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knowability, the 
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believer



Last time, when discussing the surprise exam paradox, we discussed the possibility that some claims could be true, but not 
knowable by certain individuals - an example is that The Announcement might well be true, but can’t be known to be true by students 
in the class (so long as they are sufficiently good at logic, and know the relevant facts about what they know).

A different paradox - the paradox of knowability - aims to show something stronger: that there are some truths which are in principle 
unknowable; not knowable by anyone at all.

The paradox is due to the great 20th century logician Alonzo Church, who communicated it 
to Frederic Fitch - who was the first to publish a version of the paradox, in 1963.

The paradox can be expressed as a reductio of the claim that every truth can be known (as 
before, we use “K” to abbreviate “it is known that”):

Knowability: Every proposition P is such that if P is true, then it is 
possible that KP.

Intuitively, this claim seems quite plausible. Of course, perhaps there are some truths which  
we, given our cognitive limitations, can’t know; but it seems quite plausible that we can 
imagine increasingly intelligent versions of ourselves who would, ultimately, be able to 
understand and know these truths.

But now consider the quite plausible claim that there are some truths which, even if knowable, are not actually known

Some Unknown: There is at least one proposition P* such that (P* & ¬ KP*) 
- i.e., there is at least one proposition which is true but not known.

But Knowability is supposed to apply to every proposition; so it must also apply to the following proposition:

P* & ¬ KP*.

Hence the following must be true:

It is possible that K(P* & ¬ KP*)

But this result is problematic, because along with two very plausible principles, it implies a contradiction.



Knowability: Every proposition P is such that if P is true, then it is 
possible that KP.

Some Unknown: There is at least one proposition P* such that (P* & ¬ KP*) 
- i.e., there is at least one proposition which is true but not known.

But Knowability is supposed to apply to every proposition; so it must also apply to the following proposition:

P* & ¬ KP*.

Hence the following must be true:

It is possible that K(P* & ¬ KP*)

But this result is problematic, because along with two very plausible principles, it implies a contradiction.

The first principle is that knowledge of a conjunction - an “and” sentence - implies knowledge of both of its conjuncts. To see the 
plausibility of this, just think of some examples. As you will quickly find, whenever someone knows that P & Q, they also know that P, 
and know that Q. But this, plus the above result, implies:

It is possible that KP* & K(¬ KP*)

The next principle is one we discussed last time: the principle that knowledge implies truth. In our framework, this means that KP 
always implies P. Applying this rule, we get:

It is possible that KP* & ¬ KP*.

This says that it is possible that our proposition P* is both known and not known - but this is not possible, because it is a 
contradiction, and it is impossible for a contradiction to be true.

Hence, assuming the truth of our two principles, we seem to have a reductio of the principle of Knowability.

Does this succeed in showing that there are some truths which are, in principle, unknowable? Is this mysterious?



Knowability: Every proposition P is such that if P is true, then it is 
possible that KP.

Some Unknown: There is at least one proposition P* such that (P* & ¬ KP*) 
- i.e., there is at least one proposition which is true but not known.

P* & ¬ KP*.
It is possible that K(P* & ¬ KP*)
It is possible that KP* & K(¬ KP*)
It is possible that KP* & ¬ KP*.

This says that it is possible that our proposition P* is both known and not known - but this is not possible, because it is a 
contradiction, and it is impossible for a contradiction to be true.

Hence, assuming the truth of our two principles, we seem to have a reductio of the principle of Knowability.

Does this succeed in showing that there are some truths which are, in principle, unknowable? Is this mysterious?

Should this result worry the theist, since the existence of in-principle unknowable truths would presumably rule out the existence of 
an omniscient being? 

Many have thought that this paradox rules out certain forms of philosophical idealism, or anti-realism, or relativism, which hold that 
reality is not completely independent of minds and their mental activity, or that truths are only true relative to minds and their mental 
activity. It seems quite plausible that if some such view were true, then there could be no truths which were in principle unknowable - 
for, if there were, wouldn’t they have to be part of a reality which was in no way dependent on the mind for its existence? (Or perhaps 
it shows that the idealist, or relativist, should also be a theist, who can then escape the argument by denying that there are any 
unknown truths.)

Let’s now turn to a quite different example of an unknowable statement: that involved in the paradox of the Knower.



Let’s now turn to a quite different example of an unknowable statement: that involved in the paradox of the Knower.

Imagine that, when making The Announcement discussed in the surprise exam paradox, I concluded with these words:

The Conclusion (TC)

.. and, what’s more, you know that this very announcement (TC, for short) 
is not true.

