck  error is using the autotrace 
feature of Adobe Illustrator on the wrong kind of template.

nocurrentpoint

The nocurrentpoint  error is sent when a needed current point is missing. It is 
usually a missing moveto . In this example, curveto  needs an existing current 
point. Unlike arc  or arcn , this line of PostScript must be preceded by either a 
moveto  or the current point on a path being made.

%!PS
%%Title:mistake9.ps

100 28 116 110 144 72 curveto stroke

The program fragment produces this error message:

%%[Error: nocurrentpoint; OffendingCommand: curveto]%%

Another example is type positioned by moveto .

%!PS
%%Title:mistake10.ps

/Helvetica-Bold findfont 72 scalefont setfont
(Type) show

The program fragment produces this error message:

%%[Error: nocurrentpoint; OffendingCommand: show]%%

In this example, the lineto needs to begin with a moveto .

%!PS
%%Title:mistake11.ps

144 72 lineto 144 144 lineto 72 144 lineto 72 72 lineto
fill

The program fragment produces this error message:

%%[Error: nocurrentpoint; OffendingCommand: lineto]%%

In each case, a clue is provided on where to find the error.

abcdefg
understanding error messages



Chapter 5

5.7

5–13

PSlearn

5–14

PSlearn
syntaxerror

The typical reason for this error is that the special characters ( , [ , { , and < are not 
paired with the corresponding ) , ] , } , and > in a program. In this example, the 
closing parenthesis is missing from the string.

%!PS
%%Title:mistake12.ps

/Helvetica-Bold findfont 72 scalefont setfont
36 36 moveto
(Type show

The program fragment produces this error message:

%%[Error: syntaxerror; OffendingCommand: Type show

Had the first parenthesis been the one missing instead of the second, the message 
would be this:

%%[Error: syntaxerror; OffendingCommand: Type]%%

In this example, the closing parenthesis is missing from the definition.

%!PS
%%Title:mistake13.ps

/word (LearnPS def
20 20 2 [.1 0 0 .1 0 0] {word} image

The program fragment produces this error message:

%%[Error: syntaxerror; OffendingCommand: LearnPS def
understanding error messages 43



Taking Advantage of PostScript

44 drawing basics



Chapter 6

6.1
drawing basics
Up to this point, we have covered the basics of creating a path for lines and 
rectangles using only the lineto  and rlineto  operators. Obviously, there are a 
number of other path construction operators for making other kinds of paths. 
There are five PostScript operators for making circles, arcs and curves. All of these 
operators can be used in combination with each other to make any shape possible. 
Once made, the path can be stroked, filled, or both.

creating arcs

The arc and arcn operators are used to draw arcs and circles. Their syntax is:

xc yc radius ∞∞∞∞begin˚ finish˚ arc

xc yc radius ∞∞∞∞begin˚ finish˚ arcn

Where:

xc is the center of the arc/circle on the x axis.

yc is the center of the arc/circle on the y axis.

radius is the radius of the arc/circle.

begin˚ is the beginning point of the path.

finish˚ is the finishing point of the path.

∞∞∞∞The difference between arc and arcn is the direction of the drawing from 
∞∞∞∞begin˚ to finish˚ . See figure 6–1 below. The circle is divided into degree 
points in the counterclockwise direction from the three o’clock position. The same 
points are used by both arc  and arcn . With arc , the direction of begin˚  to 
finish˚  is in the counterclockwise direction, with arcn  it is clockwise. The 0˚ and 
360˚ points share the three o’clock position. Therefore, both 0 360 arc  and 0 360 
arcn  could be used to draw a circle.

Neither arc  nor arcn  needs an existing current made by a moveto  the way 
lineto  does. However, they can take advantage of a moveto  as will be shown 
later in arc_2.eps . If there is an existing current point, it will attach itself with a 
straight line to the begin˚ . To insure against an unwanted line, clear the current 
path with the operator newpath .

6chapterchapter
drawing basics 45



Taking Advantage of PostScript

46

figure 6–1

6–1

PSlearn
Here are three arcs drawn with arc .

%!PS-Adobe-2.0 EPSF-1.2
%%Title:arc_1.eps
%%BoundingBox:34 34 256 110

3 setlinewidth

72 72 36 0 270 arc stroke

144 72 36 225 90 arc stroke

216 72 36 0 135 arc stroke

Now, the same program again with the same arguments used in arc_1.eps , but 
substituting arcn . The opposite portion of the arc is drawn.

arc

arcn

0˚ & 360˚xc yc

radius

90˚

270˚
drawing basics



Chapter 6

6–2

PSlearn

6–3

PSlearn
%!PS-Adobe-2.0 EPSF-1.2
%%Title:arcn_1.eps
%%BoundingBox:34 34 256 110

72 72 36 0 270 arcn stroke

144 72 36 225 90 arcn stroke

216 72 36 0 135 arcn stroke

The two previous arc examples were drawn without the customary establishing of 
a current point. If there is no existing current, one is created at the location of 
∞∞∞∞begin˚ , the starting point of the arc. If there is an existing current point, a line 
will be drawn to the point of ∞∞∞∞begin˚ . Notice the difference in the following two 
PostScript programs when a current point is made at the center of the arc and 
closepath  is used.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:arc_2.eps
%%BoundingBox:34 34 256 110

72 72 moveto
72 72 36 0 270 arc closepath stroke

144 72 moveto
drawing basics 47



Taking Advantage of PostScript

48

PSlearn
6–4
144 72 36 225 90 arc closepath stroke

216 72 moveto
216 72 36 0 135 arc closepath stroke

In all the arcs in the previous and next example, a current point is first made at the 
center of the arc. ∞ begin˚  connects to that current point and therefore draws a 
line. After arc , the current point will be at ∞∞∞∞finish˚ . Then, closepath draws 
a line to the original current point made with the earlier moveto .

In this example, both arc  and arcn  are used with fill .

%!PS-Adobe-2.0 EPSF-1.2
%%Title:arc_3.eps
%%BoundingBox:34 34 256 110

.5 setgray
72 72 moveto
72 72 36 0 270 arc closepath fill

.1 setgray
72 72 moveto
72 72 36 0 270 arcn closepath fill

.3 setgray
144 72 moveto
144 72 36 225 90 arc closepath fill

.8 setgray
144 72 moveto
144 72 36 225 90 arcn closepath fill

.5 setgray
216 72 moveto
216 72 36 0 135 arc closepath fill

.8 setgray
216 72 moveto
216 72 36 0 135 arcn closepath fill
drawing basics



Chapter 6

6.2

PSlearn
6–5
making a pie chart using arc

Using arc  to develop a pie chart is a good exercise in learning how to make use of 
the operand stack and a few of the PostScript math operators. The pie chart below 
is for the percentages of 43%, 25%, 17%, and 15%. This program example is written 
to handle any four percentages that add up to 100. The program for the filled 
version of the pie chart can be found in chapter 19.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:pieChart_1.eps
%%Creator:John F Sherman
%%CreationDate:June 1990
%%BoundingBox:10 10 154 154

2 setlinewidth
10 10 translate

43 25 17 15 % the 4 percentages with space between
/p1 exch 3.6 mul def
/p2 exch 3.6 mul p1 add def
/p3 exch 3.6 mul p2 add def
/p4 exch 3.6 mul p3 add def

/x 72 def
/y 72 def
/r 72 def
/wedge{arc closepath stroke} def

x y moveto
x y r 0 p1 wedge

x y moveto
x y r p1 p2 wedge

x y moveto
x y r p2 p3 wedge

x y moveto
x y r p3 p4 wedge

Looking at the first part of the program, 43 25 17 15  are the four percentages 
with a word space separating them. They can be any four percentages as long as 
drawing basics 49



Taking Advantage of PostScript

50

figure 6–2

figure 6–3
they add up to 100. The four numbers are entered onto the stack.

/p1 exch 3.6 mul def  defines our first point on the arc moving 
counterclockwise from the 0˚  point. If we were to chart the stack of these two lines 
of code, it would look like figure 6–2.

In column one, the four numbers, /p1 , and exch  are entered onto the stack. exch  
exchanges the top two items on the stack. Therefore, as we see in column two, /p1  
and 15  have switched places on the stack. p1  will eventually be the name for our 
first point on the arc. Next in column three, 3.6  and mul  are added to the stack. 
mul  multiplies the top two numbers on the stack and pushes (puts) the product 
onto the stack. We multiply by 3.6 because our four numbers are fractions of 100 
and our pie wedges will be fractions of 360. In column four, 54  is on top from the 
multiplying of 3.6 by 15. Next comes def , which associates /p1  with the value 54 . 
The steps are then repeated in the same way for points /p2 , /p3 , and /p4 . 
However, with those points the new point will also need to have the value of the 
previous point added to it. We do this because we need to make our way around 
the circumference of the pie. Note that in defining the variable p1  the { }  are not 
used. They are only used when defining procedures.

The next line of the program begins in the same way except for the addition of 
adding the value of p1  to definition of p2 . Starting at where 17 times 3.6 equals 61.2 
is pushed onto the stack, the stack would continue as shown in figure 6–3.

p1  and add  are added to the stack. As you might guess, add  adds the top two 
numbers on the stack. We defined p1  in the previous line to be 54. So we then have 
in column three p1  plus 61.2  equaling 115.2  pushed onto the stack. It is then 
given the name p2 . Our stack now has two numbers left to process as p3  and p4 . 
They are done in the same way as p2 . We now have these points around the pie 
(see figure 6–4).

exch

/p1

15

17

25

43

15

/p1

17

25

43

mul

3.6

15

/p1

17
25
43

54

/p1

17

25

43

def

54

/p1

17

25

43

17

25

43

61.2

/p2

25

43

add

p1  (54)

61.2

/p2

25

43

115.2

/p2

25

43

def

115.2

/p2

25

43

25

43
drawing basics



Chapter 6

figure 6–4

6.3
The next part of the program is:

/x 72 def
/y 72 def
/r 72 def
/wedge {arc closepath stroke} def

x  and y  determine the center of the pie chart. They will be used by both the 
moveto  and arc  operators later in the program. r  is the radius of the pie chart. 
Defining the x , y , and r  variables like this gives us flexibility. We need to change 
only one number, not many, to make a change to the chart. wedge is the name for 
the procedure {arc closepath stroke} . This simplifies the program and 
helps it to be more readable.

Next in the program comes the actual drawing of the pie chart using the values and 
procedures defined earlier.

x y moveto
x y r 0 p1 wedge

These program lines draw the first wedge, and so forth.

To rewrite the program to work with five percentage numbers, add these lines:

/p5 exch 3.6 mul p4 add def

and

x y moveto
x y r p4 p5 wedge

Follow this same pattern for each wedge that will be needed for the chart. Also, 
since we know that the last point must be 360, we could leave out the process of 
defining the last point and put in 360.

drawing curves

Complex curves are drawn in PostScript with the curveto  operator, which uses 
Beziér cubic control points. If you have ever used Adobe Illustrator, you may 
already have become acquainted with them when drawing curves. Most complex 
curves are difficult to draw without the aid of a software package such as Adobe 
Illustrator, but some basic examples can be demonstrated.

0 and 360.0

54.0115.2

205.2
drawing basics 51



Taking Advantage of PostScript

52

360

PSlearn
6–6

curveto demo

PSlearn

figure 6–5
The syntax of curveto  is:

b1x b1y b2x b2y x2 y2 curveto

Where

b1x b1y is the location of the first Beziér control point.

b2x b2y is the location of the second Beziér control point.

x2 y2 is the end of the curve and new current point.

curveto also requires an existing current point, x1 y1 , as a starting point, unlike 
arc and arcn which can get by without one. It is important to note that the two 
points b1x b1y and b2x b2y are not points on the actual path of the curve. 
Following is an example and diagram. x2 y2  becomes the new current point.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:curveto_1.eps
%%BoundingBox:72 55 144 88

3 setlinewidth
72 72 moveto
100 28 116 110 144 72 curveto stroke

Beziér cubic control points create a curve by using the points x1 y1 , b1x b1y , 
b2x b2y , and x2 y2  to mark off a frame as seen below in the first frame of figure 
6–5. Then each line segment of the frame is repeatedly halved until the curve is 
formed. Figures 6–5 and 6–6 illustrate this.

The curve of the last frame is produced by

18 18 moveto
18 54 90 54 90 18 curveto stroke

0 0 72 144 216 288

72 x1  y1

b1x  b1y

b2x  b2y

x2 y2

x1 y1

b1x b1y b2x b2y

x2 y2
drawing basics



Chapter 6

figure 6–6

6.4

360
The curve of the last frame is produced by

18 18 moveto
108 54 0 54 90 18 curveto stroke

There is also the related rcurveto , which is much like rlineto .

the arcto operator

An alternative way of constructing arcs or curves is the arcto  operator. arcto  
rounds off a corner made by two lines with an arc of a specified radius. The syntax 
of arcto  is:

x1 y1 x2 y2 radius arcto

Where:

x1 y1 is the end point of the first line and marks the corner.

x2 y2 is the end point of the second line.

radius is the radius of the arc rounding off the corner of the two lines.

In addition, arcto requires a current point and pushes the new tangent points xt1  
yt1  and xt2 yt2  onto the operand stack. In the majority of cases, these four 
points are discarded. xt2 yt2  becomes the new current point. See example below.

x1 y1

b2x b2y b1x b1y

x2 y2

0 0 72 144 216 288

72

144

36 180 moveto

xt1 yt1 center of arc

x1 y1 xt2 yt2 x2 y2
drawing basics 53



Taking Advantage of PostScript

54

6–7

PSlearn

arcto demo

PSlearn

360
%!PS-Adobe-2.0 EPSF-1.2
%%Title:arcto_1.eps
%%CreationDate:June 1990
%%BoundingBox:34 34 294 165

3 setlinewidth

36 180 moveto
36 36 144 36 72 arcto
360 36 180 180 36 arcto

stroke

8 {pop} repeat

In the example above, a current point is made at 36 180  and a path is drawn to 
x1 y1  and then continues to x2 y2 . The corner of those two lines is then rounded 
by an arc with a radius of 72 . The two points where the arc is tangent to the two 
lines create the new points xt1 yt1  and xt2 yt2 . The current point is now xt2 
yt2  and the line will continue from there. x2 y2  will no longer exist.

The reason for the 8 {pop} repeat  is to remove the tangent points left on the 
stack. The two sets of tangent points of xt1 yt1  and xt2 yt2  are a by-product 
of the two arcto s and remain on the stack. This is a total of eight numbers that are 
not needed for anything at this time. In another situation, they may be taken 
advantage of. The operator pop  removes the top most item on the operand stack, 
and since we have eight numbers to remove, 8 {pop} repeat  does this. It’s the 
same as writing:

pop  pop  pop  pop  pop  pop  pop  pop

The arcto  operator can be used to make rectangles with rounded corners. An 
example follows.

0 0 72 144 216 288

72

144
drawing basics



Chapter 6

PSlearn
6–8

rounded rect

PSlearn
%!PS-Adobe-2.0 EPSF-1.2
%%Title:rounded_rect.eps
%%BoundingBox:34 34 325 218

/roundedRect {
/radius exch def /height exch def /width exch def
width 2 div 0 moveto % start in the middle
width 0 width height radius arcto % 1st corner
width height 0 height radius arcto % 2nd corner
0 height 0 0 radius arcto % 3rd corner
0 0 width 0 radius arcto closepath % 4th corner
16 {pop} repeat } def % discard tangent points

gsave
252 36 translate 2 setlinewidth
72 180 12 roundedRect % 72 wide, 180 high
gsave .8 setgray fill grestore stroke

grestore

gsave
72 72 translate .5 setgray
216 72 18 roundedRect fill

grestore

gsave
36 36 translate 3 setlinewidth
144 144 36 roundedRect stroke

grestore

The procedure roundedRect  is designed to use three arguments to draw a 
rectangle with rounded corners. The first two are the width  and height  of the 
rectangle and the third is the radius . It would be used like this:

72 144 24 roundedRect stroke

The first line of roundedRect  is

/radius exch def /height exch def /width exch def

This line is how the three arguments are “passed on” to the rest of roundedRect  
procedure. 72 , 144 , and 24  are on the operand stack with 24  on top when 
roundedRect  arrives. All in one line it would be

72 144 24 /radius exch def /height exch def /width exch def

The first exch  would switch 24 /radius.

72 144 /radius 24 def /height exch def /width exch def

/radius  would then be defined as 24 .

72 144 /height exch def /width exch def

The second exch  would switch 144 /height  and so on as before.

The rest of the procedure uses width  and height  in various combinations with 0 
and radius  as arguments for the arcto  operator. 
drawing basics 55



Taking Advantage of PostScript

56 type basics



Chapter 7

7.1
type basics
Fonts are stored as outlines either in a printer’s ROM, RAM, or an attached hard 
disk. The advantage of outlines is that the font can be scaled to any size without 
worry of ragged edges. The PostScript interpreter will fill in the appropriate 
number of dots. A bit-map would not provide the same flexibility. Each font is 
actually a dictionary of definitions for each letterform in the font. Earlier, in chapter 
3, we defined the procedure square  to be a series of drawing operations that drew 
a square. The procedure square was kept in a user dictionary in the PostScript 
interpreter while the program using it was run on the printer. In much the same 
way, each character of the alphabet has a series of drawing operations associated 
with its name in a font dictionary. For example, within every PostScript laser 
printer there is a font dictionary named Times-Bold. In that dictionary, g would be 
defined by a series of drawing operations that would create its outline.

diagram of a letterform

In figure 7–1 below, point a marks the location of the origin for a Times-Bold g. 
Point b represents both the width of the letterform and the new current point. 
Point b is the location of the origin of the next letterform to follow. It’s very similar 
to the idea of making a current point, creating a path, and having the new current 
point at the end of the path. The black box identifies the smallest rectangle the g 
can fit in. It is known as the letterform’s bounding box. The amount of space a 
letterform uses within a line of type, the distance between points a and b, is slightly 
more than its visible width.

7chapterchapter

g
a b
type basics 57



Taking Advantage of PostScript

58

figure 7–1

7.2

7–1

PSlearn
placing type on the page

Positioning type on the page is accomplished in much the same way as a drawing 
action is started. A current point is first made using the moveto  operator. The 
difference, however, is that the current point when made for type placement does 
not represent an actual point on a letterform, but represents its origin on its 
baseline. A letterform’s origin is slightly left and on the baseline of the character. 
See the g in figure 7–1. The following example prints a g. The + marks the location 
of 18 72 moveto , which is the character’s origin.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:type placement1.eps
%%BoundingBox:0 0 150 180

/Times-Bold findfont 200 scalefont setfont

18 72 moveto
(g) show

Here’s an explanation of the program:

/Times-Bold findfont locates the font dictionary for Times-Bold.

200 scalefont scales the font to 200 point.

setfont makes Times-Bold the current font. 

18 72 moveto establishes a current point. This point will be the character’s 
origin and will also be on the baseline.

The characters to be set are identified by being contained within parentheses. The 
“( ” and “) ” are special characters used to identify what is known as a “string” or 
group of characters to be used for some purpose. In this case, they will be painted 
on a page.

show paints the characters held within the “( ” and “) ” in the current font with 

g

type basics



Chapter 7

PSlearn
7–2
the current color. In this case, the current font is Times-Bold and the current color 
is the default black.

In this example, the g will be painted with a 70% gray.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:type placement2.eps
%%BoundingBox:0 0 150 180

/Times-Bold findfont 200 scalefont setfont

18 72 moveto
.3 setgray
(g) show

After show in both preceding PostScript program examples, the new current point 
is located at the width of the character and on the baseline. See point b of figure
7–1. To illustrate this, notice how the line is drawn in the next example.

The beginning of the line is the current point located at the width of the character 
g and on the baseline. 100 0 rlineto  draws a path 100 points to the right of the 
current point. stroke  then paints the path and initializes the current path.

g

type basics 59



Taking Advantage of PostScript

60

7–3

PSlearn

figure 7–2
%!PS-Adobe-2.0 EPSF-1.2
%%Title:type placement3.eps
%%BoundingBox:0 0 225 180

/Times-Bold findfont 200 scalefont setfont
18 72 moveto
.3 setgray
(g) show

0 setgray
2 setlinewidth
100 0 rlineto stroke

When setting a series of characters to form a word, the character spacing is based 
on the font’s metric file. The font metric file contains character widths. Each 
character in line to be set references the previous character.

In figure 7–2 above, point a represents the first current point. Point b is the new 
current after the g is set. Point b therefore becomes the location for the origin of the 
character a. After a is set, point c becomes the new current point.

g

ga
a b c
type basics



Chapter 7

7.3

7–4

PSlearn
various font strategies

Since it is probable that a number of different fonts and sizes would be used on a 
page, following are a number of ideas for switching from one current font to 
another.

The first method would be to save the graphic state using gsave  and grestore . 
In this way, there may be one font that you will continually return to in a PostScript 
program. An example would be:

%!PS-Adobe-2.0 EPSF-1.2
%%Title:type placement4.eps
%%BoundingBox:0 -4 346 126

/Helvetica findfont 170 scalefont setfont

0 0 moveto
(A) show

gsave
/Times-Bold findfont 48 scalefont setfont
.3 setgray
10 10 moveto (aaaaaaaaaaaaaa) show

grestore

(B) show % no moveto, current point from A still active

gsave
/StoneSerif-Bold findfont 48 scalefont setfont
.5 setgray
10 40 moveto (bbbbbbbbbb) show

grestore

(C) show  % no moveto, current point from B still active

gsave
/Helvetica-Bold findfont 48 scalefont setfont
.8 setgray
10 80 moveto (cccccccccccc) show

grestore

AaaaaaaaaaaaaaaBbbbbbbbbbbCcccccccccccc
type basics 61



Taking Advantage of PostScript

62

PSlearn
7–5
The first gsave  saves three key values. The current font made by /Helvetica 
findfont 170 scalefont setfont , the current default value of black, and 
the new current point made after the (A) show .

The current font is then changed to /Helvetica-Bold findfont 48 
scalefont setfont , the current value is changed to 0.3 setgray (70%), and 
a new current point is made with 10 10 moveto for the row of a’s.

grestore restores the current font back to /Helvetica findfont 170 
scalefont setfont , the current value back to black, and the current point left 
after the (A) show .

The whole process then gets repeated for the rows of b’s and c’s.

A second strategy is to give different font settings a name. For example,

/H18 {/Helvetica findfont 18 scalefont setfont} def
/H36 {/Helvetica findfont 36 scalefont setfont} def
/H72 {/Helvetica findfont 72 scalefont setfont} def

A third option is to define

/f {findfont exch scalefont setfont} def

and use it by writing this:

18 /Helvetica f

The third method is used in this example. Note how the placement of individual 
characters is accomplished.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:TYPE.eps
%%BoundingBox:0 0 190 50

/f {findfont exch scalefont setfont} def

68 /Helvetica-Bold f
0 0 moveto (T) show

72 /StoneSerif-SemiboldItalic f
(Y) show

74 /Times-Bold f
6 0 rmoveto (P) show % move current 6 points right

68 /Helvetica-Oblique f
-8 0 rmoveto (E) show % move current -8 points left

TYPE
type basics



Chapter 7

7.4

7–6

PSlearn
Notice how rmoveto  is used to kern the type right and left to correct the 
letterspacing. Kerning operators are explained in more detail in chapter 11, 
“advanced type.”

stroking & filling type

Instead of using show to paint the type as in all the previous examples, the 
letterform’s outline can be obtained and made into the current path. Then gsave  
and grestore  can also be used to save the current path to both stroke  and fill  
as was previously done to the square in section 3.3.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:&&.eps 
%%BoundingBox:0 0 350 170

/StoneSerif-Bold findfont 170 scalefont setfont

6 setlinewidth

18 36 moveto (&) true charpath
gsave

.5 setgray fill
grestore
stroke

180 36 moveto (&) false charpath
gsave

stroke
grestore
.5 setgray fill

Note the difference it makes if the type is stroked second or first.

show is replaced with true charpath . true charpath  makes the character’s 
outline the current path. charpath  is preceded with either true  or false . 
According to the PostScript Language Reference (also known as the Red Book), 

&&&&
type basics 63



Taking Advantage of PostScript

64

7.5
true charpath  is suitable for filling or clipping, but not for stroking. The other 
choice, false charpath , is suitable only for stroking. In the PostScript program 
example above both are used, both seem to work correctly. Clipping is explained 
in section 9.4.

font names

If you are working on an Apple LaserWriter Plus or the later LaserWriter NT or 
NTII, there are thirty-five different font outlines that can be accessed in the 
printer’s ROM. Following is a list of their names written as they would need to be 
written for a PostScript program. First, the basic group of fonts that are standard 
on every PostScript device:

Courier
Courier-Bold
Courier-Oblique
Courier-BoldOblique

Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic

Helvetica
Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique

Symbol

These additional fonts are known as the Plus Set:

AvantGarde-Book
AvantGarde-BookOblique
AvantGarde-Demi
AvantGarde-DemiOblique

Bookman-Light
Bookman-LightItalic
Bookman-Demi
Bookman-DemiItalic

Helvetica-Narrow
Helvetica-Narrow-Oblique
Helvetica-Narrow-Bold
Helvetica-Narrow-BoldOblique

NewCenturySchlbk-Roman
NewCenturySchlbk-Italic
NewCenturySchlbk-Bold
NewCenturySchlbk-BoldItalic

Palatino-Roman
type basics



Chapter 7

7–7

PSlearn
Palatino-Italic
Palatino-Bold
Palatino-BoldItalic

ZapfChancery-MediumItalic

ZapfDingbats

There are hundreds of fonts available from Adobe. A program to print most of the 
characters of a font (to see what they look like) follows. Substitute the font name, 
before the findfont  operator with the font name to be set.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:quickLook.eps
%%BoundingBox:30 125 180 425

/Times-Bold findfont 24 scalefont setfont

/left 36 def % left margin
/newline {show currentpoint exch pop 30 sub

left exch moveto} def

left 400 moveto % location of first line

(ABCDE) newline % newline acts like a carriage
(FGHIJ) newline % on a typewriter
(KLMNO) newline

ABCDE
FGHIJ
KLMNO
PQRST
UVWXYZ
abcdefgh
ijklmno
pqrstuv
wxyz
1234567890
type basics 65



Taking Advantage of PostScript

66
(PQRST) newline
(UVWXYZ) newline
(abcdefgh) newline
(ijklmno) newline
(pqrstuv) newline
(wxyz) newline
(1234567890) show

.5 setgray 30 125 moveto
150 0 rlineto 0 300 rlineto -150 0 rlineto
closepath stroke
type basics



Chapter 7
type basics 67



Taking Advantage of PostScript

66 the repeat & for operators



Chapter 8

8.1
the repeat & for operators
The repeat  operator, as its name implies, repeats something a specified number 
of times. The for  operator counts by a specified increment from a given base 
number to a given limit. Both operators can be used to create similar results but 
they work in entirely different ways. 

repeat

The syntax for repeat  is:

number procedure repeat

For example,

4 {line} repeat  is the same as writing

line
line
line
line

where line  may be a procedure defined earlier in the program to draw a line. The 
procedure can also be a PostScript operator. A common example is:

4 {pop} repeat

This would remove the top four items on the operand stack. You have seen this 
used before with arcto  (section 6.4) and you’ll see it used later with the kshow  
(section 11.5) operator.

In the following example, repeat  is used to draw multiple lines.

8chapterchapter
the repeat & for operators 67



Taking Advantage of PostScript

68

PSlearn
8–1

PSlearn
8–2
%!PS-Adobe-2.0 EPSF-1.2
%%Title:repeat_1.eps
%%BoundingBox:36 36 252 108

/vline {0 0 moveto 0 72 rlineto stroke} def

36 36 translate
2 setlinewidth

36 {6 0 translate vline} repeat

In the program above, vline  defines a 72 point vertical line from the origin. The 
origin is then moved 6 points right thirty-six times with the 6 0 translate  
before each use of the procedure line .

It’s the same as writing 6 0 translate line  thirty-six times.

The next example is basically the same thing but moving up and drawing 
horizontal lines.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:repeat_2.eps
%%BoundingBox:36 36 252 108

0 0 72 144 216

72

0 0 72 144 216

72
the repeat & for operators



Chapter 8

8–3

PSlearn
/hline { 0 0 moveto 216 0 rlineto stroke} def

36 36 translate

2 setlinewidth
12 {0 6 translate hline} repeat

To combine both programs to make a grid, at least the first repeat  line should be 
within a gsave  and grestore  so that the second repeat  starts at the proper 
location. Otherwise, the origin will be at 252 36  after the first repeat , throwing 
off the location of the second set of lines. Here is how that could be written:

%!PS-Adobe-2.0 EPSF-1.2
%%Title:repeat_1&2.eps
%%BoundingBox:36 36 252 108

/vline {0 0 moveto 0 72 rlineto stroke} def
/hline {0 0 moveto 216 0 rlineto stroke} def

2 setlinewidth
36 36 translate

gsave
vline
36 {6 0 translate vline} repeat

grestore

gsave
hline
12 {0 6 translate hline} repeat

grestore

The repeat  can be used with the rotate  operator. See the next example. The 
origin is first moved to 108 108 and then rotated thirty-six times at 10˚ intervals as 
each line is drawn. Then the origin is moved over 108 points and rotated ten times 
at 36˚ intervals as a thicker line is drawn. More on rotate  in section 10.3.
the repeat & for operators 69



Taking Advantage of PostScript

70

8–4

PSlearn

8.2
 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:repeat_3.eps
%%BoundingBox:36 36 288 180

/line {0 0 moveto 0 72 rlineto stroke} def

108 108 translate
36 {10 rotate line} repeat

3 setlinewidth 108 0 translate
10 {36 rotate line} repeat

for

The for  operator counts up or down to a specified limit by a specified increment 
from an initial number. The syntax for for  is:

initial increment limit procedure

Where:
initial is the first number of the count.

increment is the increment of the count (it can be positive or negative).

limit is the last number of the count.

procedure is the procedure executed after every count.

For example, 1 1 10 { } for is the same as 1 2 3 4 5 6 7 8 9 10.

Since there is no procedure supplied between the {} , nothing is executed after each 
count from 1 to 10. If a procedure had been supplied, it would be executed after 
each count. For example,

17 1 1 6 {add} for

would be same as writing:

17 1 add 2 add 3 add 4 add 5 add 6 add

0 0 72 144 216

72

144
the repeat & for operators



Chapter 8

8–5

PSlearn

8–6PSlearn
These two lines of code can be demonstrated further with the following program. 
Since you can’t see what is happening inside the PostScript interpreter, this 
program will print the result of the two lines of PostScript code above. Parts of this 
program will be explained in more detail in section 8.3.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:for_test.eps
%%BoundingBox:36 36 108 72

/Times-Bold findfont 24 scalefont setfont
/str 4 string def % container for 4 characters

36 36 moveto
17 1 1 6 {add} for % count from 1 to 6 adding each to 17
str cvs show % put answer into str, convert into

% a string and show

/Times-Roman findfont 24 scalefont setfont
72 36 moveto
17 1 add 2 add 3 add 4 add 5 add 6 add
str cvs show

The for  operator can be used to draw rows of parallel lines much like the repeat  
examples discussed in the previous section. However, it is accomplished by 
leaving numbers on the stack to be picked up later by the moveto  operator. In the 
next example, the for  operator counts by 6 up to 216. This puts or “pushes” 0, 6, 
12, 18, 24, …, 216 onto the operand stack before the execution of the procedure 
line , which was defined as {0 moveto 0 72 rlineto stroke} . Notice that 
there is only one number supplied for the moveto  operator within the procedure 
definition. After each count of the for  loop, there will be a new number on the 
stack to be used with 0 moveto . 

%!PS-Adobe-2.0 EPSF-1.2

38 38

0 0 72 144 216

72
the repeat & for operators 71



Taking Advantage of PostScript

72

8–7

PSlearn
%%Title:for_1.eps
%%BoundingBox:36 36 252 108

/line {0 moveto 0 72 rlineto stroke} def

36 36 translate
2 setlinewidth

0 6 216 {line} for

This would be same as writing:

/line {0 moveto 0 72 rlineto stroke} def

36 36 translate
2 setlinewidth

0 6 216 { } for % all x values are pushed onto the stack
0 line 6 line 12 line 18 line 24 line 30 line 36 line
42 line 48 line 54 line 60 line 66 line 72 line 78 line
84 line 90 line 96 line 102 line 108 line 114 line
120 line 126 line 132 line 138 line 144 line 150 line
156 line 162 line 168 line 174 line 180 line 186 line
192 line 198 line 204 line 210 line 216 line

A similar technique can be used to draw a series of horizontal lines. However, the 
for  operator will be used to supply the y  value needed by moveto . The line  
procedure therefore is defined as {0 exch moveto 216 0 rlineto stroke} . 
exch  switches the top two items of the operand stack. Therefore, 0 trades places 
with the new number left on the stack. In this way, 0 can always be the x  value and 
the new number is the y .

%!PS-Adobe-2.0 EPSF-1.2
%%Title:for_2.eps
%%BoundingBox:36 36 252 108

/line {0 exch moveto 216 0 rlineto stroke} def

36 36 translate

0 0 72 144 216

72
the repeat & for operators



Chapter 8

8–8

PSlearn
2 setlinewidth
0 6 72 {line} for

The following are two examples where for  is used to supply one of the numbers 
for the scale  operator. Since scale  needs two values, for both the x  and y  scaling 
factor, dup  is used to duplicate the top item on the stack. In the next example, for  
counts from 1 to 2.25 by increments of 0.25. dup  duplicates each count and pushes 
the copy onto the stack. Therefore,

1 .25 2.25 {dup scale circle} for

is the same as

1 1 scale circle
1.25 1.25 scale circle
1.5 1.5 scale circle
1.75 1.75 scale circle
2 2 scale circle
2.25 2.25 scale circle

%!PS-Adobe-2.0 EPSF-1.2
%%Title:for_3.eps
%%BoundingBox:0 0 216 216

newpath
/circle{0 0 6 0 360 arc stroke} def

108 108 translate

1 .25 2.25 {dup scale circle} for

In the next version of the program, the circle  procedure definition includes 
gsave  and grestore  and therefore changes the rate of scale the circle receives.

0 0 72 144 216

72

144
the repeat & for operators 73



Taking Advantage of PostScript

74

PSlearn
8–9

8.3
%!PS-Adobe-2.0 EPSF-1.2
%%Title:for_3b.eps
%%BoundingBox:24 24 192 192

newpath
/circle {0 0 9 0 360 arc stroke} def

108 108 translate

1 1.5 9 {gsave
dup scale circle
grestore} for

using for & put with strings

In the previous examples, the for  operator was used to produce results that could 
have been written with the repeat  operator. for  has other uses besides being an 
alternative to the repeat  operator. for  can also be used with the put  operator to 
manipulate strings and arrays. We will concentrate here on the manipulation of 
strings. The technique will be seen again later when we discuss creating fountains 
with the image  operator in chapter 13. Its use on arrays is essentially the same.

In the following example, a portion of the alphabet is printed by a completely 
different technique than explained in chapter 7. There, the string to be printed was 
enclosed within ()  for the show operator to paint. Here, the characters of the string 
will be created by the for  and put  operators.

0 0 72 144 216

72

144
the repeat & for operators



Chapter 8

360

+

8–10

PSlearn

PSlearn
for demo
%!PS-Adobe-2.0 EPSF-1.2
%%Title:for_4.eps
%%BoundingBox:36 36 378 60

/Times-Bold findfont 24 scalefont setfont
/str 44 string def
0 1 43 {str exch dup put} for

36 36 moveto str show

2 setlinewidth
36 36 moveto 0 24 rlineto stroke

Explaining the program line by line, the first line makes 24 point Times-Bold the 
current font.

In the second line, str  is defined as an empty string with room for 44 characters. 
44 string  could be seen as

(00000000000000000000000000000000000000000000)

The 0s in this string are not the character zero, but represent the ASCII decimal 0, 
the first entry of the 256 character ASCII chart (see appendix A). This entry doesn’t 
have a visible character assigned to it and is often referred to as a null character. 
Down further on the chart, you’ll note that decimal 33 is the “!” or exclamation 
point. If str  were printed now, the page would be blank.

The third line, 0 1 43 {str exch dup put} for

basically changes str  from

(00000000000000000000000000000000000000000000)

into

(012345678910111213141516171819202122232425  … 40414243 )

It does this by counting from 0 to 43 and while doing so, replacing str  with the 
count. The procedure replaces the first 0 (null character) of str  with 0, the second 
0 of str  with 1, the third 0 of str  with 2, the fourth with 3 and so on until the 
44th 0 is replaced with 43 . The count is from 0 to 43. The string is 44 characters in 
length. The first 0 is considered in position 0 and the last 0 is in the 43rd position. 

Looking at the syntax of put  will explain this procedure in more detail.

string index integer put

0 0 72 144 216 288

72

 !"#$%&’()*
the repeat & for operators 75



Taking Advantage of PostScript

76
Where:

string is a group of characters.

index identifies a position within string ; the first character is at index. 
0, the second character, is at index 1, and so on.

integer is the integer to be put  into position index  of string.

In the previous example, 0 1 43 {str exch dup put} for , after the first 
count of for  you would have

0 str exch dup put

exch  switches the top two items on the stack, which gives us

str 0 dup put

dup  duplicates 0, so we now have

str 0 0 put

put  now puts 0 in index 0, or position 0 of str . The changing string str  would 
look like this after the first count:

(00000000000000000000000000000000000000000000)

After the second count it would be

(01000000000000000000000000000000000000000000)

and so on until it is filled:

(012345678910111213141516171819202122232425  … 40414243 )

The next line, 36 36 moveto str show , paints the string str  beginning at the 
location of 36 36. Nothing appears till around 36 234 because there are no visible 
characters assigned to characters 0–31 in the ASCII chart and character 32 is the 
word space. The 33rd character is the exclamation point. See appendix A.

The last two lines of the program draw a vertical line marking where the string 
began at 36 36.

In the next example, getinterval  is used to get a section of a string. In this case, 
it is used to obtain only the visible portion of the string created in the previous 
PostScript example. The syntax for getinterval  is:

string index count getinterval  returning substring

Where:

index is the starting point into the string.

count is the number of characters starting at index .

For example,

(abcdefg) 2 3 getinterval  returns (cde)

In this example, getinterval  is defined as the section of str  starting at 33 plus 
the next 10 characters (a total of eleven characters).
the repeat & for operators



Chapter 8

360

8–11

PSlearn
 %!PS-Adobe-2.0 EPSF-1.2
%%Title:for_5.eps
%%BoundingBox:36 33 252 70

/Times-Bold findfont 36 scalefont setfont
/str 44 string def

0 1 43 {str exch dup put} for

/piece {str 33 11 getinterval} def

36 36 moveto piece show

0 0 72 144 216 288

72

!"#$%&’()*+
the repeat & for operators 77



Taking Advantage of PostScript

78 more on drawing



Chapter 9

9.1
more on drawing
There is more to do with current paths than just stroke  and fill  them. The 
character of the stroke  and fill  can be changed in a variety of ways. The path 
can also be used as a kind of cookie cutter or mask to have images appear only 
within its boundaries.

line endings & corners

There are three ways to end a line. These are shown below. In all three, the black 
line represents the path and the gray is its width after stroking. The first one is 
called the butt cap. Whatever the line’s width, it doesn’t affect the line’s length. The 
other two will increase the line’s length by the thickness. The butt cap is the default 
setting.

