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ABSTRACT
The coefficient of variation is an effect size measure with many potential uses in psychology and
related disciplines. We propose a general theory for a sequential estimation of the population coef-
ficient of variation that considers both the sampling error and the study cost, importantly without
specific distributional assumptions. Fixed sample size planning methods, commonly used in psy-
chology and related fields, cannot simultaneously minimize both the sampling error and the study
cost. The sequential procedure we develop is the first sequential sampling procedure developed for
estimating the coefficient of variation. We first present a method of planning a pilot sample size
after the research goals are specified by the researcher. Then, after collecting a sample size as large
as the estimated pilot sample size, a check is performed to assess whether the conditions neces-
sary to stop the data collection have been satisfied. If not an additional observation is collected
and the check is performed again. This process continues, sequentially, until a stopping rule involv-
ing a risk function is satisfied. Our method ensures that the sampling error and the study costs are
considered simultaneously so that the cost is not higher than necessary for the tolerable sampling
error. We also demonstrate a variety of properties of the distribution of the final sample size for five
different distributions under a variety of conditions with a Monte Carlo simulation study. In addi-
tion, we provide freely available functions via the MBESS package in R to implement the methods
discussed.

The coefficient of variation is a standardized effect size
measure that expresses the degree of variability with
respect to central tendency. More specifically, the coeffi-
cient of variation for a set of scores is the standard devia-
tion of the scores divided by the mean of the scores. The
population coefficient of variation, denoted by κ , is

κ = σ

µ
, (1)

where σ =
√
E[(X − µ)2] is the population standard

deviation and µ = E[X] is the population mean, with X
representing a random variable.

The coefficient of variation is only meaningful when
X is a nonnegative random variable, which we assume
throughout this article. The coefficient of variation has
an unambiguous meaning only when X is measured on
a ratio scale, implying a true zero point and equal inter-
vals. For example, Kendall and Stuart (1977) noted that
the coefficient of variation suffers “from the disadvantage
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of being very much affected by…the value of the mean
measured from some arbitrary origin, and [is] not usu-
ally employed unless there is a natural origin of mea-
surement…” (p. 48; see also Abdi, 2010; Snedecor, 1956).
Work by Velleman and Wilkinson (1933) has shown that
statistics such as the coefficient of variation can also be
meaningfully interpreted for discrete scales involving a
true zero point and equal intervals (count data), scales
that do not meet Stevens’s (1946) classic definition of
ratio scales. Some researchers have ignored these cau-
tions and have used the coefficient of variation on Likert-
type scales that have an arbitrary zero point and may
not meet the criterion of equal intervals. Allison (1978)
showed that the coefficient of variation is generally unin-
terpretable for such Likert-type scales. In addition, such
scales often do not have the property that originally moti-
vated the use of the coefficient of variation: “large things
tend to varymuch and small things little” (Snedecor, 1956,
p. 44). Thus, the coefficient of variation will be clearly
interpretable when there is a true zero point and equal
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intervals; its interpretation is far more controversial if
these conditions are not met.1

Kelley (2007c) discussed the coefficient of variation
in psychology and related fields and proposed a method
of sample-size planning from the accuracy in parameter
estimation framework in order to accurately estimate the
population coefficient of variation. Kelley (2007c) devel-
oped a method to plan a (fixed) sample size in order to
have a specified degree of assurance that the confidence
interval width would be sufficiently narrow. For example,
the method Kelley (2007c) developed answers questions
such as “for a specified population value of the coefficient
of variation, what sample size is necessary in order for the
95% confidence interval to have 99% assurance of being
.10 units or less?” We also consider the coefficient of vari-
ation here and the accuracy with which the population
value has been estimated, but we approach sample-size
planning from a different perspective.

The perspective that we take in this article considers
sampling error and study cost simultaneously in a sequen-
tial analytic framework. Unlike Kelley (2007c), who did
not consider study cost but rather only considered a sam-
ple size determined by a prespecified population coeffi-
cient of variation, here we do not make such an assump-
tion of requiring a population value to be specified. The
sequential framework does not have an a priori specified
sample size to use for the study, as is the case with the
traditional power analytic or the traditional accuracy in
parameter estimation approach to sample-size planning
that are often considered in psychology and related fields
that base calculations on an unknown population value.
Further, most sample-size planning methods do not con-
sider study cost when planning necessary sample size.
However, in this article we explicitly incorporate study
cost into our method, which is a very salient issue when
implementing a research study. That is to say, the sequen-
tial analytic framework used here depends on an a pri-
ori specified criterion or criteria with regard to estima-
tion accuracy (in terms of sampling error) and the study
cost. The sampling procedure stops once the specified

 When the scale has a true zero point and equal intervals, the coefficient of
variation has invariance properties that meet all of the desiderata for a stan-
dardized effect size (Kelley & Preacher, ). For example, imagine that a
researcher wishes to calculate the coefficient of variation of temperatures
in a city in the month of February. If temperature is measured on the Kelvin
scale (whose units correspond to those of the Celsius temperature scale, but
 is absolute ) or the Rankine temperature scale (whose units correspond to
those of the Fahrenheit temperature scale, but  is absolute ), the two coef-
ficients of variation will be identical. Such properties facilitate the develop-
ment of guidelines for defining a sufficiently narrow value of the coefficient
of variation. By contrast, if temperature is measured on the Fahrenheit and
Celsius scales, which do not have true  points, the two coefficients of varia-
tion will differ substantially. Comparison of coefficients of variation for differ-
ent mean temperature values on the same scale (e.g., Celsius) is no longer
straightforward (Allison, ). In the absence of a true zero point, specifi-
cation of consistent guidelines that define a sufficiently narrow value of the
coefficient of variation becomes a challenging task.

condition(s) is satisfied, fulfilling a stopping rule that is a
characteristic of sequential estimation methods. A stop-
ping rule determines whether sampling (i.e., collecting
more data) should continue or stop after one (or more)
additional observation(s) has been collected. The stop-
ping rule for a traditional research design is reached when
the a priori planned sample size from a power analysis or
the accuracy in parameter estimation approach is satis-
fied. As will be shown, our method does not impose an
a priori sample size, but rather the sample size ultimately
used is unknown a priori and depends on satisfying the
criteria specified by the researcher.

To summarize the problem that this article solves, we
will develop a method that simultaneously considers the
sampling error and the study cost when estimating the
coefficient of variation, and we do so in a sequential esti-
mation framework. This general framework is important
because, in practice, both the study cost and the sam-
pling error are of concern, yet most sample-size planning
methods do not consider study cost and sampling error
simultaneously. Cost is generally ignored when designing
a study from a statistical perspective, yet cost is a very real
consideration for researchers conducting a study.Our pri-
mary contribution in this article is a novel approach to a
very practical problem in psychology and related disci-
plines as it relates to the coefficient of variation and the
appropriate sample size for its accurate estimation.