Consider now statement TC itself. It seems that we can give a proof that if TC is true, it is also false:

1. TC is true.
2. It is known that TC is not true. 
3. TC is not true. 

assumed for conditional proof
1, plus the definition of TC
knowledge implies truth

This is, in form, like van Inwagen’s consequence argument: it is a conditional proof in which we assume P as a premise, show that 
it implies Q, and conclude from this that the conditional statement if P, then Q is true. From the above conditional proof we can thus 
conclude:

If TC is true, then TC is not true.

From which it follows that 

TC is not true.

since, after all, TC must be either (1) true or (2) not true. If (1) then, given the above result, it is not true. And if (2) it is not true. 
Hence it is not true.

Now, as mentioned above, knowledge implies truth; hence, if TC is not true, it follows that we do not know TC. That is:

¬ K(TC)



The Conclusion (TC)

.. and, what’s more, you know that this very announcement (TC, for short) 
is not true.

Consider now statement TC itself. It seems that we can give a proof that if TC is true, it is also false:

1. TC is true.
2. It is known that TC is not true. 
3. TC is not true. 

assumed for conditional proof
1, plus the definition of TC
knowledge implies truth

From which it follows that 

TC is not true.

since, after all, TC must be either (1) true or (2) not true. If (1) then, given the above result, it is not true. And if (2) it is not true. 
Hence it is not true.

Now, as mentioned above, knowledge implies truth; hence, if TC is not true, it follows that we do not know TC. That is:

¬ K(TC)

So far, no big surprise. 

But note something else about our situation: we have proven that TC is not true. But it seems clear that if we have proven 
something, then we know it to be true - indeed, proof seems to be the surest way to knowledge. But then, if we can prove that 
TC is not true, it follows that:

K(¬ TC)

But, of course, 

TC = K(¬ TC).
Hence if we have shown that K( ¬ TC), 
we have also shown 

But the result of our conditional proof above was that TC is 
not true. What could be going on?

We have arguments for the contrary claims that TC is not true, and that 
it is true; let’s try to get clear on how these two arguments work.TC.



The Conclusion (TC)

.. and, what’s more, you know that this very 
announcement (TC, for short) is not true.

1. TC is true.
2. It is known that TC is not true. 
3. TC is not true.
C1. If TC is true, then TC is not true

assumed for conditional proof
1, plus the definition of TC
knowledge -> truth
1-3, conditional proof

Both of these proofs look pretty hard to reject. But something must be wrong with them, since C2 contradicts C3..

Conditional proof that if TC is true, then TC is not true

Proof that TC is true

9. We have proven that TC is not true.
10. K(TC is not true)
11. TC = K(TC is not true).
C3. TC

6-C2
9, proof -> knowledge
definition of TC
10,11

It is tempting to say that the problem here can be solved by saying that the announcement is just nonsense. But there are two 
worries about the idea that we can respond to the paradox in that way.

First, it is not obvious that it is nonsense - and even if it is, we can re-create the paradox using statements which do seem to make 
sense. Imagine that you witness the following two statements by two people, A and B (you can imagine that they are in separate 
rooms, and their aim is to make a prediction about the statement made by the other):

A: The next thing that B says is going to be something that you know is not true.

Then, a few moments later:

B: The last thing that A said is true.

These certainly seem to make sense; so we can ask whether you know what B said or not. And, as above, either way of 
answering this question leads to a contradiction.

Proof that TC is not true

6. TC is true or not true.
7. If TC is not true, then TC is not true.
8. If TC is true, then TC is not true.
C2. TC is not true.

premise
premise
C1
6,7,8

For suppose you do know that what B said is true. Then it follows that what A said is true, which in turn implies that you don’t 
know, after all, that what B said is true.

Suppose instead that you do not know that what B said is true. This implies that what A said is true, which in turn implies that 
what B said is true --- and the above line of reasoning would seem to put you in a position to know this.



The Conclusion (TC)

.. and, what’s more, you know that this very 
announcement (TC, for short) is not true.

1. TC is true.
2. It is known that TC is not true. 
3. TC is not true.
C1. If TC is true, then TC is not true

assumed for conditional proof
1, plus the definition of TC
knowledge -> truth
1-3, conditional proof

Both of these proofs look pretty hard to reject. But something must be wrong with them, since C2 contradicts C3..

Conditional proof that if TC is true, then TC is not true

Proof that TC is true

9. We have proven that TC is not true.
10. K(TC is not true)
11. TC = K(TC is not true).
C3. TC

6-C2
9, proof -> knowledge
definition of TC
10,11

It is tempting to say that the problem here can be solved by saying that the announcement is just nonsense. But there are two 
worries about the idea that we can respond to the paradox in that way.

A second, and more fundamental, problem is that it’s not clear how the claim that TC is nonsense could, even if true, help with 
this paradox. What premise in the above arguments would it show to be false?