0 setlinecap  (the default)

1 setlinecap  produces the round cap

2 setlinecap  produces the square cap

There are also three possible corners.

0 setlinejoin the miter join (the default)

1 setlinejoin round join

2 setlinejoin bevel join

Examples of all of this follows. Again, the black line represents the path and the 
gray is its width after stroking.

9chapterchapter
more on drawing 79



Taking Advantage of PostScript

80

PSlearn
9–1

9.2
%!PS-Adobe-2.0 EPSF-1.2
%%Title:caps&joins.eps
%%BoundingBox:27 27 261 144

18 setlinewidth 

1 setlinejoin 1 setlinecap % bottom
.6 setgray 36 108 moveto
108 36 lineto 108 108 lineto 216 108 lineto stroke

2 setlinejoin 2 setlinecap % middle
.4 setgray 36 72 moveto
180 72 lineto 144 36 lineto 252 36 lineto stroke

0 setlinejoin 0 setlinecap % top & back to default
.8 setgray 72 36 moveto
72 130 lineto 252 130 lineto 252 72 lineto stroke

dashed lines

Dashed lines are created by using the setdash operator. The syntax is:

array offset setdash

Where:

array is a collection of values that alternately specifies a stroke segment and a 
gap. There cannot be any negative values in the array .

offset shifts the line left or right.

This can be seen in the following example. Each line is 10 points wide and is the 
same alternating dash of a 20 point stroke and 10 point gap. What is different about 
each is the offset values of 0, 10 , and -10  from top to bottom. There are additional 
examples in chapter 19, “library of examples.”

0 0 72 144 216

72
more on drawing



Chapter 9

PSlearn
9–2

9.3
%!PS-Adobe-2.0 EPSF-1.2
%%Title:setdash_1.eps
%%BoundingBox:0 0 360 70

/vl {0 0 moveto 0 70 lineto} def
gsave

.5 setgray
36 {10 0 translate vl} repeat stroke

grestore

10 setlinewidth

[20 10] 0 setdash % top
0 55 moveto 360 55 lineto stroke

[20 10] 10 setdash % middle
0 35 moveto 360 35 lineto stroke

[20 10] -10 setdash % bottom
0 15 moveto 360 15 lineto stroke

non-zero winding & the even/odd rules

The non-zero winding and the even/odd rules determine what is filled or hollow 
within complex paths.

The most obvious application of the non-zero winding rule is in the drawing of 
letterforms that have holes (more precisely known as counters) within them. 
Letterforms such as A, e, and O are examples. If the paths of the counter are not 
drawn in the opposite direction of the main letterform shape, the counter shape 
will be filled.

In the following example, both circles were drawn with two paths. The intention is 
to make one the outside edge and the other the inside. In the first circle, both the 
inside and the outside paths are drawn in the same direction and filled. The paths 
were drawn again in black to show where they were drawn. Since they were 
drawn in the same direction, both circles filled. In the second circle, the inside and 
outside paths are drawn in opposite directions. Since this is the case, the smaller 
inside path becomes the inside edge of the circle.

The rectangle is another example of the inside path being drawn in the opposite 
direction of the outside path. The paths are used a second time and stroked to 
identify the paths.

A test for whether a given point will be inside or outside of a filled area can be done 
by drawing a line from that point to the outside. Starting with a value of zero, when 
more on drawing 81



Taking Advantage of PostScript

82

360

9–3

PSlearn
the line crosses a clockwise path add one, and when the line crosses a counter-
clockwise path subtract one. If the result is zero, the point will be outside the shape, 
thus the name non-zero winding rule. Notice the lines in the two circles in the 
example below. On the left, the dotted line represents the path of both circles. 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:windingRule.eps
%%BoundingBox:16 34 364 182

% left circle; both circles drawn in the same direction
.7 setgray
newpath
108 108 72 360 0 arcn % clockwise
108 108 60 360 0 arcn % clockwise
fill

% right circle; inside circle drawn in opposite direction
newpath
288 108 72 360 0 closepath arcn % clockwise
288 108 60 0 360 closepath arc % counterclockwise
fill

% rectangle counterclockwise drawing
.5 setgray 144 72 moveto
288 72 lineto 288 144 lineto 144 144 lineto closepath
% clockwise drawing
150 78 moveto
150 138 lineto 282 138 lineto 282 78 lineto closepath
fill

The even-odd rule is similar to the non-zero rule in that it too helps to determine 
what parts are and are not filled within a complex path. In figure 9–1, the letterform 
g is an example. The counters of the first g are drawn in the opposite direction of 
the outside shape. In the second and third g, the counters are drawn in the same 

0 0 72 144 216 288

72

144 0
1

2

0
-1

0

more on drawing



Chapter 9

9–4

PSlearn

figure 9–1

360figure 9–2

9.4
direction. We get the expected results in the second g, but the third appears correct. 
The reason is the third g is filled by using eofill , an alternate for fill . If 
eofill had been used on the first g, the results would have been the same and 
been correct. 

The even-odd rule uses the same test line, crossing the paths as it leaves the shape. 
However, one is added every time a path is crossed. In the first and third g above, 
two paths are crossed, an even number. It doesn’t matter what direction the paths 
are drawn in. In more complex paths, the results are not as predictable as in figure 
9–2.

In figure 9–2, the first shape is filled by fill , the second by eofill .

 

Other examples of the non-zero winding and the even/odd rules can be found in 
chapter 19, “library of examples.”

clipping

Clipping forces all subsequent painting to appear only within the boundaries of a 

0 0 72 144 216

72

144

0 0 72 144 216 288

72
more on drawing 83



Taking Advantage of PostScript

84

360

9–5

PSlearn
path. An example of a clipping area are the margins that form the printable area on 
a laser printer’s page. If something is drawn beyond that boundary, it’s clipped or 
cropped. All the path construction operators such as lineto , arc  and curveto  
can be used to create a clipping path.

The clipping action should be placed between a gsave  and grestore  to prevent 
it from affecting all that follows in the program. The gsave  and grestore  can be 
considered in a sense an on/off switch for the clip . All graphics after the clip  
and the next grestore  will be cropped by the clippath.

clip  should also be followed by the newpath  operator. Otherwise, the clipping 
path may get stroked or filled. In the example below, the first box and zigzag are 
for reference. No clipping is taking place. In the second position, the box  clippath 
followed by newpath  clips the zigzag. The third part shows what happens when 
newpath  is left out. The clippath is also stroked and half its width is clipped away. 
newpath  initializes the clippath from painting but does not affect the clip.

 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:clip_3.eps
%%BoundingBox:12 30 326 115

/box {0 0 moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath} def

/zag {6 setlinewidth .333 setgray
0 74 moveto 74 -10 rlineto -74 -10 rlineto
74 -10 rlineto -74 -10 rlineto
74 -10 rlineto -74 -10 rlineto
74 -10 rlineto -74 -10 rlineto} def

36 36 translate
box stroke
zag stroke
1 setlinewidth 0 setgray

gsave
108 0 translate
box clip newpath
zag stroke

grestore

0 0 72 144 216 288

72
more on drawing



Chapter 9

9.5

figure 9–3
gsave
216 0 translate
box clip
zag stroke

grestore

Other examples of clipping and an example of the related eoclip can be found 
in the library of examples chapter.

setscreen

Gray values are simulated on laser printers by arranging the dots made by the 
printer into patterns that the eye sees as different grays. The dots of the printer are 
grouped together to form cells. Within a given area, if half the dots are used in each 
cell, a 50% gray is produced.

The setscreen  operator controls the dot shape of the cell and the frequency (the 
number of cells per inch) for the current color. The default for the NeXT laser 
printer, for example, is a round dot at 60 cells per inch at 0˚. The syntax for 
setscreen is:

frequency angle procedure setscreen

Where:

frequency is the number of cells per inch.

angle is the angle of the screen in degrees.

procedure controls the dot shape of the cell. A number of different shapes are 
possible including square, oval and line dots. The size of the dot 
will depend on the value of the current color.

If the round dot default were changed from 60 to 10 lines per inch and the angle 
from 0˚ to 45˚, it would be written as the following line of PostScript:

10 45 {dup mul exch dup mul add 1.0 exch sub} setscreen

It would look like figure 9–3.

The setscreen  operator assigns a priority value to each pixel of each cell of the 
halftone. The priority determines the arrangement of pixels for each cell. The 
more on drawing 85



Taking Advantage of PostScript

86

figure 9–4

figure 9–5
amount of pixels used will depend on the gray value needed. The darker the gray, 
the more pixels used. If a 400 dpi laser printer were set to have 40 cells per inch, 
each cell would be 10x10 or contain 100 pixels. 

If you could see one of those cells and chart it, it would look like figure 9–4. The 
100 pixels are divided into an x y axis with its center as the origin or 0 0. Each pixel 
has an x y value. The upper right is always 1 1, the lower left is always -1 -1, and 
so on. If the cell were 20x20, the intermediate x y locations would adjust 
accordingly. The setscreen  procedure uses these x y locations to determine and 
assign each pixel’s priority.

The easiest setscreen  procedure to use as an example is {pop} . pop  discards 
the top number on the stack. If the pair of numbers is .2 .4, the .4 would be the one 
on top of the stack because it would be the last number received. pop  would 
discard it leaving .2. Looking at the chart of the cell, pop  would discard all the y 
values, leaving each pixel’s x as the pixel’s priority number. The left row therefore 
will all be -1, the next row are all -.8, and so on down each row (see figure 9–5).

.2 1     .4 1       .6 1     .8 1       1 1

.2 .8     .4 .8     .6 .8     .8 .8     1 .8

.2 .6     .4 .6     .6 .6     .8 .6     1 .6

.2 .4     .4 .4     .6 .4     .8 .4     1 .4

.2 .2     .4 .2     .6 .2     .8 .2     1 .2

.2 -.2    .4 -.2    .6 -.2    .8 -.2    1 -.2

.2 -.4    .4 -.4    .6 -.4    .8 -.4    1 -.4

.2 -.6    .4 -.6    .6 -.6    .8 -.6    1 -.6

.2 -.8    .4 -.8    .6 -.8    .8 -.8    1 -.8

.2 -1    .4 -1     .6 -1     .8 -1      1 -1

-1 1     -.8 1      -.6 1    -.4 1     -.2 1

-1 .8    -.8 .8    -.6 .8    -.4 .8   -.2 .8

-1 .6    -.8 .6    -.6 .6    -.4 .6   -.2 .6

-1 .4    -.8 .4    -.6 .4    -.4 .4   -.2 .4

-1 .2    -.8 .2    -.6 .2    -.4 .2   -.2 .2

-1 -.2   -.8 -.2   -.6 -.2  -.4 -.2  -.2 -.2

-1 -.4   -.8 -.4   -.6 -.4  -.4 -.4  -.2 -.4

-1 -.6   -.8 -.6   -.6 -.6  -.4 -.6  -.2 -.6

-1 -.8   -.8 -.8   -.6 -.8  -.4 -.8  -.2 -.8

-1 -1    -.8 -1    -.6 -1   -.4 -1    -.2 -1

-1     -.8     -.6      -.4    -.2      .2      .4      .6      .8       1

-1     -.8     -.6      -.4    -.2      .2      .4      .6      .8       1

-1     -.8     -.6      -.4    -.2      .2      .4      .6      .8       1

-1     -.8     -.6      -.4    -.2      .2      .4      .6      .8       1

-1     -.8     -.6      -.4    -.2      .2      .4      .6      .8       1

-1     -.8     -.6      -.4    -.2      .2      .4      .6      .8       1

-1     -.8     -.6      -.4    -.2      .2      .4      .6      .8       1

-1     -.8     -.6      -.4    -.2      .2      .4      .6      .8       1

-1     -.8     -.6      -.4    -.2      .2      .4      .6      .8       1

-1     -.8     -.6      -.4    -.2      .2      .4      .6      .8       1
more on drawing



Chapter 9

%
figure 9–6

9.6
Using this priority system, different gray values will fill as in figure 9–6.

Actual size, it will look like this:

Other procedures will cluster the pixels in the center as a round, oval, or square 
dot. There are a number of possible patterns available. In addition, the setscreen  
will affect halftone pictures.

setscreen with halftones

The setscreen  operator will affect the imaging of all gray values, including 
scanned gray scale pictures. setscreen  does not affect 1-bit pictures. The dot 
pattern in this case is already determined. In the two examples below, squares 
painted with a 20%, 40%, 60%, and 80% black are next to a scanned gray scale 
picture. Other setscreen  examples can be found in chapter 19, “library of 
examples.”

10% 30% 50% 80
more on drawing 87



Taking Advantage of PostScript

88

360

360

9.7
 pathforall

pathforall  retravels a current path and executes one of four procedures at each 
instance of a moveto , lineto , curveto , and closepath  respectively.

The syntax for pathforall  is:

movetoProc linetoProc curvetoProc closepathProc pathforall

Where:

0 0 72 144 216 288

72

144

40 90 {pop} setscreen

0 0 72 144 216 288

72

144

40 45 {dup mul exch dup mul add 1.0 exch sub} setscreen
more on drawing



Chapter 9

360

int

9–6

PSlearn
movetoProc returns the x y  location of the moveto  then executes the 
movetoProc  procedure at every instance of a moveto  
encountered.

linetoProc returns the x y  location of the lineto  then executes the 
linetoProc  procedure at every instance of a lineto  or 
rlineto  encountered.

curvetoProc returns the x y x 1 y 1 x 2 y 2 of the curveto  and executes 
the curvetoProc  procedure at every instance of a curveto  
or rcurveto  encountered. If the curve is made by the arc , 
arcn , or arcto  operators, it will be converted to the 
curveto  equivalent.

closepathProc executes the closepathProc  procedure at every instance of 
a closepath.

The x y  coordinates returned are in user space. The four procedures can perform 
any operation desired and can use the coordinates pushed on the stack. If the 
values are not used, they should be cleared from the stack with the pop  operator.

In the following example, I use pathforall  to print the PostScript operators used 
up to that point. The location of each label is from the coordinates pushed onto the 
stack by pathforall . Note in the start  procedure the currentpoint  operator. 
This pushes the x y  coordinates of the current point after the (moveto) show  
onto the stack to be used later by the fin  procedure.

 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:pathforall_1.eps
%%BoundingBox:34 34 360 220

/start{moveto (moveto) show currentpoint} def
/line {moveto (lineto) show} def
/curve{moveto (curveto) show

/Times-Italic findfont 8 scalefont setfont

0 0 72 144 216 288

72

144

moveto

lineto curveto

control point

control point

lineto

lineto

curvetocontrol point

control po

 and closepath
more on drawing 89



Taking Advantage of PostScript

90
moveto (control point) show
moveto (control point) show
/Helvetica-Bold findfont 10 scalefont setfont} def

/fin {moveto( and closepath) show} def

/path {36 36 moveto
36 144 lineto
216 72 144 216 252 144 curveto 
72 0 rlineto
288 72 36 0 270 arcn
closepath} def

/Helvetica-Bold findfont 10 scalefont setfont

3 setlinewidth 0.3 setgray
path stroke

0 setgray
path
{start} {line} {curve} {fin} pathforall
newpath

The following example uses pathforall  in the same way as the design Blast, 
found in the beginning of chapter 2. All the music notes are located at the 3 pairs 
of x y for the curveto  operator generated by pathforall .

�

�

�

�

�

�

�
�

�
��

�

�

�
�

�

��

�

�
�

�

�
�

�
�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

��
�

�

�

�

�

�

�

�

�

�
�

�
�

�
��

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

��

�

�
�
�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�
�

���

�

� �

�

�

�

�

��

�

�

�

��

�

�

��

�

�
�

�

�

�
�

�

�

� �

�

�

�

�

�

�
��

�

��

�

�

�

�

�

�

��

�

�

�
�

�� �

�
�

�

�
�

�

�

�
�� �

�

�

�

�
�

� �

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�
�

�

�

�

� �

�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�

�

�
�

�
�

�
� �

�

��
more on drawing



Chapter 9

9–7

PSlearn

%!PS-Adobe-2.0 EPSF-1.2
%%Title:pathBlast.eps
%%DocumentFonts:Sonata
%%BoundingBox:0 0 310 310

0 0 moveto 310 0 lineto 310 310 lineto 0 310 lineto
closepath stroke

/a {100 rand exch mod} def
/b {100 rand exch mod} def
/c {200 rand exch mod} def
/d {200 rand exch mod} def
/e {300 rand exch mod} def
/f {300 rand exch mod} def

/note {moveto (q) show} def

.5 setlinewidth
173417 srand
/Sonata findfont 10 scalefont setfont

0 0 moveto
100 {a b c d e f curveto} repeat
{pop pop}{pop pop}{note note note}{} pathforall stroke
more on drawing 91



Taking Advantage of PostScript

92 the CTM



Chapter 10

10.1
the CTM
CTM is the acronym for the Current Transformation Matrix. The CTM can be 
thought of as the coordinate system. A 1 inch square can be defined and expected 
to print as a 1 inch square. It will print as a 1 inch square as long as the CTM has 
not changed. If the coordinate system or matrix is doubled in size, the square will 
appear to be twice its intended size when used. The scale  operator is one of 
several PostScript operators used to transform the matrix in some way. The most 
common CTM operators are:

translate moves the location of the origin or 0 0.

scale changes the size of the coordinate system or matrix.

rotate rotates the coordinate system or matrix.

concat can perform the translate , scale , and rotate  
transformations all in one command.

In particular, understanding the concat  operator will be necessary before getting 
into chapters 11, 12, 13, and 14. The concepts covered here will easily apply to those 
four chapters.

Learning these various transformations can provide a number of interesting visual 
opportunities.

translation of the origin

translate was introduced briefly in chapter 3, section 3.4. There it was used to 
position a square at different locations on the page. Often, using translate  to 
move around the page is the best way to organize a design. Having a consistent 
reference point to work from can be very handy. It facilitates procedures being 
used in one design to be used in another.

It is important to remember that translate  transforms the CTM, which is part of 
the graphic state. Consider this example. Three squares are placed, the second and 
third using translate  to move the origin to determine their placement. Note that 
gsave  and grestore  are not used to save the graphic state between placement of 
squares.

The white rectangle represents the page, the different grid patterns represent 
locations of the CTM by using translate . As you can see, you could have an 
image placed off the page. When this program is printed, as far as you know, the 
third square doesn’t exist.

10chapterchapter
the CTM 93



Taking Advantage of PostScript

94

10–1

PSlearn
 %!PS-Adobe-2.0 EPSF-1.2
%%Title:translate_1.eps
%%BoundingBox:0 0 1098 1170

/square { 0 0 moveto 72 0 rlineto 0 72 rlineto
-72 0 rlineto closepath fill} def

.5 setgray
square
360 432 translate square
666 666 translate square

By using gsave  and grestore  to save and restore the original CTM between 
the CTM



Chapter 10

10.2

360

10–2

PSlearn
transformations made by the translate  operator, graphics can more predictably 
be placed on the page.

scale

scale expects two arguments, an x  and y  value where 1 = the existing size,
0.5 = half the size, and 2 is twice the size. 0.5 2 scale  would therefore compress 
the x axis by half and double the y axis.

scale was introduced briefly in section 3.5. There the scale  operator was used 
to make squares of various sizes. As mentioned there, you can get yourself into 
trouble by not carefully noting where scale  is sequenced with other operators 
and obtain unexpected results. Study the following example and note on which 
line 1 8 scale  is entered.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:scale_seq.eps
%%BoundingBox:30 30 330 288

/square {0 0 moveto 72 0 lineto 72 72 lineto 0 72 lineto
closepath } def

gsave % first
36 36 translate
square
1 8 scale % after square path & translate
stroke

grestore

gsave % second
144 36 translate
1 8 scale % after translate, before square path
square

0 0 72 144 216 288

72

144
the CTM 95



Taking Advantage of PostScript

96

10.3

360

PSlearn
10–3
stroke
grestore

gsave % third
1 8 scale % before translate,  square path, & stroke
252 4.5 translate % 8 x 4.5 = 36
square
stroke

grestore

rotate

As you might expect, rotate  rotates the CTM. It expects one number representing 
a degree of rotation. A positive number is a counterclockwise rotation and a 
negative number is a clockwise rotation. 0˚  is at the three o’clock position. In the 
example below, the first square is normal, the second is 45 rotate  and the third 
is -15 rotate . The crossing gray lines represent the change of location of the x y 
axis at the time the path for square is made and stroked.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rotate_1.eps
%%Creator:John F Sherman
%%CreationDate:June 1990
%%BoundingBox:34 70 360 180

/square {0 0 moveto 72 0 lineto 72 72 lineto 0 72 lineto
closepath stroke} def

3 setlinewidth
gsave

36 72 translate
square

grestore

0 0 72 144 216 288

72

144
the CTM



Chapter 10

360

PSlearn
10–4
gsave
144 72 translate
45 rotate
square

grestore

gsave
252 72 translate
-15 rotate
square

grestore

As was the case with scale , the sequence in which rotate  is used is very 
important. In the next example, rotate  is used before translate  instead of 
after. The same degrees of rotation and translation are used as in the previous 
example. Note the difference. Earlier we moved the origin then rotated, now we 
rotate then move the origin. Again the crossing gray lines represent the change of 
location of the x y axis.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rotate_2.eps
%%BoundingBox:0 -12 360 270

/square {0 0 moveto 72 0 lineto 72 72 lineto 0 72 lineto
closepath stroke} def

3 setlinewidth
gsave

36 72 translate

0 0 72 144 216 288

72

144
the CTM 97



Taking Advantage of PostScript

98

PSlearn
10–5
square
grestore

gsave
45 rotate
144 72 translate
square

grestore

gsave
-15 rotate
252 72 translate
square

grestore

It also makes a difference whether the current point for a graphic is made before or 
after the rotation. Note when rotate  is used in the example below. A current does 
not move with the rotation of the CTM.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rotate_3.eps
%%BoundingBox:54 72 162 180

/Times-Bold findfont 24 scalefont setfont
36 36 translate
.5 setlinewidth

gsave % moveto after rotation of CTM
45 rotate
72 36 moveto (rotate1) show

grestore

gsave % moveto before rotation, but (rotate2) show is after
72 36 moveto
45 rotate
(rotate2) show

grestore

0 0 72 144

72

144

ro
ta

te1

ro
ta

te2
the CTM



Chapter 10

10.4

figure 10–1
concat

The manipulation of the current transformation matrix using concat  will also be 
useful in understanding the makefont , image , and imagemask  operators 
explained in later chapters.

The matrix can be thought of as an elastic grid that scales all graphics to the page. 
If the CTM were doubled, everything would print twice the intended size. The 
translate , scale , and rotate  operators change the CTM, and their three 
combined operations can be done at once with the concat  operator. concat  is 
more powerful but it’s less intuitive than the other three.

In figure 10–1 below, a circle is drawn on a grid representing the CTM.

If that grid was scaled to twice its normal size on the x axis, the width of the circle 
would also be twice its normal size. This could have been done with

2 1 scale

but it can also be done with

[2 0 0 1 0 0] concat

The first number of the array scales the x axis and the fourth number scales the y 
axis. If we wanted the height of the circle to be doubled, the matrix array would be 
[1 0 0 2 0 0] . Referring to the first and fourth numbers, 1 is 100% or actual 
size, .5  is 50% and 3 is 300%. If there has already been a scale applied to the CTM, 
the new transformation will be in addition to the existing CTM. An example of the 
scaled circle with concat  follows:

0 0

0 1 1 1

1 0 0 0

0 1 1 1

1 0

0 0 72 144 216

72
the CTM 99



Taking Advantage of PostScript

100

PSlearn
10–6

figure 10–2
%!PS-Adobe-2.0 EPSF-1.2
%%Title:circle by2.eps
%%BoundingBox:34 34 220 110

.5 setgray
4 setlinewidth
newpath 72 72 36 0 360 arc stroke

0 setgray
[2 0 0 1 0 0] concat
newpath 72 72 36 0 360 arc stroke

There are other transformations possible with concat . The second and third 
numbers skew the CTM up or down and left or right. Figure 10–2 is an example of 
skewing the x axis. The second number controls the angle of the x axis and the third 
controls the angle of the y axis. Figure 10–2 is an example of [1 1 0 1 0 0] 
concat . The 1 in the second position of the matrix array skews everything up 45˚.

Had the matrix been [1 -1 0 1 0 0] concat , the shift would have been down 
45˚. Unfortunately, as you can see, the degree of the desired shift is not what is 
entered into the matrix. There is a calculation based on the desired angle θ (degree) 
that needs to be done for the second and third numbers. The tangent of θ is what 
is required for the second and third positions of the matrix array. Appendix B 
contains a table of tangent values for each degree for convenient reference.

To rotate the x axis counterclockwise 30˚, tan30, which equals 0.5774, is entered as 
the second number of the matrix array. In the following example, the square is 
skewed 30˚ by the concat  operator. The black line is rotated 30˚ by using rotate  
as a reference.

0 0

0 1

1 1

1 0
the CTM



Chapter 10

PSlearn
10–7
%!PS-Adobe-2.0 EPSF-1.2
%%Title:concat_1.eps
%%BoundingBox:72 36 252 150

72 36 translate

gsave % gray box
.5 setgray
[1 0.5774 0 1 0 0] concat
0 0 moveto 0 72 lineto 72 72 lineto 72 0 lineto
closepath fill

grestore

gsave % black line
3 setlinewidth
30 rotate
0 0 moveto 200 0 lineto stroke

grestore

If both axes were skewed the same degree and direction, it would appear that we 
had made the equivalent of a 30˚ rotation. Not quite, because

[1 .5774 -.5774 1 0 0] concat

is not the same as

30 rotate

Even though a 30˚ rotation has occurred, the square is no longer the same size. 
Note the difference in the width and height of the square in concat_1.eps . The 
width is now greater than the height. This is easily seen in the next example. The 
same square is double skewed for a 30˚ rotation and a normal 30˚ rotation.

0 0 72 144 216

72

144
the CTM 101



Taking Advantage of PostScript

102

PSlearn
10–8
%!PS-Adobe-2.0 EPSF-1.2
%%Title:concat_2.eps
%%BoundingBox:30 36 252 150

72 36 translate
/square {0 0 moveto 0 72 lineto 72 72 lineto 72 0 lineto

closepath} def
gsave

.5 setgray
[1 .5774 -.5774 1 0 0] concat
square fill

grestore

gsave
30 rotate
square stroke
3 setlinewidth
0 0 moveto 200 0 lineto stroke

grestore

The proper method of rotation with the concat  operator can be accomplished 
with this syntax:

[cos θ sin θ -sin θ cos θ 0 0] concat

which is in this case

[cos30˚ sin30˚ -sin30˚ cos30˚ 0 0] concat

The values used for this operation can be found in appendix B. A rotation example 
follows:

0 0 72 144 216

72

144
the CTM



Chapter 10

PSlearn
10–9
%!PS-Adobe-2.0 EPSF-1.2
%%Title:concat&rotate.eps
%%BoundingBox:34 36 252 140

72 36 translate

gsave % 30 degrees
.5 setgray
[.866 .5 -.5 .866 0 0] concat
0 0 moveto 0 72 lineto 72 72 lineto 72 0 lineto
closepath fill

grestore

gsave
3 setlinewidth
30 rotate
0 0 moveto 200 0 lineto stroke

grestore

A combined scale and rotation can be performed with the concat  operator in one 
matrix array. In the next example, the box is drawn as 1 unit by 1 unit. Using 
concat , we can scale it to 72 by 72 and rotate it 30˚.

The syntax for this matrix is

[s*cos θ s*sin θ s*-sin θ s*cos θ 0 0] concat

where s  is the scale factor. Calculated, it will be:

 [62.352 36 -36 62.352 0 0] concat

An example follows:

0 0 72 144 216

72
the CTM 103



Taking Advantage of PostScript

104

PSlearn
10–10
%!PS-Adobe-2.0 EPSF-1.2
%%Title:concat_r&s.eps
%%BoundingBox:34 36 252 140

72 36 translate

gsave
.5 setgray
[62.352 36 -36 62.352 0 0] concat
0 0 moveto 0 1 lineto 1 1 lineto 1 0 lineto
closepath fill

grestore

gsave
3 setlinewidth
30 rotate
0 0 moveto 200 0 lineto stroke

grestore

Finally, the fifth and sixth numbers of the matrix array perform a translation. In the 
next example, the 72 36 translate  is used only by the rotated line. The square 
is positioned by the concat  operator.

0 0 72 144 216

72

0 0 72 144 216

72
the CTM



Chapter 10

PSlearn
10–11
%!PS-Adobe-2.0 EPSF-1.2
%%Title:concat_all.eps
%%BoundingBox:34 36 252 140

gsave
.5 setgray
[62.352 36 -36 62.352 72 36] concat
0 0 moveto 0 1 lineto 1 1 lineto 1 0 lineto
closepath fill

grestore

gsave
72 36 translate
3 setlinewidth
30 rotate
0 0 moveto 200 0 lineto stroke

grestore
the CTM 105



Taking Advantage of PostScript

106 advanced type



Chapter 11

11.1

PSlearn
11–1
advanced type
The previous chapter on type only covered the basics of working with type. There 
are a number of powerful PostScript operators for modifying fonts and kerning 
fonts. Kerning is performing custom character spacing for better legibility, form, or 
special effect. For example, the lower case o is spaced differently in the words Do 
and To. Careful attention to kerning would tuck the o under the T for proper 
letterspacing.

modifying existing fonts

As discussed in chapter 7, the outlines of fonts are stored as 1 point outlines. To be 
more precise, they are stored within a matrix that scales it to a 1 point square. This 
matrix is independent of the CTM, but acts in much the same way. In chapter 10, 
we manipulated the CTM with the concat operator. The font matrix is 
manipulated with the makefont operator. The next two PostScript fragments are 
equivalent:

/Helvetica-Bold findfont 100 scalefont setfont

/Helvetica-Bold findfont [100 0 0 100 0 0] makefont setfont

The makefont  operator expects a matrix array that acts in the same way as the 
matrix array used with concat . The first number of the array represents the x 
scale, the fourth number represents the y scale. The other four remaining numbers 
also act the same as explained in section 10.4.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:makefont_1.eps
%%BoundingBox:0 0 340 75

/Helvetica-Bold findfont 
[150 0 0 100 0 0] makefont setfont

11chapterchapter

TTTTT

advanced type 107



Taking Advantage of PostScript

108

11–2

PSlearn
0 0 moveto (T) show

/Helvetica-Bold findfont 
[125 0 0 100 0 0] makefont setfont
100 0 moveto (T) show

/Helvetica-Bold findfont 100 scalefont setfont
188 0 moveto (T) show

/Helvetica-Bold findfont 
[75 0 0 100 0 0] makefont setfont
255 0 moveto (T) show

/Helvetica-Bold findfont 
[50 0 0 100 0 0] makefont setfont
308 0 moveto (T) show

All the Ts above are Helvetica-Bold 100 point, at least in height. The first is scaled 
150%, the second 125%, the third is normal, the fourth is condensed 75%, and the 
fifth is condensed 50%. The Helvetica-Narrow font on the LaserWriter Plus is 
condensed in this fashion (see section 15.3). It is not a separate drawing of 
Helvetica like Helvetica Condensed, but a mathematically condensed version of 
the font.

In the next example, the third number of the matrix array is given a value and the 
first and fourth are set to 100. The third number of the matrix skews the y axis left 
and right. The number unfortunately does not represent the angle that the matrix 
is skewed (see 10.4). It is the product of this equation:

y ∗  tanθ

See the preceding chapter for detailed information on matrix manipulation.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:makefont_2.eps
%%BoundingBox:0 0 360 75

/Helvetica-Bold findfont % -45
[100 0 -100 100 0 0] makefont setfont
75 0 moveto (T) show

/Helvetica-Bold findfont % -20
[100 0 -36.4 100 0 0] makefont setfont
105 0 moveto (T) show

/Helvetica-Bold findfont 100 scalefont setfont

TTTTT
advanced type



Chapter 11

11–3

PSlearn
150 0 moveto (T) show % normal

/Helvetica-Bold findfont % 20
[100 0 36.4 100 0 0] makefont setfont
195 0 moveto (T) show

/Helvetica-Bold findfont % 45
[100 0 100 100 0 0] makefont setfont
225 0 moveto (T) show

All the Ts above are again Helvetica-Bold 100 point in size. The first T is obliqued 
–45˚, the second is –20˚, the third is normal, the fourth is at 20˚, and the fifth is at 45˚.

In the next example, the letterforms get stretched more dramatically when the x 
axis is skewed. Again, the type is the equivalent of 100 point. Now the second digit 
of the matrix array is changed. The number is arrived at in the same way as before, 
except the angle movement will be up and down.

This example is written differently to help keep track of where the current point is 
located for each T. An X is drawn at each T’s origin for a point of reference. Even 
though the origins of the Ts make a horizontal row, the baselines of the Ts in effect 
rotate because of the skewing of the x axis.

All the Ts below are again Helvetica-Bold 100 point. The first T is obliqued –45˚, the 
second is –20˚, the third is normal, the fourth is at 20˚, and the fifth is at 45˚.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:makefont_3.eps
%%BoundingBox:0 0 360 195

/x {-6 -6 moveto 6 6 lineto stroke
-6 6 moveto 6 -6 lineto stroke} def

.5 setgray % background
0 0 moveto 360 0 lineto 360 195 lineto 0 195 lineto
closepath fill

TTTTT
advanced type 109



Taking Advantage of PostScript

110

11.2
10 50 translate 

1 setgray % baseline
0 0 moveto 370 0 rlineto stroke

0 setgray .5 setlinewidth

/Helvetica-Bold findfont % -45
[100 -100 0 100 0 0] makefont setfont
x 0 0 moveto (T) show

70 0 translate
/Helvetica-Bold findfont % -20
[100 -36.4 0 100 0 0] makefont setfont
x 0 0 moveto (T) show

70 0 translate % normal
/Helvetica-Bold findfont 100 scalefont setfont
x 0 0 moveto (T) show

70 0 translate 
/Helvetica-Bold findfont % 20
[100 36.4 0 100 0 0] makefont setfont
x 0 0 moveto (T) show

70 0 translate
/Helvetica-Bold findfont % 45
[100 100 0 100 0 0] makefont setfont
x 0 0 moveto (T) show

letterspacing with ashow

The four PostScript kerning operators are ashow , widthshow , awidthshow , and 
kshow . Each provides different opportunities. In chapter 18 on PostScript Level 2, 
there are four additional type operators.

ashow  provides a means to add or subtract overall character spacing both 
vertically and horizontally.

The syntax for ashow  is:

x y string ashow

Where:

x adds or subtracts space horizontally in the string.

y adds or subtracts space vertically in the string.

string is the characters or words affected.

In the following example, a string is tightened, stretched, and shifted vertically. 
The vertical adjustment is typically used by non-roman fonts.
advanced type



Chapter 11

PSlearn
11–4

11.3
%!PS-Adobe-2.0 EPSF-1.2
%%Title:ashow_1.eps
%%BoundingBox:36 36 264 170

/Palatino-Roman findfont 36 scalefont setfont

36 144 moveto
6 0 (adds space) ashow

36 108 moveto
-6 0 (subtracts space) ashow

72 36 moveto
0 6 (steps up) ashow

kerning with widthshow

widthshow kerns a single character within a string. Its syntax is:

x y character string widthshow

Where:

x adds or subtracts horizontal space after the character.

y adds or subtracts vertical space after the character.

character is either identified by its decimal or octal character code from the 
ASCII chart. See appendix A.

In the next example, the space is reduced after the W, which therefore brings the A 
closer. The only difference between the two WASHINGTONs is that the top W is 
identified by the decimal 87 and the bottom W by the octal 127. The default 
identification is decimal. If octal code is used, it needs the 8#  preface as a label.

0 0 72 144 216

72

144 a d d s  s p a c e
subtracts space

steps up
advanced type 111



Taking Advantage of PostScript

112

360

11–5

PSlearn

11.4
%!PS-Adobe-2.0 EPSF-1.2
%%Title:widthshow_1.eps
%%BoundingBox:36 36 360 144

/AvantGarde-Demi findfont 48 scalefont setfont

36 108 moveto % Decimal table
-6 0 087 (WASHINGTON) widthshow

36 36 moveto % Octal table
-6 0 8#127 (WASHINGTON) widthshow

kerning with awidthshow

awidthshow  is the combination of ashow  and widthshow . It both kerns a single 
character within a string and adds or subtracts overall character spacing both 
vertically and horizontally. Its syntax is:

xc y c character x s y s string widthshow

Where:

xc adds or subtracts horizontal space after the character.

yc adds or subtracts vertical space after the character.

character is either the decimal or octal character code for the character.

xs adds or subtracts horizontal space in the string.

ys adds or subtracts vertical space in the string.

In the next example, the word Typography on top is set normally with show. In the 
middle and bottom, the space after the T is reduced to kern the y underneath and 
overall character spacing is tightened by 1 point. Again, the character kerned is 
identified by its decimal or octal character code.

0 0 72 144 216 288

72

144

WASHINGTON
WASHINGTON
advanced type



Chapter 11

11–6

PSlearn

11.5
%!PS-Adobe-2.0 EPSF-1.2
%%Title:awidthshow 1.eps
%%BoundingBox:18 30 288 200

/AvantGarde-Demi findfont 48 scalefont setfont

18 158 moveto
(Typography) show   

% using Octal table
18 97 moveto
-3 0 8#124 -1 0 (Typography) awidthshow   

% using Decimal table
18 36 moveto
-3 0 084 -1 0 (Typography) awidthshow        

kshow

The kshow  operator has a much different strategy for kerning than the previous 
three PostScript operators. Its syntax is:

procedure string kshow

The procedure is executed after the positioning of each character. In the next 
example, two different procedures are performed on the same word. In the top 
word, the character spacing of RAINBOW is accomplished by using the procedure 
-3 0 rmoveto . After R is positioned, the new current point is moved to the right 
of its character width. The procedure -3 0 rmoveto  shifts the current point left 
3 points.

Other manipulations besides the adjustment of the current point can occur within 

0 0 72 144 216

72

144

Typography
Typography
Typography
advanced type 113



Taking Advantage of PostScript

114

360

PSlearn
11–7
the procedure. With the RAINBOW on the bottom, the procedure also changes the 
current gray between each character setting. Any number of actions can be 
performed after each character.