To motivate our interest in the coefficient of varia-
tion, we first note that the coefficient of variation has a
wide variety of potential uses in psychology and related
disciplines and we believe it is poised to grow to be a
more widely used effect size measure. In experimental
psychology, Babkoff, Kelly, and Naitoh (2001) used the
coefficient of variation to study reaction time in the con-
text of sleep deprivation for three groups. In neurology
reaction time study, Hayashi (2000) examined the coeffi-
cient of variation for reaction timewhen participants were
using benzodiazepine (a drug with sedative, hypnotic,
anxiolytic, and relaxant properties) in an effort to manip-
ulate their cognitive state (Ornoy, Arnon, Shechtman,
Moerman, & Lukashova, 1998). In organizational stud-
ies, Harrison, Price, and Bell (1998) used the coefficient of
variation as a measure of group inequality (heterogeneity
or diversity) with regard to the age of specific groupmem-
bers. In the context of speech disorders, Shriberg, Green,
Campbell, McSweeny, and Scheer (2003) used the coeffi-
cient of variation to “normalize” the variability in dura-
tions of a participant’s speech events (actual speaking), as
well as another coefficient of variation for the pause events
(pauses during speaking; p. 581). We believe that the
coefficient of variation will be of increasing importance
due, in part, to the growing interest in simultaneously
considering psychological and physiological systems as
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do some of the aforementioned examples. Along those
lines, Reed, Lynn, and Meade (2002) explained that, in
many laboratories, the variability of chemical assays is
summarized by the coefficient of variation. They argued
that the main appeal of the coefficient of variation, as
opposed to, for example, the standard deviation, is that
“[standard deviations] of such assays generally increase
or decrease proportionally as the mean increases or
decreases, so that division [of the standard deviation] by
themean removes it as a factor in the variability” (p. 1235).
It is known in statistical theory that when estimating a
parameter of interest from a sample, error in estimation
is unavoidable due to sampling. This error is known as
sampling error: the random discrepancy between an esti-
mate and the parameter it estimates. A typical approach
to reducing the sampling error, holding everything else
constant, is to increase sample size. Increasing sample
size yields smaller sampling error but also increases study
costs, specifically due to the increase in sampling cost. By
“sampling cost,” we mean the cost involved in collecting
data from the participants, which we regard here as a con-
stant value (i.e., it cost the same to sample the 1st, 2nd,…,
nth observation).

We consider sampling cost to be one of two com-
ponents of study cost: “structural cost” and “sampling
cost.” We posit that for essentially any empirical study
that will add to the scientific literature, a certain amount
of resources for implementing the study are required.
Beyond sampling costs, the financial resources that are
required to design, conduct, analyze the data, including
but not limited to costs for software licenses, equipment,
salary, laboratory fees, and so on, all factor into the struc-
tural cost. These (nonsampling) structural costs are named
as such because they speak to the infrastructure invest-
ment that one is willing to pay in order to have a suf-
ficiently small sampling error of the coefficient of varia-
tion. The structural costs that are necessary for conduct-
ing a study can be considered the amount one is willing
to pay for a sufficient degree of accuracy. Structural costs
are important and pose a real limitation to what can be
done in any given investigation. We discuss study cost
(= sampling cost + structural cost) more as we develop
our method.

Use of a proprietary scale that requires payment for
use, scoring an assessment, recruiting an additional par-
ticipant, participant honorarium, among other things,
all affect the sampling cost. Suppose that it is calcu-
lated that each participant included in a study costs
researchers,monetarily speaking according to all required
resources, $127.50. Having 50 participants in a study
would thus entail sampling cost of $6,375.00, whereas
sampling cost would be $12,750.00 to have 100 partici-
pants in a study. Thus, smaller estimation error, holding
everything else constant, comes by increasing sample size,

which increases the sampling cost. Of course, if sampling
cost were of no concern, the largest sample possible would
be best from an accuracy standpoint. However, sampling
cost is almost always a concern in empirical studies, and
thus there is a practical limit to the size of a sample due to
cost.

In this article we solve the general problem of obtain-
ing an accurate estimate while considering the cost of
estimating the coefficient of variation (i.e., study cost).
We approach this problem from a sequential analysis
framework, specifically what is known as the minimum
risk point estimation problem (e.g., see De & Chattopad-
hyay, 2015; Sen & Ghosh, 1981). A method of conducting
research that simultaneously considers the study cost and
the sampling error is thus our focus here and offers advan-
tages not usually considered in research design work.
Fixed sample size procedures, procedures in which the
sample size is fixed in advance before sampling, cannot
achieve a trade-off between study cost and sampling error
(e.g., see Dantzig, 1940; De & Chattopadhyay, 2015; Sen
& Ghosh, 1981). If an approach to sample size planning
depends only on the study cost, sampling error is not con-
sidered; by extension, statistical power and accuracy in
parameter estimation were not considered. On the other
hand, if an approach to planning sample size depends only
on sampling error, the study cost is not considered. In
either case there is a very important aspect of the research
that is being ignored. Our work combines both sampling
error and study cost into a unified framework for estimat-
ing the coefficient of variation.

A purely sequential procedure is proposed that yields a
sample size for accurately estimating the unknown pop-
ulation coefficient of variation, taking into account the
study cost. By purely sequential we mean that after pilot
sampling stage, at every stage, one collects a single obser-
vation. In the next section we discuss estimating the coef-
ficient of variation. We then discuss the minimum risk
point estimation problem followed by the sequential opti-
mization procedure we propose.We follow this with char-
acteristics and properties of the procedure with proofs
and justification of the sequential optimization procedure.
We then provide an example scenario and include open
source and freely available R code via theMBESS package
(Kelley, 2007a, 2007b, 2016).

Estimation of the coefficient of variation

We now begin to formalize our ideas, beginning with
estimating the coefficient of variation. Consider n
independent and randomly selected individuals from
some population of interest with scores denoted by X1,
X2,…,Xn. The common, yet biased, estimator of the pop-
ulation coefficient of variation from Equation (1) is
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kn = sn
X̄n

, (2)

where X̄n is the sample mean defined as

X̄n =

n∑
i=1

Xi

n
(3)

and sn is the sample standard deviation defined as

sn =

√√√√√
n∑

i=1
(Xi − X̄n)2

n − 1
. (4)

That is, sn is the square root of the usual unbiased esti-
mator of the population variance. Note that we use the
subscript n on the preceding sample estimates to explic-
itly note the sample size on which the estimator is based.
Including the subscript is useful as we are considering
the properties of the estimator based on different sample
sizes. For an observed coefficient of variation in a partic-
ular study, usually only k would be used to represent the
sample coefficient of variation actually observed and the
n subscript would not be included.2

Suppose we want to estimate the population coefficient
of variation, κ , accurately by having minimal sampling
error. In other words, we want the estimated coefficient
of variation, kn, to be close to κ . More specifically, we seek
to obtain a kn that is within ϵ units of κ , where ϵ is a posi-
tive value (i.e., ϵ> 0). That is, we want to estimate kn such
that it differs from the population value by no more than
ϵ, namely, for it to be contained within the interval (κ − ϵ,
κ + ϵ). The value of ϵ is defined as themaximum probable
error, which is the maximum absolute difference between
kn and κ that the researcher wishes to allow. Because we
are using only a sample (of size n) to estimate κ , there is a
chance that the estimate may fall outside the interval (κ
− ϵ, κ + ϵ). However, we seek to balance the trade-off
between study cost and the chance that the estimate falls
outside of the interval, which is a form of an optimiza-
tion problem. With regard to the chance that the absolute
difference between the population coefficient of variation
and the estimated value of the coefficient of variation will
exceed ϵ, we rely on Chebysev’s inequality so as to not
invoke potentially unrealistic assumptions about the dis-
tribution of the data (e.g., Lim & Leek, 2012; Lord, 1953).
In particular, the chance (expressed as a percentage) that
the kn will lie outside the interval (κ − ϵ, κ + ϵ) will be

P (|kn − κ| ≥ ϵ) ≤ E[(kn − κ )2]
ϵ2

× 100%. (5)

 As can be seen from Equation (), the coefficient of variation is undefined if
X̄n = 0. We ignore this special case because we regard P(X̄n = 0) ≈ 0 in
practical situations.