Proof that TC is not true

6. TC is true or not true.
7. If TC is not true, then TC is not true.
8. If TC is true, then TC is not true.
C2. TC is not true.

premise
premise
C1
6,7,8

One might think: premise 6. But if TC is nonsense, then it seems to follow that TC is not true - nonsense statements, after all, are 
never true. But this would make 6 true.



A plausible thought is that, as Sainsbury says, the paradox has essentially to do with the fact that knowledge implies truth. This 
assumption is, after all, used in both of our proofs. We can’t, however, reasonably reject this assumption; but perhaps we can say 
that the paradox here arises not from the nature of knowledge, but rather from the nature of truth.

After all, it seems that we can generate a very similar looking paradox using just the notion of truth, without bringing in knowledge 
at all:

L1. L1 is not true.

This is the Liar paradox. It, like TC, seems to lead to a contradiction. For consider: L1 is either true or not true. If it is not true, then 
L1 is just the say it says it is - so it must be true. But if L1 is true, then L1 must be the way it says it is: namely, untrue. So if it is not 
true, then it is true, and if it is true, it is not true. So it must be neither true nor not true - but this certainly sounds like a 
contradiction, since it sounds like we are saying that it is both not true and not not true - which is definitely a contradiction.

The Liar is, arguably, the hardest and most fundamental paradox that we will be discussing this semester. But because of the 
similarities between the Knower and the Liar - such as the fact that both “say of themselves” something that implies that they are 
not true -  perhaps the right thing to say about the Knower is just that in order to solve it, we need to solve the Liar; and whatever 
ends up being the right solution to the Liar will also give us a solution to the Knower. 

This is a very natural thought. But, if it is correct, then we should expect that we will not be able to raise a similar paradox using 
mental states such as belief which, unlike knowledge, do not imply truth. Unfortunately, as it turns out, we can.

Both of these proofs look pretty hard to reject. But something must be wrong with them, since together they imply a contradiction.

The Conclusion (TC)

.. and, what’s more, you know that this very 
announcement (TC, for short) is not true.

1. TC is true.
2. It is known that TC is not true. 
3. TC is not true.
C1. If TC is true, then TC is not true

assumed for conditional proof
1, plus the definition of TC
knowledge -> truth
1-3, conditional proof

Conditional proof that if TC is true, then TC is not true

Proof that TC is true

9. We have proven that TC is not true.
10. K(TC is not true)
11. TC = K(TC is not true).
C3. TC

6-C2
9, proof -> knowledge
definition of TC
10,11

Proof that TC is not true

6. TC is true or not true.
7. If TC is not true, then TC is not true.
8. If TC is true, then TC is not true.
C2. TC is not true.

premise
premise
C1
6,7,8



This is a very natural thought. But, if it is correct, then we should expect that we will not be able to raise a similar paradox using 
mental states such as belief which, unlike knowledge, do not imply truth. Unfortunately, as it turns out, we can.

Suppose that I finish The Announcement not with (TC), but with the following modified conclusion:

The Conclusion, Part 2 (TC2)

.. and, what’s more, none of you believe 
this very announcement (TC2, for short).

Now let’s suppose a few things about you. First, let’s suppose that your logical abilities are adequate for you to carry out the logical 
inferences described below; and, second, let’s suppose that you form beliefs according to the following rule: if you can see that 
something is true, you will believe it; and if you can see that it is untrue, you won’t believe it. (Arguably, it is impossible for someone 
capable of forming beliefs not to follow this rule; it does not seem that we have a choice about whether to believe things that we 
take to be true, and one cannot believe something at will which one can see to be false.)

Let’s use “B” to abbreviate “believes” much as we used “K” to abbreviate “knows.” Then let’s ask: do you believe TC2?

Let’s suppose that you do not. Then you can see that TC2 is true. But then, given the second rule of rationality above, it follows that 
B(TC2).

So suppose that B(TC2). Then TC2 is false. But because you see this, given the second rule above - that you never believe 
something which you can see to be false - you don’t believe TC2. So, ¬ B(TC2).

So, if B(TC2) then ¬ B(TC2), and if ¬ B(TC2), then B(TC2) - which is a contradiction, just as in the case of the original 
announcement.

We cannot explain this in terms of belief implying truth because, of course, belief does not imply truth. But perhaps the 
contradiction produced by the paradox of the Believer can be given a related explanation. Deriving the contradiction, after all, made 
essential use of rules which link belief to truth - namely, the rule that known truths will be believed, and known falsehoods not 
believed. It does not seem possible to recreate the paradox using mental states which are not governed by any rules to do with 
truth. So perhaps the Believer, like the Knower, can ultimately only be solved by solving the Liar.