The intention of this operator, however, is to give the opportunity to individually 
kern the characters of a string. Thus its name, kernshow. To accomplish this 
individual kerning after each character of the string (except the last), two numbers 
are pushed onto the stack. In the case of RAINBOW, after the R is set, the decimal 
codes for R and A are pushed onto the stack. They are 82  and 65 . After the A is set, 
the decimal codes for A and I are pushed onto the stack. This occurs after each 
character of the string except for the last. These numbers can be used by the 
procedure to make a custom spacing decision based on which two characters are 
beside each other. This comparison is not needed after the last character. If unused, 
these numbers are left on the stack:

82 65 65 73 73 78 78 66 66 79 79 87

Since they are not used by the procedure in this example, we need to discard them. 
This is done with the 12 {pop} repeat . The numbers can also be discarded 
within the kshow  procedure. 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:kshow_1.eps
%%BoundingBox:20 36 360 162

/AvantGarde-Demi findfont 72 scalefont setfont

18 108 moveto
{-3 0 rmoveto} (RAINBOW) kshow
12 {pop} repeat

.9 setgray
18 36 moveto

{currentgray .12 sub setgray pop pop} (RAINBOW) kshow

Another example follows:

0 0 72 144 216 288

72

144RAINBOW
RAINBOW
advanced type



Chapter 11

360

PSlearn
11–8
%!PS-Adobe-2.0 EPSF-1.2
%%Title:M*A*S*H.eps
%%BoundingBox:36 36 330 90

/Helvetica-Bold findfont 72 scalefont setfont

% procedure lowers the asterisk & then returns to baseline
/putAsterisk {0 -14 rmoveto (*) show 0 14 rmoveto

pop pop} def

36 36 moveto
{putAsterisk} (MASH) kshow

0 0 72 144 216 288

72 M*A*S*H
advanced type 115



Taking Advantage of PostScript

116 the image operator / scan



Chapter 12

12.1
the image operator / scan
The image  operator is used to control painting scanned pictures. It can also be 
used to create a variety of patterns and blends. Discussion of the image  operator 
will be divided over two chapters. This chapter concentrates on scanned pictures 
and chapter 13 will focus on creating patterns and blends. In chapter 14, the 
imagemask  operator, a variation of image , will be explained. 

introduction

The image  operator can receive the data for the picture it creates from a number 
of sources. The most obvious source would be the data from a scanner of some 
kind. In sections 12.3 and 12.4, the traditional use of the image  operator is 
explained with first a very simple picture of a shamrock and then a scanned 
picture.

The other source of data can be provided by the programmer. The provided data 
is usually some arbitrary characters that can create a pattern or the means to create 
a smooth blend of color. See chapter 13.

In all cases, either scanned data for a picture or arbitrary characters for a pattern, a 
data acquisition procedure of some kind is needed. A data acquisition procedure 
controls how the image  operator receives or creates the information needed to 
paint a picture.

The syntax of image  is:

width height bits matrix proc image

Where:
width is the width of the picture in cells or pixels.

height is the height of the picture in cells or pixels.

bits is the number of bits of information per cell or pixel. It can be 1, 
2, 4, or 8.

matrix is the picture’s coordinate system. 

proc is the data acquisition procedure that obtains or creates the 
picture data.

image is the PostScript operator.

12chapterchapter
the image operator / scan 117



Taking Advantage of PostScript

118

12.2

figure 12–1
simple digitized pictures

Scanned pictures can be thought of as a complex paint by number coloring project 
dividing a picture into little squares. Each square, or pixel, would have a code 
assigned to it based on the value or the color it represents. The pixels would be 
arranged into rows and columns that would be used to describe the picture’s 
width and height. When the picture is painted by the image  operator, image  uses 
one of four coding schemes to paint the pixel a particular value. Depending how 
the picture was originally scanned, the picture can be painted as a 1-bit, 2-bit, 4-bit, 
or 8-bit picture. This is the coding scheme for a black and white picture. Color 
pictures would be multiples of this. The difference between each of these coding 
schemes is the number of different grays they can produce. The size of the file 
increases as the number of bits increase.

These are the possible bits and what they can represent:

1-bit 2 grays. Actually either black or white. Value is either 0 or 1.

2-bit 4 grays. Black, white, and 2 intermediate grays.
Value is either 0, 1, 10, or 11 (counting from decimal 0 to 3 in binary).

4-bit 64 grays. Black, white, and 62 intermediate grays.

8-bit 256 grays. Black, white, and 254 intermediate grays.

The bits that we are using to describe value are binary bits. Binary is a numbering 
system that only uses 0 and 1. In 1-bit coding, the value of the pixels will be either 
a 0 or a 1. 0 is the code for black, 1 the code for white. We’ll come back to the other 
bits later. Looking further at a 1-bit picture, figure 12–1 represents a picture divided 
into 256 pixels. There are 16 rows and 16 columns.

If you follow the coloring assignments and paint the 0s black and the 1s white, a 
picture will emerge. See figure 12–2.

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0
1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1
1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1
the image operator / scan



Chapter 12

figure 12–2

figure 12–3
It’s the job of the scanner to get all this for you. Otherwise, it would be a major job 
to construct a picture. The scanner uses the intensity of light reflected back from a 
picture to assign a value to each picture. The number of bits the scanner’s software 
is set for will determine how the light is divided.

Appendix A is an ASCII table of five different coding schemes, each a different way 
of counting from 0 to 255. In particular, we are interested in ASCII, hexadecimal, 
and binary code assignments. The ASCII table contains our alphabet within the 256 
entries. Note that there isn’t a visible character for all 256. Hexadecimal counts from 
0 to 256 using only the numbers 0–9 and the characters A–F. The binary counts 
from 0 to 255 in binary (using 0 and 1).

The image  operator uses the binary table to give pixels a value. It stores the pixel 
value as either ASCII or hexadecimal data.

As mentioned before, 0 and 1 are the two possible values for a bit. In the 1-bit 
coding scheme, 0 and 1 represent black and white. Each entry of the binary table 
of appendix A contains 8 bits. Therefore, each entry of the table can represent 8 
pixels of a picture using the 1-bit coding scheme. The first 8 pixels starting at the 
lower left of figure 12–2 have the values 1 1 1 1 1 1 1 1 . Consulting appendix 
A, 11111111  will be found at decimal 255. There isn’t a visible character in the 
ASCII table and it’s FF in hexadecimal.

Therefore, the first 8 pixels of figure 12–2 can be saved as either ASCII 255 or 
hexadecimal FF. See figure 12–3 below. This coding would continue for every row 
of the picture.

The ASCII table contains the characters that may be typed from a standard 
computer keyboard plus many other special characters whose location may vary 
from one system to another such as Ë or ß. There are a total of 256 possible 
characters. The difficulty in using the ASCII table in designing the 
shamrock_1.eps  example was having a visible ASCII character for many of the 
particular binary patterns needed. Therefore, in the next example hexadecimal was 

    0 0 0 0 0 0 0 0     
   0 0 0 0 0 0 0 0 0 0    
   0 0 0 0 0 0 0 0 0 0    
    0 0 0 0 0 0 0 0     
 0 0  0 0 0 0 0 0 0 0     
0 0 0 0  0 0 0 0 0 0   0 0  
0 0 0 0 0  0 0 0 0  0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0  0 0  0 0 0 0 0 0
0 0 0 0 0   0 0   0 0 0 0 0
0 0 0 0    0 0    0 0 0 0
 0 0     0 0 0    0 0  
       0 0 0       
        0 0 0      

1 1 1 1         1 1 1 1
1 1 1           1 1 1
1 1 1           1 1 1
1 1 1 1         1 1 1 1
1   1         1 1 1 1
    1       1 1   1
     1     1      
 
 
 
      1   1       
     1 1   1 1      
    1 1 1   1 1 1     
1   1 1 1 1    1 1 1   1
1 1 1 1 1 1 1    1 1 1 1 1 1
1 1 1 1 1 1 1 1    1 1 1 1 1

 0 0     0 0 0    0 0  
       0 0 0       
        0 0 0      

1   1 1 1 1    1 1 1   1
1 1 1 1 1 1 1    1 1 1 1 1 1
1 1 1 1 1 1 1 1    1 1 1 1 1{ {

This binary is represented by ASCII 255 or Hexadecimal FF
This binary is represented by ASCII 31 or Hexadecimal 1F
the image operator / scan 119



Taking Advantage of PostScript

120

12–1
image demo

PSlearn
used. However, many scanners save their files using the ASCII table because the 
file will be half the size. At decimal 97, there is the ASCII character a (1 byte of 
storage), and the hexadecimal 61 (2 bytes of storage). 

The following is an example of how figure 12–2 would be written as a PostScript 
program. It is not a scanned picture, but it is written in the same way a scanned 
picture would be written, only on a smaller scale. Section 12.3 will demonstrate 
how the same technique is applied to a scanned photograph.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:shamrock_1.eps
%%BoundingBox:0 0 160 160

/picStr 2 string def

/shamrock {
16 16 1 [.1 0 0 .1 0 0]
{currentfile picStr readhexstring pop} image
} def

shamrock
FF 1F FE 3F 9E 39 0E 70 06 60 02 40 00 00 00 00
00 00 04 20 08 19 90 0F F0 0F E0 07 E0 07 F0 0F

% frame
0 0 moveto 160 0 lineto 160 160 lineto 0 160 lineto closepath 
stroke

In shamrock_1.eps  above, the procedure /shamrock  is defined by the image  
operator and its operands. Figure 12–4 labels the arguments (required information 
for an operator) for the image  operator.
the image operator / scan



Chapter 12

figure 12–4

figure 12–5
Let’s look closer at each argument for image :

The width  and height  are the number of cells wide and high for the picture. In 
the example above, the picture's width and height is 16  by 16  pixels.

The bits  value is 1 since the picture is a 1-bit picture.

Next is the matrix array which determines the size of the picture. This matrix array 
operates differently with image  than for concat  (section 10.4) and makefont  
(section 11.1). With concat  and makefont , if we wanted an object larger, we 
would have used a larger number in the first and fourth position of the array. Here 
it is the opposite; a smaller number is used. The calculation is different with image  
because of a difference in how it handles pictures. It can be explained in this way. 
Had the matrix array been [1 0 0 1 0 0] , the shamrock would be as shown in 
figure 12–5.

Figure 12–5 is this size because the 1 in the [1 0 0 1 0 0] matrix array means 
each pixel is actual size. The 16x16 pixel width and height will measure 16x16 
points. A 16x16 pixel width and height using a [.1 0 0 .1 0 0] matrix is 
160x160 points. This is arrived at by dividing 16  by .1  equaling 160 , and 160  
divided by 16  equals 10 . With a dimension of 160x160, and the cells width and 
height being 16x16, we then know the individual pixels will be 10 points square. If 
the matrix array had been [.2 0 0 .2 0 0]  the pixels would be 5 points square.

{currentfile picStr readhexstring pop}  is the data acquisition 
procedure for the image  operator. currentfile  identifies that the data for the 
picture will follow after shamrock  is used in the program. /picStr  defines a 
space large enough for a string two characters long. picStr is a temporary 
holding place for the data for each row of the picture. The first two characters that 
make up the first row of the shamrock are the two hexadecimal characters FF and 
1F. They represent the two sets of binary characters 11111111  and 00011111 . 
readhexstring  identifies that the data is in hexadecimal. pop  clears the picStr  
so the procedure can be repeated. The procedure is repeated until the 16 rows of 
data in increments of two are filled.

Writing the program in this way permits all the data for the picture to follow the 
PostScript commands that control its painting. In most cases, scanned pictures are 
very large files. Having the data follow a PostScript header permits easier editing 
of the program.

16 pixels wide 

16 pixels high 

1 bit per pixel 

16 16 1 [.1 0 0 .1 0 0] 

{currentfile picStr readhexstring pop} image  

matrix: .1 makes each pixel 
10 points in size 

data acquisit ion procedure 

PostScript operator 
the image operator / scan 121



Taking Advantage of PostScript

122

12.3

PSlearn
12–2
scanned pictures

This picture was obtained by using a scanner and saving the file in a PostScript 
format by its software. I have edited the PostScript from its original form supplied 
by the scanning software. The original file had definitions to accommodate a 
number of different scanning situations and I wish to focus on the basic similarity 
with the previous shamrock example. 

The program that produced the picture follows, minus the picture data to save 
space. It would have taken up about eight pages.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:relief.eps
%%BoundingBox:0 0 224 225

/height 225 def
/width 224 def
/nheight height neg def
/picstr 112 string def

/makePicture
{ width height 4 [width 0 0 nheight 0 height]
{ currentfile picstr readstring pop } image } def

gsave
{1 exch sub} settransfer
width height scale

makePicture
ˇˇˇˇˇ›fl››ªª›ª€€ ∫∫∫∫ª´ ∫∫∫∫ª ™ ™ππππógfUTVUEDDUgfyzô´›flfl

– 25.6K of picture data, etc –

Ì›Ì ∫∫∫∫ª ∫∫∫∫ö™óyxºÃÃfiˇˇˇˇ˛‹Ã õŒˇˇ‹ºÃÕÃ™º›Ôˇ
grestore
the image operator / scan



Chapter 12

12.4
This program is basically the same as shamrock_1.eps but with a few 
differences. First, many of the values have been given names such as height  and 
width . This section of the program is written by the scanning software so the same 
file beginning can be used for every file it creates.

height defines the height of the picture to be 225.

width defines the width of the picture to be 224.

nheight  defines height to have a negative value. The reason for this is many 
scanners digitize from the top down as opposed to from the bottom up. Having the 
transformation matrix be [width 0 0 nheight 0 height]  adjusts for this by 
flopping the picture.

picStr , as discussed at the end of section 12.2, is a holding space for a string. In 
this definition, the holding place is 112 . This would hold enough data for one row 
of the picture.

makePicture  defines the image  operation as shamrock  did for the 
shamrock_1.eps  example earlier.

width height 4 [width 0 0 nheight 0 height]

is the same as

224 225 4 [224 0 0 -255 0 255] .

The picture is a 4-bit picture (64 grays) and the matrix array maps it, so it is very 
small. To get it to the right size,

width height scale

scales the picture up to 224 225 .

{1 exch sub} settransfer  inverts the picture. Without this line, the picture 
would appear as a negative. This compensates for the way the scanner scans the 
picture.

a second version of shamrock

The previous example, relief.eps , is a 4-bit picture. To demonstrate how 4-bit 
and 8-bit pictures work with their data, the next example is a version of shamrock  
written as a 2-bit picture. A 4-bit and 8-bit version would be similar.
the image operator / scan 123



Taking Advantage of PostScript

124

PSlearn
12–3

figure 12–6
 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:shamrock_2.eps
%%BoundingBox:0 0 160 160

/picStr 4 string def

/shamrock {16 16 2 [.1 0 0 .1 0 0]
{currentfile picStr readhexstring pop} image} def

shamrock
55 40 55 55
6A A0 2A A9
42 A0 2A 81
00 A8 2A 00
00 28 28 00
00 08 20 00
00 00 00 00
00 00 00 00
00 00 00 00
00 20 08 00
42 80 02 00
6A 00 00 81
6A 00 00 A9
68 00 00 29
68 00 00 29
55 00 00 55

Figure 12–6 enlarges the first two rows of shamrock_2.eps  for a better look at 
the bit values. 10 is a light gray, 01 is a dark gray, 00 is black, and if there had been 
a 11 it would be white.

01 01 01 01 01 00 00 00 01 01 01 01 01 01 01 01

01 10 10 10 10 10 00 00 00 10 10 10 10 10 10 01{ {

This binary is represented by ASCII 085 or Hexadecimal 55
This binary is represented by ASCII 064 or Hexadecimal 40
the image operator / scan



Chapter 12

figure 12–7
In a 1-bit picture, 8 bits is the data for 8 pixels. In a 2-bit picture, 8 bits is the data 
for 4 pixels. With 4-bit, it’s 2 pixels and with 8-bit, it’s one pixel. This is covered 
more in the next chapter.

When a picture is scanned, the trade-off will be the size of the file versus the quality 
of the picture. Figure 12–7 is a photograph divided into four vertical segments,
1-bit, 2-bit, 4-bit, and 8-bit in order. The 1-bit section is about 4.5 K and the 8-bit is 
just over 26K.
the image operator / scan 125



Taking Advantage of PostScript

126 the image operator / patterns



Chapter 13

13.1

13–1

PSlearn
the image operator / patterns
In this second chapter on the image  operator, it will be shown how image  can be 
creatively used for making different kinds of patterns and for making fountains, 
also known as blends or ramps. See also the next chapter on imagemask  which can 
also be used for making patterns.

creating patterns with the image operator

shamrock_2.eps  could be written in such a way as to produce various patterns. 
In shamrock_2.eps  the data for shamrock  was only used once. However, if the 
height  (or number of rows) were to be doubled and a name given to the data for 
shamrock , the picture could be used twice to fill the space.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:shamrockTwice_1.eps
%%BoundingBox:0 0 80 160

/shamrock <55 40 55 55 6A A0 2A A9 42 A0 2A 81 00 A8 2A 00
00 28 28 00 00 08 20 00 00 00 00 00 00 00 00 00
00 00 00 00 00 20 08 00 42 80 02 00 6A 00 00 81
6A 00 00 A9 68 00 00 29 68 00 00 29 55 00 00 55> def

16 32 2 [.2 0 0 .2 0 0] { shamrock } image

13chapterchapter
the image operator / patterns 127



Taking Advantage of PostScript

128

13–2

PSlearn

13.2
Had the same thing been done with shamrock_1.eps , disaster would strike. 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:shamrockTwice_2.eps
%%BoundingBox:0 0 80 160

/picStr 2 string def

/shamrock { 16 32 1 [.2 0 0 .2 0 0]
{currentfile picStr readhexstring pop} image} def

shamrock
FF 1F FE 3F 9E 39 0E 70 06 60 02 40 00 00 00 00
00 00 04 20 08 19 90 0F F0 0F E0 07 E0 07 F0 0F

% frame
0 0 moveto 160 0 lineto 160 160 lineto 0 160 lineto closepath 
stroke

It looks like this because readhexstring  will gobble up everything after 
shamrock  is used, including the 0 0 moveto 160 0 lineto 160 160 
lineto 0 160 lineto closepath stroke  looking for picture data. An error 
will occur because the data available and the defined picture size do not match.

imageWord.eps

Similar to shamrockTwice_1.eps , the following is a PostScript program using the 
image  operator to make a pattern:
the image operator / patterns



Chapter 13

PSlearn
13–3

figure 13–1

figure 13–2
%!PS-Adobe-2.0 EPSF-1.2
%%Title:imageWord.eps
%%BoundingBox:0 0 240 100

/word (John) def
24 10 2 [.1 0 0 .1 0 0] { word } image

In the picture above, the binary for the word John is repeatedly used until a 
rectangle 24 by 10 is formed as shown in figure 13–1.

The binary for the word John is:

01001010 or J

01101111 or o (two gray then two white)

01101000 or h

01101110 or n

The word just once would look like this:

Looking at the program again, the strip above is used over and over again until the 
picture rectangle is completed.

If /word  above were to be redefined to (John S) , it would look like figure 13–2.

{ { { { J o h n  

{ { 
the image operator / patterns 129



Taking Advantage of PostScript

130

13.3

13–4

PSlearn
It appears striped because the 6 characters of (John S)  divide evenly into the 24 
pixel width of the picture.

The previous examples of imageWord.eps  use the picture data to make a 2-bit 
image, meaning every pixel of the picture has 2 bits of information, or four possible 
values. A pixel is an individual square of value. For example, the binary for J is 
01001010 and it will be divided into four parts containing 2 bits each as 01 00 
10 10 . The number 01  represents a dark gray, and 10  a light gray, 00  represents 
a black, and 11  is white. A 2-bit picture therefore can only have 4 levels of gray: 
black, white, and two grays.

Should J be used in a 1-bit picture, J would look like this:

01001010 as a 1-bit picture is black, white, black, black, white, black, white, 
black. A 1-bit picture has 2 possible levels — black and white. The monitor of the 
Macintosh Plus and SE computers is a 1-bit screen. The pixels on the screen are 
either black or white. MacPaint creates 1-bit pictures.

A 4-bit picture would have 64 gray levels. The binary for J in this case would be the 
information for two pixels of a picture. One would be 0100 and the other would 
be 1010 , representing 2 grays out of a possible 64. It would look like this:

An 8-bit picture would have 256 gray levels. The entire 01001010  would be used 
to represent a single gray level. Black is 00000000  and white is 11111111 . In 
between, there would be 254 different combinations of 0s and 1s for a total of 256 
levels of gray.

1248.eps

The following are charts for N, e, X, and T showing how the binary for each 
character would be painted as a 1, 2, 4, and 8-bit picture. The vertical line marks off 
the number of times the letter is used. The PostScript program listing for
1248-132.eps  can be found at the end of appendix A.

0 1 0 0 1 1 1 0

01 00 11 10

0100 1110

01001110

1 bit

2 bit

4 bit

8 bit(N)<4E>

0 1 1 0 0 1 0 1

01 10 01 01

0110 0101

01100101

1 bit

2 bit

4 bit

8 bit(e)<65>
the image operator / patterns



Chapter 13

13.4

PSlearn
13–5
random patterns

Another example of a data acquisition procedure is the program that creates a 
random pattern within a certain range of grays.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:pattern_1.eps
%%Creator:John F Sherman
%%CreationDate:July 1989
%%BoundingBox:0 0 200 200

/str 512 string def
/pattern

{/light exch def /dark exch def
/diff light dark sub def

0 1 0 1 1 0 0 0

01 01 10 00

0101 1000

01011000

1 bit

2 bit

4 bit

8 bit(X)<58>

0 1 0 1 0 1 0 0

01 01 01 00

0101 0100

01010100

1 bit

2 bit

4 bit

8 bit(T)<54>
the image operator / patterns 131



Taking Advantage of PostScript

132

PSlearn
13–6
20 20 8 [.1 0 0 .1 0 0]
{0 1 511 {str exch rand diff mod dark add put}
for str} bind image } def

222 srand
0 255 pattern

Next is a version of the pattern  procedure that limits the values to between 33 
and 125. We’ll next explain this example line by line. A review of the discussion of 
the for  and put  operators in section 8.3 might be helpful. 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:expattern1.eps
%%BoundingBox:0 0 200 40

/str 20 string def

/pattern
{/light exch def /dark exch def
/diff light dark sub def
20 4 8 [.1 0 0 .1 0 0]
{0 1 19 {str exch rand diff mod dark add put} for
str }image} def

178 srand
33 125 pattern

This pattern is an 8-bit, 20x4 picture. Since it is an 8-bit picture, each row is created 
by 20 characters of data. A total of 80 characters will be needed for the entire 
picture. As explained in section 12.2, each character of the ASCII table represents a 
gray value somewhere between 0 and 255. 0 is black and 255 is white. That means 
character 33 would be the equivalent of a .128 setgray  or 87.2% black and 
character 125 would be 51.2% black. The job of the pattern  data acquisition 
procedure is to randomly create a string of 20 characters that are always between 
33 and 125. I use this range because it is a portion of the ASCII table with visible 
characters. 

The first line

/str 20 string def

defines a string 20 characters in length, initially with the value of 
(00000000000000000000)

Next begins the definition for the pattern  procedure.

The first line of the procedure definition is

/light exch def /dark exch def

which defines the top two values on the operand stack to be light  and dark . In 
this example, looking ahead to the last line of the program, light  will be defined 
as 125 and dark  will be 33. 125 will be on top of the stack with 33 below it. 
the image operator / patterns



Chapter 13

13–7

PSlearn
The second line of the procedure defines diff  as the subtraction of dark  from 
light , which will in this case be 92.

Next, 20 4 8 [.1 0 0 .1 0 0]  are the first arguments for the image  operator, 
setting up the picture to be 20 by 4 pixels, with each pixel to have an 8-bit value 
and the matrix array determining the size of the picture.

Next is the data acquisition procedure:

0 1 19 {str exch rand diff mod dark add put} for

This line creates a string 20 characters in length, each of which is a character that 
falls between 33 and 125 on the ASCII chart. Breaking this line down, after the first 
count of the for  loop, 0 then str  (which is (00000000000000000000) ) will be 
on top of the stack. exch  will switch those positions so that 0 is on top. Zero will 
be used later as the index for the put  operator. rand  creates a random number, 
which will be 2991646  on the first go around. (Don’t worry for now about how I 
know that. See chapter 16.) The random numbers produced here are a reproducible 
sequence of numbers based on the 178 srand  a bit later in the program. That is, 
the random sequence will always be the same unless 178  is changed (it may be a 
different repeatable sequence on your machine). Next, diff  was defined earlier to 
be 92 . After that is the operator mod, which returns to the stack the remainder of a 
division. In this case, it is the division of 2991646  by 92 , which has a remainder 
of 82  (rounded off). Then comes dark , defined earlier as 33  and add  which adds 
the 82  and 33  giving you 115 . Checking the ASCII table, 115  is the character s. The 
str  looks like this after the first count of for :

(00000000000000000000) 0 115 put  which becomes

(s0000000000000000000)

This process is repeated until str  is filled with 20 characters.

Then str  is used as data for the first row of the picture by the image  operator.

Specifically, the first 20 characters in str  would be:

This was arrived at by printing the string instead of using it as data for the image 
operator.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:seepattern1.eps
%%BoundingBox:0 0 180 30

/Times-Bold findfont 16 scalefont setfont
/str 20 string def

/pattern
{/light exch def /dark exch def
/diff light dark sub def
0 1 19 {str exch rand diff mod dark add put} for} def

178 srand

33 125 pattern % create 20 between 33 & 125

7 10 moveto str show

sFy.+Ga=oqyc,/XaR4=4
the image operator / patterns 133



Taking Advantage of PostScript

134

figure 13–3

figure 13–4

figure 13–5

13–8

PSlearn
.25 setlinewidth %frame
0 0 moveto 180 0 lineto 180 30 lineto 0 30 lineto
closepath stroke
This program would look like figure 13–3.

Had only the one line, sFy.+Ga=oqyc,/XaR4=4 , been used for the picture, a 
repeating pattern would emerge (figure 13–4) because the same string would be 
used over and over until the width and height were satisfied.

However, the pattern  data acquisition procedure continually creates a new 20 
character string. The procedure had first created:

sFy.+Ga=oqyc,/XaR4=4

which is used to paint 20 pixels in the first row. The procedure then creates:

AMsD;,G=#_m`S_,IW-_@

for the 20 pixels of the second row, looking like figure 13–5 at this point.

And so on until the picture is completed.

The next example shows how pattern  can look at different value ranges.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:pattern_by4.eps
%%Creator:John F Sherman c 1989
%%CreationDate:July 1989
%%BoundingBox:0 0 310 70

/str 512 string def

/pattern
{/light exch def /dark exch def
/diff light dark sub def
7 7 8 [.1 0 0 .1 0 0]
the image operator / patterns



Chapter 13

13.5

13–9

PSlearn
{0 1 511 {str exch rand diff mod dark add put} for
str} bind image } def

222 srand

0 75 pattern

80 0 translate
75 150 pattern

80 0 translate
150 225 pattern

80 0 translate
225 250 pattern

variations on the patterns

Variations of the pattern  procedure can be achieved by changing the bit value for 
the image operator. The confinement of the picture to be within certain ranges of 
gray diminishes as the bits level gets smaller, but different textures are produced. 
Below, the first row of patterns are 1-bit, followed by 2, 4, and 8-bit.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:patternVar1.eps
%%Creator:John F Sherman
%%BoundingBox:0 0 400 400
the image operator / patterns 135



Taking Advantage of PostScript

136
/str 512 string def
/pattern

{/light exch def /dark exch def
/diff light dark sub def
7 7 bits [.1 0 0 .1 0 0]
{0 1 511 {str exch rand diff mod dark add put} for
str} bind image} def

17341734 srand
/bits 8 def

gsave % bottom row
0 75 pattern
80 0 translate 75 150 pattern
80 0 translate 150 225 pattern
80 0 translate 225 250 pattern

grestore

/bits 4 def
gsave % second row

0 80 translate 0 75 pattern
80 0 translate 75 150 pattern
80 0 translate 150 225 pattern
80 0 translate 225 250 pattern

grestore

/bits 2 def
gsave % third row

0 160 translate 0 75 pattern
80 0 translate 75 150 pattern
80 0 translate 150 225 pattern
80 0 translate 225 250 pattern

grestore

/bits 1 def
gsave % top row

0 240 translate 0 75 pattern
80 0 translate 75 150 pattern
80 0 translate 150 225 pattern
80 0 translate 225 250 pattern

grestore

You can change the matrix as explained earlier in section 10.4. In the next example, 
having the matrix be [.1 0 -.1 .1 0 0]  skews the square pattern 45˚ to the 
right. Then the skewed square is used eight times as it is rotated in 45˚ increments.
the image operator / patterns



Chapter 13

PSlearn
13–10

13.6
%!PS-Adobe-2.0 EPSF-1.2
%%Title:patternVar2.eps
%%Creator:John F Sherman
%%BoundingBox:0 0 300 300

/str 512 string def
/pattern

{/light exch def /dark exch def
/diff light dark sub def
7 7 8 [.1 0 -.1 .1 0 0]
{0 1 511 {str exch rand diff mod dark add put} for
str} bind image} def

17341734 srand
0 0 300 300 rectstroke
150 150 translate

gsave
8 {45 rotate 0 255 pattern} repeat

grestore

fountains

Fountains, also known as ramps or blends, can be created with the image  operator. 
The data acquisition procedure in this case creates a single string ordered from the 
the image operator / patterns 137



Taking Advantage of PostScript

138

 !"#$%&’()*+,-./0123456789:;<=>?@A

13–11

PSlearn

figure 13–6
ASCII chart’s beginning to end to create a transition of value. The first character of 
the chart is black, the last is white. The data acquisition procedure is a convenient 
means to order all 256 characters.

We could see that string by printing it instead of using it as the data for the image  
operator. This is basically the same program that was seen back in section 8.3 when 
the for  and put  operators were explained.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:seefountain_1.eps
%%BoundingBox:0 0 460 30

.25 setlinewidth
0 0 460 30 rectstroke
/Helvetica-Condensed findfont 4 scalefont setfont

/str 256 string def
0 1 255 { str exch dup put } for

5 10 moveto str show

str stringwidth pop 5 add
/strLength exch def

% mark beginning
1 setlinewidth
5 10 moveto 0 20 rlineto stroke

strLength 10 moveto 0 20 rlineto stroke

To show the complete string in this example, it’s set with 4 point type because of 
its length. The vertical lines to the left and right mark the beginning and end of the 
string. The ! is the first visible character at the 33rd position. The gaps are 
characters without a drawing within the 256 character set.

A fountain is basically a 256x1 picture scaled to whatever size is required. See 
figure 13–6.

The scaling of the fountain is handled by both the image  operator’s matrix array 
and the scale  operator. In the following example of a basic fountain, first note the 
picture is 256 wide and 1 high. Second, note the matrix array of [256 0 0 1 0 
0] . We know from chapter 10 on the matrix that this array will scale the picture by 
256  in the x  and by 1 in the y .

The matrix of [256 0 0 1 0 0]  compresses the 256x1 picture to a 1 by 1 point 
square. Without the 170 170 scale , we probably would have a difficult time 

BCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_‘abcdefghijklmnopqrstuvwxyz{|}~ ¡¢£⁄¥ƒ§¤'“«‹›fifl –†‡· ¶•‚„”»…‰ ¿ `´ˆ˜¯˘˙¨ ˚¸ ˝˛ˇ— Æ ª ŁØŒº æ ı łøœß
the image operator / patterns



Chapter 13

PSlearn
13–12

13.7
seeing the fountain. The scale  operator scales the fountain to whatever size 
desired. Since we are beginning with a 1x1 point square, the size of the fountain 
will also be its scale factor. Below, the 170 170 scale  also means the fountain is 
170x170 points in size.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:fountain_1.eps
%%Creator:John F Sherman
%%BoundingBox:0 0 170 170

/str 256 string def
0 1 255 { str exch dup put } for

170 170 scale

256 1 8 [ 256 0 0 1 0 0 ] {str} image

changing the fountain’s direction

The direction of the fountain can be controlled by using either a 1x256 or 256x1 
picture and the matrix array used with the image  operator. In the next example, 
note the changes made to the [ 256 0 0 1 0 0 ]  matrix in the other three 
fountains.
the image operator / patterns 139



Taking Advantage of PostScript

140

PSlearn
13–13
%!PS-Adobe-2.0 EPSF-1.2
%%Title:fountain_x4.eps
%%Creator:John F Sherman
%%BoundingBox:0 0 200 200

100 100 scale
/str 256 string def
0 1 255 { str exch dup put } for

gsave % lower left
256 1 8 [ 256 0 0 1 0 0 ] { str } image

grestore

gsave % lower right
1 0 translate % remember 100 100 scale
1 256 8 [1 0 0 256 0 0 ] { str } image % different

grestore

gsave % upper left
0 1 translate
1 256 8 [ 1 0 0 -256 0 256] { str } image % different

grestore

gsave % upper right
1 1 translate
256 1 8 [ -256 0 0 1 256 0 ] { str } image % different

grestore
the image operator / patterns



Chapter 13

13.8

13–14

PSlearn

13–15

PSlearn
other fountains

There are several techniques in creating a fountain to permit different transitions 
of gray. Generally the reason is to compensate for different printing situations.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:fountain_2.eps
%%BoundingBox:0 0 170 170

/str 256 string def
0 1 255 {str exch dup 255 div sqrt 255 mul cvi put} for

/fountain
{ gsave
/ury exch def  /urx exch def
/lly exch def  /llx exch def

llx lly ury add translate
urx llx sub ury lly sub scale
256 1 8 [ 256 0 0 1 0 1 ]{str} image
grestore } def

0 0 170 170  fountain

Using a variation of seefountain_1.eps  from the beginning of section 13.6, the 
rate of change can be demonstrated by printing the string. fountain_1.eps  is on 
the bottom for reference. It is also cropped on the right so we can see the beginning 
more easily. The vertical lines mark the beginning.

 !"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLM

#’*-/2479;=?ACEGIJLNOQRTUWXZ[]^_abcdfghiklmnoprstuvwxyz{|}~
the image operator / patterns 141



Taking Advantage of PostScript

142

PSlearn
13–16

13–17

PSlearn
%!PS-Adobe-2.0 EPSF-1.2
%%Title:fountain_3-1.eps
%%BoundingBox:0 0 170 170

/str 256 string def
0 1 255
{ str exch dup 255 div 180 mul cos neg
2 div .5 add 255 mul cvi put} for

  
/fountain 

{ /ury exch def  /urx exch def
/lly exch def  /llx exch def
gsave
llx lly translate
urx llx sub ury lly sub scale 
256 1 8 [ 256 0 0 1 0 0 ]
{str} image
grestore} def

0 0 170 170 fountain

fountain_2.eps  was a shift to the left. You can see below that
fountain_3-1.eps  is a shift to the right compared to fountain_1.eps .

 !"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLM

 !"#$%&’)*+,-.01235679:;=>?ABCEFH
the image operator / patterns



Chapter 13

13–18

PSlearn

13–19

PSlearn

!%*.39>CIOU[agmsz
%!PS-Adobe-2.0 EPSF-1.2
%%Title:fountain_3-2.eps
%%BoundingBox:0 0 170 170

/rate 720 def
/str 256 string def

0 1 255
{ str exch dup 255 div rate mul cos neg
2 div .5 add 255 mul cvi put} for

  
/fountain 

{ /ury exch def  /urx exch def
/lly exch def  /llx exch def
gsave
llx lly translate
urx llx sub ury lly sub scale 
255 1 8 [ 255 0 0 1 0 0 ]
{str} image
grestore
} def

0 0 170 170 fountain

This is a variation of fountain_3-1.eps  on the previous page. Note the new 
variable titled rate  used within the for  procedure. In fountain_3-1.eps  it was 
180. If rate  is 360, the fountain would be black to white to black. Below is a portion 
of the string.

¥«–¶…`˙ Œ ıłøß œø æ ºŁ ˛ ˜¿„·fi¤¢ }vpjd^XRLFA;61,’# #’,16;AFLRX^djpv} ¢¤fi·
the image operator / patterns 143



Taking Advantage of PostScript

144 creative uses of imagemask



Chapter 14

14.1

14.2
creative uses of imagemask 
The imagemask  operator is a variation of the image  operator. It differs in that it 
can only be used to paint 1-bit pictures, it can reverse the picture, and the picture 
is painted with the current gray. Another feature of this operator is that the portion 
of the picture that is not painted is transparent. Otherwise it works much in the 
same way as image .

imagemask  can be used to make patterns (see chapter 13). One of the suggested 
uses of imagemask  is the creation of bit-map fonts. Since the unpainted part of the 
letterforms is transparent, they would not interfere with images underneath them. 

syntax

The syntax of imagemask  is:

width height invert matrix proc image

Where:
width is the width of the picture in cells or pixels.

height is the height of the picture in cells or pixels.

invert if true , values of 1 are painted with the current color;
if false , values of 0 are painted with the current color.

matrix is the picture’s coordinate system. 

proc is the data acquisition procedure that obtains or creates the 
picture data.

imagemask is the PostScript operator.

shamrock revisited

When the invert boolean is false , the 0s are painted with the current color and 
the 1s are clear. A boolean is something that is either true or false. When the invert 
boolean is true , the opposite is the case. The 1s are painted and the 0s are clear. 
See figure 14–1.

14chapterchapter
creative uses of imagemask 145



Taking Advantage of PostScript

146

figure 14–1

14–1

PSlearn
Using the shamrock_1.eps  example from chapter 12, the primary differences of 
imagemask  can be demonstrated. In the next PostScript program example, the 
picture is placed on top of a gray square. Had the image  operator been used, that 
gray square would have been covered with opaque white. 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:shamrock_3.eps
%%BoundingBox:0 0 160 160

/S <FF 1F FE 3F 9E 39 0E 70 06 60 02 40 00 00 00 00
00 00 04 20 08 19 90 0F F0 0F E0 07 E0 07 F0 0F> def

.5 setgray
0 0 moveto 160 0 lineto 160 160 lineto 0 160 lineto
closepath fill

0 setgray
16 16 false [.1 0 0 .1 0 0] {S} imagemask

Had true  been used in the imagemask  argument,

16 16 true [.1 0 0 .1 0 0] {S} imagemask

    0 0 0 0 0 0 0 0     
   0 0 0 0 0 0 0 0 0 0    
   0 0 0 0 0 0 0 0 0 0    
    0 0 0 0 0 0 0 0     
 0 0  0 0 0 0 0 0 0 0     
0 0 0 0  0 0 0 0 0 0   0 0  
0 0 0 0 0  0 0 0 0  0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0  0 0  0 0 0 0 0 0
0 0 0 0 0   0 0   0 0 0 0 0
0 0 0 0    0 0    0 0 0 0
 0 0     0 0 0    0 0  
       0 0 0       
        0 0 0      

1 1 1 1         1 1 1 1
1 1 1           1 1 1
1 1 1           1 1 1
1 1 1 1         1 1 1 1
1   1         1 1 1 1
    1       1 1   1
     1     1      
 
 
 
      1   1       
     1 1   1 1      
    1 1 1   1 1 1     
1   1 1 1 1    1 1 1   1
1 1 1 1 1 1 1    1 1 1 1 1 1
1 1 1 1 1 1 1 1    1 1 1 1 1
creative uses of imagemask



Chapter 14

figure 14–2

14–2

PSlearn
the same data would look like figure 14–2. The gray shamrock is the gray showing 
through where the 0s are and the black is the painted 1s.
 