Thus, we can say that the chance that the absolute differ-
ence between the population coefficient of variation, κ ,
and the estimated value of the coefficient of variation, kn,
exceeds ϵ is at most E[(kn − κ)2]/ϵ2, which is the quan-
tity that we seek tominimizewhile considering study cost.
FromAbdi (2010), we note that kn is not an unbiased esti-
mator of κ , that is, E[kn] ̸= κ . Hence, the termE[(kn − κ)2]
(i.e., the numerator of the quantity we seek tominimize) is
the mean square error (MSE) of kn (not the variance). We
define the MSE formally momentarily, but for now, con-
sider that theMSE is a sum of the precision (variance) and
squared bias (Rozeboom, 1966). For an estimator that is
unbiased, the MSE and the variance are equal. However,
due to the bias, the MSE is larger than simply the vari-
ance by an amount equal to the squared bias. If theMSE of
kn is very small (i.e., on average, the squared discrepancy
between the estimate given by the estimator kn and the
population coefficient of variation κ is very small), then
there is a high probability of estimating κ accurately. In
other words, the chance that the estimate will lie inside
the interval (κ − ϵ, κ + ϵ) may be high.

Suppose that, excluding the sampling costs, a
researcher is willing to pay $100 so that the absolute
difference between the point estimate of the coefficient
of variation, kn, and its corresponding population value,
κ , will be at most ϵ. In other words, the researcher is
willing to invest $100 in the structural cost of performing
a study, again, excluding the sampling costs, so that the
difference between the estimate and population value will
be sufficiently small. We note that

|kn − κ| ≤ ϵ ⇐⇒ (6)

(kn − κ )2 ≤ ϵ2, (7)

where ⇐⇒ means “if and only if.” Therefore, we can
say that the researcher is willing to pay $100 so that the
squared difference between the point estimate of the coef-
ficient of variation, kn, and its corresponding population
value, κ , will be at most ϵ2. Due to the sampling error,
which is unknown because κ is unknown, we must work
with the expectation of the squared difference between kn
and κ (i.e., the mean square error). That is, because κ is
unknown, the actual amount that is being paid for the
expected squared difference (i.e., the mean square error)
is given as AE[(kn − κ)2], where, in this particular exam-
ple, A = $100/ϵ2. Thus, A has a unit of “dollar per square
unit of ϵ.” Conceptually, this idea translates into the “price
one is willing to pay per squared unit of maximum prob-
able error.”

When designing a study, one can choose A directly, by
specifying the dollar per square unit of ϵ that one is will-
ing to pay, or indirectly, by specifying its two components,
namely, the structural cost one is willing to invest and the
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desired ϵ. For example, if one would be willing to pay $100
for a sufficiently accurate estimate of κ to be within 0.05,
the value of A would be $40,000(= 100

.052 ). The value that
a researcher is willing to pay for a desired level of ϵ is
subjective and context specific, as is the desired ϵ itself.
The value ofA depends on the amount of money (e.g., US
dollars) one is willing to pay for a sufficiently small devi-
ation from the parameter (i.e., the maximum absolute
difference desired between the population value and its
estimate). Smaller values of ϵ will lead to larger values of
A, holding constant the structural cost that one is willing
to pay.3

When a study’s goal is to estimate a parameter accu-
rately, such as the coefficient of variation here or for any
effect size more generally, the structural costs and the
maximum probable error of the estimate (i.e., ϵ) are com-
bined to form A. When we say “what the researcher is
willing to pay,” we literally mean the structural cost the
researcher is willing to invest in a study in order to esti-
mate the parameter of interest with the desired degree
of accuracy. This value is implicitly included (along with
anticipated sampling cost) in many grant applications for
empirical studies when a certain amount of money is
requested to conduct a study (less the sampling cost).
Ignoring the overhead cost of many grant applications,
consider the total amount of money requested, less what-
ever funds will be used for sampling costs. The nonsam-
pling costs are the structural costs that a researcher is
agreeing to invest in order to obtain the desired outcome,
namely, an accurate estimate of the parameter of inter-
est. If a researcher is willing to pay more and/or desires
a smaller value of ϵ, A is larger than it would have been.
A larger value of A will translate into a more expensive
study, holding everything else constant. Notice that A is a
fixed value in any investigation and specified a priori, as
the researcher specifies A directly or by specifying its two
components (structural cost and ϵ) individually (and does
not depend on data, as it is specified a priori). However,
what is not fixed but rather is evaluated in multiple steps

 To provide an analogy outside of the research framework for a better concep-
tual understanding, consider shopping for a car inwhich a goal is tominimize
downtime (e.g., for maintenance, repairs, refueling/charging). There are two
types of costs that can be considered: the cost of the car itself and the cost to
operate the car per mile. In this scenario, the “cost of the car” is the analog of
whatwe are calling the structural costs, whereas the “cost permile”of operat-
ing the car is the analog of sampling cost per mile. A consumer may be “will-
ing to pay”$, for a car (structural cost). Separate from the cost of the car
itself is the cost of operating the car, which is estimated to be $./mile (sam-
pling cost). Further, consider that the probable downtime (e.g., per week),
which maps onto our “probable error,” is  hours. Thus, we would have A =
$,/ and we would then add $. for each mile driven to accomplish
the goal of minimum downtime. Thus, the total cost involved for a certain
amount of usage would be
Total cost = structural cost + mile × . = $, + Miles × $., which is
the analog of our study cost (= structural cost+ sampling cost).

throughout the process is the sampling cost, and the nec-
essary sample size that will accomplish the study’s goal of
achieving a sufficiently accurate estimate of the coefficient
of variation is unknown. This is the core contribution of
this article: minimizing sampling cost, and thereby study
cost, by using a sequential procedure that provides a stop-
ping rule once an optimization function isminimized that
considers cost and accuracy according to the goals of the
researcher. Throughout this article, we regard sampling
cost as a constant (fixed) per participant (i.e., the cost
for sampling participants is c regardless of the number of
participants).

Before moving to the optimization function we discuss
accuracy, which statistically is conceptualized as a func-
tion of precision and bias (e.g., Rozeboom, 1966).Holding
constant bias, improving precision improves accuracy.We
are improving precision and, by not increasing bias, we
obtain amore accurate estimate.We prefer to use the term
accuracy instead of precision in this context to make clear
that we are not focused solely on precision at the expense
of bias, but rather that we are concerned with both bias
and precision as our procedure improves precision but
does not worsen bias. Recalling that we are working in a
distribution free environment, we now quantify the MSE.
Using Bao (2009), the expression for E[(kn − κ)2] is

E[(kn − κ )2] = ξ 2

n
+ η, (8)

where η is the expected value of the residual term of
a Nagar-type expansion (see Nagar, 1959) of kn and ξ 2

depends on four unknown parameters: (a) population
mean (µ), (b) population variance (σ 2), (c) third cen-
tral moment (µ3), and (d) fourth central moment (µ4).4
Specifically, ξ 2 is given by

ξ 2 = µ4

4µ4 + σ 4

4µ4 − µ3

µ3 + σ 2

2µ2 . (9)

The expression of η is given in Bao (2009). For not too
small sample sizes, η is negligible, and thus ignoring η

will have negligible effect on the expression’s value for
most purposes; we demonstrate this ignorability with a

 The Nagar-type expansion of coefficient of variation, kn given in equation ()
in Bao () is

kn = σ

µ

[

1 + 1
2
S2n − σ 2

σ 2 − 1
8

(
S2n − σ 2

σ 2

)2

+ 1
16

(
S2n − σ 2

σ 2

)3
+ op

(
n−3/2)

]

×
[

1 − X̄n − µ

µ
+
(
X̄n − µ

µ

)2

−
(
X̄n − µ

µ

)3

+ op
(
n−3/2)

]

.