In the next example, different colors are used for the picture. The background 
square is .666 setgray . The first shamrock is .333 setgray . For the shamrock 
to the right, the current color is made to 1 0 1 0.3 setcmykcolor , a dark green.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:shamrock_5&6.eps
%%BoundingBox:0 0 320 160

/S <FF 1F FE 3F 9E 39 0E 70 06 60 02 40 00 00 00 00
00 00 04 20 08 19 90 0F F0 0F E0 07 E0 07 F0 0F> def

.666 setgray % background
0 0 moveto 320 0 lineto 320 160 lineto 0 160 lineto
closepath fill

.333 setgray
16 16 false [.1 0 0 .1 0 0] {S} imagemask

160 0 translate
1 0 1 .3 setcmykcolor
16 16 false [.1 0 0 .1 0 0] {S} imagemask
creative uses of imagemask 147



Taking Advantage of PostScript

148

14.3

PSlearn
14–3
with a fountain

An interesting effect with imagemask  can be achieved with a fountain (see 
previous chapter, sections 13.6 – 13.8) underneath the picture. Following are two 
designs set up basically the same. Each has the same fountain underneath the 
picture of the violin painted with imagemask . In the first example, 
violinSq1.eps , the violin is painted in the default value of black.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:violinSq1.eps
%%BoundingBox: 0 0 300 300

gsave
300 300 scale
/str 256 string def
0 1 255 { str exch dup put } for
256 1 8 [ -256 0 0 1 256 0 ] { str } image

grestore

gsave
0 setgray
/picstr1 38 string def
/readdata {currentfile exch readhexstring pop} def
/beginimage {{picstr1 readdata} imagemask} def
300 300 scale
creative uses of imagemask



Chapter 14

PSlearn
14–4
300 300 false [300 0 0 300 neg 0 300]
beginimage
FFFFFFFFFFFFFFCFFFFFFFFFFFFFFFFFFFFEF69FEA800C00002000020000
... PICTURE DATA ...
FFF7FFFFFFFFFFFFFFF7FFFAFBD54ED6AA52222004410000000363800000
grestore

0 0 300 300 rectstroke

In this second example, two changes have been made to the file. First, true  is used 
as the invert boolean for imagemask , making the opposite pixels be painted 1s. 
Second, the current gray is made white with 1 setgray . In this way, whatever is 
underneath will give the violin its color. This creates the effect that the violin is 
being painted as a fountain. The white is a mask covering the fountain below it.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:violinSq2.eps
%%BoundingBox: 0 0 300 300

gsave
300 300 scale
/str 256 string def
0 1 255 { str exch dup put } for
256 1 8 [ -256 0 0 1 256 0 ] { str } image

grestore
creative uses of imagemask 149



Taking Advantage of PostScript

150

14.4
gsave
1 setgray
/picstr1 38 string def
/readdata {currentfile exch readhexstring pop} def
/beginimage {{picstr1 readdata} imagemask} def
300 300 scale
300 300 true [300 0 0 300 neg 0 300]

beginimage
FFFFFFFFFFFFFFCFFFFFFFFFFFFFFFFFFFFEF69FEA800C00002000020000
... PICTURE DATA ...
FFF7FFFFFFFFFFFFFFF7FFFAFBD54ED6AA52222004410000000363800000
grestore

0 0 300 300 rectstroke

as a pattern

Random patterns can be made with a similar procedure used to make patterns in 
section 13.4.

0 1 511 {str exch rand 255 mod put} for

This procedure converts str  into a string of 512 randomly selected characters. 
Three overlapping squares are made, each a different value.
creative uses of imagemask



Chapter 14

PSlearn
14–5
%!PS-Adobe-2.0 EPSF-1.2
%%Title:imagemaskPat_1.eps
%%BoundingBox:0 0 300 300

/str 512 string def
0 1 511 {str exch rand 255 mod put} for

100 100 true [.5 0 0 .5 0 0] {str} imagemask

100 0 translate
.333 setgray
100 100 true [.5 0 0 .5 0 0] {str} imagemask

0 100 translate
.666 setgray
100 100 true [.5 0 0 .5 0 0] {str} imagemask
creative uses of imagemask 151



Taking Advantage of PostScript

152 creating a font



Chapter 15

15.1
creating a font
You can create a unique PostScript font and use it in your PostScript programs. The 
PostScript examples in this chapter will cover how to modify an existing font, the 
creation of a mono-spaced font, and then a variable-spaced font. We will be 
creating type 3 fonts. The creation of type 1 fonts, however, will not be covered. 
Type 1 fonts are Adobe’s previously encrypted font format that was recently 
published. These fonts contain procedures, commonly known as hints, that ensure 
high quality output on all resolutions of printers, especially small type on low 
resolution devices.

anatomy of a font program

A PostScript font program is the creation of a font dictionary containing the values 
for a number of font characteristics, some of which are contained in their own 
dictionary within the larger font dictionary. Earlier in chapter 3, you may 
remember, we defined square  to be the name of a procedure that draws a square. 
Within a font dictionary, /a  is the name of a procedure that draws the character a. 
There is more to it than just this, but essentially a font is a dictionary of drawings 
for each character of the alphabet. There are also other attributes of the font defined 
in the file, such as the FontType, FontMatrix, FontBBox, the character Encoding, 
and its font metric.

The FontType  tells the PostScript interpreter how the font was made so it knows 
how to handle the font. The different font types are:

0 Kanji or other very large font sets.
1 Adobe’s encrypted and hinted fonts.
2 Obsolete.
3 User defined fonts.
4 Cartridge and disk-based encrypted fonts.
5 ROM-based encrypted fonts.

The FontMatrix  is the coordinate system within which the font was designed. 
Usually the font is designed within a 1000x1000 unit space. It can be thought of as 
the page the font was designed on. In figure 15–1, the characters g and M are placed 
on what could be the 1000x1000 unit space. Each grid line represents 100 units. A 
matrix array of [.001 0 0 .001 0 0]  will reduce the 1000x1000 unit space to 
a 1x1 unit square. In other words, what was drawn to be 100 is now .1 and what 
was 1000 is 1. Therefore, when 72 scalefont  is used with the font, the 1x1 unit 
square is scaled by a factor of 72 .

Figure 15–2 explains FontMatrix  further. The first large square grid represents 

15chapterchapter
creating a font 153



Taking Advantage of PostScript

154

figure 15–1

figure 15–2
the 1000x1000 unit space (reduced 10% to save space) on which the font was 
drawn. Next to it, labeled with an A and with an arrow pointing at it (it’s small) is 
that 1000x1000 unit space reduced to a 1x1 unit space by the application of the [.1 
0 0 .1 0 0] FontMatrix . B labels what would happen with a 72 
scalefont , C labels a 300 scalefont  enlargement for a better view.

The FontBBox  is the smallest rectangle into which all the characters of the font 
will fit. This is depicted by the gray rectangle in figure 15–1.

The character Encoding  determines at what decimal location the character name 
will reside on the ASCII chart. See appendix A. PostScript has a standard 
Encoding  named StandardEncoding  that already gives every entry of the 
array a name. In it, /one  is the name for the number 1 at decimal 49, /a  is the name 
for the character a at decimal 97, and so on. The StandardEncoding  can be 
copied or you can create your own scheme. In the next section, the 
StandardEncoding  is copied, saving the trouble of having to name all the 
character procedures. Later, in section 15.4, custom names are given to several of 
the characters and the name for a null procedure (doesn’t do anything) to the rest.

The CharProcs  is a dictionary containing all the procedure definitions that draw 
the individual characters named in the Encoding  array.

Finally, there is the BuildChar  procedure that uses the information previously 
listed in the program to actually draw the character.

BBox for g is:

-4.24988 -230.65 476.85 563.25

BBox for M is:

-4.24988 -230.65 854.25 563.25

BBox for the font is:

-4.24988 -230.65 854.25 563.25

Mg
A B C

a a
a

creating a font



Chapter 15

15.2

PSlearn
15–1
font template

This next section has a listing of a font file to show how the above information is 
organized into a file. All that is missing are your drawings for individual 
characters and your choice for a font name. Not all 256 entries are included. The 
others can be found in appendix A.

%!PS-Font
%%Title:font_template.ps

/newfont 10 dict def % create dictionary
newfont begin % begin filling dictionary

/FontType 3 def % user defined font
/FontMatrix [.001 0 0 .001 0 0] def
/FontBBox [0 0 1000 1000] def

/Encoding 256 array def % copy standard encoding
StandardEncoding Encoding copy pop

/CharProcs 20 dict def % match # with # of char proc
CharProcs begin % dictionary of char procedures

/space { } def % word space
/ampersand {  % character drawing for & } def
/asterisk {  % character drawing for * } def

/zero {  % character drawing for 0 } def
/one {  % character drawing for 1 } def
/two {  % character drawing for 2 } def
/three {  % character drawing for 3 } def
/four {  % character drawing for 4 } def

/A {  % character drawing for A } def
/B {  % character drawing for B } def
/C {  % character drawing for C } def
/D {  % character drawing for D } def
/a {  % character drawing for a } def
/b {  % character drawing for b } def
/c {  % character drawing for c } def
/d {  % character drawing for d } def

/yen {  % character drawing for ¥ } def
/paragraph {  % character drawing for ¶ } def
/germandbls {  % character drawing for ß } def

end

/BuildChar % creates char from info above
{1000 0 0 0 1000 1000 setcachedevice
exch begin
Encoding exch get
CharProcs exch get
exec end} def
creating a font 155



Taking Advantage of PostScript

156

15.3

360

15–2

PSlearn
end

% give your font a name replacing YourName

/YourName newfont definefont pop

modifying an existing font

It’s possible to modify an existing font by duplicating its font dictionary and then 
placing a new entry in the copy. The most common change is to change the font’s 
matrix. By doing so, the entire font can be condensed or expanded. The font 
Helvetica-Narrow found in many laser printers is produced by mathematically 
condensing Helvetica. Helvetica Condensed, on the other hand, is a separate 
drawing from Helvetica.

In this example, we will make our own Palatino Bold Narrow. The first section of 
code duplicates the Palatino-Bold dictionary and discards the existing FID . A new 
one will be made with definefont . While dictCopy  is on top of the dictionary 
stack, the FontMatrix  is replaced with a new array. The next line defines 
Palatino-BNarrow  as the font with definefont .

%!PS-Adobe-2.0 EPSF-1.2
%%Title:Palatino-BNarrow.eps
%%BoundingBox:18 36 373 156

/Palatino-Bold findfont
dup length dict /dictCopy exch def

{1 index /FID ne
{dictCopy 3 1 roll put}
{pop pop}

ifelse }forall

dictCopy /FontMatrix [.0005 0 0 .001 0 0] put

/Palatino-BNarrow dictCopy definefont pop

0 0 72 144 216 288

72

144

Palatino Bold Narrow
Palatino B
creating a font



Chapter 15

15.4

360

PSlearn
15–3
/Palatino-BNarrow findfont 70 scalefont setfont
18 36 moveto (Palatino Bold Narrow) show

/Palatino-Bold findfont 70 scalefont setfont
18 108 moveto (Palatino B) show

shapeFont as mono-spaced font

To create our own font from scratch, we’ll need to set up all the necessary 
information. A mono-spaced font is simpler than a variable-spaced font because 
every character uses the same amount of space. First, the font dictionary is set up 
with /newfont 10 dict def . newfont  is an arbitrary name; use whatever you 
want. It will later be replaced with the actual font name. The newfont dictionary 
must have four entries: FontType , FontMatrix , FontBBox  and Encoding . 
These should be understood from section 15.1. The Encoding  this time will be a 
nonstandard array of 256 names. The line

0 1 255 {Encoding exch /.notdef put} for

replaces each position of the “blank” Encoding  made by the previous line

/Encoding 256 array def

with the key /.notdef . This is a quick way to give each entry of Encoding  a 
name. We plan to name only 5 of the 256 positions. If a character without a drawing 
is used, the .notdef  procedure (which does nothing) will be used to prevent an 
error. Next, the names for characters we want in Encoding  are put into the 
position we want that corresponds to a key of the keyboard. Basically, ASCII 97 is 
the character a in a standard font and is the character square in shapeFont.

CharProcs  is a dictionary that matches the name in Encoding  with a procedure. 
The procedure definitions should look familiar to you. Note what the procedure 
.notdef  is defined as.

Finally, there is the definition for BuildChar . BuildChar  is what gets called 
when a character needs to be painted. Font caching, performed by the 
setcachedevice  operator is used to gain efficiency in printing. When a 
character is drawn by BuildChar , its image is temporarily stored in a cache. 
Should the character be used again, it’s there, ready to go. 

 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:shapeFont.eps
%%BoundingBox:0 0 385 150

0 0 72 144 216 288

72

ab○♦e
creating a font 157



Taking Advantage of PostScript

158
/newfont 10 dict def
newfont begin

/FontType 3 def
/FontMatrix [.001 0 0 .001 0 0] def
/FontBBox [0 0 1000 1000] def

/Encoding 256 array def % give name
0 1 255 {Encoding exch /.notdef put} for
Encoding 97 /square put % keyboard a
Encoding 98 /triangle put % keyboard b
Encoding 99 /circle put % keyboard c
Encoding 100 /diamond put % keyboard d
Encoding 101 /lines put % keyboard e

/CharProcs 6 dict def
CharProcs begin % proc def for names above

/.notdef { } def
/square

{0 0 moveto 750 0 lineto 750 750 lineto
0 750 lineto closepath fill} def

/triangle
{0 0 moveto 375 750 lineto 750 0 lineto 
closepath fill} def

/circle
{375 375 375 0 360 arc closepath fill} def

/diamond
{375 0 moveto 750 375 lineto 375 750 lineto
0 375 lineto closepath fill} def

/lines
{150 setlinewidth
0 75 moveto 750 0 rlineto stroke
0 375 moveto 750 0 rlineto stroke
0 675 moveto 750 0 rlineto stroke} def
end

/BuildChar
{1000 0 0 0 750 750 setcachedevice
exch begin
Encoding exch get
CharProcs exch get
exec
end} def
end % end newfont

/ShapeFont newfont definefont pop

/ShapeFont findfont 70 scalefont setfont

36 36 moveto (abcde) show
creating a font



Chapter 15

15.5

360

PSlearn
15–4
shapeFont as variable-spaced font

shapeFont  as a variable-spaced font is written much the same as in the previous 
section. In this version of the font, every character can have its own unique width. 
The primary difference in this font file from the last section is the addition of the 
Metrics  and BBox dictionaries. These are used for character spacing and setting 
the boundaries of font caching respectively. These are used in the BuildChar  
procedure. If the values are changed in the Metrics  dictionary, the character 
spacing of this font will be different. The BBox dictionary provides more precise 
information for font caching.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:shapeFont2.eps
%%BoundingBox:0 0 385 150

/newfont 10 dict def
newfont begin

/FontType 3 def
/FontMatrix [.001 0 0 .001 0 0] def
/FontBBox [0 0 750 750] def

/Encoding 256 array def
0 1 255 {Encoding exch /.notdef put} for
Encoding 97 /square put % keyboard a
Encoding 98 /triangle put % keyboard b
Encoding 99 /circles put % keyboard c
Encoding 100 /diamond put % keyboard d
Encoding 101 /lines put % keyboard e

/Metrics 6 dict def
Metrics begin

/.notdef 0 def
/square 800 def
/triangle 400 def
/circles 400 def
/diamond 800 def
/lines 400 def
end

/BBox 6 dict def

0 0 72 144 216 288

72

abc♦e
creating a font 159



Taking Advantage of PostScript

160
BBox begin
/.notdef [0 0 0 0] def
/square [0 0 750 750] def
/triangle [0 0 375 750] def
/circles [0 0 375 750] def
/diamond [0 0 750 750] def
/lines [0 0 375 750] def
end

/CharProcs 6 dict def
CharProcs begin

/.notdef { } def
/square

{0 0 moveto 750 0 lineto 750 750 lineto
0 750 lineto closepath fill} def

/triangle
{0 0 moveto 375 0 lineto 187.5 750 lineto 
closepath fill} def

/circles
{187.5 562.5 187.5 0 360 arc closepath fill
187.5 187.5 187.5 0 360 arc closepath fill} def

/diamond
{375 0 moveto 750 375 lineto 375 750 lineto
0 375 lineto closepath fill} def

/lines
{150 setlinewidth
0 75 moveto 375 0 rlineto stroke
0 375 moveto 375 0 rlineto stroke
0 675 moveto 375 0 rlineto stroke} def

end

/BuildChar
{0 begin
/char exch def
/fontdict exch def
/charname fontdict /Encoding get char get def
fontdict begin

Metrics charname get 0
BBox charname get aload pop setcachedevice
CharProcs charname get exec
end

end } def

/BuildChar load 0 3 dict put
/UniqueID 1 def
end

/ShapeFont2 newfont definefont pop

/ShapeFont2 findfont 70 scalefont setfont

36 36 moveto (abcde) show
creating a font



Chapter 15

15.6

15–5

PSlearn
the radBit-Roman font

The radBit-Roman font is an example of how the PostScript font machinery can be 
used to create interesting patterns. It is a mono-spaced font with no gap between 
the characters.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:radBit_font.eps
%%Creator:John F Sherman
%%CreationDate:April 1990
%%DocumentFonts:radBit-Roman
%%BoundingBox:0 0 400 400

/newfont 10 dict def
newfont begin

/FontType 3 def

1234
ABCD
abcd
a1CD
creating a font 161



Taking Advantage of PostScript

162
/FontMatrix [.001 0 0 .001 0 0] def
/FontBBox [0 0 1000 1000] def

/Encoding 256 array def
StandardEncoding Encoding copy pop

/CharProcs 30 dict def
CharProcs begin

/.notdef { } def
/str 512 string def
/rBit {

0 1 511
{CharProcs /str get exec exch rand 255 mod put}
for CharProcs
/str get exec } def

/space {0 0 moveto newpath} bind def

/zero {48 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/one {49 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/two {50 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/three{51 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/four {52 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/A {65 srand
10 10 true [.01 0 0 .01 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/B {66 srand
10 10 true [.01 0 0 .01 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/C {67 srand
10 10 true [.01 0 0 .01 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/D {68 srand
10 10 true [.01 0 0 .01 0 0]
{CharProcs /rBit get exec}imagemask} bind def
creating a font



Chapter 15

15.7
/a {97 srand
50 50 true [.05 0 0 .05 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/b {98 srand
50 50 true [.05 0 0 .05 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/c {99 srand
50 50 true [.05 0 0 .05 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/d {100 srand
50 50 true [.05 0 0 .05 0 0]
{CharProcs /rBit get exec}imagemask} bind def

end

/BuildChar
{1000 0 0 0 1000 1000 setcachedevice
exch begin
Encoding exch get
CharProcs exch get
exec end} def

end

/radBit-Roman newfont definefont pop

%% BEGIN DESIGN

/radBit-Roman findfont 100 scalefont setfont

gsave
0 0 moveto (1234) show
0 100 moveto (ABCD) show
0 200 moveto (abcd) show
.5 setgray
0 300 moveto (a1C) show .3 setgray (D) show

grestore

how to use your font

There are two ways you can use your font. The first way is to include the definition 
of the font in the beginning of your program. This has been done in the previous 
examples. The advantage of this is that your program can easily be run on any 
PostScript printer. Everything is there in the PostScript file ready to go.

The second way to use your font is to use it only as a font file and download it to 
your laser printer’s RAM. Thereafter, your PostScript files that use the font will not 
need to contain the definition for the font. The main advantage to downloading 
your font is that you can simplify your PostScript files. The disadvantages are that 
you can lose track of which files use which fonts and there isn’t a convenient way 
to let Macintosh applications use them. 
creating a font 163



Taking Advantage of PostScript

164

15–6

PSlearn
To be able to download a font, you need to add a line of code to the beginning of 
your font file:

serverdict begin 0 exitserver

This line at the beginning of your file will let your font exist in your printer’s RAM 
until it is turned off. Your file would look like this.

%!PS-Font
%%Title:download_rFont.ps

serverdict begin 0 exitserver

/newfont 10 dict def
newfont begin

/FontType 3 def
/FontMatrix [.001 0 0 .001 0 0] def
/FontBBox [0 0 1000 1000] def

/Encoding 256 array def
0 1 255 {Encoding exch /.notdef put} for

Encoding 33 /33 put
Encoding 65 /65 put
Encoding 97 /97 put
Encoding 122 /122 put

/CharProcs 7 dict def
CharProcs begin

/.notdef{ } def
/char {10 setlinewidth rand 1000 mod rand 1000 mod 

moveto
rand 1000 mod rand 1000 mod lineto stroke} def

/33 {33 {CharProcs /char get exec} repeat} bind def
/65 {65 {CharProcs /char get exec} repeat} bind def
/97 {97 {CharProcs /char get exec} repeat} bind def
/122 {122 {CharProcs /char get exec} repeat} bind def
end

/BuildChar
{1000 0 0 0 1000 1000 setcachedevice
exch begin
Encoding exch get
CharProcs exch get
exec
end} def

end

/rFont newfont definefont pop

If the previous program has been sent to the LaserWriter, the following program 
creating a font



Chapter 15

15–7

PSlearn
can be sent to the printer and work correctly.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rFont.eps
%%BoundingBox:25 25 275 225

/rFont findfont 50 scalefont setfont

25 25 moveto (!!!!!) show
25 75 moveto (aaaaa) show
25 125 moveto (AAAAA) show
25 175 moveto (zzzzz) show

Generally, you’ll find it easier to keep the font definition within the PostScript file.

!!!!!
aaaaa
AAAAA
zzzzz
creating a font 165



Taking Advantage of PostScript

166 creative uses of random numbers

a

a

a

a

a

a

a

a

a

a

a

a

aa

a

a

a

a

a

a
a

a

a

aa

a

a

a

a

a

a

a

a
a

a

a

a

aa

a

a

a

a
a

a

a

a

a

a

a

a
aa

a
a

a a

a

a

a

a

a

aa

a

aa

a

a

a
a

a

a

a

a

a a

a

a

a

a

a

a

a
aa

a

aa

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

aa

a
a

a
a a

a a

a
a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a
aa

a

a

a

a

a

a

a
a

a

a

a

a

a

a

aa

a

a

a

a

a

a

a

a

a

a

a a

a

a

a

a

a

aaa

a a

a

a

a

a

a

a

a
a

aa

a a

a

a

a

a

a

a

a

a

a
a a

aa

a

a

a

a

a

a

a

a

a
a

a

a

a

a a

a

a

a

a

a a

a

a

a

a

a

a a

a

a

a

a

a

a

a

a
a

a
aa

a

a

a
a

a

a

a a a
a

a

a

a

a

a

a

a

a
a

a
a

a
a

a

a
a

a
a

a

a
a a

a

a

a

a

a

a

a

aa

a

a

a
a

a a
a

a

a

a

a

a

a

a

a
a

a
a

a
a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

aa

a

a

a

a

a

a

aa

a

a

a

a

a

a

a

a

a
a

a a

a

a

a

a

a

a

a

a
a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

aa a

a
a

a
a

a

a

a

a
aa

a

a

a

a

aa
a

a

a

a

a

a

a

a

a

a

a

a
a

aa a

a

a

a

a

a a

a

a

a

a

a
a

a

a

aa

a

a
a

a

a

a

a
a

a

a

a

a

a

a

aa a

a

a

a

a

a
a

a

a

a

a

a

aa

a

a
aa

aa

a

a

a

a

a
aa

a

a

a

a

aa

a

a

a

a

a

a
a

a

a

aa

aa a

a

a

a

a

aa

a
a

a

a

a

a
a

a a
a

a

aa

a

a

a
a

a

a

a
a

a

a
a

a

a

a

a
a

a

a

a

a

a
a

a

a

a

a
a

a

a
a

a

a

aa a

a

a aa

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

aa

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
aa

a

a

a

a

a
a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a a
a

a

a

a

a

a a

a

a

a

a

a

a
a

a

a
aa

a

a
a

a

a

a

a

a

a

a

aa
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a a

a

a

a

a

a
a

a

a

a

a

a

aa

a
a

a

aa

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa

a

a

a
a a

a

aa
a

a

a
a

a a

a

a

a

a
a

a
a

a
a

a

a

a

a

aa

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a
a

a

a
a

a

a

a

a a

a

a

a

a

a

a

a

a

a
a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a a
a

a

a a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a
a

a

a
aa

a
a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a aa

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a
a

a

a

a

a

a

a

a

a
a

a

a

a
a

a

a

a

a

a

a
aa

a

a

a a

a

a

aa a

a

a

a

a

a

a

a

a

a

a

a a
a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
aa

a

a

aa

a

a

a

a

a

a
a

a

a

a

a
a

aa

a
a

a

a

a

a aaa
a

a

aa

a a

a
a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa
a

a

a

a

a a a

a a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a a

a

a

a

a

a
a a

a

a
a

a

aa

a

a

a

aa

a

a

a
a

a

a

a

a
a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a
a

a

a

a

a
a

a

a

a

a
a a

a

a

a

a

a

a

aaa

a
a

a

a

a

a

a

a
a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa

a

a a
a
a

a

a

a

a

a
a

a

aa
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

aa

a
a

a

a

a

a
a

a

a

a

aaa a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a
a

a

a
a

a

a

a

a
a

a

a

a

a

a

a

a

a
a

a

a

a

a
a a

a

a

a

a

a

a
aa

a

a
a

a

a

a

a

a

a

a

a

a

a

a
a

a
a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a
a

a
a

a

a

a

a a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a
a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a a

a

a

a

aa
a

a
a

a

aaa
aa

aa

a

a

a

a

a

aa

a

a

a

a

a

a

aa

a
a

a

aa
a

a
a

a

a

a

a

a

a
a

a

a

a

a
a

a

a

a

a
a

a

a
a a

a

a

a
a

a

a

a

aa

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

aa

a

a

a

a

a

a

aa a

a a

a

a
a

a

a
a

a
a a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

aa

a

a
a

a

a

a

a
a
a

aa

aa

a

a

a

a

a

a

a

a

a

a

a a

a

a

a

a

a

a

a

a

a

a
a

a

a

a
a

a

a

a

a

a

aa

a

a

a

a
a

a

a

a

a

a

a

a

a a

a

a

a

a

a

a

aa

a a

a
a

a

aa

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a a

a

a

a

a

aa

a

aa

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a
a

a

a

a aaa

a

a

a

a

aa

a

a
a

a

a
a

a

a

a

a

a

a
a

aa
a

a

aa

a a

a

a

a

a

a

a

aa

a

a

a

a a

a

aa

a

a a

aa

a

a

a

a

a
aa

a

a

a

a

a

a

a

a

a

a a

a

a

a
a

a

a

a

a

a

a

a aa

a
a

a

a

a

a
a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

aa

a

a

a
aaa

a

a
a

a

a

a

a

a

a

a

a a
a

a

a

a

a

a

aa

a

a

a

a

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b b

b
b

b

b b

b

b
bb

b

b
b

b

b

b

b b

b

b b

b

b

b
b

b

b b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

bb b

b

b

b

b

b

b b

b

b

b
bb

b

b

b

b b

b

b
b

b
b

b
b

bb

b

b

b

b

b

b

b

b

b

b b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

bb

b

b

bb

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b
b

b

b
b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

bb

b
b

b

b

b

bb

bb

b

b

b b
b

b

b

b

b

bb
b

b

b

bb

bb

b
b

b
b

b

b

b

b

b
b

b

b

bb

b

b

b

b

bb

b

b

b
b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

bb

bb

b

b

b

b

bb

b

b

b

b

b
b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b
b

b

bb

b

b

b

b

b

b

b

b

b
b

b

b
b b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

bb b
b

b

b

b

b

b
b b

b
b

b

b

b

b
b bb

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b b

b

bb b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b
b

b

b
b

b b

b
b b

b

b

b

b

b
b

b

b

b

b

b

b

b

b b

b

b

bbb

b
b

b

b

b b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b
b

b

bb

bb

b

b

b

b

b
b

b

b

b
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b b
b

bb

b

b

b

b

bbb

b b

b

b

b

b
b

b

b

b
b

b

b

bb

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b b

b
b

b

b

b
b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

bb

b
b

b

b

b

b
b

b

b

bb

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

bb
b

b

b

b

b b

b

b

b

b

b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b
b

b

b

b
b b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

bb

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b

bb
b

b

b

b

b

b

b
b

bb

b

b

b

b

b

b

b

bb

b

b

b

b
b

b

b

b b

b

b

b

b

b

b

b

b

b

b b

b

b b
b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

bb b

b

bb
b

b

b

b

b

b

b

b
b

b

b

b

b

bb

b
b

b

b

bb

b

b

b

b

b
b

b

b

b

b

b
b

b
b

b

b

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

bb

b

b

bb

b
b
b

b

b

b

b

b

bb

b

b

b

b

b

b b
b

b

b
b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

bb

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

bb

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b b

b
b

b

b

b
b

b

bb

b

b
b

b

b

bb
b

b

b

bb

b
b

b

b

b

b b

b

b

b b b

b

b
b

b

b

b b

b

b

bb
b

b

b b

bb

b b

b

b

b

b

b

b

b

b b

b

b

b

b

b
b b

b

b

b
b

b

b

b

b
b

b
bb

b

b

b
bb

b
b

b

b
b

b

b

b

b b

b
b

b
b b

b

b

b
b

b

b

b
b bb

b

b

b

b

b b

b

b

b

bb

b

b

b

b

b

b

b

b

b

bb
bb

b
b

b

b

b
b

b

b

bb

b

b

b

b

b
bb b

b

b b

b

b

b
b

b

b
b

b

b
bb

b

b b

b
b

bb

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b
b

b

bb

b

b
b

b

b
b

b

b

bb
b

b

b

b

b
b

b

b
b

b

b

b

b

b bb

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

b
b

b

b

b

b

b

b

b

b

b

b

b

bb
b

b

b

b

b

b

b
b

b b

b

b

bb

b

b

b

b

b

b
b

b
b

b

b

b
b

b

b

b

b

b b
b

b

b
b

b

b

b

b

b

b

b

b

b

b

b
b bb

b

b

b
b b

bb

b

b
b b

b

b

b

b b

b

b

b

b b

b

b

b

b
b

b
b

b b
b

b
b

b b
b b

b b

b

b
b

b

b

b
b

bb
b

b
b b

b

b
b

b

b
b

b

b
b

b

b

b

b

b b

b

b

b
b

b

b
b b

bb b

b

b

bb b
b

b
b

b

b

b
b

bb b
b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

b

b b

b

b

b b
b

b
bb

b

b

b

b

b

bb b
b

b b
b

b
b

b

b

b

b
b

b

b b

b
bbb

b
b

b

b

b

b

b

b
b

b
b

b
bb

b
b b b
b b

b
b

b
b

b

b

b
b

b

b

b
b

b
bb

b
b

b

b

b
b

b

b
b

b
b
b

b

b

b

b
b

b b

b

b

b

b

b
b

bbb b
bb

b
b

b

b
b

b
b

bb
b

b bb b
bb

b bb
b

b
bbb b

b b
b

b

b b

bb bb b
b

b

b bb

b

b b b

b
b b

b b

bb
bb bb

bb

b

b
b

bb
b

b

bb

b

bb
b

bb

bb
b b

b
b bb b

b
b

b b
b

b
b

b

bb
b

b
b

b
b b

b
b

b
b

b
b

b
b bb b

b
b

b
bbb

bb

bb
bb

b
b

b

b b b b
b

b b
b

b b

b

bb

bb b

b
b

b

b
b

b

b
b b

b

bbb

bb
b

bb b

bb bb
bb b

bb

b

b

b

b
b

b
b b

bb
b

b
b

b bbb

bb
b

b
b b

b
b

b b

b

bb

b
b

b

b

bb b
bb

b b

c

c

c

c

c
c

c

c

c

c

c

c c
c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c c

c

c
c

c

c

c

c

c

c

c c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c
c

c

c

c

c

c

c
cc

cc

c
cc

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

cc

c

c c

c

c

c

c

c

c

c

c

c

c

c

c

c c

c

c

c

c

c

c
c

c

c

c
c

c
c

c

c
c

c

c

c

c

c
c

c

ccc
c

c

c

c

c

cc

c c

c c

c c

c

c c

c

c

c

c
c

c

c

c

c
c

c
c

c

c

c

c

c
c

c

c

c

c

cc

c

c

c

c

c

c

c

c
c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

c c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

cc c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

cc c
c

c

c

c

c

c
c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

cc

c
c

c c

c

c

c
c c

c

c

c

c c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

cc

c

c

c c

c
c

c

cc

cc

c

c

c

c

c

cc

c

c

c

c

c

c

c c

c c

c

c

c

c

c

c

c

c

c

c
c

c

cc

c
c

c

c

c cc
c

c

c

c
c

c

c

c

c

c

c

cc
c

c c

c

cc

c

c
c

c

c

cc

c

c
c

c

c

c

c

c

c c

c

c

c
c

c
c

c
c

c c

c c

c

c
c c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
cc

c

c

cc

c

c

c

c

c

c

c

c

c

c c

c

cc

c c

c

c

c
c

c

c

c

c

c

c

c

c

c

ccc

c

c

c

c c

c

c c
c

c

c

c

c

c c

c

c

c
c

c c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c c

c

cc

c

c

c

c

c

cc

c
c

c

c

c
c

c

c
cc

c

c

c
c

c
c

c

c

c

c c

c

c

cc
c

c

c

c c

c

cc

c
c

c

c

c

c

c

c

c

c

c

c

cc

c

c

c

c

c

c

c c

c

c

c

c
c

c
c

c

c

c
c

c c

c

c

c

c

c

c c
c

c

c

c

c

c

c

c

c

c

c

cc

c

c

c

c

c

c

c

c

c

c

c

c

c

cc
c

c

c

c

c

c
c

c
c

c

c
c

c

c
c

c

c

cc

c

c

c

c

c

c

c
cc

c
c

cc

c

c

c c

c

c

c
c

c

c

c
c

c

c

c

c

c
c

c
c

c

c

c

c

c

c

c c c

c

c

c

c

c

c

c

c

c

c

c

c

c
c

cc

c
c

c

c
c

c

c
c

c c c

c

c
c

c

c

c

c

c

c

c

c

c

c

c cc

cc

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

cc

c

c

c

cc

c

cc

c

c c

c

c

c

c

c
cc

c

c

c
c

c

c

c

c

c

c

c

cc
c

c

c

c
c

c

c

c
c

c

c

c

c
c

cc

c c
c

c

c

c

c
c

c

c

c

c

c

c

c

c

cc

c

c

c

c

c

c

c

c
c

c
c

c

c

c

c

c

c

cc
c

c

c

cc

c

c

c

c

c c

cc

c

c

cc

c

c

c
c

cc

c

c

c
c

c

c

c

c

cc

c

c

c

c

c
c

c

c

c

ccc

c

c

c
c

c

c

cc

c

c

c
cc

c

c

c
c

cc

c

c

c
cc c

c

c

c

c

c

c

c

c

c
c

c

c

c

c
c

c

c c

c

c

c
c

c

c

c

c

c

c

c

c

cc

c

c

c

cc

c

c

c c
c

c

c

c

c

c
cc

c

c

c

c
c

c

c
c

c

c
c

c
c

c

c
c

c

c
c

c

c

c

c

c

c

c

c

c
c

c

c

cc

c

cc
cc

c

c c

c cc
c

cc c
cc

c

c

c

c

c

c
c

c

c

c

c c

c

c

c

c

c
c

c

c cc

c

c
c

c c

c

c

c

c

c

c
c

c

c

c

c

c
c

c

c

c

c

c

c

c
c

c
c

c

c
c

c

c

c c

cc

c

c

cc
c

c

c

c

c

c
c

c

c
c

c

c

c

c

c c

c c

c

c

c

c

c
c

c

c

c

c c

c

c
c

c
c
c

c

c
c

c

c

c

c
c

c

c

c
c

c

c

c

c

c

c c

c

c

c

c c

c

c

c

c

c

c

c c

c

c

c
c

c

c

c
c

c
c

c

c

cc
c

c

c
c

c

c

c

c
c

c

c

c

c

c

c

c c

c

c

cc

c

c

c

c

c
c

c

c

c
c

c

c

c

c

c

c

c
c

c

c
c

c

cc

c

c

c
c

c

c

c

cc

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

cc

c

c
c

c

c
c

c
cc

c
c

c

c
c

c

c c

c
c

c

c

c

c

c

c

c

c
c

c
c

c
c

c

c

c

cc c cc c

c

c

c

c

c
c

c

c c

c

c c

c

c
c

c
c

c

c cc

c

c

c

c

c

c

c cc

c

c
c

c

c

cc

c

c

c

c

c

c

c

c
c

c
c

c

c

c

c
c

c

c

cc

c

c
c

c
c cc c

c

c
c

c

c

c

c
c

c

c

c

c

c

c
c

c
c

c
cc

c

c

c
c

c

c

c

c

c

c
c

cc c

cc

c
c c

cc

c

c

c
c

c

c

c

c

cc
c

cc

c
c

c c cc

c

c

c

c
c

c

c
c

c

c

c

c
c cc c

c c

c
c

c

c

c
c

c
c

c

c

c

c

c

c
c

c

c

c
c

c
c

c

c

c c

c c

c

c

c
c

c cc

c
c c

c c

c

c
c

c
c

c

c

c

c

c

cc
c

c cc
c

c
c

c

c

cc

cc c

c
c c c

c

cc
c

c

c

c

c

c c
c c

cc

c

c c
c

c

c

c

c
c

c cc

c cc

c
c

cc

c

c

c

c

c

c

c

c c
cc

c

c

c

c

cc c

c

c
c ccc

c

c

c

c

c

cc

c

c

c

c c
c

c

c c

c c

c

c

c

c

cc

c
c

c

c c
cc

c c
c

c

c
c c

c
c

c

c
cc

cc

c
cc

ccc
cc

c
c c

c

c
c

cc

c

cc c

c

c

cc

c
c

c

cc
cc

cc
c
c

c
c

cc
cc

c

c
c

c
c c

c ccc c

c ccc
cc c

c

c
c

c
c

c

c
c c c
cc cc

cc
c

c
cc

c

c
cc

c c c
c c

c

c

c
cc cc

c c
c

c c

c
c

c

c
c

c

c

cc

c

c

c
c

c
cc

c

c
c cc

cc
c

c
c

c

ccc c

c

c
c

c
c

c

c cc c

c
c

cc cc c
c c

ccc
c

cc
cc

c

c

cc

c

c cc
cc

cc
cc

c c
c

c

c

c
c

c
c

c

c
c c cc

c

c
ccc ccc

cc
c

c c c
cc

c
c

d

d

d

d

d

dd

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d
d

d

d
d

d

d

d

d

d

d

dd

d

d

d
dd

d

d
d

d

d

d

d

d

d
d

d

d

d

d

d

d

d
d

d

d

d

dd

d

d

d

d

d

d

dd

d

d

d

d

d

dd

d
d

d

d

d

d

d

d

d
d

d

d

dd

d

d

d

dd

d

d
d

d

d

d

d

d

dd

d

d

d

d

d d

d

d
d

d

dd

d d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

dd

d

d

d

d

d d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d d

d
d

d

d

dd
d

dd

d

d

d d

d

d

d

d

d

d

d

d

dd d

d

d
d d

d

d

d

d

d

d

d

d

d

d

d
dd

d

d
d

d

d

d

d

d

d d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d d

d

d
d

d
d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d
d
d

d

d

dd

d

d

d
d

d
d

d

d

d

dd

d
d

dd

d

d

d

d

d

d

dd

d

d

d

dd

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

dd

dd

d

d
d

d

d

d

d
d

d
d

dd

d
dd

d

d

dd

d

dd

d

d
d

d

dd

d
d

d

dd

d
d

d
d

d

d

d
d

d

d

dd

d

d

d

d
d

d

d

d

d

d

d

d

dd

d

d

d

d

dd

d

d

dd

d
d

d

d

d

d

d

d

d

d

d

d

d
d

d

d d

d

d
d

d
d

d

d
d

d

d

d

dd

d

d

d

d

d

dd

d

d

d

d

d

dd

d

d

d

dd

d

d

dd

d

d

d

d

d

d

d
d

d

d
d
d

d

d

d
d

d

d

dd

d

dd

d
d

d

d

d

d

d

d

d

d

d

dd

d

d

d

dd

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

d
d

d
d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d d

dd

d
d

d

d

d
d

d
d

d
d

d

d

d

d
d

d

d
d

d

d

d

d

d dd

d
dd
d

d

d d

d

d

d

d

d
d d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

dd

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d d

d

d

dd

d

d
d

d

d

d

d

dd

d

d
d

d
d

d
d

d

d
d

dd

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d
d

d

d

d

d

d
d

d

dd

d
d

d

d

d

d
d d

d

d

dd

d
d

ddd

d

d

d

d

d
d

dd d

d

d

d

dd

d

d

d

d

d

d

d

dd

d

d

d

d

d

d

d

d

d

d
d

d

dd

d

d

d

d

d

dd

d d

d

d

d

d

d
d

d

d

d

d

d

d

d d

d d

d

d

d

dd

d

d d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d d

d

d

d

d

d

d

d

d

d

d

d

d

d d

d

d
d

d

d

d

d

d

d

d

d
d

d

d

d

d

dd

d

d

d

d

d

d

d

d

d

d
d

d dd

d

d

d
d

d d

d

dd

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d d
d

d

d

d

d

d
d

d

d

d

d

d d

d d

d
d

d

d

d
d

d

d

d
d

d

d

d
d

d

d

d

d
d

d
d

d

d

d d

d

ddd

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d
d

d

d

d

d

d
d

d

d

d

d

d

dd

d

d

d
d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d d

d

d

d

d

d

d

d d

d

d

d

d

d

d

d

d

d

d d
d

d

d

d
d

d

d

d

d

d d

d

d

d

d
d

d

d
d

d

d

d

d

d

d d

d

d

d

d

d

d

d

d

d

d

d dd

dd

d

d

d

d

d

d

d d
d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

dd

d

d

d

dd

d
d

d

d

d

d

d

d

d

d

d

d

d

d

dd

d
dd

d

d

d

d

d

d
d

d

d d

d

d

d

d
d

d

d

d

d d

d

dd
d

d

d

d

d
d

d
d

d

d
d

d

d

dd

d

d

dd

d

d

d

d

d

d d

d

d

d

d

d

d

d

d
d

d

d

d
d

d

d

d

dd

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

dd

d

d

d

d

dd
d

d

d

d

d
d

d

d

dd

d

d

d
d

d
d

d
d

d

d

d

d

d

d

d d

d

d
ddd

d

d

d

d

d

d

d

d

d

d

dd

d

d
d

d
d

d

dd

d
d

dd

d

d

d

d
d

d

d
d

d

d

d
d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d d

d

d

d

dd

d
d

d d
d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d
d

d
d

d

dd

d

d

d

d d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d
d

d

d

d

d

d

d

d

dd

d

d

d

d

d

d
d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d
d

d

dd

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

dd

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d d

d

d

d

d

d

d

d

d

d

dd

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d d

d

d

d

d

d

d

d d

d

d

dd

d

d

d d

d

d

d

d

d

d

d
d

d

d
d

d

d

d

d

d

d
dd

dd

d

d

d

d

d

dd
d d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

d

d

d

d

d

d

d d

d

d

d
d

d

d

d

d

d

d

d

dd

d

d

d

d

d d

d

d

d

d

dd

d

d

d d d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d
d

d

d

d

d
d

d
d

d
d

d

d

d

d

d

d

d

d

dd

d
d

d

d

d

d

d

d

d

d

d

d
d

d

d
d

d

d

d

d

d

d

d

d
d

dd

d

d

d

d

d
d

d

d

d

d

d

d

dd d

d
d

d d

d
d

dd

d

d

d

d

d

d

d

d

d

d

d

d
dd

d

d

d

d



Chapter 16

16.1

PSlearn
16–1
creative uses of random numbers
The random number generation of PostScript has a number of creative 
applications. Most common are random numbers for an x y  location for a moveto  
or lineto  operator or to set a gray value. The sequence of random numbers can 
be repeated if the seed number that begins the sequence is the same.

rand

The simplest random number program would be

rand =

rand  creates and pushes a random number onto the operand stack. The equal sign 
(=) pops the number off the stack and sends it the standard output file. Depending 
on the application you are using at the time, the standard output file will be 
different. On the Macintosh, if you are using SendPS, the standard output file will 
be a text file on your hard disk named after your printer. If you are using 
Downloader, the output file is a brief display in a window on the monitor. On the 
NeXT, the standard output file will be the Console window found in the Tools 
menu under the main Workspace menu. By running the following,

rand =
rand =
rand =
rand =
rand =
rand =
rand =

you will send seven numbers to the standard output file.

507111939
1815247477
1711656657
1717468248
1161144809
1176904574
1910786348

You won’t get these numbers. It will be a different set every time. Another way to 
see the number created is to print it:

16chapterchapter
creative uses of random numbers 167



Taking Advantage of PostScript

168

360

16–2

PSlearn

16.2

PSlearn
16–3

360
%!PS-Adobe-2.0 EPSF-2.0
%%Title:seeRand1.eps
%%DocumentFonts:Times-Bold
%%BoundingBox:36 36 288 72

/Times-Bold findfont 48 scalefont setfont
/str 10 string def

36 36 moveto rand str cvs show

srand

In the previous example, every time the program is run, a different number will be 
generated. By using the operator srand , which can be understood as seedrandom 
number, a repeatable series of numbers can be created. The syntax of srand  is:

integer srand

Where integer  is the seed number.

1734 srand
rand =
rand =
rand =
rand =
rand =
rand =
rand =

Every time this is sent to the PostScript interpreter, the same seven numbers will 
be generated. Following is an expanded version of seeRand1.eps .

0 0 72 144 216 288

72

1399702527

0 0 72 144 216 288

72

29143338 185810250 471649012

29143338 185810250 471649012
creative uses of random numbers



Chapter 16

PSlearn
16–4

16.3

360

PSlearn
16–5
%!PS-Adobe-2.0 EPSF-2.0
%%Title:seeRand2.eps
%%DocumentFonts:Times-Bold
%%BoundingBox:36 36 335 90

/Times-Bold findfont 18 scalefont setfont
/str 10 string def

1734 srand
36 36 moveto rand str cvs show
144 36 moveto rand str cvs show
254 36 moveto rand str cvs show

1734 srand
36 72 moveto rand str cvs show
144 72 moveto rand str cvs show
254 72 moveto rand str cvs show

random x y placement

The PostScript random number generator can be used to supply values for the 
moveto  or lineto  operators. The random number created, however, needs to be 
confined to a certain range so that there is a reasonable expectation of where items 
will be located. Otherwise, you’ll be off the page most of the time. Creating a 
random number that is always within a certain range can be done with the mod 
operator. mod divides the top two integers on the stack and pushes the division’s 
remainder onto the stack. For example, 77 10 mod  would return 7. No matter 
what the first integer is, the remainder will always be between 0 and the divider 
minus 1. In the following example, 10 random numbers are generated between 0 
and 100. A different set can be made if the srand  value is changed.

%!PS-Adobe-2.0 EPSF-2.0
%%Title:seeRand3.eps
%%DocumentFonts:Times-Bold
%%BoundingBox:36 36 362 100

/Times-Bold findfont 36 scalefont setfont
/str  20 string def
/range 100 def
/rNum  {rand range mod} def

0 0 72 144 216 288

72

29 33 33 77 94
42 72 37 72 79
creative uses of random numbers 169



Taking Advantage of PostScript

170

360

PSlearn
16–6
173468 srand

36 36 moveto rNum str cvs show
108 36 moveto rNum str cvs show
180 36 moveto rNum str cvs show
254 36 moveto rNum str cvs show
326 36 moveto rNum str cvs show

36 72 moveto rNum str cvs show
108 72 moveto rNum str cvs show
180 72 moveto rNum str cvs show
254 72 moveto rNum str cvs show
326 72 moveto rNum str cvs show

To take advantage of these numbers to make a graphic, you can write:

rNum rNum moveto rNum rNum lineto stroke

This will draw a line from a random start to a random end. The beginning and the 
end will be within whatever range is decided. The next step is to repeat the line so 
that various patterns or textures can be created. In the following example, the first 
cluster is an example of repeating the line of code above. The second cluster is an 
example of using the repetition twice with a change in line weight and value. The 
third cluster of lines demonstrates how by using srand  with the same seed before 
drawing the cluster of lines, the same pattern of lines can be made and overlapped.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:randLines.eps
%%BoundingBox:36 36 324 108

/range72 def
/rNum {rand range mod} def

36 36 translate % first cluster
25 {rNum rNum moveto rNum rNum lineto stroke} repeat

108 0 translate % second cluster
.5 setgray
4 setlinewidth

0 0 72 144 216 288

72
creative uses of random numbers



Chapter 16

360

16–7

PSlearn
25 {rNum rNum moveto rNum rNum lineto stroke} repeat
0 setgray
1 setlinewidth
25 {rNum rNum moveto rNum rNum lineto stroke} repeat

108 0 translate % third cluster
173468 srand

.5 setgray
4 setlinewidth
25 {rNum rNum moveto rNum rNum lineto stroke} repeat

173468 srand
0 setgray
1 setlinewidth
25 {rNum rNum moveto rNum rNum lineto stroke} repeat

Following is a similar example using the curveto  operator.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:randcurves.eps
%%BoundingBox:36 24 362 140

/n {rand 72 mod} def

36 36 translate % first scribble
n n moveto
25 {n n n n n n curveto} repeat stroke

72 0 translate % second scribble
.5 setgray
4 setlinewidth
n n moveto
25 {n n n n n n curveto} repeat stroke
0 setgray
1 setlinewidth
n n moveto
25 {n n n n n n curveto} repeat stroke

72 0 translate % third scribble

0 0 72 144 216 288

72
creative uses of random numbers 171



Taking Advantage of PostScript

172

16.4
192837465 srand
.5 setgray
4 setlinewidth
n n moveto
25 {n n n n n n curveto} repeat stroke

192837465 srand
0 setgray
1 setlinewidth
n n moveto
25 {n n n n n n curveto} repeat stroke

72 0 translate % fourth scribble
1734173417 srand % bottom

.8 setgray
10 setlinewidth
n n moveto
25 {n n n n n n curveto} repeat stroke

1734173417 srand % middle
.5 setgray
5 setlinewidth
n n moveto
25 {n n n n n n curveto} repeat stroke

1734173417 srand % top
0 setgray
.25 setlinewidth
n n moveto
25 {n n n n n n curveto} repeat stroke

random placement of type

The random placement of type is essentially accomplished in the same way as in 
the previous section. Here we generate separate x  and y  values.

0 0 72 144 216 288

72

144

a

a

a
a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

aa

a
a
a

a

a

aa a

a
a

a

a a
a
a

a

a

a

a

a

a
a

a

aa

a

a
a

a

a

a

aa

a
a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

aa

a

a

aa
b

b

b
b

b b

b

b

b

b b

b bb
b

b

b

b bb
b

b

b

b

bb

b

b

b

b

b

b

bb

b

b

b
b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b
b

b

b

b

bb

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

bb

bb

b

b

b

b

b

b

b

b

b

b

b b b

b

b

c

c cc

c
c

c

c

c

c

c

c

c c
c

c

c
c

c

c c
c

c c

c

c

c

c

c

c

c

c

c

c

c

c

c

c c

c

c

c

c
c

c

c

c cc

c

c
c

c

c

cc

c

c

c

c

ccc

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

d
d

d

d

d

d

d

d

d

d

d

dd

d

d

d
d

d

d

d

d

d d

d

d

d

d

d
d

d

d

d
d

d

d
d

d

d
d

d

d

d

d
d

d

d

d

d

d
d

d
d

d

d

d

d

d

d

dd

d

d

d

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d d

d
d

d

d

d
d

d

d

d

d

d

d d

d

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e e

e

ee

e

e

e
e

e

e
e e

e

e

e
e

e

e

e

e

e

e

e
e

e

e

e

e
e

e

e
e

e

e e

e

e
e

e

e

e

e

e

e

e e

e

e

e

e

e

e e

e

e

e

e

e
e

e

e

e
e

e

e

e

e

e e

e

e

e

e

e

f

f

f

f

f
f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f

f
f

ff

f

f

f

f

f
f

f
f

f

f

ff

f

f
f

f

f

ff

f

f

f

f

f
f

f

f
f

f

f
f f

f

f

f

f

f

f

ff

f

f

f

f

f

f

f

f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f

f

f f
f

f

f

f

f

f

f

f

f

g

g

g

g

gg g

g

g

g
g

g

g
g

gg
g

g

g

g

g

g
g

g

g

g

g

g

g

g

g

g

g

g g

g

g

g

g

g

g

g

g

g

g

g
g

g

g

g g

g

g
gg

g

g

g

g

g

g

g

g

g
g

g

g

g

g
g

g

g

gg

g

g

g

g

g
g

g

g

g

g

g

g

g

g

g
g

g

g

g g

gg

g

g g

g

creative uses of random numbers



Chapter 16

PSlearn
16–8
%!PS-Adobe-2.0 EPSF-1.2
%%Title:randAlpha1.eps
%%BoundingBox:36 36 330 184

/x {rand 288 mod} def % x will be between 0 & 288
/y {rand 144 mod} def % y will be between 0 & 144

/Palatino-Roman findfont 10 scalefont setfont
36 36 translate

100 {x y moveto (a) show} repeat
100 {x y moveto (b) show} repeat
100 {x y moveto (c) show} repeat
100 {x y moveto (d) show} repeat
100 {x y moveto (e) show} repeat
100 {x y moveto (f) show} repeat
100 {x y moveto (g) show} repeat

A second example of randomly placing type introduces a few helpful variations of 
the random number procedure. Having the procedure

/x {rand exch mod} def

used in this way

100 x y moveto (A) show
200 x y moveto (B) show
300 x y moveto (C) show

can give flexibility in the program to produce variable ranges for the value of x . In 
the next example, this technique is used for the x  value used by the moveto  
operator. The addition of the 12 sub  to the /x  and /y  procedures below shifts the 
values for x  and y  by –12 so that the type will be cropped left and bottom.

0 0 72 144 216 288

72

144

E
E

EEEE
EE

E

E

E

E
E EE EEE E

E

E
E

EE EE

E E

E

E

E EE E
EE

E E
E

E
E

E
E

E

E

EEE
E

EE
EE

EE
E
E

EE
E
E

E
EEE EEE

EE EE
E

EE E
E

E EE E
E

E
E

E

EE

E E
EE

E

E

EEEE
E

E
E

D
D

D
DD

DDDD
DD D

D
D
DDD

DD
D

D DDD
D

D

D

DD
DD

D
DD

D
D

DDDDD DD
DDD

D
D

D DD
D

D
D

DD D
DD
D

C C
C

C
C CC C

C
CCC
CC

C
C

C
C

C
CCCC C

C
C

C
CC

C C
CC
C

CB

B
B

BBB
BBB B

B B
BB
BB
B
BB

B B
B

BBBA

A
AA

A

A
AA
A
A

creative uses of random numbers 173



Taking Advantage of PostScript

174

PSlearn
16–9

16.5

360

PSlearn
16–10
%!PS-Adobe-2.0 EPSF-1.2
%%Title:randAlpha2.eps
%%BoundingBox:0 0 366 224

/x {rand exch mod 12 sub} def
/y {rand 130 mod 12 sub} def

/AvantGarde-Demi findfont 48 scalefont setfont

36 36 translate
0 0 moveto 288 0 rlineto 0 144 rlineto -288 0 rlineto
closepath clip newpath

933478383 srand

.8 setgray
100 {290 x y moveto (E) show} repeat

.6 setgray
60 {200 x y moveto (D) show} repeat

.4 setgray
35 {150 x y moveto (C) show} repeat

.2 setgray
25 {100 x y moveto (B) show} repeat

0 setgray
10 {40 x y moveto (A) show} repeat

random gray values

A randomly generated number can be used by the setgray  operator as well. In 
this case, we need a number between 0 and 1. To get the number, a number 
between 0 and 100 is generated with rand 100 mod  and then this number is 
multiplied by .01  to shift the decimal point. The following example is similar to 
seeRand2.eps  seen earlier in section 16.2. In this version, the generated number 
is duplicated so it can be used twice. The first is used by the setgray  operator, the 
copy is converted to a string and painted. Therefore, the number appears in its gray 
value.

%!PS-Adobe-2.0 EPSF-2.0
%%Title:seeRgray1.eps
%%DocumentFonts:Times-Bold
%%BoundingBox:36 18 360 70

/Times-Bold findfont 18 scalefont setfont
/str 10 string def

0 0 72 144 216 288

0.48 0.21 0.31 0.87 0.35

0.32 0.27 0.06 0.22 0.78
creative uses of random numbers



Chapter 16

360

5

8

PSlearn
16–11
/rG {rand 100 mod .01 mul} def
6234572 srand

36 18 moveto rG dup setgray str cvs show
108 18 moveto rG dup setgray str cvs show
180 18 moveto rG dup setgray str cvs show
254 18 moveto rG dup setgray str cvs show
326 18 moveto rG dup setgray str cvs show

36 48 moveto rG dup setgray str cvs show
108 48 moveto rG dup setgray str cvs show
180 48 moveto rG dup setgray str cvs show
254 48 moveto rG dup setgray str cvs show
326 48 moveto rG dup setgray str cvs show

A variation of this procedure is to confine the gray values within an even tighter 
range by multiplying by .001  instead of .01  and then adding a number to fill the 
first decimal space. The number obtained from the random generation may be 
0.027 , for example. By adding 0.3 , it will be 0.327 . See example below. By 
moving the decimal over three places instead of two, the number will always be 
0.0xx . Whatever number is then added determines the narrow range as long as 
it’s between 0.1  and 0.9 . Or, add nothing if you want to keep it in the 0.001  to 
0.099  range.

%!PS-Adobe-2.0 EPSF-2.0
%%Title:seeRgray2.eps
%%DocumentFonts:Times-Bold
%%BoundingBox:36 18 370 70

/Times-Bold findfont 18 scalefont setfont
/str 10 string def
/rG {rand 100 mod .001 mul .3 add} def
6234572 srand

36 18 moveto rG dup setgray str cvs show
108 18 moveto rG dup setgray str cvs show
180 18 moveto rG dup setgray str cvs show
254 18 moveto rG dup setgray str cvs show
326 18 moveto rG dup setgray str cvs show

36 48 moveto rG dup setgray str cvs show
108 48 moveto rG dup setgray str cvs show
180 48 moveto rG dup setgray str cvs show
254 48 moveto rG dup setgray str cvs show
326 48 moveto rG dup setgray str cvs show

0 0 72 144 216 288

0.348 0.321 0.331 0.387 0.33

0.332 0.327 0.306 0.322 0.37
creative uses of random numbers 175



Taking Advantage of PostScript

176

16–12

PSlearn

Another example is the listing for the design on the first page of this chapter.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:quad_abcd.eps
%%BoundingBox:0 0 360 360

/Helvetica-Bold findfont 12 scalefont setfont

/n {rand exch mod} def
/nn {rand 200 mod} def
/g {rand 100 mod .01 mul} def
/box {0 0 moveto 180 0 lineto 180 180 lineto

0 180 lineto closepath} def

173417 srand

0 180 translate box fill % upper left
gsave

box clip newpath

/a {180 n nn moveto (a) show} def
/b {144 n nn moveto (a) show} def
/c {108 n nn moveto (a) show} def
/d {72 n nn moveto (a) show} def
/e {36 n nn moveto (a) show} def

25 {g setgray 25 {a} repeat} repeat
20 {g setgray 25 {b} repeat} repeat
15 {g setgray 25 {c} repeat} repeat
10 {g setgray 25 {d} repeat} repeat
10 {g setgray 25 {e} repeat} repeat

grestore

0 -180 translate box .5 setgray fill
gsave

box clip newpath

/a {nn 180 n moveto (b) show} def
/b {nn 144 n moveto (b) show} def
/c {nn 108 n moveto (b) show} def
/d {nn 72 n moveto (b) show} def
/e {nn 36 n moveto (b) show} def

25 {g setgray 25 {a} repeat} repeat
20 {g setgray 25 {b} repeat} repeat
15 {g setgray 25 {c} repeat} repeat
10 {g setgray 25 {d} repeat} repeat
10 {g setgray 25 {e} repeat} repeat

grestore

180 180 translate box .2 setgray fill
creative uses of random numbers



Chapter 16
gsave
box clip newpath

/a {nn 180 n moveto (c) show} def
/b {nn 144 n moveto (c) show} def
/c {nn 108 n moveto (c) show} def
/d {nn 72 n moveto (c) show} def
/e {nn 36 n moveto (c) show} def

25 {g setgray 25 {a} repeat} repeat
20 {g setgray 25 {b} repeat} repeat
15 {g setgray 25 {c} repeat} repeat
10 {g setgray 25 {d} repeat} repeat
10 {g setgray 25 {e} repeat} repeat

grestore

0 -180 translate box .9 setgray fill
gsave

box clip newpath

/a {36 n nn moveto (d) show} def
/b {72 n nn moveto (d) show} def
/c {108 n nn moveto (d) show} def
/d {144 n nn moveto (d) show} def
/e {180 n nn moveto (d) show} def

25 {g setgray 25 {a} repeat} repeat
20 {g setgray 25 {b} repeat} repeat
15 {g setgray 25 {c} repeat} repeat
10 {g setgray 25 {d} repeat} repeat
10 {g setgray 25 {e} repeat} repeat

grestore
creative uses of random numbers 177



Taking Advantage of PostScript

178 some advanced programming ideas



Chapter 17

17.1
some advanced programming ideas
There are a number of techniques that can be used to increase the performance of 
your PostScript programs. The techniques involve new ways of defining the 
procedures you write, redefining PostScript operators, and creating your own user 
dictionary of procedures. After this discussion, I’ll explain  several designs in 
detail.

early binding

PostScript is an extensible language, meaning box , as defined in this example, 

/box { moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath } def

can be used like any other PostScript operator. You have expanded the vocabulary 
of the PostScript language. Procedures that you create are located in the userdict  
dictionary on a dictionary stack. PostScript operators are found in the 
systemdict  dictionary below userdict  on the stack. When a name or key is 
encountered, the userdict  is looked into first, the systemdict  second, going 
down the stack. Every time box  is used, the PostScript interpreter looks first in the 
user dictionary for the meaning of box . What is found there is moveto 72 0 
rlineto 0 72 rlineto -72 0 rlineto closepath . Next, the userdict , 
then the systemdict  dictionaries are searched for the value of moveto , 
rlineto , and closepath .

Things could be sped up if all this lookup activity could be simplified. This can be 
done with a process called early binding and it’s done with the bind  operator. All 
that looking up process described in the previous paragraph is called late binding. 
The box  procedure using bind  would be written like this:

/box { moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath } bind def

Now the lookup is performed when the procedure is first defined. When the key 
box  is now encountered in a program, its value is executed without any lookup. In 
a short program, the performance difference is negligible. Most of the program 
examples in this book would not benefit from this. It is useful, however, in much 
larger programs that take more time to process.

If a procedure name is used within the definition of another procedure, bind  is 
only needed in the second procedure. There is no added benefit in binding both 
procedures, nor is there a penalty. For example, the bind  used in the R_box  
procedure that follows will also apply to the box  procedure.

17chapterchapter
some advanced programming ideas 179



Taking Advantage of PostScript

180

17.2

PSlearn
17–1
/box {0 0 moveto 8 0 rlineto 0 8 rlineto -8 0 rlineto
closepath fill} def

/R_box {100 {10 0 translate box} repeat} bind def

load

Another technique to increase the efficiency of your program is to reduce its size. 
Sometimes just the amount of information being sent to the printer is taking up all 
the time, not the PostScript interpreter processing what was received. Again, not 
much gain is going to be attained in a short program. However, if a PostScript 
program has a large number of moveto ’s, lineto ’s, and stroke ’s for example, 
its size can be reduced significantly if they were replaced with m, l , and s . The 
operator load  can be used to rename PostScript operators.

Actually, lineto  is the key to the value of a PostScript operator that draws a line. 
The key to this operator value can be changed. load  pushes the operator value 
onto the operand stack and bind  can then be used to tightly associate a new key 
or name to the operator. Following is an example using both bind  and load .

 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:3boxDesigns.eps
%%BoundingBox:36 36 252 108

/bd {bind def} bind def
/ld {load def} bd
/lw /setlinewidth ld
/g /setgray ld
/m /moveto ld
/a /arc ld
/rl /rlineto ld
/l /lineto ld
/c /curveto ld
/cp /closepath ld
/s /stroke ld
/f /fill ld

0 0 72 144 216

72
some advanced programming ideas



Chapter 17

17.3

PSlearn
17–2
% first box
.5 g 36 36 m 108 36 l 108 108 l 36 108 l cp f
0 g 2 lw 72 72 36 0 360 a s

% second box
.2 g 4 lw 108 36 m 72 0 rl 0 72 rl -72 0 rl cp f
1 g 108 72 m 144 108 144 36 180 72 c s

% third box
.8 g 2 lw 180 36 m 72 0 rl 0 72 rl -72 0 rl cp f
0 g 180 36 m 72 72 rl s 252 36 m -72 72 rl s

making a user dictionary

The list of definitions used in the beginning of 3boxDesigns.eps  can be formed 
into a user dictionary. This is basically making your own laser printer prep file. The 
Macintosh Laser Prep file is a userdict  dictionary named md (probably for 
macintosh dictionary). It needs to be in the LaserWriter when printing because 
Macintosh software uses the procedures defined in the md dictionary when it sends 
a file to the printer.

The md dictionary contains 250 procedure definitions. You can’t open the Laser 
Prep file, but it can be examined in another way. Open any file and select Print from 
the “File” menu. Immediately after you click on OK in the Print dialog box, press 
command–k on the keyboard. A text file will be created on your disk drive of the 
md dictionary plus your file as it would be sent to the printer. A variation of this is 
pressing command–f. This will create the same text file minus the md dictionary. 
The files will be named PostScript0, PostScript1, and so on up to PostScript9 and 
then start over at PostScript0.

This PostScript file, if sent to the laser printer, would reside in the printer’s RAM 
just as the Laser Prep file does. Note that this is basically the same operation as 
downloading a font to the printer. See section 15.7.

%!PS-Adobe-2.0
%%Title:Sherm_dict.ps

serverdict begin 0 exitserver

/Sherm 13 dict def % make dict with room for 13 def
Sherm begin % put dict on top of dict stack

/bd {bind def} bind def
/ld {load def} bd
/lw /setlinewidth ld
/g /setgray ld
/m /moveto ld
/a /arc ld
/rl /rlineto ld
/l /lineto ld
/c /curveto ld
/cp /closepath ld
/s /stroke ld
/f /fill ld
some advanced programming ideas 181



Taking Advantage of PostScript

182

17–3

PSlearn

PSlearn
17–4
end % remove as top dictionary

This version of 3boxDesigns.eps  could then be sent:

%!PS-Adobe-2.0 EPSF-1.2
%%Title:withoutDict.eps
%%BoundingBox:36 36 252 108

Sherm begin % put dict on top of dict stack

% first box
.5 g 36 36 m 108 36 l 108 108 l 36 108 l cp f

0 g 2 lw 72 72 36 0 360 a s

% second box
.2 g 4 lw 108 36 m 72 0 rl 0 72 rl -72 0 rl cp f
1 g 108 72 m 144 108 144 36 180 72 c s

% third box
.8 g 2 lw 180 36 m 72 0 rl 0 72 rl -72 0 rl cp f
0 g 180 36 m 72 72 rl s 252 36 m -72 72 rl s

end % remove from top of dict stack

However, that way of handling your dictionary can be inconvenient if you need to 
print your files at a number of different locations. To increase the portability of 
your files, your dictionary can be included in the file.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:withDict.eps
%%BoundingBox:36 36 252 108

/Sherm 13 dict def
Sherm begin

/bd {bind def} bind def
/ld {load def} bd
/lw /setlinewidth ld
/g /setgray ld
/m /moveto ld
/a /arc ld
/rl /rlineto ld
/l /lineto ld
/c /curveto ld
/cp /closepath ld
/s /stroke ld
/f /fill ld

% first box
.5 g 36 36 m 108 36 l 108 108 l 36 108 l cp f

0 g 2 lw 72 72 36 0 360 a s

% second box
some advanced programming ideas



Chapter 17

17.4
.2 g 4 lw 108 36 m 72 0 rl 0 72 rl -72 0 rl cp f
1 g 108 72 m 144 108 144 36 180 72 c s

% third box
.8 g 2 lw 180 36 m 72 0 rl 0 72 rl -72 0 rl cp f
0 g 180 36 m 72 72 rl s 252 36 m -72 72 rl s

end

3 designs explained, gDesign listing

In this and the following two sections I’ll explain three of my PostScript designs in 
more detail and present my approach to writing a program. I generally begin 
simply by deciding on a format and the germ of an idea. I also like working on a 
series, so one idea can feed into another. I’m always copying program fragments 
from other PostScript files to get things started. With this in mind, I generally try 
to write in such a way that this can easily be done.

This design can be found on the first page of chapter 7, “type basics.”

We’ll start with the standard EPS header info. The original design was intended to 
be larger. I began with .5 .5 scale  to reduce the design by half. I also reflected 
the reduced size in the %%BoundingBox:  comment. It used to be 0 0 800 800 .
some advanced programming ideas 183



Taking Advantage of PostScript

184

PSlearn
17–5
%!PS-Adobe-2.0 EPSF-1.2
%%Title:gDesign.eps
%%Creator:John F Sherman
%%CreationDate:8 March 1989
%%DocumentFonts:Times-Bold
%%BoundingBox:0 0 400 400

.5 .5 scale % reduced, originally designed for linotron
% remember to reflect change in BoundingBox

/Times-Bold findfont 800 scalefont setfont

% --------------------------------------------------------
This design uses the pattern  procedure (see chapter 13) written as a 2-bit picture 
pattern. As a 2-bit picture, the confinement of a value range is still there, but there 
are also other values thrown in that give a sparkle effect. I also use an sx sy 
scale  within the pattern  definition to determine the pattern’s size. sx  and sy  
are defined and redefined four times before pattern  is used throughout the 
program.
% --------------------------------------------------------

/str 512 string def % used by pattern proc

/pattern % def for 200 200 random pattern
{/light exch def /dark exch def
/diff light dark sub def
sx sy scale
200 200 2 [200 0 0 200 0 0]
{0 1 511 {str exch rand diff mod dark add put} for str}
image } bind def

% background seen on top and right sides
0 0 moveto
800 0 lineto 800 800 lineto 0 800 lineto closepath fill

% 800 point Times-Bold g, outline with 50% gray 4 pt line
4 setlinewidth
.5 setgray
350 420 moveto (g) true charpath stroke

gsave % large pattern
/sx 700 def
/sy 700 def
0 50 pattern

grestore

gsave % 1 by 2 near bottom
/sx 100 def
/sy 200 def
100 0 translate
25 50 pattern

grestore
some advanced programming ideas



Chapter 17
gsave % 1 by 1 near top
/sx 100 def
/sy 100 def
100 700 translate
0 255 pattern

grestore

gsave % pattern in g
300 250 moveto (g) true charpath clip
/sx 700 def
/sy 700 def
150 250 pattern % pattern for clip

grestore

1 setgray
2 setlinewidth
420 336 moveto (g) true charpath stroke

/Times-Bold findfont 400 scalefont setfont
0 setgray
160 400 moveto (G) show
some advanced programming ideas 185



Taking Advantage of PostScript

186

17.5

PSlearn
17–6
sonataClef listing

Here’s the standard EPS header info:

%!PS-Adobe-2.0 EPSF-2.0
%%Title:sonataClef.eps
%%CreationDate:9 July 1988 rev 7 August 1989
%%Creator:John F Sherman
%%DocumentFonts:Sonata
%%BoundingBox:0 0 840 1850
some advanced programming ideas



Chapter 17
% --------------------------------------------------------
The lines of code below set the page size for the Linotron. It is written in this way 
so that if it is printed on something other than a Linotron, such as a proof on an 
Apple LaserWriter, the file doesn’t fail. The statusdict  is a special dictionary 
that contains things such as the printer’s default page size, the printer’s name, 
whether or not the printer prints a test page, and a number of other persistent 
values.

begin  makes statusdict  the current dictionary. /product load  returns or 
gets the value of product  for the laser printer. In the case of an Apple LaserWriter, 
/product load  returns LaserWriter ; with a Linotron L300, it returns 
Linotype . Therefore, depending on which printer you’re using, this line would 
read LaserWriter Linotype eq  or read Linotype Linotype eq . eq  looks 
to see if the top two items on the stack are equal and returns either a true  or 
false  (known as a boolean). On the LaserWriter we’ll get a false , on the L300 
we’ll get a true .

In the next line, {840 1850 12 1 setpageparams} if , between the { }  is a 
procedure that sets the page size to 840 wide, 1850 high, and an offset of 12 points 
from the edge as a vertical page (0 is landscape). if  is a control operator that will 
execute the page size procedure if the boolean from the previous line is true . If it’s 
false , the page size doesn’t change.

In short, if this file is being printed on a Linotron, use these page parameters. If not, 
disregard them.
% --------------------------------------------------------

statusdict
begin

/product load (Linotype) eq
{840 1850 12 1 setpageparams} if

end

% --------------------------------------------------------
This next section of the program is a user dictionary named Sherms  containing 
operator redefinitions and procedures. The purpose of Sherms  is to hopefully gain 
some performance, but mostly it is a typing convenience. It is easier to type m 
instead of moveto , l  for lineto , and so on. If the files were very large, 
performance would be more easily seen. See section 17.3.
% --------------------------------------------------------

/Sherms 35 dict def
Sherms begin

/bd {bind def} bind def
/ld {load def} bd
/m /moveto ld
/c /curveto ld
/rl /rlineto ld
/l /lineto ld
/s /show ld
/S /stroke ld
/r /repeat ld
some advanced programming ideas 187



Taking Advantage of PostScript

188

�
llx lly

urx ury

0 0 moveto
% --------------------------------------------------------
The purpose of the following lines of code is to obtain four numbers. The four 
numbers are the bounding box of the clef character of the Sonata font. The 
bounding box is the x y locations of the lower left and upper right corners. I need 
these numbers so I can automatically create a pattern the same size as the clef 
character’s bounding box. Once I get the four numbers, I’ll need to adjust them 
because the lower left corner will have a negative y  value. Note where the 0 0 
moveto  is located in this drawing. I determined the size of the clef by trial and 
error using seeBBox1.ps  found in section D.5.
% --------------------------------------------------------

/Sonata findfont [456.87 0 0 355 0 0] makefont setfont
0 0 m

(&) true charpath % get char path
flattenpath % reduces curves to straight lines
pathbbox % get BBox numbers
/ury exch def /urx exch def
/lly exch def /llx exch def

newpath % clear path

/str 512 string def
/y lly neg ury add cvi def
/x urx cvi def

/pattern {
/dark exch def
/lite exch def
/dif dark lite sub def
x y scale % x and y from above, size of pattern
x y 8 [ x 0 0 y 0 0 ]
{0 1 511 {str exch rand dif mod lite add put} for str}
image} bd

/n {rand exch mod cvr} bd
/gray {100 n .01 mul .1 add} bd

/r1 {800 n 1200 n m (e) s} bd % random notes
/r2 {400 n 400 n m (e) s} bd
/r3 {400 n 400 n m (h) s} bd
/r4 {400 n 400 n m (w) s} bd

% --------------------------------------------------------

newpath % frame
0 setgray
0 0 m 0 1850 l 840 1850 l 840 0 l
closepath
6 setlinewidth S

222 srand

gsave % pattern behind everything
3 3 scale
25 50 pattern
some advanced programming ideas



Chapter 17
grestore

gsave
20 setflat % to prevent limitcheck error
3 3 scale
llx lly abs m % place clef
(&) true charpath clip
50 100 pattern % pattern in clip clef

grestore

% random notes ---------------------------------------------

/Sonata findfont 18 scalefont setfont
500000000 srand

gsave
50 50 translate
20 {gray setgray 10 {r1} r } r
10 {gray setgray 10 {r3} r } r

grestore

gsave
200 200 translate
5 {gray setgray 10 {r2} r } r
5 {gray setgray 10 {r4} r } r

grestore

% staff ----------------------------------------------------

40 setlinewidth .5 setgray
600 1600 m 250 0 rl S
600 1400 m 250 0 rl S
600 1200 m 250 0 rl S
600 1000 m 250 0 rl S
600 800 m 250 0 rl S

% curve ----------------------------------------------------

2 setlinewidth 1 setgray

0 700 m
250 700 l
280 700 318.4 710.1 316 740 c
313.6 769.5 271.6 784.6 246 770 c
218 754 228 708 194 708 c
175.1 708 158 728 166 748 c
177.1 775.9 206.8 758.9 226 776 c
252.2 799.4 239.4 833 264 858 c
305.7 900.3 357.2 903.2 414 886 c
480 866 484 798 554 778 c
596.4 765.9 632 792 644 848 c
654.7 898.2 626 902 616 880 c
S
0 625 m
some advanced programming ideas 189



Taking Advantage of PostScript

190
400 625 l
470.2 625 514 666 578 652 c
611.9 644.6 627 633 650 598 c
S
0 550 m 500 0 rl S
0 475 m 500 0 rl S
0 400 m 500 0 rl S
S

% large note -----------------------------------------------

/Sonata findfont 300 scalefont setfont
300 625 m .9 setgray
(e) s

end % for sherms dict

showpage
some advanced programming ideas



Chapter 17

17.6
 symphony, opus 1 listing

This design is the first panel of a triptych entitled Symphony, opus 1. It begins with 
the definition of radBit-Roman, a font explained in more detail in 15.6. This design 
includes two small scanned images. These scanned images were created using Icon 
on the NeXT for want of anything else at the time. If you’re using the Mac, I’d use 
Adobe PhotoShop to make your pictures. Also, I would get a good text editor (I use 
QUED) if you now use MSWord or MacWrite to write your text files. Files with 
scanned images tend to be big; MSWord and MacWrite don’t handle large files 
very well. The size of your file may also be limited by the amount of RAM you have 
in your computer.
some advanced programming ideas 191



Taking Advantage of PostScript

192

PSlearn
17–7
%!PS-Adobe-2.0 EPSF-1.2
%%Title:symphony, opus 1.1
%%Creator:John F Sherman    University of Notre Dame
%%CreationDate: copyright Jan 1990
%%DocumentFonts:Sonata
%%BoundingBox:0 0 840 1850

statusdict % For Linotron printing
begin

/product load (Linotype) eq
{840 1850 12 1 setpageparams} if

end

/newfont 10 dict def
newfont begin

/FontType 3 def
/FontMatrix [.001 0 0 .001 0 0] def
/FontBBox [0 0 1000 1000] def

/Encoding 256 array def
StandardEncoding Encoding copy pop

/CharProcs 30 dict def
CharProcs begin

/.notdef{ } def
/str 512 string def
/rBit {

0 1 511{CharProcs
/str get exec exch rand 255 mod put} for CharProcs
/str get exec } def

/space{0 0 moveto newpath} bind def

/zero {48 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/one {49 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/two {50 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/three{51 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/four {52 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def
some advanced programming ideas



Chapter 17
/five {53 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/six {54 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/seven{55 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/eight{56 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/nine {57 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/A {65 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/B {66 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/C {67 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/D {68 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/E {69 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/F {70 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/a {97 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/b {98 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/c {99 srand
some advanced programming ideas 193



Taking Advantage of PostScript

194
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/d {100 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/e {101 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

/f {102 srand
100 100 true [.1 0 0 .1 0 0]
{CharProcs /rBit get exec}imagemask} bind def

end

/BuildChar
{1000 0 0 0 1000 1000 setcachedevice
exch begin
Encoding exch get
CharProcs exch get
exec end} def
end

/radBit-Roman newfont definefont pop

% PROCEDURES ----------------------------------------------
% These procedures are defined to simplify typing.