632 B. CHATTOPADHYAY AND K. KELLEY

Monte Carlo simulation study in the the supplementary
material.5

The approximate expression of the MSE of kn is

E[(kn − κ )2] ≈ ξ 2

n
. (10)

Equations (9) and (10) consist of a mean (µ), vari-
ance (σ 2), third-central moment (µ3), and fourth-central
moment (µ4). To be clear, these four central moments do
not define a particular distribution. For example, the log-
normal distribution and the perturbed log-normal distri-
bution each have the same mean, variance, third-central
moment, and fourth-central moment, yet the distribu-
tions are different (in that the shapes differ, e.g., Durrett,
2010, pp. 103–104). Thus, if only the fixed values of µ,
σ 2, µ3, and µ4 are provided, one cannot say for certain
that the distribution of the data is normal, exponential, or
some other distribution. Equations (9) and (10) are valid
for all distributions with finite fourth moment [E(X4) <

!].
From the approximate expression of the MSE defined

in Equation (10), we see that the MSE of kn depends, in
part, on the sample size. To have a higher chance that the
estimate of κ will lie within (κ − ϵ, κ + ϵ), a larger sam-
ple size is required. Of course, a larger sample size will
inflate the study cost, specifically by inflating sampling
cost. Thus, the problem we seek to solve is to find the
minimum sample size required to estimate κ accurately
while taking into consideration the sampling cost, which
we solve in a minimum risk point estimation framework.

Minimum risk point estimation problem

Suppose we have n independent observations X1,…, Xn
with a commonbut unknowndistribution function,F.We
estimate the population coefficient of variation, κ , with
the estimator kn, as defined in Equation (2). As the sample
size grows larger and larger, we know, statistically, more
and more information about the unknown population
coefficient as theMSE (i.e., E[(kn − κ)2]) becomes smaller
and smaller (i.e., accuracy improves). However, a larger
sample size also leads to a larger sampling cost. Recall that
by sampling cost wemean the cost associatedwith collect-
ing data (and not structural costs). Let c be the known cost

 By “not too small sample sizes” here and elsewhere we mean a sample size
that is large enough so that the noted properties hold. The exact value of “not
too small” is context specific. For example, this is much like the large enough
sample size required in order for the sampling distribution of sample means
to take on a normal form, which the central limit theorem shows will happen
with a large enough sample size. In particular, the central limit theorem says
that as sample size gets larger and larger, the sampling distribution of the
sample means approaches a normal distribution. Thus, provided sample size
is “not too small,” the sampling distribution of sample means will be normal.
For very skewed parent distributions, the sampling distribution of the mean
can require a larger sample size to become normal than for parent distribu-
tions that are themselves close to normal.

of sampling each observation; for example, the value of c
is $127.50 in the aforementioned example, where it is cal-
culated that every participant that is included in a study
costs researchers $127.50. We hold c constant throughout
this article.

To account for both the sampling error and the study
cost, drawing on Equation (5) we define the following
function, known as a risk function, which provides the
expected cost of estimating κ (by using kn) using a sample
of n observations with a maximum probable error ϵ. This
risk function is defined as

Rn(κ ) = AE[(kn − κ )2] + cn, (11)

where cn represents the cost of sampling n observations
at a cost of c per participant (thus, multiplying n and c
yields the sampling cost for n observations). The values
of A and c are fixed in any given application and specified
by the researcher, but to be clear n is not known a priori
but is updated (sample size increased) in the sequential
sampling framework we use.

Now, returning to A specifically in the sequential sam-
pling framework, we formally conceptualize A as the
structural cost that the researcher would be willing to pay
per squared unit of ϵ. The value of ϵ is the desired max-
imum probable error, |kn − κ | " ϵ. The value of A is
defined as

A = Structural Cost
ϵ2

, (12)

with Structural Cost being the investment made in the
study not due to the cost of sampling. Thus, we are con-
ceptualizing study cost as having two components, the
fixed cost that one is willing to pay (for squared unit of
ϵ) and the cost of sampling:

Study Cost = Structural Cost + Sampling Cost. (13)

In our framework, we regard the cost of sampling each
observation, as fixed (i.e., for each additional observation,
the cost of sampling is the same). Consider A from a very
practical perspective, namely, a grant application inwhich
a researcher requested funding to accurately estimate the
coefficient of variation. Here, the numerator of A (i.e., the
structural cost) would be the funds requested for the grant
that do not involve sampling observations. Our objective
is to find the sample size for which the expected study
cost, defined in the risk function of Equation (11), is min-
imized. Because A is fixed, for a given c the study cost is
minimized byminimizing the necessary sample sizewhile
still achieving the specified level of accuracy. We seek to
optimize both the sampling cost and the accuracy of the esti-
mate. This is known as theminimum risk point estimation
problem, and Rn(κ) is called the risk function of estimat-
ing κ with a sample of size n.
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Theminimum risk point estimation problemwas devel-
oped in the pioneering article of Robbins (1959). He sug-
gested a purely sequential procedure for the risk point esti-
mation of the mean of a normal distribution, which we
discuss momentarily. We note that a procedure in which,
after the pilot sampling stage, one observation is collected
at each stage of a sampling process is known as a purely
sequential procedure. The minimum risk point estima-
tion problem was generalized by Ghosh and Mukhopad-
hyay (1979), who introduced a distribution-free scenario
and developed a purely sequential procedure for mini-
mum risk point estimation of a population mean. Sen
and Ghosh (1981) suggested a purely sequential proce-
dure for the risk point estimation of any parameter using
an unbiased estimator based on U-statistics. For estimat-
ing the population coefficient of variation, the estimator,
kn, is used. Recall that kn is the ratio of the sample stan-
dard deviation to the samplemean. The samplemean is an
unbiased estimator of the population mean, whereas the
sample standard deviation is not an unbiased estimator of
the population standard deviation. This article considers
the minimum risk point estimation of κ in which the esti-
mator is a ratio of two different kinds of estimators, one
of which (the standard deviation) is not an unbiased esti-
mator of its parameter.

For not too small sample sizes, combining Equa-
tions (8) and (11) and ignoring η from Equation (8), the
approximatefixed sample size risk function or the approx-
imate expected study cost for estimation of κ is

Rn(κ ) ≈ A
ξ 2

n
+ cn. (14)

The risk function—that is, the expected cost of estimating
κ , defined in Equation (14)—involves ϵ, sampling error,
structural cost, and sampling cost. Again,A and c are fixed
in any given application. As the sample size increases,
Aξ 2/n decreases while n (and thus cn) increases. This is
an optimization problem in which the approximate risk
function, defined in Equation (14), needs to be mini-
mized. For not too small samples, if ξ were known, the
approximate risk function in Equation (14) is minimized
(using derivatives of the right hand side of Equation [14])
at

nc =
√
A
c
ξ , (15)

which we call the theoretically optimal sample size.
Using a sample of size nc, which is the theoretically

optimal fixed sample size (if the parameter ξ is known)
that minimizes both the sampling error and sampling
cost, the risk function or the expected cost for estimat-
ing κ using the minimum number of observations (using
Equation [15], n2c = Aξ 2/c; i. e. cnc = Aξ 2/nc) is denoted

as

R∗
nc (κ ) = A

ξ 2

nc
+ cnc = 2cnc. (16)

R∗
nc (κ ) is called theminimum asymptotic risk. In practice,

ξ 2 is unknown, and thus an estimator of ξ 2 is desired.
Also unknown in practice isnc. However, aswill be proved
statistically for not too small samples, our method yields
sample sizes with properties that closely approximate nc
in applied situations.