/bd {bind def} bind def
/ld {load def} bd
/m /moveto ld
/sg /setgray ld
/s /show ld
/fStr 256 string def

% BEGIN DESIGN ONE -----------------------------------------
Since radBit-Roman is a mono-spaced font, I can set up a grid pattern based on its 
point size of 100. A character and space are each 100 points square. Notice my m or 
moveto  commands are in 100 point intervals up the page. Later on you’ll see 
spaces used to break up the pattern.
% ---------------------------------------------------------

/radBit-Roman findfont 100 scalefont setfont

gsave
20 25 translate
.9 sg
0 0 m (12312312) s
0 100 m (12312312) s
0 200 m (12312312) s
0 300 m (12312312) s
0 400 m (12312312) s
0 500 m (12312312) s
some advanced programming ideas



Chapter 17
0 600 m (12312312) s
0 700 m (12312312) s
0 800 m (12312312) s
0 900 m (12312312) s
0 1000 m (12312312) s
0 1100 m (12312312) s
0 1200 m (12312312) s
0 1300 m (12312312) s
0 1400 m (12312312) s
0 1500 m (12312312) s
0 1600 m (12312312) s
0 1700 m (12312312) s

grestore

gsave % fountain
-21 rotate
255 -1 0 { fStr exch dup put } for
70 1900 scale
256 1 8 [ 256 0 0 1 0 0 ] { fStr} image

grestore

% ---------------------------------------------------------
This triangle shape was the product of an accident. I meant to make a rectangle. I 
entered the coordinates wrong, but liked the result. The triangle shape is filled 
black and is used as a clipping path for the reversed fountain and radBit-Roman 
characters.
% ---------------------------------------------------------

gsave % large triangle
0 sg
0 1600 moveto 820 1850 lineto 820 0 lineto
closepath clip fill

.1 sg
20 725 m (  cdabcd) s
20 825 m (  cdabcd) s
20 925 m (  cdabcd) s
20 1025 m (  cdabcd) s

gsave
{1 exch sub} settransfer % reverses fountain
-21 rotate
255 -1 0 { fStr exch dup put } for
70 1900 scale
256 1 8 [ 256 0 0 1 0 0 ] { fStr} image
grestore

.2 sg
20 225 m (     bca) s
20 325 m (     bca) s
20 425 m (     bca) s
20 525 m (     bca) s

grestore
some advanced programming ideas 195



Taking Advantage of PostScript

196
% ---------------------------------------------------------
One of the characteristics of radBit-Roman is that you can see through it. This is 
because the imagemask  operator is used instead of image . This next section 
draws the half circle that clips the fountain with the radBit-Roman characters over 
it.
% ---------------------------------------------------------

gsave
420 225 translate

0 600 m 0 300 300 270 90 arc
closepath clip newpath

gsave
255 -1 0 { fStr exch dup put } for
300 600 scale
256 1 8 [ 256 0 0 1 0 0 ]
{ fStr } image
grestore

.2 sg
0 0 m (abc) s
0 100 m (abc) s
0 200 m (abc) s
0 300 m (abc) s
0 400 m (abc) s
0 500 m (abc) s

grestore

20 225 m% 3
.8 sg(aaaa) s

20 325 m% 4
(A  )s .7 sg (abcde) s

20 1325 m
.2 sg (aB a) s .5 sg (1b) s .3 sg (1b) s

320 1425 m
.1 sg (1) s

0 sg

% vio3

/picstr 25 string def
gsave
220 525 translate
100 100 scale
100 100 2
[100 0 0 100 neg 0 100]
{currentfile picstr readhexstring pop}
image
AAAAAAAAAAAAAAAAAAAAA9020020056401690255AAAAAAAAAAAAAAAAAAA
some advanced programming ideas



Chapter 17

AA
AAAAAAAA90200500194015501846AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4
06

5K of scanned data

AAAAAAAAA9A0034008008155555555555555AAAAAAAAAAAAAAAAAAAAAAA9
4008008155555555555555AAAAAAAAAAAAAAAAAAAAAAA9A003400800815
5grestore

% vio1

/picstr 50 string def
gsave
620 625 translate
200 200 scale
200 200 2
[200 0 0 200 neg 0 200]
{currentfile picstr readhexstring pop}
image
5555555555555555555555555586BFBBA00FBBA4002D55101C000003000
00000000004000000000602AAAAAAAAAAAAAA5555555555555555555555
55

20K of scanned data

55555555AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
A55555555555555555555555555555555555555555555AAAAAAAAAAAAAA
AAgrestore

showpage
some advanced programming ideas 197



Taking Advantage of PostScript

198 PostScript Level 2



Chapter 18

18.1
PostScript Level 2
The PostScript language has evolved from its first introduction in 1985. When 
introduced, it was primarily conceived as a page description language for black 
and white laser printers. Since then, extensions have been made for color printers, 
computer displays and new technologies and features available for individual 
laser printers. PostScript Level 2 brings all these extensions and new image 
opportunities into one unified implementation.

This chapter will concentrate on some of the PostScript Level 2 operators that were 
originally created as extensions for Display PostScript and color printers. 
PostScript Level 2 is so new, not all printers will be equipped with it, so you may 
not be able to experiment with some of the operators presented in this chapter. If 
you have access to a NeXT, all the examples in this chapter can be tried and 
experimented with. They will work on both the black and white and color NeXT 
computers.

If you are a Macintosh user, you will either need a Level 2 laser printer to use all 
these examples or a color printer for the color examples. If you only have an Apple 
LaserWriter, some of the color examples will work, some will not. For example, 
setrgbcolor  will work on an Apple LaserWriter, setcmykcolor  will not. Some 
of the Display PostScript operators, such as rectfill  and rectstroke , can be 
simulated with Level 1 operators.

rectfill

In PostScript Level 2, there are two new operators for drawing squares or 
rectangles. They are rectfill  and rectstroke . They originate from the 
Display PostScript extensions.

rectfill  is the combination of moveto , rlineto , and fill . Its syntax is:

x y width height rectfill

where x y  is the location of the lower left corner of the rectangle on the page 
relative to the origin and width height  is the distance from the x y  to the upper 
right corner.

x y  can be thought of as the equivalent of the current point made by a moveto  
when using an rlineto . Unlike rlineto , rectfill  does not need the 
establishment of a current point. In the next example, three squares are drawn and 
painted. The first is drawn in the conventional way, the second and third are drawn 
using rectfill .

18chapterchapter
PostScript Level 2 199



Taking Advantage of PostScript

200

360

18–1

PSlearn

18–2

PSlearn
%!PS-Adobe-2.0 EPSF-1.2
%%Title:rectfill_1.eps
%%BoundingBox:36 36 324 108

36 36 moveto % first square
72 0 rlineto 0 72 rlineto -72 0 rlineto closepath fill

144 36 72 72 rectfill % second square

252 36 translate % third square
.5 setgray
0 0 72 72 rectfill

As explained earlier, many laser printers will not be able to understand rectfill . 
If you are using such a printer, rectfill_1.eps  can be rewritten to work on a 
Level 1 laser printer. 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rectfill_2.eps
%%BoundingBox:36 36 324 108

% simulate rectfill on a Level 1 laser printer

/rectfill {
/ury exch def /urx exch def
/lly exch def /llx exch def
llx lly moveto urx 0 rlineto 0 ury rlineto
urx neg 0 rlineto closepath fill } def

36 36 moveto % first square
72 0 rlineto 0 72 rlineto -72 0 rlineto closepath fill

144 36 72 72 rectfill % second square

252 36 translate % third square
.5 setgray
0 0 72 72 rectfill

0 0 72 144 216 288

72
PostScript Level 2



Chapter 18

18.2

360

18–3

PSlearn
rectstroke

rectstroke  is the combination of moveto , rlineto , and stroke . Its syntax is:

x y width height rectstroke

where x y  is the location of the lower left corner of the rectangle on the page 
relative to the origin and width height  is the distance from the x y  to the upper 
right corner.

Unlike rectfill , an optional matrix  can also be supplied.

x y width height matrix rectstroke

matrix  will perform a transformation on the rectangle’s line weight, but not on 
the path itself. This is because the transformation occurs after the construction of 
the path.

rectstroke  is much like rectfill , as can be seen in the next example. This 
example is basically the same program as rectfill_1.eps .

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rectstroke_1.eps
%%BoundingBox:34 34 326 110

% first square
3 setlinewidth
36 36 moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath stroke

% second square
144 36 72 72 rectstroke

% third square
252 36 translate
0 0 72 72 rectstroke

The following example is a rewrite of rectstroke_1.eps  for a Level 1 laser 
printer. It is essentially a simple variation of rectfill_2.eps  from the previous 
page. However, it is not a complete substitute for rectstroke . This simulation 
will not work for the later examples of rectstroke  that include a matrix . A 

0 0 72 144 216 288

72
PostScript Level 2 201



Taking Advantage of PostScript

202

18–4

PSlearn

360

18–5

PSlearn
more detailed explanation of the considerations involved in emulating Level 2 
operators can be found in “Appendix D: Compatibility Strategies,” in the 
PostScript Language Reference Manual, second edition.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rectstroke_2.eps
%%BoundingBox:34 34 326 110

% simulate rectstroke on a Level 1 laser printer

/rectstroke {
/ury exch def /urx exch def
/lly exch def /llx exch def
llx lly moveto urx 0 rlineto 0 ury rlineto
urx neg 0 rlineto closepath stroke } def

% first square
3 setlinewidth
36 36 moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath stroke

% second square
144 36 72 72 rectstroke

% third square
252 36 translate
0 0 72 72 rectstroke

As outlined in the beginning of this section, a matrix  can be included in the 
rectstroke  arguments. The transformation affects the line weight of the 
rectangle. Following are some examples of how this variation of rectstroke  can 
be used. Note that the transformations do not change the graphic state.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rectstroke_3.eps
%%BoundingBox:30 30 342 114

3 setlinewidth

0 0 72 144 216 288

72
PostScript Level 2



Chapter 18

360

18–6

PSlearn
% first square
36 36 72 72 [4 0 0 4 0 0] rectstroke

% second square
144 36 72 72 [1 0 0 1 0 0] rectstroke

% third square
252 36 72 72 [12 0 0 4 0 0] rectstroke

The result of using a matrix  with rectstroke  can be simulated with Level 1 
operators. In this example, the second and third rectangles accomplish the same 
result as with rectstroke  used for the first.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rectstroke_4.eps
%%BoundingBox:34 30 326 114

3 setlinewidth

% first square
36 36 72 72 [1 0 0 4 0 0] rectstroke

gsave % second square
144 36 moveto
72 0 rlineto 0 72 rlineto -72 0 rlineto closepath
1 4 scale
stroke

grestore

gsave % third square
252 36 moveto
72 0 rlineto 0 72 rlineto -72 0 rlineto closepath
[1 0 0 4 0 0] concat
stroke

grestore

The coordinates of the rectangles made by rectfill  and rectstroke  can be 
supplied as an array. These two lines are the same:

0 0 72 144 216 288

72
PostScript Level 2 203



Taking Advantage of PostScript

204

18–7

PSlearn

18.3
36 36 72 72 rectfill

and

[36 36 72 72] rectfill

The array can be given a name so that the same dimensions of a rectangle can be 
used several times.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:bothRect_1.eps
%%BoundingBox:34 30 222 114

/size [0 0 72 72] def
/m [4 0 0 4 0 0] def

3 setlinewidth

% first square
gsave

36 36 translate
.5 setgray
size rectfill
0 setgray
size rectstroke

grestore

% second square
gsave

144 36 translate
.5 setgray
size rectfill
0 setgray
size m rectstroke

grestore

new type operators

There are several new font and character operators in PostScript Level 2 that also 

0 0 72 144 216

72
PostScript Level 2



Chapter 18
originate from the Display PostScript extensions. Some are for convenience, others 
provide new typographic control. The new operators are:

selectfont
xshow
yshow
xyshow

selectfont  is considered a convenience operator in that it combines the 
functions of the findfont , scalefont , and setfont  or the findfont , 
makefont , and setfont  operators. Instead of writing,

/Times-Bold findfont 42 scalefont setfont

this can be used:

/Times-Bold 42 selectfont

Instead of writing,

/Times-Bold findfont [42 0 0 24 0 0] makefont setfont

this can be used:

/Times-Bold 42 [42 0 0 24 0 0] selectfont

Examples of the uses of selectfont  can be found in the type examples that 
follow.

xshow , yshow , and xyshow  are new operators that provide new strategies for 
custom letterspacing. xshow permits the individual spacing of characters in a 
string along the x axis. yshow  individually spaces characters along the y axis and 
xyshow  is the combination of xshow  and yshow . Their syntax are:

string spacingArray xshow

string spacingArray yshow

string spacingArray xyshow

where spacingArray  is an array of numbers that is the spacing for each 
character.

In the following example, the first array, [30 34 37 0] , is the spacing values for 
T, y, p, and e respectively. If the width of T is changed from 30 to 34, the ype would 
shift to the right 4 points. The e was given a width of 0 only because nothing is 
following. If no spacing information is provided for the last character, an error will 
occur.

0 0 72 144 216

72 Type Type

PostScript Level 2 205



Taking Advantage of PostScript

206

PSlearn
18–8

PSlearn
18–9
%!PS-Adobe-2.0 EPSF-1.2
%%Title:xshow&.eps
%%BoundingBox:36 18 252 85

/Times-Bold 72 selectfont
36 36 moveto (Type) [30 34 37 0] xshow

/Times-Bold [36 0 0 72 0 0] selectfont
180 36 moveto (Type) [17 17 20 0] xshow

The following are examples of xyshow . In this case, the array is a pair of numbers 
for each character’s x and y spacing within the string.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:type_xy1.eps
%%BoundingBox:36 18 198 164

/Helvetica-Bold 70 selectfont

36 108 moveto (Type) show % Level 1

36 36 moveto (Type)
[30 0 36 0 40 0 0 0] xyshow % Level 2

0 0 72 144 216

72

144 Type
Type

0 0 72 144 216

72 Type

PostScript Level 2



Chapter 18

PSlearn
18–10

PSlearn
18–11
%!PS-Adobe-2.0 EPSF-1.2
%%Title:type_xy2.eps
%%BoundingBox:36 12 156 90

/Helvetica-Bold 70 selectfont

36 36 moveto (Type)
[30 12 26 -18 26 12 0 0] xyshow

Following is an example using yshow . 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:type_y1.eps
%%BoundingBox:0 0 294 186

/Helvetica-Bold 72 selectfont

36 36 moveto (TYPE)
[30 30 30 30] yshow

108 124 moveto (TYPE)
[-30 -30 -30 -30] yshow

/Helvetica-Bold 36 selectfont

180 36 moveto (TYPE)
[30 30 30 30] yshow

216 124 moveto (TYPE)
[-30 -30 -30 -30] yshow

Next is an example of using xyshow . Note that the array is broken over four lines, 
each line for a word in the string.

0 0 72 144 216

72

144

TY
PE TYPE T

Y
P
E T

Y
P
E

PostScript Level 2 207



Taking Advantage of PostScript

208

PSlearn
18–12

18.4
%!PS-Adobe-2.0 EPSF-1.2
%%Title:windy.eps
%%BoundingBox:0 0 294 114

/AvantGarde-Demi 12 selectfont

36 72 moveto (the wind is blowing) 
[10 2 10 4 10 6 10 -2
14 -4 10 -6 10 -8 10 0 10 -14
8 -2 10 2 10 2
12 2 10 2 12 2 14 2 10 -2 10 -2 0 0] xyshow

color operators

There are three operators used to specify a color. They are:

hue saturation brightness sethsbcolor Level 1

red green blue setrgbcolor Level 1

cyan magenta yellow black setcmykcolor Level 2

Where in each case, the arguments are numbers between 0 and 1. 

Each operator is based on a different method of identifying a color. The first two 
above are based on mixing light, the third is based on mixing inks. In the following 
example, the same color is made using each operator.

0 0 72 144 216

72 t h e  w i n
d  

i s  b l o w i n g

0 0 72 144 216 288

72
PostScript Level 2



Chapter 18

PSlearn
18–13

figure 18–1

PSlearn
color demo
%!PS-Adobe-2.0 EPSF-1.2
%%Title:sameColor.eps
%%BoundingBox:0 0 366 150

/square {moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath fill} def

.02 .66 .61 setrgbcolor
36 36 square

.486979 .969697 .66 sethsbcolor
144 36 square

.95 .31 .36 .03 setcmykcolor
252 36 square

setrgbcolor  and sethsbcolor  are both based on additive color mixing using 
light. Red, green, and blue light when mixed equal white. White on a TV or white 
clouds in the sky are the result of all colors of light mixed together. Figure 18–1 
shows an additive color wheel.

setcmykcolor  is based on subtractive color mixing using paint. Magenta, cyan, 
and yellow pigment when mixed equal black, at least in theory. Black is usually 
included in the mix because a good total black is hard to get without help. Figure 
18–2 shows a subtractive color wheel.

green blue

red

additive
PostScript Level 2 209



Taking Advantage of PostScript

210

figure 18–2

18.5
Of the two methods, subtractive color mixing is the more intuitive way of 
specifying a color. It makes sense that mixing cyan and yellow paint will give 
green. It can be difficult, though, to visualize that red and green light will make 
yellow.

color pictures

Color pictures are made by the colorimage  operator. Its syntax is:

width height bits matrix ds 0...ds n s/mds comp colorimage

where:

width height bits matrix  are the same as with image .

ds 0...ds n are one or more data sources. All the color components may be mixed 
together into one source or separated, for example, into individual red, green, and 
blue components.

s/mds  is a boolean whether the data is from a single source (false) or multiple 
sources (true). 

comp is a number representing the number of data sources.

The following example is a simplified version of a file made by Adobe PhotoShop.

cyan yellow

magenta

subtractive
PostScript Level 2



Chapter 18

3

PSlearn
18–14

18.6
%!PS-Adobe-2.0 EPSF-1.2
%%Title:cShamrock.eps
%%BoundingBox:0 0 160 160

/picstr1 16 string def
/picstr2 16 string def
/picstr3 16 string def
/picstr4 16 string def

/readdata {currentfile exch readhexstring pop} def

/shamrock{16 16 8 [.2 0 0 .2 0 0]
{picstr1 readdata}
{picstr2 readdata}
{picstr3 readdata picstr4 readdata pop}
true 3 colorimage} def

gsave
shamrock
CCCCCCCCCC000000CCCCCCCCCCCCCCCC663333333366996666333333333

... color data ...

66666666003300330033003366666666666666663C423C603C423C60666
6grestore

overview of new operators in Level 2

PostScript Level 2 offers a number of new features and visual opportunities. It will 
take awhile for all of these new operators to make their way into printers and 
computer displays. Some things to look forward to are:

Patterns
PostScript Level 2 will have new operators to create patterns. These patterns can 
then be used as the paint for fills and strokes. Once a pattern patternName  is 
created, it can be used by writing patternName setpattern  within a program.

Forms
Forms can be used to create the repeating graphics on a multiple page document 
or as the name suggests, on a form to be filled out. Once the form formName  is 
defined, it can be used by writing formName execform within a program.

Scanned pictures
Scanned pictures will be handled more efficiently and faster. Scanned pictures will 
be stored in a compressed form and be painted faster. Also, 12-bit per pixel black 
and white or 36-bit color pictures will be possible. A 12-bit picture has 4096 
possible values.

Color
There will be expanded support to insure requested colors will remain consistent 
from different scanners, to different monitors, to various kinds of print output.
PostScript Level 2 211



Taking Advantage of PostScript

212 library of examples

%!PS-Adobe-2.0 EPSF-2.0
%%Title:grass.eps
%%BoundingBox:0 0 300 300

/a {rand 50 mod} def % number between 0 & 50
/b {rand 100 mod} def % number between 0 & 100
/c {rand 150 mod} def % & so on
/d {rand 200 mod} def % see chap 16
/e {rand 250 mod} def
/f {rand 300 mod} def

17173434 srand % seed random # to set sequence
.8 setgray % 20% gray
0 0 300 300 rectfill % rectangle, Level 2 operator

0 setgray % set color to black

% draw 34 curved lines
% each different because of rand number

34 {0 0 moveto a b c d e f curveto stroke} repeat



Chapter 19
library of examples
The purpose of this chapter is to provide additional programming examples. Some 
demonstrate a different visual idea than presented in the text, others are examples 
of operators used in a different way.

19chapterchapter
a&M1.eps  244
a&M2.eps  245
a&M3.eps  246
arc&type_1.eps  227
arc&type_2.eps  228
arcto_2.eps  229
arcto_3.eps  230
bas-relief.eps  275
bkGrid.eps  253
box def1.eps  222
box def2.eps  223
box def4.eps  224
branch2.eps  278
branch3.eps  279
branch4.eps  280
clip 1.eps  247
clip 2.eps  248
closepath_2.eps  220
concat_3.eps  225
curvetoLoops.eps  270
curveto_2.eps  231
curveto_3.eps  232
dashPattern1.eps  217
dashPattern2.eps  218
dashPattern3.eps  219
excited1.eps  262
excited2.eps  263
exploded.eps  264
flower.eps  265
fountain 3-3.eps  241
fountain_LScreen.eps  259
fountainLine.eps  273
gesture.eps  261
grass.eps  212
grayChart.eps  271
grayChartRev.eps  272
linecap.eps  215
line.eps  214

petal2.eps  266
pie_chart2.eps  226
randJazz.eps  260
repeat_box1.eps  234
repeat_box2.eps  235
rotatedFount.eps  242
rotatedFount2.eps  243
setdash2.eps  216
setflat.eps  233
setlinejoin2.eps  221
setscreen1-2.eps  255
setscreen3-4.eps  256
setscreen5-6.eps  257
setscreen7-8.eps  258
slinky.eps  281
slinky2.eps  282
star clip.eps  249
star eoclip.eps  250
star eofill.eps  251
star fill.eps  252
star2.eps  274
stringwidth.eps  240
TCpos&rev.eps  283
theresa3.eps  254
3D-Line1.eps  267
3D-Line2.eps  268
3D-LineStar.eps  269
type_1.eps  236
type_2.eps  237
type_3.eps  238
type_4.eps  239
unencoding1.eps  276
unencoding2.eps  277
library of examples 213



Taking Advantage of PostScript

214 library of examples

Here are two ways of drawing a line:
On top, the finish location is relative to the start location.
Below, start and finish locations are relative to the origin.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:line.eps
%%BoundingBox:36 30 252 75

6 setlinewidth

36 36 moveto 216 36 lineto stroke
36 72 moveto 216 0 rlineto stroke

0 0 72 144 216

72



Chapter 19

library of examples 215

The setlinecap  operator is used to finish line endings. 0 setlinecap  is the default. 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:linecap.eps
%%BoundingBox:32 32 220 112

12 setlinewidth

% bottom and default
36 36 moveto 216 36 lineto stroke

% middle
1 setlinecap
36 72 moveto 216 72 lineto stroke

% top
2 setlinecap
36 108 moveto 216 108 lineto stroke

0 0 72 144 216

72



Taking Advantage of PostScript

216 library of examples

The setdash operator creates a dashed line.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:setdash2.eps
%%BoundingBox:36 18 324 198

6 setlinewidth 2 2 scale
[1] 0 setdash
18 12 moveto 144 0 rlineto stroke

[1] 2 setdash
18 24  moveto 144 0 rlineto stroke

[2] 2 setdash
18 36  moveto 144 0 rlineto stroke

[1 2] 2 setdash
18 48  moveto 144 0 rlineto stroke

[1 2 3 4] 0 setdash
18 60 moveto 144 0 rlineto stroke

[1 2 3 4] 2 setdash
18 72 moveto 144 0 rlineto stroke

[4 3 2 1] 3 setdash
18 84 moveto 144 0 rlineto stroke

[.4 .7 .5 .3 .8 .2 .9 .1 1] 4 setdash
18 96  moveto 144 0 rlineto stroke

0 0 72 144 216 288

72

144



Chapter 19

library of examples 217

%!PS-Adobe-2.0 EPSF-1.2
%%Title:dashPattern1.eps
%%BoundingBox:0 0 360 100

/line {0 .5 translate 0 0 moveto 36 0 rlineto stroke} def
/dash [.4 .7 .5 .3 .8 .2 .9 .1 1] def

.5 setlinewidth
0 -2.5 translate
10 10 scale

0 setgray dash 0 setdash line
.1 setgray dash 1 setdash line
.2 setgray dash 2 setdash line
.3 setgray dash 3 setdash line
.4 setgray dash 4 setdash line
.5 setgray dash 5 setdash line
.6 setgray dash 6 setdash line
.7 setgray dash 7 setdash line
.8 setgray dash 8 setdash line
.9 setgray dash 9 setdash line
0 setgray dash 10 setdash line
.1 setgray dash 9 setdash line
.2 setgray dash 8 setdash line
.3 setgray dash 7 setdash line
.4 setgray dash 6 setdash line
.5 setgray dash 5 setdash line
.6 setgray dash 4 setdash line
.7 setgray dash 3 setdash line
.8 setgray dash 2 setdash line
.9 setgray dash 1 setdash line



Taking Advantage of PostScript

218 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:dashPattern2.eps
%%BoundingBox:0 0 360 300

/line {0 .5 translate 0 0 moveto 36 0 rlineto stroke} def
/dash [.4 .7 .5 .3 .8 .2 .9 .1 1] def
/x -1 def

.5 setlinewidth
0 -2.5 translate
10 10 scale

/pattern{
0 .1 1 {} for
10 {setgray dash x 1 add dup /x exch def setdash line} 

repeat
1 -.1 0 {} for
10 {setgray dash x 1 sub dup /x exch def setdash line} 

repeat
} def

3 {pattern} repeat



Chapter 19

library of examples 219

%!PS-Adobe-2.0 EPSF-1.2
%%Title:dashPattern3.eps
%%BoundingBox:0 0 200 200

/line  {0 4 translate 0 0 moveto 40 0 rlineto stroke} def
/dashA [.4 .7 .5 .3 .8 .2 .9 .1 1] def
/dashB [.6 .3 .5 .7 .2 .8 .1 .9 1] def

4 setlinewidth
0 -10 translate
5 5 scale

gsave
1 -.1 0 {} for
10 {setgray dashB 0 setdash line} repeat

grestore

gsave
0 .1 1 {} for
10 {setgray dashA 0 setdash line} repeat

grestore



Taking Advantage of PostScript

220 library of examples

The closepath operator is used to finish off the final corner of a path when the 
end of a path connects with its beginning. The difference closepath  makes is 
especially noticeable when the paths are stroked with a thick line. Both squares 
below have been drawn the same size, but the first does not use closepath and 
the second does.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:closepath_2.eps
%%BoundingBox:32 32 220 112

6 setlinewidth

36 36 moveto
36 108 lineto 108 108 lineto 108 36 lineto
36 36 lineto stroke

144 36 moveto
216 36 lineto 216 108 lineto 144 108 lineto
closepath stroke

0 0 72 144 216

72



Chapter 19

library of examples 221

The setlinejoin operator is used to finish corners. 0 setlinejoin is the 
default.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:setlinejoin2.eps
%%BoundingBox:27 27 261 117

/rect {54 0 rlineto 0 72 rlineto -54 0 rlineto
closepath stroke} def

18 setlinewidth

1 setlinejoin % left, rounded
36 36 moveto rect

2 setlinejoin % middle, beveled
126 36 moveto rect

0 setlinejoin % right, miter
216 36 moveto rect

0 0 72 144 216

72



Taking Advantage of PostScript

222 library of examples

Here’s an example of defining a procedure. The boxes below are drawn with the 
rlineto  operator, or relativelineto . Each line is drawn based on the location of 
the previous current point.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:box def1.eps
%%BoundingBox:34 34 218 146

/box { moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath } def

3 setlinewidth

36 36 box stroke

144 72 box stroke

0 0 72 144 216

72



Chapter 19

library of examples 223

This box procedure is defined using the lineto  operator. Note that the placement 
for the box is controlled by moving the origin using the translate  operator. The 
gsave  and grestore  save and restore the graphic state.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:box def2.eps
%%BoundingBox:34 34 218 146

/box { 0 0 moveto 72 0 lineto 72 72 lineto 0 72 lineto
closepath } def

3 setlinewidth

gsave
36 36 translate
box stroke

grestore

gsave
144 72 translate
box stroke

grestore

0 0 72 144 216

72



Taking Advantage of PostScript

224 library of examples

The box procedure is now filled with a value. 0 equals black (the default) and 1 
equals white. Note that the second box is black because the default is in force.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:box def4.eps
%%BoundingBox:36 36 288 144

/box { 0 0 moveto 72 0 lineto 72 72 lineto 0 72 lineto
closepath } def

3 setlinewidth

gsave
.3 setgray
36 36 translate
box fill

grestore

gsave
144 72 translate
box fill

grestore

gsave
.8 setgray
216 36 translate
box fill

grestore

0 0 72 144 216

72



Chapter 19

library of examples 225

The concat  operator is used to skew the box.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:concat_3.eps
%%BoundingBox:34 34 218 110

/box {0 0 moveto 0 36 rlineto 36 0 rlineto 0 -36 rlineto
closepath stroke} def

2 setlinewidth

36 36 translate
[1 0 1 1 0 0] concat box

36 36 translate
[1 0 -1 1 0 0] concat box

72 -36 translate
[1 0 -1 1 0 0] concat box

0 0 72 144 216

72



Taking Advantage of PostScript

226 library of examples

The following is a variation of the pie chart example from section 6.2.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:pieChart_2.eps
%%BoundingBox:34 34 182 182

2 setlinewidth
10 10 translate

43 25 17 15 % percentages with space in between
/p1 exch 3.6 mul def
/p2 exch 3.6 mul p1 add def
/p3 exch 3.6 mul p2 add def
/p4 exch 3.6 mul p3 add def

/x 72 def
/y 72 def
/r 72 def
/wedge {setgray arc closepath gsave fill grestore

0 setgray stroke} def

x y moveto
x y r 0 p1 .2 wedge

x y moveto
x y r p1 p2 .4 wedge

x y moveto
x y r p2 p3 .6 wedge

x y moveto
x y r p3 p4 .8 wedge

0 0 72 144 216

72

144



Chapter 19

library of examples 227

The show operator does not initialize the current point. Therefore, the arc attaches 
itself by a line to the current point after the word arc. closepath  returns the line.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:arc&type_1.eps
%%BoundingBox:36 34 180 110

3 setlinewidth

/Helvetica-Bold findfont 24 scalefont setfont
36 72 moveto (arc) show

144 72 36 270 90 arc closepath stroke

0 0 72 144 216

72 arc



Taking Advantage of PostScript

228 library of examples

newpath  initializes the current point left after the word arc. The current point is 
then the beginning of the arc. This is why closepath  draws a line from the 
beginning to the end of the arc.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:arc&type_2.eps
%%BoundingBox:36 34 180 110

3 setlinewidth

/Helvetica-Bold findfont 24 scalefont setfont
36 72 moveto (arc) show

newpath
144 72 36 270 90 arc closepath stroke

0 0 72 144 216

72 arc



Chapter 19

library of examples 229

%!PS-Adobe-2.0 EPSF-1.2
%%Title:arcto_2.eps
%%BoundingBox:40 34 250 190

3 setlinewidth
144 36 moveto

288 36 144 216 36 arcto

144 216 36 36 36 arcto

0 36 108 36 36 arcto

closepath stroke

12 {pop} repeat

0 0 72 144 216

72

144



Taking Advantage of PostScript

230 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:arcto_3.eps
%%BoundingBox:38 36 252 180

3 setlinewidth

72 180 moveto
0 0 288 216 36 arcto

4 {pop} repeat
252 36 lineto stroke

0 0 72 144 216

72

144



Chapter 19

library of examples 231

In this example, the Beziér control points are marked to label the curveto  syntax 
below:

xb1 yb1 xb2 yb2 x2 y2 curveto

curveto  requires the existing current point x1 y1  .

%!PS-Adobe-2.0 EPSF-1.2
%%Title:curveto_2.eps
%%BoundingBox:72 60 216 96

3 setlinewidth
72 72 moveto
108 36 144 144 216 72 curveto stroke

0 0 72 144 216

72 x1  y1

xb1  yb1

xb2  yb2

x2  y2



Taking Advantage of PostScript

232 library of examples

This is another, more involved curve, demonstrating how complex paths can be 
created.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:curveto_3.eps
%%BoundingBox:34 36 216 132

3 setlinewidth

36 36 moveto
36 108 lineto
100 108 90 60 108 108 curveto
130 148 140 120 216 108 curveto

stroke

0 0 72 144 216

72



Chapter 19

library of examples 233

This program demonstrates how the setflat  operator can affect the accuracy of 
a curve’s drawing. The final result will depend on the resolution of the printer 
because this operator is resolution dependent. 

%!PS-Adobe-2.0 EPSF-1.2
%%Title:setflat.eps
%%BoundingBox:72 40 250 198

/curve {
56 146 moveto
48 109 37 31 67 30 curveto
97 29 75 128 91 142 curveto
107 156 110 148 116 139 curveto
122 130 122 43 112 35 curveto
102 27 123 1 140 23 curveto
157 45 144 117 145 135 curveto
146 153 155 159 166 155 curveto
177 151 179 102 173 79 curveto
167 56 165 44 177 41 curveto
189 38 207 76 200 108 curveto
} def

36 36 translate

gsave % thick gray line
.6 setgray
12 setlinewidth
90 setflat
curve stroke

grestore

curve stroke % thin black line

0 0 72 144 216 288 360

72

144



Taking Advantage of PostScript

234 library of examples

The rotate operator rotates the current transformation matrix or CTM. By 
repeating that rotation, this design can be made.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:repeat_box1.eps
%%BoundingBox:36 0 252 288

/box {
0 0 moveto
0 72 rlineto 72 0 rlineto 0 -72 rlineto
closepath  stroke
} def

144 108 translate
2 setlinewidth

10 { 36 rotate box } repeat

0 0 72 144 216

72

144



Chapter 19

library of examples 235

This is a variation of the previous example using a filled and stroked square.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:repeat_box2.eps
%%BoundingBox:36 0 252 288

/box {
0 0 moveto
0 72 rlineto 72 0 rlineto 0 -72 rlineto
closepath
gsave

.5 setgray fill
grestore
stroke
} def

144 108 translate
2 setlinewidth

10 { 36 rotate box} repeat

0 0 72 144 216

72

144



Taking Advantage of PostScript

236 library of examples

The show operator in the example below paints a string of characters starting at a 
current point, with the current font, in the current color.

moveto  establishes the current point, /fontname findfont pointsize 
scalefont setfont establishes the current font, and value setgray 
establishes the current color.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:type_1.eps
%%BoundingBox:36 12 270 180

/Helvetica-Bold findfont 100 scalefont setfont

36 36 moveto
(Type) show

/Times-BoldItalic findfont 48 scalefont setfont

36 144 moveto
.5 setgray
(typography) show

0 0 72 144 216

72

144

Type
typography



Chapter 19

library of examples 237

The show operator does not initialize the current point. In the example below, 
rmoveto  adjusts the character spacing of the word Type by moving the current 
point left after the setting of the T.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:type_2.eps
%%BoundingBox:36 12 255 110

/Helvetica-Bold findfont 100 scalefont setfont

36 36 moveto
(T) show -12 0 rmoveto (ype) show

0 0 72 144 216

72 Type



Taking Advantage of PostScript

238 library of examples

The program below contains examples of the makefont  operator.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:type_3.eps
%%BoundingBox:36 12 288 168

% top
/Helvetica-Bold findfont [108 0 0 36 0 0] makefont setfont

36 144 moveto
(Type) show

% bottom left
/Helvetica-Bold findfont [36 0 0 108 0 0] makefont setfont

36 36 moveto
(Type) show

% bottom right normal
/Helvetica-Bold findfont [36 0 0 36 0 0] makefont setfont

144 36 moveto
(Type) show

0 0 72 144 216

72

144 Type

Type Type



Chapter 19

library of examples 239

Here are more examples of the makefont  operator.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:type_4.eps
%%BoundingBox:40 12 228 190

% top
/Helvetica-Bold findfont [36 0 -36 108 0 0] makefont setfont

144 108 moveto
(Type) show

% bottom left
/Helvetica-Bold findfont [36 0 36 108 0 0] makefont setfont

36 36 moveto
(Type) show

% bottom right normal
/Helvetica-Bold findfont [36 0 0 36 0 0] makefont setfont

144 36 moveto
(Type) show

0 0 72 144 216

72

144 Type
Type Type



Taking Advantage of PostScript

240 library of examples

The following is an example of the stringwidth  operator.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:stringwidth.eps
%%BoundingBox:36 30 200 144

/Times-Bold findfont 36 scalefont setfont

/width 36 (lineup) stringwidth pop add def

.5 setgray

36 36 moveto
(lineup) show 0 setgray (this) show

width 72 moveto
(this) show

width 108 moveto
(this) show

0 0 72 144 216

72

lineupthis
this
this



Chapter 19

library of examples 241

%!PS-Adobe-2.0 EPSF-1.2
%%Title:fountain_3-3.eps
%%BoundingBox:0 0 200 200

/fountain {
/str 256 string def
0 1 255 { str exch dup
255 div change mul cos neg 2 div .5 add 255 mul cvi put
} for

/ury exch def  /urx exch def
/lly exch def  /llx exch def
gsave

llx lly translate
urx llx sub ury lly sub scale 
1 256 8[1 0 0 -256 0 256] {str} image

grestore } def

/change 720 def
0 0 100 100 fountain

/change 360 def
100 100 200 200 fountain

/change 180 def
0 100 100 200 fountain

/change 1440 def
100 0 200 100 fountain



Taking Advantage of PostScript

242 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rotatedFount.eps
%%Creator:John F Sherman
%%BoundingBox:0 0 300 300

/str 256 string def
0 1 255 { str exch dup put } for

0 0 300 300 rectstroke
150 150 translate

gsave
8 {45 rotate
gsave
100 100 scale
255 1 8 [255 0 0 1 0 0] {str} image
grestore} repeat

grestore



Chapter 19

library of examples 243

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rotatedFount2.eps
%%Creator:John F Sherman
%%BoundingBox:0 0 300 300

/str 256 string def
0 1 255 { str exch dup put } for

0 0 300 300 rectstroke
150 150 translate

gsave
8 {45 rotate
gsave
70 70 scale
255 1 8 [255 0 -255 1 0 0] {str} image
grestore} repeat

grestore



Taking Advantage of PostScript

244 library of examples

The following is a logo variation demonstrating clipping with type.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:a&M1.eps
%%BoundingBox:20 19 295 295

% a is filled
% M is filled

/inside /Times-Bold findfont 525 scalefont def
/outline /Helvetica-Bold findfont 375 scalefont def

0 20 translate

0 0 moveto outline setfont (M) true charpath clip
.2 setgray fill

.5 setgray
0 9 moveto
inside setfont (a) show

MMa



Chapter 19

library of examples 245

%!PS-Adobe-2.0 EPSF-1.2
%%Title:a&M2.eps
%%BoundingBox:20 19 295 295

% both letterforms are outlined

/inside /Times-Bold findfont 525 scalefont def
/outline /Helvetica-Bold findfont 375 scalefont def

0 20 translate

0 0 moveto outline setfont (M) true charpath clip newpath

0 9 moveto
inside setfont (a) true charpath stroke

2 setlinewidth
0 0 moveto outline setfont (M) true charpath stroke

MaM



Taking Advantage of PostScript

246 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:a&M3.eps
%%BoundingBox:20 19 295 295

% a is filled
% M is outlined

/inside /Times-Bold findfont 525 scalefont def
/outline /Helvetica-Bold findfont 375 scalefont def

0 20 translate

0 0 moveto outline setfont (M) true charpath clip newpath

.5 setgray
0 9 moveto
inside setfont (a) show

0 setgray
2 setlinewidth
0 0 moveto outline setfont (M) true charpath stroke

MaM



Chapter 19

library of examples 247

%!PS-Adobe-2.0 EPSF-1.2
%%Title:clip_1.eps
%%BoundingBox:72 36 216 180

72 36 moveto 0 144 rlineto 144 0 rlineto 0 -144 rlineto

closepath clip

newpath

72 36 72 0 360 arc
.5 setgray fill

216 36 98 0 360 arc
.2 setgray fill

144 180 72 0 360 arc
.8 setgray fill

0 0 72 144 216

72

144



Taking Advantage of PostScript

248 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:clip_2.eps
%%BoundingBox:48 36 324 184

36 36 translate

0 0 moveto
/Helvetica-Bold findfont 200 scalefont setfont
(ND) true charpath clip

/str 256 string def
0 1 255 { str exch dup put } for

288 170 scale
255 1 8 [ 255 0 0 1 0 0 ] {str} image

0 0 72 144 216 288

72

144 ND



Chapter 19

library of examples 249

%!PS-Adobe-2.0 EPSF-1.2
%%Title:star clip.eps
%%BoundingBox:36 0 270 216

/str (StarStarStarStar) def
/leading { currentpoint 22 add exch pop 0 exch moveto } def
/background { str show leading } def
/Helvetica-Bold findfont 30 scalefont setfont

36 0 translate

% star
45 0 moveto 115 216 lineto 186 0 lineto 0 134 lineto
231 134 lineto 45 0 lineto closepath

clip
0 0 moveto 10 {background} repeat

0 0 72 144 216

72

144

StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar



Taking Advantage of PostScript

250 library of examples

The following is an example of eoclip .

%!PS-Adobe-2.0 EPSF-1.2
%%Title:star eoclip.eps
%%BoundingBox:36 0 270 216

/str (StarStarStarStar) def
/leading { currentpoint 22 add exch pop 0 exch moveto } def
/background { str show leading } def
/Helvetica-Bold findfont 30 scalefont setfont

36 0 translate

% star
45 0 moveto 115 216 lineto 186 0 lineto 0 134 lineto
231 134 lineto 45 0 lineto closepath

eoclip
0 0 moveto 10 {background} repeat

0 0 72 144 216

72

144

StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar
StarStarStarStar



Chapter 19

library of examples 251

The following is an example of eofill .

%!PS-Adobe-2.0 EPSF-1.2
%%Title:star eofill.eps
%%BoundingBox:36 0 270 216

36 0 translate

% star
45 0 moveto 115 216 lineto 186 0 lineto 0 134 lineto
231 134 lineto 45 0 lineto closepath

eofill

0 0 72 144 216

72

144



Taking Advantage of PostScript

252 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:star fill.eps
%%BoundingBox:36 0 270 216

36 0 translate

% star
45 0 moveto 115 216 lineto 186 0 lineto 0 134 lineto
231 134 lineto 45 0 lineto closepath

fill

0 0 72 144 216

72

144



Chapter 19

library of examples 253

This is the background grid for many of the examples.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:bkGrid.eps
%%Creator:John F Sherman
%%BoundingBox:0 0 294 150

/vline{0 0 moveto 0 144 lineto stroke} def
/hline{0 0 moveto 288 0 lineto stroke} def

.3 setgray
6 setlinewidth
3 150 moveto 3 3 lineto 294 3 lineto stroke

.5 setgray
1 setlinewidth
6 6 translate

gsave
7 {36 0 translate vline} repeat

grestore

gsave
3 {0 36 translate hline} repeat

grestore

0 setgray
/Helvetica findfont 8 scalefont setfont
2 2 moveto (0 0) show
75 2 moveto (72) show
146 2 moveto (144) show
220 2 moveto (216) show
2 75 moveto (72) show

0 0 72 144 216

72



Taking Advantage of PostScript

254 library of examples

In this example, the setscreen  is commented out for comparison with the other 
setscreen  examples. Most of the scanned image is deleted to save space.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:theresa3.eps
%%BoundingBox:36 36 360 198

/box {moveto 72 0 rlineto 0 72 rlineto -72 0 rlineto
closepath fill} def

/Helvetica-Bold findfont 10 scalefont setfont
36 185 moveto (default setscreen) show

.8 setgray 36 108 box

.6 setgray 108 108 box

.4 setgray 36 36 box

.2 setgray 108 36 box

% scanned picture

%%Title: Theresa.eps
 . . . header info . . . 
72 65536 mul 4718592 div dup cols mul exch rows mul scale
cols rows 8 [cols 0 0 rows neg 0 rows]
beginimage
0B0A0D0A070E0F0B090D0D110F0E13161515151B17181A141D1A1916181
B1616
. . . . data . . . 
32130A0707050A31607E797B6D5B4D4A514E4C4B4D4E51564C525246434
74F51
565D5D616D6457514F3F352C2118121612161716
grestore end

0 0 72 144 216 288 360

72

144

default setscreen



Chapter 19

library of examples 255

%!PS-Adobe-2.0 EPSF-1.2
%%Title:setscreen1-2.eps
%%BoundingBox:36 36 306 198

/Helvetica findfont 10 scalefont setfont
/box {moveto 50 0 rlineto 0 50 rlineto -50 0 rlineto

closepath fill} def

20 45 {exch pop} setscreen

36 128 moveto (20 45 {exch pop} setscreen) show
.8 setgray 36 144 box
.6 setgray 108 144 box
.4 setgray 180 144 box
.2 setgray 252 144 box

0 setgray
20 45 {pop} setscreen

36 92 moveto (20 45 {pop} setscreen) show
.8 setgray 36 36 box
.6 setgray 108 36 box
.4 setgray 180 36 box
.2 setgray 252 36 box

0 0 72 144 216 288

72

144

20 45 {exch pop} setscreen

20 45 {pop} setscreen



Taking Advantage of PostScript

256 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:setscreen3-4.eps
%%BoundingBox:36 36 306 198

/Helvetica findfont 10 scalefont setfont
/box {moveto 50 0 rlineto 0 50 rlineto -50 0 rlineto

closepath fill} def

20 45 {mul .1 add} setscreen

36 128 moveto (20 45 {mul .1 add} setscreen) show
.8 setgray 36 144 box
.6 setgray 108 144 box
.4 setgray 180 144 box
.2 setgray 252 144 box

0 setgray
20 45 {add 2 div} setscreen

36 92 moveto (20 45 {add 2 div} setscreen) show
.8 setgray 36 36 box
.6 setgray 108 36 box
.4 setgray 180 36 box
.2 setgray 252 36 box

0 0 72 144 216 288

72

144

20 45 {mul .1 add} setscreen

20 45 {add 2 div} setscreen



Chapter 19

library of examples 257

%!PS-Adobe-2.0 EPSF-1.2
%%Title:setscreen5-6.eps
%%BoundingBox:36 36 342 198

/Helvetica findfont 9 scalefont setfont
/box {moveto 50 0 rlineto 0 50 rlineto -50 0 rlineto

closepath fill} def

20 45 {dup mul exch dup mul add 2 div 1 exch sub sqrt
1 exch sub} setscreen

36 128 moveto (20 45 {dup mul exch dup mul add 2 div 1 exch 
sub sqrt 1 exch sub} setscreen) show
.8 setgray 36 144 box
.6 setgray 108 144 box
.4 setgray 180 144 box
.2 setgray 252 144 box

0 setgray
20 45 {abs exch abs 2 copy gt {pop}{exch pop} ifelse

1 exch sub} setscreen

36 92 moveto (20 45 {abs exch abs 2 copy gt {pop}{exch pop} 
ifelse 1 exch sub} setscreen) show
.8 setgray 36 36 box
.6 setgray 108 36 box
.4 setgray 180 36 box
.2 setgray 252 36 box

0 0 72 144 216 288

72

144

20 45 {dup mul exch dup mul add 2 div 1 exch sub sqrt 1 exch sub} setscreen

20 45 {abs exch abs 2 copy gt {pop}{exch pop} ifelse 1 exch sub} setscreen



Taking Advantage of PostScript

258 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:setscreen7-8.eps
%%BoundingBox:36 36 306 198

/Helvetica findfont 10 scalefont setfont
/box {moveto 50 0 rlineto 0 50 rlineto -50 0 rlineto

closepath fill} def

20 45 {exch pop abs 1 exch sub} setscreen

36 128 moveto (20 45 {exch pop abs 1 exch sub} setscreen) show
.8 setgray 36 144 box
.6 setgray 108 144 box
.4 setgray 180 144 box
.2 setgray 252 144 box

0 setgray
20 45 {add abs 2 div 1 exch sub} setscreen

36 92 moveto (20 45 {add abs 2 div 1 exch sub} setscreen) show
.8 setgray 36 36 box
.6 setgray 108 36 box
.4 setgray 180 36 box
.2 setgray 252 36 box

0 0 72 144 216 288

72

144

20 45 {exch pop abs 1 exch sub} setscreen

20 45 { add abs 2 div 1 exch sub } setscreen



Chapter 19

library of examples 259

%!PS-Adobe-2.0 EPSF-1.2
%%Title:fountain_LScreen.eps
%%Creator:John F Sherman
%%BoundingBox:0 0 170 170

/str 256 string def
0 1 255 { str exch dup put } for
20 90 {pop} setscreen
170 170 scale

255 1 8 [ 255 0 0 1 0 0 ] {str} image



Taking Advantage of PostScript

260 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:randJazz.eps
%%BoundingBox:34 34 366 198

/n {rand exch mod} def
/gray {100 n .01 mul} def

171717 srand
36 36 translate

/Helvetica findfont 18 scalefont setfont
25 {gray setgray
25 {300 n 150 n moveto (jazz) show} repeat} repeat

/Helvetica findfont 36 scalefont setfont
0 setgray
25 {250 n 125 n moveto (jazz) show} repeat

/Helvetica findfont 72 scalefont setfont
2 setlinewidth 1 setgray
5 {250 n 100 n moveto
(jazz) true charpath stroke} repeat

0 0 72 144 216 288 360

72

144

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz jazz

jazz

jazz
jazz

jazz
jazz

jazz
jazz

jazz

jazzjazz

jazz

jazz
jazz
jazz

jazz

jazz
jazz

jazzjazz
jazz

jazz
jazz

jazz jazzjazz

jazz

jazz

jazz

jazz
jazzjazz

jazzjazz

jazzjazz

jazz

jazz

jazz

jazz

jazz

jazz

jazzjazz

jazz

jazz

jazz

jazz jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz jazz

jazz

jazz
jazz

jazz
jazz jazzjazz

jazz

jazz

jazz
jazz

jazz

jazz
jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazzjazzjazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz jazz

jazz

jazz

jazz
jazz jazz

jazz

jazz

jazz
jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazzjazz

jazz

jazz

jazz
jazz

jazz
jazz

jazz

jazz

jazz
jazz
jazz

jazz
jazz

jazz

jazz

jazz
jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazzjazz

jazz

jazz jazz

jazzjazz

jazz

jazz

jazzjazz jazz

jazz

jazzjazz

jazz

jazz jazz

jazz

jazz

jazz jazz

jazz

jazz
jazz

jazz

jazz

jazzjazz

jazz

jazz jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz
jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazzjazz

jazzjazz
jazzjazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazzjazz

jazz

jazz
jazz

jazz

jazz jazz
jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz jazz

jazz

jazz
jazz
jazz

jazz

jazz

jazzjazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz jazz

jazz

jazz
jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz
jazz
jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazzjazz
jazz

jazz

jazz
jazz

jazz

jazzjazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazzjazzjazz

jazz

jazz
jazz

jazz

jazz

jazz
jazz jazz

jazz
jazz

jazzjazz

jazz

jazz
jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazzjazz

jazz

jazz
jazz
jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz
jazz

jazz

jazz jazz

jazz jazz
jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazzjazz

jazz

jazz

jazzjazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazzjazz
jazz

jazz

jazz

jazz

jazz
jazz

jazz
jazz jazz

jazz

jazz

jazz

jazzjazz

jazz

jazz
jazz

jazz
jazz

jazz jazz

jazz

jazz
jazz

jazzjazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz
jazzjazz

jazz

jazzjazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazzjazz

jazz

jazz

jazz

jazz

jazzjazz

jazz

jazz

jazz
jazz

jazz

jazz
jazz

jazz

jazz
jazzjazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz
jazz

jazz
jazz

jazz

jazz

jazz jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz jazz
jazzjazz

jazz

jazz

jazzjazz
jazzjazz

jazz

jazz
jazz

jazzjazz

jazzjazz

jazz

jazz
jazz

jazz

jazz jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz
jazz

jazz jazzjazz

jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz

jazz

jazz

jazz jazz

jazz
jazz

jazz

jazz

jazz

jazz

jazz

jazz
jazz jazz

jazz
jazz jazz

jazz
jazzjazz

jazz

jazz

jazz
jazz

jazz
jazzjazz

jazz
jazz

jazz
jazz

jazz

jazz
jazz

jazzjazz

jazz
jazz

jazz
jazzjazzjazzjazzjazz

jazz

jazzjazz
jazzjazz

jazz
jazz

jazz
jazz

jazzjazz

jazzjazz
jazzjazz
jazz
jazz



Chapter 19

library of examples 261

%!PS-Adobe-2.0 EPSF-1.2
%%Title:gesture.eps
%%BoundingBox:36 36 378 170

/n 85 def
/nnn n 3 mul 1 sub def
/x1 {rand 50 mod} bind def
/x2 {rand 25 mod} bind def

36 36 translate

.25 setlinewidth
x1 x1 moveto
0 1 nnn {} for
n {x1 x1 x1 curveto} repeat stroke

150 0 translate
.25 setlinewidth

x2 x2 moveto
0 1 nnn {} for
n {x2 x2 x2 curveto} repeat stroke

0 0 72 144 216 288 360

72

144



Taking Advantage of PostScript

262 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:excited1.eps
%%BoundingBox:0 0 300 300

0 0 300 300 rectstroke

/x {rand 300 mod} bind def

x x moveto
50 {x x x x x x curveto} repeat
stroke



Chapter 19

library of examples 263

%!PS-Adobe-2.0 EPSF-1.2
%%Title:excited2.eps
%%BoundingBox:0 0 300 300

0 0 300 300 rectstroke

/x {rand 300 mod} bind def

/excit{
x x moveto
50 {x x x x x x curveto} repeat
stroke} def

5 setlinewidth
.5 setgray
excit

1 setlinewidth
0 setgray
excit



Taking Advantage of PostScript

264 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:exploded.eps
%%BoundingBox:0 0 360 360

/a {50 rand exch mod} bind def
/b {100 rand exch mod} bind def
/c {200 rand exch mod} bind def
/d {300 rand exch mod} bind def
/e {400 rand exch mod} bind def
/f {500 rand exch mod} bind def

0 0 360 360 rectclip
.5 setgray 0 0 360 360 rectfill

.25 setlinewidth 0 setgray
180 180 translate

8 {45 rotate 0 0 moveto
100 {a b c d e f curveto} repeat stroke
0 0 600 600 rectstroke
} repeat



Chapter 19

library of examples 265

%!PS-Adobe-2.0 EPSF-1.2
%%Title:flower.eps
%%BoundingBox:0 0 360 360

0 0 360 360 rectclip
.5 setgray
0 0 360 360 rectfill

180 180 translate

1 setgray
10 { 36 rotate

0 0 moveto 252 253 253 0 0 0 curveto fill} repeat

0 setgray
.25 setlinewidth
10 { 36 rotate

0 1 254 {} for
0 0 moveto
85 { 0 0 0 curveto} repeat stroke
} repeat



Taking Advantage of PostScript

266 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:petal2.eps
%%BoundingBox:0 0 385 186

36 36 translate

.25 setlinewidth

0 1 254 {} for
0 0 moveto
85 { 0 200 0 curveto} repeat stroke

0 0 72 144 216 288 360

72

144



Chapter 19

library of examples 267

%!PS-Adobe-2.0 EPSF-1.2
%%Title:3D-Line1.eps
%%BoundingBox:0 0 385 224

/line {25 0 rlineto} def

30 rotate
1 setlinewidth

0 0 moveto
16 {currentlinewidth 1 add setlinewidth line

currentpoint stroke moveto} repeat 

0 0 72 144 216 288 360

72

144



Taking Advantage of PostScript

268 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:3D-Line2.eps
%%BoundingBox:0 0 385 224

/line {25 0 rlineto} def

1 setlinewidth
1 setlinecap
1 setgray

0 0 moveto
/L {/length exch def

gsave
/sections {length 25 div cvi} def
/v 1 sections div def
sections {
currentlinewidth 1 add setlinewidth line
currentpoint stroke moveto
currentgray v sub setgray} repeat
grestore} def

20 rotate 200 L
10 rotate 400 L
10 rotate 250 L

0 0 72 144 216 288 360

72

144



Chapter 19

library of examples 269

%!PS-Adobe-2.0 EPSF-1.2
%%Title:3D-LineStar.eps
%%BoundingBox:0 0 360 250

.5 .5 scale

.666 setgray
0 0 720 500 rectclip
0 0 720 500 rectfill

/line {25 0 rlineto} def

200 300 translate 10 rotate
1 setlinewidth 1 setlinecap 1 setgray

0 0 moveto
/L { /length exch def

gsave
/sections {length 25 div cvi} def
/v 1 sections div def
sections {currentlinewidth 1 add setlinewidth line

currentpoint stroke moveto
currentgray v sub setgray} repeat

grestore} def

10 { 13 rotate 200 L
11 rotate 500 L
10 rotate 250 L
10 rotate 400 L
10 rotate 250 L
10 rotate 275 L} repeat



Taking Advantage of PostScript

270 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:curvetoLoops.eps
%%BoundingBox:34 34 290 120

.5 setgray
6 setlinewidth
36 36 moveto
288 144 36 144 288 36 curveto
stroke

0 setgray
1 setlinewidth
36 36 moveto
324 144 0 144 288 36 curveto
stroke

36 36 moveto
396 144 -72 144 288 36 curveto
stroke

0 0 72 144 216

72



Chapter 19

library of examples 271

%!PS-Adobe-2.0 EPSF-1.2
%%Title:grayChart.eps
%%BoundingBox:25 25 275 275

/box {0 0 moveto 22 0 rlineto 0 22 rlineto -22 0 rlineto
closepath fill} def

/boxx
{10 {25 0 translate currentgray .01 add setgray box}
repeat} def

0 25 translate
boxx

9 {-250 25 translate boxx} repeat



Taking Advantage of PostScript

272 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:grayChartRev.eps
%%BoundingBox:25 25 275 275

/box {0 0 moveto 22 0 rlineto 0 22 rlineto -22 0 rlineto
closepath fill} def

/boxx
{10 {25 0 translate currentgray .01 add setgray box}
repeat} def

{1 exch sub} settransfer
0 25 translate
boxx

9 {-250 25 translate boxx} repeat



Chapter 19

library of examples 273

%!PS-Adobe-2.0 EPSF-1.2
%%Title:fountainLine.eps
%%BoundingBox:36 36 324 185

/line {0 0 moveto 288 0 lineto stroke} def

36 36 translate

99 {0 .75 translate currentgray .01 add setgray line} repeat
99 {0 .75 translate currentgray .01 sub setgray line} repeat

0 0 72 144 216 288 360

72

144



Taking Advantage of PostScript

274 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:star2.eps
%%BoundingBox:36 30 252 210

/starside {72 0 lineto currentpoint translate
-144 rotate} def

/star
{moveto
currentpoint translate
4 {starside} repeat closepath
gsave

setgray fill
grestore
stroke} def

gsave
.5 36 108 star

grestore

gsave
.2 72 144 star

grestore

gsave
.8 144 72 star

grestore

gsave
.5 setgray
.5 180 180 star

grestore

0 0 72 144 216

72

144



Chapter 19

library of examples 275

%!PS-Adobe-2.0 EPSF-1.2
%%Title:bas-relief.eps
%%BoundingBox:0 0 360 130

0 0 360 130 rectstroke
/name { 0 0 moveto (bas-relief) show} def

/Helvetica-Bold findfont 72 scalefont setfont

36 36 translate

0 .05 .95 {setgray name -1 .5 translate} for

0 setgray name

bas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-reliefbas-relief



Taking Advantage of PostScript

276 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:unencoding1.eps
%%BoundingBox:36 30 240 110

/BaseFont /Times-Roman findfont def

/newfont BaseFont length dict def
newfont begin
BaseFont

{1 index dup /FID ne exch
/FID ne exch
/Encoding ne and
{def}{pop pop} ifelse
}bind forall

/Encoding 256 array def
StandardEncoding Encoding copy pop

Encoding 1 /ntilde put
Encoding 2 /ccedilla put

end

/Times-RomanAccent newfont definefont pop
/Times-RomanAccent findfont 30 scalefont setfont

36 90 moveto
(\277Vamos al ba\1o?) show
36 36 moveto
(fa\2ade) show

0 0 72 144 216

72

¿Vamos al baño?

façade



Chapter 19

library of examples 277

%!PS-Adobe-2.0 EPSF-1.2
%%Title:unencoding2.eps
%%BoundingBox:36 36 360 110

/BaseFont /Palatino-Roman findfont def

/newfont BaseFont length dict def
newfont begin
BaseFont

{1 index dup /FID ne exch
/FID ne exch
/Encoding ne and
{def}{pop pop} ifelse
}bind forall

/Encoding 256 array def
StandardEncoding Encoding copy pop

Encoding 1 /copyright put
Encoding 2 /registered put
Encoding 3 /trademark put

end

/Times-RomanAccent newfont definefont pop

/Times-RomanAccent findfont 30 scalefont setfont

36 36 moveto
(\0011989 Adobe) show
36 90 moveto
(PostScript\2 Language\3) show

0 1 0 0 1 1 1 0

01 00 11 10

0100 1110

01001110

1 bit

2 bit

4 bit

8 bit(N)<4E>



Taking Advantage of PostScript

278 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:branch2.eps
%%BoundingBox: 0 0 360 250

/depth 0 def
/maxd  4 def
/down  {/depth depth 1 add def} bind def
/up  {/depth depth 1 sub def} bind def

/line % vertical line
{0 100 rlineto currentpoint
stroke translate 0 0 moveto} bind def

/branch {gsave .7 .7 scale
down line
depth maxd 2 add div setgray
depth maxd le

{60 rotate branch
-45 rotate branch
-30 rotate branch
-20 rotate 
-30 rotate branch} if

up grestore} bind def

0 0 360 250 rectstroke
10 setlinewidth

120 100 moveto branch stroke

240 6 moveto branch stroke



Chapter 19

library of examples 279

%!PS-Adobe-2.0 EPSF-1.2
%%Title:branch3.eps
%%BoundingBox: 0 0 290 290

/depth 0 def
/maxd  6 def
/down  {/depth depth 1 add def} bind def
/up  {/depth depth 1 sub def} bind def

/line {0 75 rlineto currentpoint
stroke translate 0 0 moveto} bind def

/branch {gsave .7 .7 scale
down line depth maxd le

{60 rotate branch -150 rotate branch} if
up grestore} bind def

0 0 290 290 rectstroke
-25 145 translate

220 5 moveto branch stroke
[-1 0 0 1 0 0] concat
-120 5 moveto branch stroke
[1 0 0 -1 0 0] concat
-120 5 moveto branch stroke
[-1 0 0 1 0 0] concat
220 5 moveto branch stroke



Taking Advantage of PostScript

280 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:branch4.eps
%%BoundingBox: 0 0 260 260

/depth 0 def
/maxd  8 def
/down  {/depth depth 1 add def} bind def
/up  {/depth depth 1 sub def} bind def

/line % vertical line
{0 100 rlineto currentpoint
stroke translate 0 0 moveto} bind def

/branch{gsave .7 .7 scale
down line
depth maxd le

{45 rotate branch
-90 rotate branch} if

   up grestore} bind def

.8 setgray
0 0 260 260 rectfill

0 setgray
130 60 moveto branch

130 60 translate
180 rotate
0 -130 moveto branch stroke



Chapter 19

library of examples 281

%!PS-Adobe-2.0 EPSF-1.2
%%Title:slinky.eps
%%BoundingBox:34 24 378 220

36 36 translate

/slope .2 def
/circle {10 0 moveto 0 0 10 0 360 arc stroke} def

gsave
0 1 40 {8 exch slope mul translate circle} for

grestore

/slope .5 def
gsave

0 1 23 {8 exch slope mul translate circle} for
grestore

/slope 1 def
gsave

0 1 18 {8 exch slope mul translate circle} for
grestore

/slope 3 def
gsave

0 1 10 {8 exch slope mul translate circle} for
grestore

/slope 8 def
gsave

0 1 5 {8 exch slope mul translate circle} for
grestore

0 0 72 144 216 288 360

72

144



Taking Advantage of PostScript

282 library of examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:slinky2.eps
%%BoundingBox:38 30 378 216

36 36 translate

/slope .2 def
/circle {0 0 moveto 18 18 18 -18 36 0 curveto stroke} def

gsave
0 1 37 {8 exch slope mul translate circle} for

grestore

/slope .5 def
gsave

0 1 25 {8 exch slope mul translate circle} for
grestore

/slope 1 def
gsave

0 1 18 {8 exch slope mul translate circle} for
grestore

/slope 3 def
gsave

0 1 10 {8 exch slope mul translate circle} for
grestore

/slope 8 def
gsave

0 1 5 {8 exch slope mul translate circle} for
grestore

0 0 72 144 216 288 360

72

144



Chapter 19

library of examples 283

%!PS-Adobe-2.0 EPSF-1.2
%%Title:TCpos&rev.eps
%%BoundingBox: 0 0 288 144

gsave
0 setgray
/rows 72 def
/cols 72 def
/picstr1 72 string def
/readdata {currentfile exch readhexstring pop} def
/beginimage {{picstr1 readdata} image} def
72 65536 mul 2359296 div dup cols mul exch rows mul scale
cols rows 8 [cols 0 0 rows neg 0 rows]
beginimage
191F1F1E1F202429

... picture data ...

8147519C9A836D55
grestore

gsave
144 0 translate
{1 exch sub} settransfer
beginimage
191F1F1E1F202429

... picture data ...

8147519C9A836D55
grestore end



Taking Advantage of PostScript

284 library of color examples



Chapter 20

library of color examples 285

library of color examples

Some of these programs will work on a black and white printer. Some of the 
operators used are part of PostScript Level 2, which means you’ll have to try them 
on a color laser printer. The files rgbBoxes.eps  and hsbBoxes.eps  will work 
on an Apple LaserWriter, the file cmykBoxes.eps  will not.

20chapterchapter

cPattern1.eps  291
cfountain_1.eps  295
c-imageWord1.eps  289
c-imageWord2.eps  290
cmykBoxes.eps  288
colorRNotes.eps  292
cRLines1.eps  293
cRLines2.eps  294
hsbBoxes.eps  287
rgbBoxes.eps  286



Taking Advantage of PostScript

286 library of color examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:rgbBoxes.eps
%%BoundingBox:36 36 306 198

/box  {moveto 50 0 rlineto 0 50 rlineto -50 0 rlineto
 closepath fill} def

/black {0 setgray} def

/Helvetica-Oblique findfont 10 scalefont setfont
144 108 moveto (red green blue) show

/Helvetica-Bold findfont 10 scalefont setfont
36 108 moveto (setrgbcolor) show

36 128 moveto (.1 .2 .3 ) show
.1 .2 .3  setrgbcolor 36 144 box

black 108 92 moveto (0 .4 .7) show
0 .4 .7 setrgbcolor 108 144 box

black 180 92 moveto (.8 .4 .7) show
.8 .4 .7 setrgbcolor 180 144 box

black 252 92 moveto (.8 .6 .4) show
.8 .6 .4 setrgbcolor 252 144 box

black 36 92 moveto (.7 .7 .7) show
.7 .7 .7 setrgbcolor 36 36 box

black 108 128 moveto (.5 .5 .5) show
.5 .5 .5 setrgbcolor 108 36 box

black 180 128 moveto (.1 .4 .5) show
.1 .4 .5 setrgbcolor 180 36 box

black 252 128 moveto (0 1 .7) show
0 1 .7 setrgbcolor 252 36 box

0 0 72 144 216 288

72

144

red green bluesetrgbcolor

.1 .2 .3 

0 .4 .7 .8 .4 .7 .8 .6 .4.7 .7 .7

.5 .5 .5 .1 .4 .5 0 1 .7

20–1

PSlearn



Chapter 20

library of color examples 287

%!PS-Adobe-2.0 EPSF-1.2
%%Title:hsbBoxes.eps
%%BoundingBox:36 36 306 198

/box  {moveto 50 0 rlineto 0 50 rlineto -50 0 rlineto
 closepath fill} def

/black {0 setgray} def

/Helvetica-Oblique findfont 10 scalefont setfont
144 108 moveto (hue  saturation brightness) show

/Helvetica-Bold findfont 10 scalefont setfont
36 108 moveto (sethsbcolor) show

36 128 moveto (.1 .2 .3 ) show
.1 .2 .3  sethsbcolor 36 144 box

black 108 92 moveto (0 .4 .7) show
0 .4 .7 sethsbcolor 108 144 box

black 180 92 moveto (.8 .4 .7) show
.8 .4 .7 sethsbcolor 180 144 box

black 252 92 moveto (.8 .6 .4) show
.8 .6 .4 sethsbcolor 252 144 box

black 36 92 moveto (.7 .7 .7) show
.7 .7 .7 sethsbcolor 36 36 box

black 108 128 moveto (.5 .5 .5) show
.5 .5 .5 sethsbcolor 108 36 box

black 180 128 moveto (.1 .4 .5) show
.1 .4 .5 sethsbcolor 180 36 box

black 252 128 moveto (0 1 .7) show
0 1 .7 sethsbcolor 252 36 box

0 0 72 144 216 288

72

144

hue  saturation brightnesssethsbcolor

.1 .2 .3 

0 .4 .7 .8 .4 .7 .8 .6 .4.7 .7 .7

.5 .5 .5 .1 .4 .5 0 1 .7

PSlearn
20–2



Taking Advantage of PostScript

288 library of color examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:cmykBoxes.eps
%%BoundingBox:36 36 306 198

/box  {moveto 50 0 rlineto 0 50 rlineto -50 0 rlineto
 closepath fill} def

/black {0 setgray} def

/Helvetica-Oblique findfont 10 scalefont setfont
144 108 moveto (cyan  magenta  yellow  black) show

/Helvetica-Bold findfont 10 scalefont setfont
36 108 moveto (setcmykcolor) show

36 128 moveto (.1 .2 .3 .4) show
.1 .2 .3 .4 setcmykcolor 36 144 box

black 108 92 moveto (0 .4 .7 0) show
0 .4 .7 0 setcmykcolor 108 144 box

black 180 92 moveto (.8 .4 .7 0) show
.8 .4 .7 0 setcmykcolor 180 144 box

black 252 92 moveto (.8 .6 .4 .2) show
.8 .6 .4 .2 setcmykcolor 252 144 box

black 36 92 moveto (.7 .7 .7 0) show
.7 .7 .7 0 setcmykcolor 36 36 box

black 108 128 moveto (.5 .5 .5 .5) show
.5 .5 .5 .5 setcmykcolor 108 36 box

black 180 128 moveto (.1 .4 .5 .9) show
.1 .4 .5 .9 setcmykcolor 180 36 box

black 252 128 moveto (0 1 .7 0) show
0 1 .7 0 setcmykcolor 252 36 box

0 0 72 144 216 288

72

144

cyan  magenta  yellow  blacksetcmykcolor

.1 .2 .3 .4

0 .4 .7 0 .8 .4 .7 0 .8 .6 .4 .2.7 .7 .7 0

.5 .5 .5 .5 .1 .4 .5 .9 0 1 .7 0

20–3

PSlearn



Chapter 20

library of color examples 289

%!PS-Adobe-2.0 EPSF-1.2
%%Title:c-imageWord1.eps
%%Creator:John F Sherman
%%CreationDate:Dec 1990
%%BoundingBox:36 36 356 186

/word (John, Carolyn, William, Patrick & Theresa) def

36 36 translate
15 15 4 [.1 0 0 .1 0 0] {word}  true 1 colorimage

170 0 translate
15 15 4 [.1 0 0 .1 0 0] {word}  false 4 colorimage

0 0 72 144 216 288 360

72

144

20–4

PSlearn



Taking Advantage of PostScript

290 library of color examples

The difference between this PostScript example and the example on the previous 
page is that these two squares are 8-bit patterns and the previous squares are 4-bit.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:c-imageWord2.eps
%%Creator:John F Sherman
%%CreationDate:Dec 1990
%%BoundingBox:36 36 356 186

/word (John, Carolyn, William, Patrick & Theresa) def

36 36 translate
15 15 8 [.1 0 0 .1 0 0] {word}  true 1 colorimage

170 0 translate
15 15 8 [.1 0 0 .1 0 0] {word}  false 4 colorimage

0 0 72 144 216 288 360

72

144

PSlearn
20–5



Chapter 20

library of color examples 291

%!PS-Adobe-2.0 EPSF-1.2
%%Title:cPattern1.eps
%%BoundingBox:36 36 350 196

/str 512 string def
/bit 4 def
/cPattern {

/a exch def /b exch def
/diff a b sub def
7 7 bit [.1 0 0 .1 0 0]
{0 1 511 {str exch rand diff mod b add put}
for str} false 4 colorimage} def

222 srand
36 36 translate 0 75 cPattern

80 0 translate 75 150 cPattern

80 0 translate 150 225 cPattern

80 0 translate 225 250 cPattern

/bit 8 def
-240 90 translate 0 75 cPattern

80 0 translate 75 150 cPattern

80 0 translate 150 225 cPattern

80 0 translate 225 250 cPattern

0 0 72 144 216 288 360

72

144

PSlearn
20–6



Taking Advantage of PostScript

292 library of color examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:colorRNotes.eps
%%BoundingBox:0 0 360 180

/Sonata findfont 24 scalefont setfont

/n {rand exch mod 6 sub} def
/g {rand 100 mod .01 mul} def
/clipBox

{/ury exch def  /urx exch def
/lly exch def  /llx exch def

llx lly moveto urx lly lineto urx ury lineto
llx ury lineto closepath clip} def

173417 srand

gsave
0 0 360 180 clipBox

/a {360 n 180 n moveto (&) show} def
/b {250 n 180 n moveto (e) show} def
/c {200 n 180 n moveto (e) show} def
/d {150 n 180 n moveto (e) show} def
/e {100 n 180 n moveto (e) show} def