We note that even though the value of ξ 2 depends
on the first four central moments of a distribution, it
does not depend on a particular distributional assump-
tion. In other words, we are agnostic to the type of dis-
tribution that the scores from which the sample coef-
ficient of variation will be calculated follows, as we are
working in a distribution-free environment. This is very
useful, as the distribution of the scores from the sam-
pled population is generally unknown in practice. Thus,
what follows is importantly distribution free. Because ξ 2

is unknown in practice, in the next section, we find an
estimator based on U-statistics, which does not rely on
distributional assumption. We discuss U-statistics in the
next section.

Estimator of the unknown parameter and
U-statistics

The estimator of the coefficient of variation in
Equation (2) involves a function of the sample mean
(Equation (3)) and the sample variance (i.e., the square of
Equation (4)), both of which belong to a class of unbiased
estimators known as U-statistics, yet the sample standard
deviation, Equation (4), is not a U-statistic. Hoeffding
(1948) introduced the idea of U-statistics and defined a
U-statistic as an unbiased estimator of some parameter, θ ,
that is associated with an unknown distribution function,
F. Suppose thatX1,…,Xn are independent and identically
distributed (i.i.d.) random variables from a population
with a common distribution function F (e.g., F could be
a normal distribution, log-normal distribution, gamma
distribution, etc.) with an associated parameter θ . More
formally, the U-statistic associated with some θ is written
as

U ≡ U (r)
n =

(
n
r

)−1∑

(n,r)

g(r)(Xi1, . . . ,Xir ), (17)

where
∑

(n,r) denotes the summation over all possible
combinations of indices (i1,…, ir) such that 1 " i1 <

i2 <…< ir " n, and r < n. When working with U-
statistics, the idea of a kernel is important. A kernel is a
generic function of the smallest number of random vari-
ables required, which is called the degree, to estimate the
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parameter θ unbiasedly. Here, g(r)(.) is a symmetric ker-
nel of degree r, with symmetric meaning that changing
the arrangement of the r random variables will not affect
the value of g(r)(.). For example, g(r)(X1, X2,…, Xr) =
g(r)(X2,…, Xr, X1) and so on. In addition, EF[g(r)(X1,…,
Xr)] = θ for all F with r being the minimum sample size
required to estimate θ unbiasedly. In this way, we can
define unbiased estimators of several parameters using
Equation (17). Formore details aboutU-statistics, we sug-
gest readers consult Hollander and Wolfe (1999), Kowal-
ski and Tu (2008), Lee (1990), among others.

We now consider the estimator of the populationmean
(i.e., µ). Because E[Xi] = µ for i = 1,…, n, it is the case
that the smallest number of random variables required to
estimate µ is 1 (as the expectation does not depend on
sample size). The kernel (i.e., the generic function to esti-
mate the parameter unbiasedly) will thus be g(1)(Xi)= Xi,
which is of degree 1 (i.e., r = 1). Applying Equation (17),
we can see that

U (1)
n = 1

n

n∑

i=1

Xi = X̄n. (18)

Now, suppose we want to estimate σ 2. Then, 1
2E[(Xi1 −

Xi2 )
2] = σ 2. Thus, we need at least two random variables

to estimate σ 2 unbiasedly. Hence, for the population vari-
ance, the degree is r = 2 and the kernel is g(2)(Xi1,Xi2 ) =
1
2 (Xi1 − Xi2 )

2. If we interchange the position of random
variables, g(2)(Xi1,Xi2 ) will remain the same; that is,
g(2)(Xi1,Xi2 ) = g(2)(Xi2,Xi1 ). So, g(2)(Xi1,Xi2 ) is a sym-
metric kernel of degree 2. Applying Equation (17) for
r = 2, we can see that

U (2)
n = 1

2

(
n
2

)−1 ∑

1≤i1<i2≤n

(Xi1 − Xi2 )
2 = s2n. (19)

For technical details about the expression ofU (2)
n and the

sample variance s2n, we refer the reader to Mukhopad-
hyay and Chattopadhyay (2012, 2014). Again, suppose we
want an estimator based on U-statistics for the popula-
tion’s third-central moment, that is, µ3 = E[(X − µ)3],
and the population’s fourth-central moment, µ4 = E[(X
−µ)4]. TheU-statistics-based unbiased estimators for the
third- (µ3) and the fourth-central moments (µ4) are

µ̂3n = n
(n − 1)(n − 2)

n∑

i=1

(Xi − X̄n)
3 (20)

and

µ̂4n = n2

(n − 1)(n − 2)(n − 3)

n∑

i=1

(Xi − X̄n)
4

− 2n − 3
(n − 1)(n − 2)(n − 3)

n∑

i=1

X4
i

+ 8n − 12
(n − 1)(n − 2)(n − 3)

X̄n

n∑

i=1

X3
i

− 6n − 9
n(n − 1)(n − 2)(n − 3)

( n∑

i=1

X2
i

)2

, (21)

respectively (e.g., Abbasi et al., 2010; Heffernan, 1997).
The quantity µ̂3n is a U-statistic of degree 3 and is an
unbiased and consistent estimator of µ3, whereas µ̂4n is
a U-statistic of degree 4 and is an unbiased and consis-
tent estimator of µ4. Recall that a consistent estimator is
an estimator that converges to the population value that it
estimates as sample size gets larger. The estimator of
ξ 2 that is used to estimate the minimum risk function,
defined in Equation (16), is given by

V 2
n = s4n

4X̄4
n

+ µ̂4n

4X̄4
n

+ s2n
2X̄2

n
− µ̂3n

X̄3
n

, (22)

which we find to be a consistent estimator of ξ 2 (using
theorem 3.2.1 of Sen, 1981, p. 50). Note that theminimum
risk function, defined in Equation (16), contains the the-
oretically optimal sample size, nc, which depends on ξ . In
practice, ξ is generally unknown and we estimate ξ byVn,
which is the square root of Equation (22).

We have discussed U-statistics here because they are
essential to the remainder of the article. In particular,
we use U-statistics because, for a large class of proba-
bility distributions, the theory of U-statistics allows for
a minimum-variance unbiased estimator to be derived
from each unbiased estimator of the parameter (e.g., see
Cox & Hinkley, 1979). Note that among all unbiased esti-
mators of a parameter, a minimum-variance unbiased
estimator is always preferred because (a) it is unbiased and
(b) it has the lowest variance (and thus the smallest MSE)
among all possible unbiased estimators.

Unless the value of ξ is known, the optimal value of
fixed sample size, nc, cannot be computed. We note that
ξ depends on four parameters that would generally be
unknown in applied situations. Thus, in an effort to avoid
using a potentially poor estimate of ξ , such as that which
might be obtained by using supposed population values
obtained in some way, which are potentially poor esti-
mates in which to plan a fixed sample size, we develop a
new approach. The approach we develop is a sequential
sampling procedure that, importantly, does not require
that a researcher plug in supposed population values as
if they are known. Rather, our method ensures that we are
informed by actual data from the population of interest.
Correspondingly, our sequential estimation procedure is
used to find an estimate of the optimal fixed sample size,
nc, which will provide an accurate estimate of κ with the
minimum sampling cost and thereby study cost.
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Sequential optimization procedure

In sequential estimation procedures, as opposed to
fixed-sample-size estimation methods, the estimation of
parameter(s) proceeds in stages. In the first stage of a
sequential estimation procedure, a sample (called the
pilot sample) is observed to gather preliminary informa-
tion about the parameter(s) of interest. Then, in succes-
sive stages, the researcher collects one (or more) addi-
tional observation(s) and then he or she estimates the
parameter(s) of interest, which is done again and again
until a predefined condition has been satisfied (i.e., the
stopping rule is met). That is, after collection of one
(or more) additional observation(s), the parameter esti-
mate(s) is (are) recalculated and a check is performed
in order to make a decision to either (a) terminate the
sampling process or (b) continue with the sampling pro-
cess. This decision is based on a predefined stopping rule.
In a sequential procedure, after the pilot sampling stage,
one observation is collected at each stage of a sampling
process.

No fixed sample size procedure can provide a solu-
tion to the minimum risk point estimation problem (e.g.,
see Dantzig, 1940; De & Chattopadhyay, 2015), which
is why we propose a purely sequential procedure. For
details about the general theory of sequential proce-
dures, we refer interested readers to Ghosh and Sen
(1991), Mukhopadhyay and Chattopadhyay (2012), and
Sen (1981). We also note that the idea of a stopping rule
is extensively used to determine the number of interim
analyses in clinical trials or in deciding when clinical tri-
als should stop further recruiting. These important prob-
lems are discussed not only in the frequentist frame-
work but also in the Bayesian framework. For details
about the application of stopping rules and sequential
analysis in clinical trials, we refer to Armitage (2014),
Ciarleglio, Arendt, Makuch, and Peduzzi (2015), Freed-
man and Spiegelhalter (1983), Spiegelhalter, Abrams, and
Myles (2004), among others.

We use the theory of sequential procedures in this arti-
cle to develop amethod to estimate the coefficient of vari-
ation, an effect size of interest in psychology and related
fields. In the following subsection we describe how to
implement the procedure we have developed for estimat-
ing the coefficient of variation.

Implementation of the sequential sampling
procedure for the coefficient of variation

As discussed, we will essentially never know all of the
population parameters in practice necessary to know nc,
the theoretical sample size. Therefore, to implement a

study that considers the coefficient of variation as we have
described, we propose the following method.

Let m be the initial, termed pilot, sample size and
let Nc be the final sample size that gives an estimate
of the unknown optimal sample size (i.e., Nc estimates
nc). To find an estimate of the desired sample size (i.e.,
Nc) required to minimize both the approximate sampling
error and the sampling cost of estimating the population
coefficient of variation, we propose the following purely
sequential estimation procedure:

Stage 1: In the initial stage, obtain a sample, called a
pilot sample, of size m. From this pilot sam-
ple of size m, obtain an estimate of ξ 2 by
finding V 2

m as given in Equation (22) and
check whetherm2 ≥ A

c (V 2
m + m−2γ ). Ifm2 <

A
c (V 2

m + m−2γ ), then go to the next step. Oth-
erwise, if m2 ≥ A

c (V 2
m + m−2γ ), then report

that the final sample size is Nc = m. We will
discuss momentarily the use and choice of γ

and a way to obtain the pilot sample size.
Stage 2: Obtain an additional observation. At this

stage there are (m + 1) observations. Update
the estimate of ξ 2 by computing V 2

m+1.
Now check whether (m + 1)2 ≥ A

c (V 2
m+1 +

(m + 1)−2γ ). If (m + 1)2 ≥ A
c (V 2

m+1 + (m +
1)−2γ ), then stop further sampling and report
that thefinal sample size isNc =m+ 1.Other-
wise, if (m + 1)2 < A

c (V 2
m+1 + (m + 1)−2γ ),

then go to the next step.
Stage 3: Obtain an additional observation. At this

stage there are (m + 2) observations.
Update the estimate of ξ 2 by computing
V 2
m+2 + (m + 2)−2γ . Now check whether

(m + 2)2 ≥ A
c (V 2

m+2 + (m + 2)−2γ ). If
(m + 2)2 ≥ A

c (V 2
m+2 + (m + 2)−2γ ), then

stop further sampling and report that the
final sample size is Nc = m + 2. Other-
wise, if (m + 2)2 < A

c (V 2
m+2 + (m + 2)−2γ ),

then continue the sampling process and
update the sample size until the condition
n2 ≥ A

c (V 2
n + n−2γ ) is met, where n # m.

This process of collecting one additional observation
in each stage after stage 1 is continued until there are
Nc observations such that N2

c ≥ A
c (V 2

Nc
+ Nc

−2γ ). At that
stage, we stop further sampling and report that the final
sample size is Nc.

For not too small sample sizes, (V 2
n + n−2γ ) converges

to ξ 2. So the square root of A
c (V 2

n + n−2γ ) is in fact esti-
mating the optimal sample size, nc. At each stage in the
sequential procedure outlined in the preceding, we are
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checking whether the collected sample size is larger than
the estimated optimal sample size, or in other words,
n2 ≥ A

c (V 2
n + n−2γ ). From the algorithm just outlined,

the stopping rule, Nc can be defined as follows:

Nc is the smallest integer n(≥ m) such that

n2 ≥ A
c
(
V 2
n + n−2γ ) , (23)

where γ $ (0, 1/2) with the term n−2γ being a correction
term that ensures the sampling process does not stop too
early (because of the use of the approximate expression)
for the estimation of the optimal sample size.6 For details
about the correction term, refer to De and Chattopadhyay
(2015) or Sen and Ghosh (1981). For practical purposes,
one can use γ = 0.49.7

If observations are collected using Equation (23), then
sampling will stop at some stage with probability one.
This is proved in Lemma 1 in the supplementarymaterial,
which shows that, under appropriate conditions, P(Nc <

!)= 1. This result is very important as it ensures mathe-
matically that the sampling will be terminated eventually.

To summarize, what we have shown so far is how to
find an estimate of the desired sample size in which both
the approximate sampling error and the study cost are
minimized. This is a useful procedure because it simul-
taneously considers the sampling error and the study cost
when estimating the coefficient of variation. If study cost
were of no concern, a larger sample size would always be
preferred because the sampling error would be reduced. If
sampling error were of no concern, a smaller sample size
would be preferred because the study cost of obtaining a
sample would be minimal. However, in practice, both the
study cost and the sampling error are of concern. Most
sample-size planning methods do not consider study cost
and sampling error simultaneously. Our primary contri-
bution in this article is thus a novel approach to a very
practical problem in psychology and related disciplines as
it relates to the coefficient of variation and the appropriate
sample size.

Choice of pilot sample size

Recall that in the first stage of a sequential estimation
procedure, a sample size m is collected, called the pilot
sample. This pilot sample is used to gather preliminary
information about the parameter(s) of interest. If the pilot
sample sizem is too small, the number of sampling stages

 Wenote that incorporating the correction termwill not affect the consistency
property ofV 2

n + n−2γ , the estimator of ξ  , and ensures that the sampling
process does not stop early.