10 {g g g 0 setcmykcolor 25 {a} repeat} repeat
10 {g g g 0 setcmykcolor 25 {b} repeat} repeat
10 {g g g 0 setcmykcolor 25 {c} repeat} repeat
10 {g g g 0 setcmykcolor 25 {d} repeat} repeat
10 {g g g 0 setcmykcolor 25 {e} repeat} repeat

grestore

��
� �

�
�

�

� �

�
�

�

�

�
�

�
�

� �� �
�

�
�

�

� �

� �

�

�
�

��
�

�

�

�

��
� ��� �

�
�

�
�

�
�

�

� ��
�

�

�

�
�

�
��

�
� ����

��

�
�

��
�

�� �
�

��
�

��

�

�

��
�

�

� ��

� ��

�

�
�

��

��
�

�

� �

�
�

�
�

� �
�

� ��
�

�
� �

�

�
��

� ��
�

�
�

�

� �

�

�

�
�

��
��

����
� � �

�� � ��

�
�

�
�

�

�
��

�

�

�
� �

��

�

�
�

�

�

�
�

�

�
��

�
�

��
�

�
���

�

�

� �

�
�

��

�
�

�
�

� � �
�

��

��

�
�

�� � � ��

�
� ��

�

���
�

�
�

�
�

�
� �

�

� ��

��
� ��

�
�

�

�
�

� �
�

�
��
�

�
�

�
�

�
�

�
�

� � �

��

� �

��
� �

�

�
�

�
�

� �
��

��
�

��

�
�

�
�

��

��

�
��

� ��

��
� �

�

�� �
�

� � � �
�

�

�

�

�

�
�

�
� ��

��

�

�

�
�

�
�

�� �
� �� �

� �

�
�� �

�
�� ��

�
�

� �
�

�
�

�

�
�� ��

�

�

�

�
� ��

� �

�

�
��

�

� �
�

�

� ��
�

�

�
��

�

�
�

� �
�

�

��

�
��

�

�
� �

�

�

�
��

�
�

�

�
� � � �

�
��

�
�

�
�

�
� �

��
�

�
��

�
�� �

�
�

�
��

�

�
�

�
�

�� ��

� �
�

��

� �
�

� � �

�

��
��

�
� ��

������
��

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�
�

�

� �

�

��
� �

�
�

� ��� �
�

�

��

� �

�

� �

� �
�

�
�
�

�
�

�
�

�

��

� ���
�

�

� �
� �

�
��

� ��
� ��

�
�

�

�

�
�

�
���

�
�
�� �

�
��

�

�
�

�

�

�
�

� �
� �

�

�

�

�
�

�

�
�

�
�

�

��
��

�

�
�

�

�

�

�

�
�

��
�

�

�

�
�

��

�

�
�

�

�
�� �

�

�

�
�

�
�

� �� �
� �
��

�
��

�
�

�
�

�
�

� �
�

�
�

�

�

�
�

�
�

�
�

�

�

�
�

� �

�
� ��

�
�

�
�

�

�

�
��

�

�

�
�

�
�

�

��
�

� ��
�

� ��
�

� �
� ��

�
�

� ��
�

�

�
��

� �
��

��

�

��
�

�
�

� ��

�� �
�

��� ��
�

�

�
�

�

�

�

�
�

�
��

� �
�

� ��
�� �

�

� �
� �

�
�

��

�
�

�

�� �
�

�
��

�

�

�
�

�

�
� �

�

�
�

�

�
�� �

� �

�
�

�

�
�

�

�

�

�
�

�
�

�

�
� �

�

�
�

��
� ���

� �
�

� ��
�

�

��

� �
�

� � �

����
�

� �

�

�
� ��

� �

�

�
�

�
�

�� �

�

�

�
�

�
�

� �
�

�

�

�

� �
�

��
�

�� �
�

�

�
�

�
�

��

�
�

�
�

��
�

�
��

�

�

�� �
�

�
��

�

�

� ��
�

�

�
��

�

�

�

��

�

��

�

�

�

�

��
�

�

�

�
�

��
�

�

� � �

�
�

��
��

�

� ��� �

�
�

� �� �

�

�

�

�
�

� �

�

�

�
�

�
�

�
�

�� ��
�

� �
�

�
�

�
�
� � � �

� �
��

�

��
�

�

�
�

� ��
�
�

��

�

�

��� �
�

�

�
�

�
�

��

�
� �

��
�

�

���
�

�

�

�

�
�

�
�

�

��
�

�
�

��
��

��

�

�

��

�

��

��
�� �

���
��

�

�
�

�
�

��
���

�

��
�

��
�� �

�
�

�

�
�

�

� �

���� �

� ��
�

��
��� �

���

�
�

�
��

�

�
��
���

�
�� �

� �

�

�

�

�
�

�
���

�

�

��
�

�
�

��

�

�
�� �

�
�

�
�

�
�

�

� ��

�
��

�
�

�

�

�
�

�

�� �
�

�

�

�
��
�

�

�

� �
�

�
�

�

�
�

�
�

�

��

�
��� ��

�

� �

�
�

�
�

� ��
�

�

�

�
� ��

�� �
� �

�
�

�
����

�

�

�

�
��

��� ���

20–7

PSlearn



Chapter 20

library of color examples 293

%!PS-Adobe-2.0 EPSF-1.2
%%Title:cRLines1.eps
%%Creator:John F Sherman
%%CreationDate:Dec 1990
%%BoundingBox:36 36 396 286

/n {rand exch mod} def
/g {rand 100 mod .01 mul} bind def

173417 srand
36 36 360 250 rectclip
gsave

/a {400 n 36 n moveto 38 300 rlineto stroke} def
/b {300 n 36 n moveto 38 300 rlineto stroke} def
/c {100 n 36 n moveto 38 300 rlineto stroke} def

10 {g g g 0 setcmykcolor 7 {a} repeat} repeat
10 {g g g 0 setcmykcolor 7 {b} repeat} repeat
10 {g g g 0 setcmykcolor 7 {c} repeat} repeat

grestore

PSlearn
20–8



Taking Advantage of PostScript

294 library of color examples

%!PS-Adobe-2.0 EPSF-1.2
%%Title:cRLines2.eps
%%BoundingBox:0 0 330 120

/n {rand exch mod} bind def
/g {rand 100 mod .01 mul} bind def

173417 srand
.8 setgray
0 0 330 120 rectfill

gsave
/a {300 n 18 n moveto 32 100 rlineto stroke} def
/b {200 n 18 n moveto 7 100 rlineto stroke} def
/c {100 n 18 n moveto 7 100 rlineto stroke} def

3 setlinewidth
10 {g g g 0 setcmykcolor 7 {a} repeat} repeat
1 setlinewidth
10 {g g g 0 setcmykcolor 7 {b} repeat} repeat
10 {g g g 0 setcmykcolor 7 {c} repeat} repeat

grestore

PSlearn
20–9



Chapter 20

library of color examples 295

%!PS-Adobe-2.0 EPSF-1.2
%%Title:cfountain_1.eps
%%Creator:John F Sherman
%%BoundingBox:0 0 200 200

/fountstring 256 string def
0 1 255 { fountstring exch dup put } for

200 200 scale

255 1 8 [ 255 0 0 1 0 0 ] { fountstring } false 4 colorimage

PSlearn
20–10



Taking Advantage of PostScript

296 gallery of designs

Mike’s Romance

�

�

�

�

�

�

�

� �

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

�
�

�

� �

�

�

�

�

�

�

�

�

�

�
�� �

�

�

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�
�

�

�

�

� �

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�

� �

�

�

�
�

�

�

�

�

�

�

�
�

�

� ��

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�
� �

�
�

��

�

�

��

�

�

�

�

�

�

�

� �

�

�

�

�

�

�
��

�

�

�

�

��

�

��

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

��

�

�

�

�

�

�

�

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

��

�

� �

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

�

��

�
�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

� �

�
�

�

�

�

�

�

�
�

�
�

�
�

�

�

�

��

�

�

�

�

�

��

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�
�

� �
�

�

�

�
�

��

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�
�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

� �

�
� �

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

��

�

�

�

�

�

�

�

�

�
�

�

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�

�
�

��

�
�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�
�

�

�

�

�� �

�

�

�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

��

�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

� �

�

�

�
�

�

��
�

�

��

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

��
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�
�

�

�

�

�

�

�

�

� �

�

�

� �

�

�

�
�

��

�

�

�

�
�

� �

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

� ��

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

��

�
�

�

�

�

�

��
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

��
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

� �

�

�

�

�

�

�

���

�

�

�

�
�

�

�

�

� �

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�
� �

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

� �

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�� �

�

�

�

�

�
�

�
�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

��

�

�

�

�

�
�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�
�

�

�

� �

� �
�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

���

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

�
�

�
��

�

�

�

�
�

�

��

�

�

�
�

�
�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�
�

�

�

� �

�

�

��

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

�

�
�

� �

�

�

��

�

� �

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�
� ��

�

��

�

�

�

�

�

�

�
�

�

�

� �

�
� �

�

�

��

�

�

�

�

��

�

�

�

�

�

�

� �

��

�
�

��

�

�

�
��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

��

�

�

�

�

�
�

�

�
�

� ��

�
�

�

��

�

�

�

�

�
�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

��

� �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�
�

�

�
�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

��

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�
�

� �
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

� �

�

�

�

�
�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

� � �

�
�

�

�

�

�

�

�
�� �

�
��

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �

�
�

�

�

�
�

� �
�

�

�

�
�

�

� �

�

�

�
�

�
�

� �� �

�

�

�
�

�

�

�

�

�

��
�

�

�

�
�

�

�
��

�

�

�

� �
�

�

�

�

� �

� �

�

�

�

�

�
�

�

�
�

�

�

�
�

�

�
�

�

� ��

�

�

�

�

�

�

�
�

�
��

�
��

�

�

�

�

�

��

�

�
�

�

�

�
�

�

�
�

�

�

� �

� �
�

�
�

�

�
��

�

�
��

�

�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�
�

�
�

� �

�
�

�

�
� �

�

�
�

�
�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

� �

��

�

�
�

� �

�

�

�

�
�

�

�

�
�

�

�

�
� �

�
�

�

�

�

�

�

�
�

�

�

�

�
��

�

�

�

�

� �

�

�

� �

�

�

�

�

�
�

�
�

�

�

�

�
� �

��
�

�
�

�
�

� �
�

�

�
�

� �

�
�

��
�

� �

�
��

�

�

�

�

�

�� �

�

�

�

�

�� �

�

�

�

�

�

�
��

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

��
�

�

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�
�

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�

�
�

� �

�
�

�

�
�

�

�

�

� �� �
�

�
��

�
�

� �

�

�

�
�

�

�

�

�

�

�

�

�

�
�

� �
�

�

�

�

�

�

�

�

�

�
�

�

�
��

�

�� �

��

�

�
�

�
�

�
�

�
�

�
�

�

�

��

�
�

� �
�

�

��

�

�

�

�

�

�

� �

�

�

� �
�

�

�

�

�

�

�
�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�
�

�
� �

� �

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

� �

�
�

��
�

�

�

�

�

�

�

�

��

�

�
�

�
�

�

�

�
�

�
�

�
�

�

�

�

�
�

�

�

�

� �

��

��
�

��

�
�

�

�

�

�

�

�

�
� �

�

�
�

��

�

� �

�

�
�

�

�

�

�

�

�
�

�

��

��

� �
�

�
�

�

�

�

�

�

��

�

�

�
� �

�
� �

�

�
�

�

�
�

�

�
�

�

�
�

�
� �

�
�

�

�

�

�

�

�

��

�

�

�

��
�

�
�

�

�

�

� �

�

�

�

�

�

�

�

� �

� �

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

��
�

��
�

�

��

�

�

�

�

�
�

�

��
�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

�
�

�

� �

�

�
�

�

�
�

�

�

�

�
�

�

�
�

�

�

�

� �
�

� �

�
�

�

�

�

�

�
�

�

�

�
�

�
�

� �

��

�
�

�

�

�

�

�

��

�
�

�
�

�
�

�

�

�
�

�
�

�
�

�
�

��
�

�

�

�

� �
� ��

�
��

�

�

� ��
�

�
�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�
�

�

�
� �

�
�

�

�

�
�

�
�

�

�

�

�
�

�
�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�

��
�

�

�

�

�
� �

�

�

�

� �
��

�

�

�

�

�

�

�

�

� ��

�

�
�

�

�
�

�

�

�

�
�

�

�� �

� �

�
� �

�

�

�

�
�

�

�

�
�

�

�

� �

�
�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

� �

� �

�

�

�

�

�

�
��

��
�

�

�
�

�

�



Chapter 21

gallery of designs 297

gallery of designs

This chapter contains a number of examples of designs that demonstrate the 
potential of PostScript image making.

21chapterchapter



Taking Advantage of PostScript

298 gallery of designs

after the Romance



Chapter 21

gallery of designs 299

bit o Romance

�� �111111
111111
111111
111111
111111
111111

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaa������a

   B

A  a     a

1     a

   a

�   A   A

  a

A

 a a

  aa

 A 1

  a a
a   1

a

  A
  a

   a

 A

  B

    B
 a

  B



Taking Advantage of PostScript

300 gallery of designs

vioLynn

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�
�

� �

�

�

��
�

�

�

�

�

��

�
�

�

�

�
�

�

�

�

�

�
�

�

�
�

�

�

� �

�

�

� ��

�

�
�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

��

�

�

��

�

�

�

�

�
� �

�
�

� �

�

��

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�
�

�

�

�

��

�

�

�

�

� �

�

��
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �

� �

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

��

�

�� ��

�

�
�

�

�

�
�

�

�

�

�

�

�

� �
�

�
�

�

�

�
�

�
�

� �

�
�

�
�

�

�

�

�

�

�

�

�

�

�

� �

�

�
�

�

�

��
�

�

�
�

�
�

�

�

��
�

�

�

�

�
�

�

�

�

�

�

�
��

�
�

�

�
�

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

�
��

�
��

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�
� �

�

�

�

�

�

�

�
��

�

��

���

�

� �

�

�

�

�

�

�
� �

�

�

��
�

�

�

��

�

�

�

��

�

�

��
�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

�
� �

�

�

�
��

�

�
�

�

�

�
�

�
�

�� �

�
�

� � �

�

�

��

�
� �

�

�
�

�
�

�

�

�

��

�

�
�
�

�

�

�

�
�

�

�
�

�

�

�

�

� �
�

��

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�
���

�

�
�

��

�

�

�

��

�

�
��

�

�
�

�

�

�

�

� �

�
�

�

�

�

��

�

�
�

��

�

�

��

�

�

�

�

� �

�

�

�

�

�

�
�

�

�
�

��

�

�
�

� �

��

�
�

�

�

�

�

�

�

�

�
��

��
�

�

�

�

�

�

�

�

�
�

��

�

� ��

�

�

�

�

�

��

�

�
�

��

�

�
�

�

�

�

�

�

�
�

�
�� �
�

�

�
�

�� �

�
�

�

�

�

�

�

�

�
�

�

�

��

�

�
�

�

�

�
�

�

�

�

�

�

��

��

�

�

�
�

��

�
�

�

��
�

�

�

�
�

��

�

� ��

�

�

�

�
�

�

�

�

�

�
�

�

��

� �

�

�
�

�

�

� �
��

�

�

�

�

�

�
� �

��

�

�

�

�

� �

�
�

�

�

�
�

�

�

�

�

�

�

�

�
���

�

��

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�
� �

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

�

�

�

�

�
��

�

�

�

� �

�
�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���



Chapter 21

gallery of designs 301

excited

��11111111111111111111111111111111111111111111111111111111111111111

11111111111111111111111111 11111

1111111111111111111111111111111

11111111111111111111111111111 1 1

         a
    A      A
          A   b
  A    b
     A      b

            B
A
  A            b
          A  b
B        b
       A

       a
         a   a
    A b
          a
 A          a
  b



Taking Advantage of PostScript

302 gallery of designs

violin Switch

�� ����� ��



Chapter 21

gallery of designs 303

radClef

�������



Taking Advantage of PostScript

310 tangent, sine, & cosine

Consult this chart for matrix transformations. See section 10.4.

degree tangent degree tangent

tangent,
sine, &
cosine
charts

Bappendixappendix
 0˚ 0.0
 1˚ 0.0175
 2˚ 0.0349
 3˚ 0.0524
 4˚ 0.0699
 5˚ 0.0875
 6˚ 0.1051
 7˚ 0.1228
 8˚ 0.1405
 9˚ 0.1584
10˚ 0.1763
11˚ 0.1944
12˚ 0.2126
13˚ 0.2309
14˚ 0.2493
15˚ 0.2679
16˚ 0.2867
17˚ 0.3057
18˚ 0.3249
19˚ 0.3443
20˚ 0.3640
21˚ 0.3839
22˚ 0.4040
23˚ 0.4245
24˚ 0.4452
25˚ 0.4663
26˚ 0.4877
27˚ 0.5095
28˚ 0.5317
29˚ 0.5543
30˚ 0.5774
31˚ 0.6009
32˚ 0.6249
33˚ 0.6494
34˚ 0.6745
35˚ 0.7002
36˚ 0.7265
37˚ 0.7536
38˚ 0.7813
39˚ 0.8098
40˚ 0.8391
41˚ 0.8693
42˚ 0.9004
43˚ 0.9325
44˚ 0.9657
45˚ 1.0

46˚  1.036
47˚  1.072
48˚  1.111
49˚  1.150
50˚  1.192
51˚  1.235
52˚  1.280
53˚  1.327
54˚  1.376
55˚  1.428
56˚  1.483
57˚  1.540
58˚  1.600
59˚  1.664
60˚  1.732
61˚  1.804
62˚  1.881
63˚  1.963
64˚  2.050
65˚  2.145
66˚  2.246
67˚  2.356
68˚  2.475
69˚  2.605
70˚  2.747
71˚  2.904
72˚  3.078
73˚  3.271
74˚  3.487
75˚  3.732
76˚  4.011
77˚  4.331
78˚  4.705
79˚  5.145
80˚  5.671
81˚  6.314
82˚  7.115
83˚  8.144
84˚  9.514
85˚ 11.43
86˚ 14.30
87˚ 19.08
88˚ 28.64
89˚ 57.29
90˚ 360.0



appendix B

tangent, sine, & cosine 311

 0˚ 0.0 1.0
 1˚ 0.0175 0.9998
 2˚ 0.0349 0.9994
 3˚ 0.0523 0.9986
 4˚ 0.0698 0.9976
 5˚ 0.0872 0.9962
 6˚ 0.1045 0.9945
 7˚ 0.1219 0.9925
 8˚ 0.1392 0.9903
 9˚ 0.1564 0.9877
10˚ 0.1736 0.9848
11˚ 0.1908 0.9816
12˚ 0.2079 0.9781
13˚ 0.2250 0.9744
14˚ 0.2419 0.9703
15˚ 0.2588 0.9659
16˚ 0.2756 0.9613
17˚ 0.2924 0.9563
18˚ 0.3090 0.9511
19˚ 0.3256 0.9455
20˚ 0.3420 0.9397
21˚ 0.3584 0.9336
22˚ 0.3746 0.9272
23˚ 0.3907 0.9205
24˚ 0.4067 0.9135
25˚ 0.4226 0.9063
26˚ 0.4384 0.8988
27˚ 0.4540 0.8910
28˚ 0.4695 0.8829
29˚ 0.4848 0.8746
30˚ 0.5000 0.8660
31˚ 0.5150 0.8572
32˚ 0.5299 0.8480
33˚ 0.5446 0.8387
34˚ 0.5592 0.8290
35˚ 0.5736 0.8192
36˚ 0.5878 0.8090
37˚ 0.6018 0.7986
38˚ 0.6157 0.7880
39˚ 0.6293 0.7771
40˚ 0.6428 0.7660
41˚ 0.6561 0.7547
42˚ 0.6691 0.7431
43˚ 0.6820 0.7314
44˚ 0.6947 0.7193
45˚ 0.7071 0.7071

46˚ 0.7193 0.6947
47˚ 0.7214 0.6820
48˚ 0.7431 0.6691
49˚ 0.7547 0.6561
50˚ 0.7660 0.6428
51˚ 0.7771 0.6293
52˚ 0.7880 0.6157
53˚ 0.7986 0.6018
54˚ 0.8090 0.5878
55˚ 0.8192 0.5736
56˚ 0.8290 0.5592
57˚ 0.8387 0.5446
58˚ 0.8480 0.5299
59˚ 0.8572 0.5150
60˚ 0.8660 0.5000
61˚ 0.8746 0.4848
62˚ 0.8829 0.4695
63˚ 0.8910 0.4540
64˚ 0.8988 0.4384
65˚ 0.9063 0.4226
66˚ 0.9135 0.4067
67˚ 0.9205 0.3907
68˚ 0.9272 0.3746
69˚ 0.9336 0.3584
70˚ 0.9397 0.3420
71˚ 0.9455 0.3256
72˚ 0.9511 0.3090
73˚ 0.9563 0.2924
74˚ 0.9613 0.2756
75˚ 0.9659 0.2588
76˚ 0.9703 0.2419
77˚ 0.9744 0.2250
78˚ 0.9781 0.2079
79˚ 0.9816 0.1908
80˚ 0.9848 0.1736
81˚ 0.9877 0.1564
82˚ 0.9903 0.1392
83˚ 0.9925 0.1219
84˚ 0.9945 0.1045
85˚ 0.9962 0.0872
86˚ 0.9976 0.0698
87˚ 0.9986 0.0523
88˚ 0.9994 0.0349
89˚ 0.9998 0.0175
90˚ 1.0 0.0

Consult this chart for matrix transformations. See section 10.4.

degree sine cosine degree sine cosine



Taking Advantage of PostScript

316

D.1

D.2

PS utilities

Dappendixappendix
PostScript programs do not necessarily print a graphic. They are used for a wide 
range of utilities, from getting feedback from the printer to setting printer defaults.

start-up page

This PostScript program stops the printer from printing the start-up page when it 
is first turned on.

%!PS-Adobe-2.0
%%Title:start-upPage1.ps

% stops start-up page on LaserWriter

serverdict begin 0 exitserver

statusdict begin
false setdostartpage

This PostScript program restores the printing of the start-up page.

%!PS-Adobe-2.0
%%Title:start-upPage2.ps

% restores start-up page on LaserWriter

serverdict begin 0 exitserver

statusdict begin
true setdostartpage

page count

This PostScript program prints a test page which contains the number of pages 
printed on the laser printer.

%!PS-Adobe-2.0
%%Title:pagecount.ps

% pages printed on a LaserWriter

/Helvetica findfont 14 scalefont setfont

30 500 moveto
(The number of pages that have been printed are: ) show
PostScript utilities



appendix D

D.3

D.4
statusdict begin pagecount
10 string cvs show

showpage

printing multiple copies

There is a convenient way to print multiple copies of a page. When showpage  is 
used, a variable named #copies  is referenced. It can be given a new value for the 
number of copies required. The default is set at 1.

%!PS-Adobe-2.0
%%Title:copies.ps

72 144 moveto
/AvantGarde-Demi findfont 200 scalefont setfont

(ND) show

/#copies 3 def

showpage

listing of available fonts

There are a number of ways to determine what fonts are available in your printer. 
A benefit of doing this is that it’s a convenient way to learn the required spelling 
for a particular font. Included here are four programs for listing the font directory. 
The first pair is for the Apple LaserWriter and the second pair is for the NeXT 
computer. The first program of the set will print the font list twice, the second font 
listing appearing in its font style. The other program of the set sends the list to the 
standard output file. The primary difference between the two sets of programs is 
that the font directory in the LaserWriter is named FontDirectory  and on the 
NeXT is named SharedFontDirectory . 

%!PS-Adobe-2.0
%%Title:prFontDir.ps
%%Creator:John F Sherman
%%CreationDate:29 Nov 1990

% prints LaserWriter FontDirectory.ps

/Times-Bold findfont 10 scalefont setfont

/left 72 def
/top 720 def
/newline {show currentpoint exch pop 14 sub left exch moveto} 
def
/str 30 string def
/printDir {FontDirectory
PostScript utilities 317



Taking Advantage of PostScript

318
{pop str cvs newline} forall } def

left top moveto
printDir

( ) newline
(Total memory: ) show
vmstatus str cvs newline

(Memory used: ) show
str cvs newline
pop

( Free memory: ) show
vmstatus exch sub str cvs newline
pop

/printDir {FontDirectory
{12 scalefont setfont str cvs newline} forall } def

/left 240 def
left top moveto
printDir

showpage

%!PS-Adobe-2.0
%%Title:sendFontDir.ps
%%Creator:John F Sherman
%%CreationDate:29 Nov 1990

% Sends font list to the standard output file.
% The file will either be a text file on your drive
% or it will flash by in a window on your monitor.

FontDirectory {pop == flush} forall

The following programs are for the NeXT SharedFontDirectory listing.

%!PS-Adobe-2.0 EPSF-1.2
%%Title:SharedFontDir1.eps
%%Creator:John F Sherman
%%CreationDate:29 Nov 1990
%%BoundingBox:0 0 360 525

% NeXT SharedFontDirectory listing

/Times-Bold findfont 10 scalefont setfont

/left 36 def
/newline {show currentpoint exch pop 14 sub left exch moveto} 
def
PostScript utilities



appendix D

D.5
/str 30 string def
/printDir {SharedFontDirectory

{pop str cvs newline} forall } def

0 0 360 525 rectstroke
left 500 moveto
printDir

/printDir {SharedFontDirectory
{12 scalefont setfont str cvs newline} forall } def

/left 200 def
left 500 moveto
printDir

%!PS-Adobe-2.0
%%Title:SharedFontDir2.ps
%%Creator:John F Sherman
%%CreationDate:29 Nov 1990

% NeXT SharedFontDirectory listing
% sends font list to the standard output file,
% usually the Console window.

SharedFontDirectory {pop =} forall

getting the bounding box

Often it may be useful to receive information from the PostScript interpreter. The 
following programs are variations on obtaining a path’s bounding box and having 
it sent to the standard output file.

%!PS-Adobe-2.0
%%Title:seeBBox1.ps

/Times-Roman findfont
300 scalefont setfont

150 150 moveto (g) true charpath

pathbbox
= = = =

%!PS-Adobe-2.0
%%Title:seeBBox2.ps

200 200 72 0 360 arc

pathbbox
= = = =
PostScript utilities 319



Taking Advantage of PostScript

320

D.6
In this program, flattenpath  is used before pathbbox . flattenpath  replaces 
all uses of curveto  with an equivalent series of lineto  line segments. Otherwise, 
pathbbox  returns values that do not reflect the actual bounding box.

%!PS-Adobe-2.0
%%Title:seeBBox3.ps

/blob {20 79 moveto
43.0878 94.8731 -5.0006 110.846 37 127 curveto
76 142 73.0001 74 90 107 curveto
107 140 213.0496 111.0607 146 67 curveto
111 44 27.7468 100.988 60 48 curveto
74 25 83 -16 34 15 curveto
-15 46 4 68 20 79 curveto closepath} def

blob
pathbbox
= = = =

blob
flattenpath
pathbbox
= = = =

This graphic shows the two different bounding boxes.

sending yourself messages

This procedure can be useful when trying to debug a lengthy PostScript program 
and it’s difficult to discover where the problem is located. Another use for this 
procedure is to let you know during a long printing job how much of the program 
has been completed. This is done by leaving messages to yourself within the 
program that are sent to the standard output file when they are encountered 
during processing. If you are debugging, the message might be “made it this far.” 
If you are monitoring a print job, there could be a series of messages throughout 
PostScript utilities



appendix D

D.7
the file saying “completed section 1,” “completed section 2,” “completed section 
3,” and so on. Since this example is pretty short, the messages will flash by rather 
quickly.

In messages sent by print (\n) print flush , print  writes a string (your 
message between parentheses) to the standard output file. flush  means send it 
right away. (\n) print  is like hitting return on a typewriter. Without it, all the 
messages would line up in one line with no spaces between. \n  means newline.

%!PS-Adobe-2.0
%%Title:message1.ps

% the message is sent to the standard output file
/message {print (\n) print flush} def
/Helvetica findfont 100 scalefont setfont

(10) message
(9) message
(8) message
(7) message
(6) message
(5) message
(4) message
(3) message
(2) message
(1) message
100 100 moveto (Blast off !) show

showpage

getting what’s on the stack

Often a PostScript program appears to work correctly, but unknown to you, 
unused items are left on the stack. For example, kshow  pushes twelve integers that 
are the string’s character codes onto the stack. These are integers that are not 
needed by this particular kshow  procedure, and are usually removed by 12 
{pop} repeat . 

%!PS-Adobe-2.0
%%Title:seeStack.ps

/AvantGarde-Demi findfont 72 scalefont setfont
.9 setgray
36 36 moveto
{-3 0 rmoveto currentgray .12 sub setgray} (RAINBOW) kshow
pstack

Another example is the following:

%!PS-Adobe-2.0
%%Title:seeMatrix.ps

matrix defaultmatrix ==
matrix defaultmatrix pstack
PostScript utilities 321



Taking Advantage of PostScript

322

glossary

Eappendixappendix
argument
An argument is used when explaining a PostScript operator that is 
expecting information supplied by the programmer. For example, moveto  
expects two arguments, an x  and y  location, such as 72 72 moveto . 72 
72  are the two arguments for moveto  in this example.

array
An array is a collection of values or items for some needed purpose. For 
example, [1 0 0 1 0 0]  would be an example of a matrix array. In 
PostScript, the “[ ” and “] ” (bracket-left and bracket-right) are the left and 
right boundaries of the collection of items or array. An array may be an 
argument for a PostScript operator, such as [1 0 0 1 0 0] concat .

ASCII
Pronounced “ass key,” ASCII are the initials for the American Standard 
Code for Information Interchange. The ASCII chart is a standard table of 
characters that all computer systems have in common. Each character has 
several means of identification depending on the need. There are decimal, 
binary, octal, and hexadecimal identifications for each of the 256 entries. 
Some uses of the different identifications are to print special characters 
outside of the standard keyboard character set, kern characters, or to 
image scanned data. See Appendix A.

boolean
A boolean is something that is either true or false.

decimal character code
There are 256 possible characters in the ASCII character set, numbered 0 – 
255. Each number is the decimal identification for that character. For 
example, the decimal number for the letter A is 65. Appendix A is a table 
of all these identifications.

hexadecimal character code
Hexadecimal, sometimes referred to as HEX, is an alternate form of 
writing characters. In hexadecimal, each character is identified by a pair of 
characters. The pair is made using the digits 0 through 9 and the letters A 
through F. For example, the character A is written as 41 in hex and Z is 5A. 
See decimal character code above and appendix A.

key
When a procedure is defined, the name of the procedure is considered a 
key to the procedure action. PostScript operators are also considered to be 
keys to the value of the operator.

octal character code
The octal code is one of several ways of identifying a character. See 
decimal character code above and special characters below. The octal 
number for the letter A is 101 and would be written in PostScript as 8#101  
when used with the awidthshow  kerning operator or (\101BC)  in a 
string. See appendix A.

operand
An operand is the argument for an operator. In 72 72 moveto , 72 72  
are the operands for the operator moveto .

operator
An operator is one of the commands of PostScript. It may require operands 
or it may stand alone like showpage , which is used for printing.
glossary



appendix E
procedure
PostScript is an extensible language, meaning a name can be given to some 
operation such as drawing a square or adding several values together. This 
is called a procedure. Once the procedure is created, its name is used in the 
program as if it is a command. A procedure is typically used in cases where 
the action will be needed several times and the program would be more 
efficient and understandable having one. See section 3.2.

pushed
When discussing stacks, items are pushed onto the stack and popped off. For 
example, a by-product of the kshow  operator is that it pushes character 
codes onto the operand stack. The pop  operator discards them.

special characters
There are a number of special characters to be aware of.

“<” and “>” identify hexadecimal, such as <BC 23 8F> .

“( ” and “) ” identify text strings, such as (type and letters) .

“/ ” identifies a key or name for a procedure, for example, /square .

“\ ” identifies a character outside of the standard ASCII character set by its 
octal number. For example, (\341SOP)  in a PostScript program will print 
the ligature of A and E, to get ÆSOP. 341 is the octal code for Æ. If you need 
a “\” in a string, use two (this is a backslash: \\). See appendix A.

stack
A stack is like a plate dispenser at a cafeteria. The first plate in is the last 
plate out and the last plate in is first plate used. In PostScript, the stack is 
an area of memory that values, operators, and other items are pushed onto. 
The first item in a line of PostScript code will be the first item on the stack 
and the last to be used.

There are four stacks; the operand, dictionary, execution, and graphic 
state. The operand stack is covered in section 2.8.

string
A string is a group of characters or words within a program that the 
program prints or displays on the computer screen. For example, in the 
program fragment 72 72 moveto (type) show , the word type is a text 
string four characters long identified and contained within the special 
characters “( ” and “) .”

variable
A variable is a value that may change depending on the situation. In the 
example x -12 moveto , x  is a variable that may have been defined 
earlier in the program to equal 0 or 72. x  may be used twenty times in a 
program and it would be easier to change x  than to search for the twenty 
numbers.

For example:

/x 20 def % define x to be 20

/word (word) def % define word to be string “word”
glossary 323


	Taking Advantage of PostScript
	John F. Sherman
	intro
	why learn PostScript ?
	1.1

	PostScript’s background
	1.2
	figure 1–1
	figure 1–2


	organization of this book
	1.3

	formats used in this book
	1.4
	1–1


	getting started
	1.5

	options for downloading files
	1.6


	overview of the basics
	coordinate system
	2.1
	figure 2–1


	the PostScript program must be a text file
	2.2

	PostScript is case sensitive
	2.3

	the program format
	2.4

	inserting comments
	2.5

	the graphic state
	2.6

	the current point & current path
	2.7

	the operand stack
	2.8
	figure 2–2
	figure 2–3
	figure 2–4


	creating a current point
	2.9
	figure 2–5


	creating a current path
	2.10
	figure 2–6


	painting the current path
	2.11
	2–1
	2–2
	2–3



	drawing a square
	finishing the final corner of the square
	3.1
	figure 3–1
	3–1


	defining procedures
	3.2
	3–2


	stroking & filling the same path
	3.3
	3–3


	moving the origin
	3.4
	3–4
	3–5
	3–6


	changing the size
	3.5
	3–7
	3–8



	EPS ﬁles
	.ps files
	4.1

	.eps files
	4.2

	the program header
	4.3
	4–1


	placing EPS files into Macintosh documents
	4.4
	figure 4–1
	figure 4–2
	figure 4–3
	figure 4–4


	changing a TEXT to an EPSF file type
	4.5
	figure 4–5
	figure 4–6

	figure 4–7
	figure 4–8


	the program header, line by line
	4.6
	4–2
	figure 4–9



	understanding error messages
	undefined
	5.1
	5–1
	5–2


	typecheck
	5.2
	5–3
	5–4


	stackunderflow
	5.3
	5–5
	5–6


	rangecheck
	5.4
	5–7


	limitcheck
	5.5
	5–8
	5–9


	nocurrentpoint
	5.6
	5–10
	5–11
	5–12


	syntaxerror
	5.7
	5–13
	5–14



	drawing basics
	creating arcs
	6.1
	figure 6–1
	6–1
	6–2
	6–3
	6–4


	making a pie chart using arc
	6.2
	6–5
	figure 6–2

	figure 6–3
	figure 6–4


	drawing curves
	6.3
	6–6
	figure 6–5
	figure 6–6


	the arcto operator
	6.4
	6–7
	6–8



	type basics
	diagram of a letterform
	7.1
	figure 7–1


	placing type on the page
	7.2
	7–1
	7–2
	7–3
	figure 7–2


	various font strategies
	7.3
	7–4
	7–5


	stroking & filling type
	7.4
	7–6


	font names
	7.5
	7–7



	the repeat & for operators
	repeat
	8.1
	8–1
	8–2
	8–3
	8–4


	for
	8.2
	8–5
	8–6
	8–7
	8–8
	8–9


	using for & put with strings
	8.3
	8–10
	8–11



	more on drawing
	line endings & corners
	9.1
	9–1


	dashed lines
	9.2
	9–2


	non-zero winding & the even/odd rules
	9.3
	9–3
	9–4
	figure 9–1
	figure 9–2


	clipping
	9.4
	9–5


	setscreen
	9.5
	figure 9–3
	figure 9–4
	figure 9–5
	figure 9–6


	setscreen with halftones
	9.6

	pathforall
	9.7
	9–6
	9–7



	the CTM
	translation of the origin
	10–1

	scale
	10–2

	rotate
	10–3
	10–4
	10–5

	concat
	figure 10–1
	10–6
	figure 10–2
	10–7
	10–8
	10–9
	10–10
	10–11


	advanced type
	modifying existing fonts
	11.1
	11–1
	11–2
	11–3


	letterspacing with ashow
	11.2
	11–4


	kerning with widthshow
	11.3
	11–5


	kerning with awidthshow
	11.4
	11–6


	kshow
	11.5
	11–7
	11–8



	the image operator / scan
	introduction
	12.1

	simple digitized pictures
	12.2
	figure 12–1
	figure 12–2
	figure 12–3
	12–1
	figure 12–4
	figure 12–5


	scanned pictures
	12.3
	12–2


	a second version of shamrock
	12.4
	12–3
	figure 12–6
	figure 12–7



	the image operator / patterns
	creating patterns with the image operator
	13.1
	13–1
	13–2


	imageWord.eps
	13.2
	13–3
	figure 13–1
	figure 13–2


	1248.eps
	13.3
	13–4


	random patterns
	13.4
	13–5
	13–6
	13–7
	figure 13–3
	figure 13–4
	figure 13–5
	13–8


	variations on the patterns
	13.5
	13–9
	13–10


	fountains
	13.6
	13–11
	figure 13–6
	13–12


	changing the fountain’s direction
	13.7
	13–13


	other fountains
	13.8
	13–14
	13–15
	13–16
	13–17
	13–18
	13–19



	creative uses of imagemask
	syntax
	14.1

	shamrock revisited
	14.2
	figure 14–1
	14–1
	figure 14–2
	14–2


	with a fountain
	14.3
	14–3
	14–4


	as a pattern
	14.4
	14–5



	creating a font
	anatomy of a font program
	15.1
	figure 15–1
	figure 15–2


	font template
	15.2
	15–1


	modifying an existing font
	15.3
	15–2


	shapeFont as mono-spaced font
	15.4
	15–3


	shapeFont as variable-spaced font
	15.5
	15–4


	the radBit-Roman font
	15.6
	15–5


	how to use your font
	15.7
	15–6
	15–7



	creative uses of random numbers
	rand
	16.1
	16–1
	16–2


	srand
	16.2
	16–3
	16–4


	random x y placement
	16.3
	16–5
	16–6
	16–7


	random placement of type
	16.4
	16–8
	16–9


	random gray values
	16.5
	16–10
	16–11
	16–12



	some advanced programming ideas
	early binding
	17.1

	load
	17.2
	17–1


	making a user dictionary
	17.3
	17–2
	17–3
	17–4


	3 designs explained, gDesign listing
	17.4
	17–5


	sonataClef listing
	17.5
	17–6


	symphony, opus 1 listing
	17.6
	17–7



	PostScript Level 2
	rectfill
	18.1
	18–1
	18–2


	rectstroke
	18.2
	18–3
	18–4
	18–5
	18–6
	18–7


	new type operators
	18.3
	18–8
	18–9
	18–10
	18–11
	18–12


	color operators
	18.4
	18–13
	figure 18–1
	figure 18–2


	color pictures
	18.5
	18–14


	overview of new operators in Level 2
	18.6


	library of examples
	20– 7
	20– 6
	20– 4

	library of color examples
	20– 5
	20– 1
	20– 8
	20– 2
	20– 3
	20– 9
	20– 10

	gallery of designs
	tangent, sine, & cosine charts
	start-up page
	D.1

	page count
	D.2

	printing multiple copies
	D.3

	listing of available fonts
	D.4

	getting the bounding box
	D.5

	sending yourself messages
	D.6

	getting what’s on the stack
	D.7


	PS utilities
	glossary