 For not too small sample sizes, (V 2
n + n−2γ ) converges to ξ  . Thus, the con-

vergence rate increases as γ increases. So a higher value of γ , for example
γ = , is a good choice. Now, if one uses a value of γ higher than ., then
part (ii) of theorem will not be satisfied theoretically.

in a sequential procedure may be large (e.g., if m = 5 yet
Nc = 1,000, which is 955 additional sampling stages that
are necessary). On the other hand, if pilot sample size
is very large, we may end up using more samples than
we actually need to achieve a certain goal (e.g., if m >

Nc). A poor choice of the pilot sample size can lead to
many sampling stages or inflate the sampling cost (and
thereby study cost) by initially collecting more observa-
tions than necessary. Clearly, a proper choice of pilot sam-
ple size is important. Using the stopping rule defined
in Equation (23), the final sample size should always be
greater than (A/c)1/(2 + 2γ ). FollowingMukhopadhyay and
De Silva (2009, p. 251), we recommend the use of the pilot
sample sizem as

m =max
{
m0,

⌈
(A/c)1/(2+2γ )

⌉}
, (24)

where m0(#4) is the minimum possible sample size
required to estimate ξ 2. Here, ⌈ · ⌉ is the ceiling function of
the quantity, meaning one “rounds up” to the next integer.
For example, ⌈90.005⌉ = 91; ⌈90.9995⌉ = 91.

Characteristics of our sequential procedure

For a given cost c per observation, the risk function
for using the estimator of the coefficient of variation as
defined in Equation (2) according to the final sample size
Nc is given by

RNc (κ ) = AE[(kNc − κ )2] + cE[Nc]. (25)

Theorem 1 is defined and proven in the supplementary
material and is very important. Theorem 1 is important
because, under appropriate conditions, it ensures that, on
average, the final sample size, Nc, is close to the optimal
sample size, nc, and that, on average, the risk, RNc (κ ), at
the final sample size, Nc, is close to the minimized risk,
R∗
nc (κ ), which was defined in Equation (16).

Example

Suppose that a research team seeks to quantify the diver-
sity (which can be conceptualized as inequality or hetero-
geneity) within schools in a large urban district. Of pri-
mary interest is the diversity of age-appropriate books in
the homes of third graders.8 For purposes of our example,
we focus only on a single school.

Diversity can be conceptualized as the coefficient of
variation (e.g., Bedeian & Mossholder, 2000; Harrison
et al., 1998), which provides a standardized measure of
variability relative to the mean. The most appropriate

 Measures such as time spent (a) using computers/tablets, (b) watching tele-
vision, and (c) playing outside during a typical week might be collected,
as well as various demographic, educational attainment, and performance
measures.
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way to collect the data needed on the number of age-
appropriate books for the third graders in the schools of
interest is thought to be an in-person survey conducted in
each student’s home. Although the research team seeks an
accurate estimate of the true coefficient of variation of the
age-appropriate books of the third graders in the school,
there is limited funding to be used on in-home data col-
lection. Of course, the more research funds spent on data
collection, the fewer funds available for other research
questions or projects. Thus, the research teams seeks a
balance between the estimation accuracy (i.e., small sam-
pling error) of the coefficient of variation and the cost
of collecting data (i.e., sampling cost). The ideal sample
size is not obvious: An accurate estimate is of interest
but so too is the minimum sampling cost for the study.
Thus, the cost-benefit analysis needs to explicitly con-
sider both of these competing issues. Our method pro-
vides a formal way of considering both sampling cost
and estimation accuracy, something that may be implic-
itly done by researchers but has received little attention
in the research design literature within psychology and
related disciplines.

First, we need to consider the cost of a single in-home
visit. This is calculated to be, on average, $75 per visit (i.e.,
c = $75). This cost-per-observation includes an honorar-
ium for the participating household, travel expenses for
the in-home surveyor, and the cost of the salary of the
in-home surveyor who will count age-appropriate books.
Estimation of the cost per sample (i.e., the sampling cost
for collection of a single observation) can generally be
done according to the known or anticipated values of an
investigation (e.g., anticipated time data collection will
take, anticipated salary of those involved, anticipated hon-
orarium of the surveyor and participants, etc.). The cost
per sample is a value generally estimated in, say, a grant
application, in that the anticipated sample size multiplied
by the cost per observation is a value needed in order to
know what amount of money should be invested for data
collection.

Second, we need to consider the “maximum prob-
able error” in estimation of the population coefficient
of variation (i.e., |kn − κ | " ϵ). The probable error is
a value not often considered in psychology or related
disciplines, but it is important in terms of quantifying
the accuracy of an estimate. Suppose that the desire is
to have the difference between kn (the estimate from a
sample of size n) and κ (the true value) be 0.05 units
or less. Further, suppose the research team is willing to
pay $1,000 for an estimate with such maximum proba-
ble error (i.e., ϵ = 0.05), not considering the sampling
cost. This $1,000 translates into the structural cost. Using
this, we get A = $1,000

.052 = $1,000
.0025 = $400, 000, as discussed

in Equation (5). For another example to illustrate A, had

the desire been for kn to be within an interval of 0.1 units
around κ and the researcher was willing to pay $1,000 for
the accuracy of such an estimate, A would be $100,000(
= $1,000

.12 = $1,000
.01

)
. Although A is literally the price one

is willing to pay per squared unit of ϵ, in and of itself it is
not very interpretable as it is a conflation of two values.
However, those two values, structural cost (or price one
is willing to pay) and ϵ, each are themselves very inter-
pretable.

The information regarding both structural and sam-
pling costs is typically included in grant proposals seek-
ing research funding, as funding agencies require an
explicit budget, part of which is the structural cost and
another part is the sampling cost (i.e., cost per datum
collected). Thus, the information on the cost required
for our method is often estimable before the start of an
investigation, and our method does not require more
advanced knowledge of the study than would be typical
in a grant application, other than expectedly considering
accuracy.

Given values for c and A from the preceding, we can
obtain a pilot sample size (Step 1 of our procedure) using
the minimum risk for the coefficient of variation func-
tion, namely mr.cv(), in the MBESS R package (Ver-
sion 4.0.0 or greater, Kelley, 2007a, 2007b, 2016). The
mr.cv() is submitted as follows:

mr.cv(pilot=TRUE, A=400000,
sampling.cost=75, gamma=.49)

where, after submitting the code, the function returns

Pilot.SS
18.

Thus, under this scenario, the pilot sample size ism =
18. An alternative way to specify the preceding would be
to use the structural cost and epsilon directly (rather than
specifyingA; note that with the structural cost set to 1,000
and ϵ set to .05, A = 1000/.052 = 400, 000, as used in the
preceding):

mr.cv(pilot=TRUE, structural.cost=
1000, epsilon=.05, sampling.cost=
75, gamma=.49)

which again returns

Pilot.SS
18

After using mr.cv() with pilot=TRUE specified
and the pilot data collected, the function can then be used
to check whether the pilot sample size meets the conver-
gence criterion of the procedure. If the convergence crite-
rion is met, the sampling procedure stops; if the conver-
gence criterion is not met, the procedure continues. We
now illustrate this procedure.
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After the researcher collects the 18 observations (i.e.,
the pilot sample), the mr.cv() function can be used
again, but this time using the data to evaluate the stopping
rule. After data are collected, we suggest that a vector of
scores be assigned to an object, whichwe callData in this
example, and then the mr.cv() function is evaluated as
follows:

Data < - c(36, 53, 19, 11, 10, 24,
14, 65, 18, 48, 25, 35, 13, 18, 3,
41, 5, 3)

mr.cv(data=Data, A=400000, sampling.
cost=75, gamma=.49)

at which point the function returns

Risk N cv Is.Satisfied?
[1,] 5964.345 18 0.7391157 FALSE

The function provides the value of the risk function,
the sample size, the sample value of the coefficient of vari-
ation, as well as a check to assess whether the criterion
is satisfied (i.e., does Is.Satisfied? equal TRUE or
FALSE). In the preceding example, the criterion of our
procedure is not satisfied with the collected data (notice
the final column of the output).

At this point, due to the criterion not being satisfied,
another observation is collected. Although one could col-
lect more than a single observation, the procedure that
we describe is based on a single additional datum. The
observed value, here a value of 44, is appended onto the
existing data (shown below), and the function is submit-
ted again (on the updated data set):

Data < - c(Data, 44)
mr.cv(data=Data, A=400000, sampling.
cost=75, gamma=.49)

which returns

Risk N cv Is.Satisfied?
[1,] 6224.861 19 0.7113385 FALSE.

Now, sequentially, another observation is collected
and added to the data vector before submitting the
mr.cv() function. This process continues until the out-
put for Is.Satisfied returns TRUE, signifying that the
optimization criteria has been met. Additional observa-
tions are collected one at a time and evaluated with the
mr.cv() function until the function shows that the cri-
terion is satisfied. For our example, after the 35th obser-
vation is collected, the function shows the first instance of
the criterion being satisfied (note we type in all of the data
here for demonstration purposes):

Data < - c(36, 53, 19, 11, 10, 24,
14, 65, 18, 48, 25, 35, 13, 18, 3, 41,

5, 3, 44, 26, 13, 39, 2, 3, 26, 22, 8,
15, 12, 22, 5, 21, 23, 40, 18)
mr.cv(data=Data, A=400000, sampling.
cost=75, gamma=.49),

which returns

Risk N cv Is.Satisfied?
[1,] 4891.284 35 0.7013904 TRUE.

At this point, after the 35th observation is collected, the
criterion is satisfied, which can be seen with the last col-
umn of the output (specifically where Is.Satisfied?
is shown to be TRUE). We now have formal justification
via the stopping rule for the sequential procedure, that
with the input specifications chosen and the data thatwere
observed, sampling can stop.

Thus, the total sampling cost for conducting this study
in the situation outlined here is 35 × $75 = $2, 625.
Recalling the structural cost investment of $1,000, the
study cost were thus $3,625. This study cost, in which the
sample size and thus study cost was unknown a priori, was
based on our minimum risk optimization procedure, in
which the accuracy of the estimated coefficient of varia-
tion and study cost were simultaneously considered. Our
approach does not consider just accuracy nor does it con-
sider just cost. By combining these two important aspects
of study design in the risk function (i.e., Equation [11]),
we sought to minimize the risk function, which, when
minimized leads to our stopping rule to be satisfied and
thus informs the researcher to stop sampling additional
participants.

Characteristics of the final sample size: An
empirical demonstration

The procedure we developed for minimizing study cost
and sampling error simultaneously for the coefficient of
variation has been justified mathematically (see the sup-
plementary material) for large sample sizes. However, an
interesting outcome that has no known way to be analyt-
ically derived is the distribution of the final sample size,
whichwewill demonstrate under a variety of scenarios. In
particular, it is interesting to consider the behavior of the
final sample size under different distributions and under
small to large sample-size scenarios.

To implement the sequential procedure in this Monte
Carlo demonstration, we consider two scenarios. In the
first scenario, we assume that the researcher is willing to
pay $200, 000 so that the absolute difference between the
point estimate of the coefficient of variation, kn, and the
true value, κ , will be, at most, ϵ = 0.2, so A = $(200,
000/0.22), and we fix the cost of sampling each unit (e.g.,
person) to be c = $10. In the other scenario, we assume
that the researcher is willing to pay $500, 000 so that the
absolute difference between the point estimate of the coef-
ficient of variation, kn, and the true value, κ , will be, at
most, ϵ= 0.2, so A= $(500, 000/0.22), and we fix the cost
of sampling each unit (e.g., person) in the population to
be c = $100. Our example values are meant to show the
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Figure . Probability density function of the four gamma distributions used in the simulation study.

flexibility of the method and are scalable to larger/smaller
values of structural cost and values of epsilon and the
sampling cost; there is nothing special about the values
used here other than to illustrate the method in a variety
of conditions.

We use γ = 0.49, as suggested in the previous sec-
tion, for both scenarios. We compute the pilot sam-
ple size by using the pilot sample size formula given in
the algorithm from the previous section: m = max {4,
⌈(A/c)1/(2 + 2 × 0.49)⌉}. The results are based on random

samples from five different distributions: gamma, log-
normal, folded-normal, normal, andWeibull. In all cases,
the number of replications used is 5,000. To show the vari-
ety of distributions used in our simulation study, we show
plots of the gamma distributions, log-normal distribu-
tions, folded-normal distributions, normal distributions,
and Weibull distributions, respectively, in Figures 1–5.

Tables 1 and 2 present the mean final sample size
N̄ (estimates E[Nc]) from 5,000 replications and the
mean risk r̄N (which estimates RNc (κ )) obtained from the

Figure . Probability density function of the four log-normal distributions used in the simulation study.



640 B. CHATTOPADHYAY AND K. KELLEY

Figure . Probability density function of the three folded-normal distributions used in the simulation study.

sample of size N. Moreover, s(N̄) and s(r̄N ) represent the
standard errors of N̄ and r̄N , respectively. From the fifth
column of Table 2, we find that, except for extremely
skewed distributions such as the log-normal distribution
with parameters 1 and 0.703345 and the log-normal dis-
tribution with parameters 1 and 0.5545, the ratio of the
average final sample size, N̄, to the optimal sample size, nc,
is close to 1. In all cases, we find that the ratio approaches
1 as sample sizes grow larger. The last column suggests
that the ratio of the risk of estimating the coefficient of

variation, using the purely sequential procedure, r̄N , to
the optimal sample size risk, R∗

nc , is close to 1. Thus, for
not so skewed distributions, our sequential procedure
works remarkably well. In fact, except in the extremely
skewed cases, the relative cost discrepancy is, at most,
about 5%. This implies that the expected cost incurred by
our method is almost the same as the optimal sample size
risk, R∗

nc , defined in Equation (16).
Tables 3 and 4 present the different measures of loca-

tion (namely, the 0.5 and 99.5 percentiles, the mean, and

Figure . Probability density function of the four normal distributions used in the simulation study.
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Figure . Probability density function of the four Weibull distributions used in the simulation study.

the three quartiles) and the standard deviation of the esti-
mated final sample size. The tables clearly indicate the
presence of outliers in the empirical distribution of the
estimated final sample size, with the exception of the nor-
mal distribution scenarios.

Our procedure is performing very effectively for
gamma distributions, normal and folded-normal distri-
butions, Weibull distributions, and, to some extent, log-
normal distributions. However, larger values of the coeffi-
cients of variation led to wildly different final sample sizes
(e.g., in the low 90s for k = .80 at the .5 percentile and in
the 790s at the 99.5 percentile).9 From Tables 1 and 2, we
find that our purely sequential procedure works remark-
ably well as far as the sample size and the cost of estima-
tion are concerned, except in the extremely skewed cases.
Statistically, it can be argued that, for extremely skewed
distributions, the sample mean and all the estimates of
second-, third-, and fourth-central moments are affected
by the presence of relatively more extreme observations.

The properties of our sequential method have already
been justified mathematically for large samples in a
distribution-free environment (i.e., not tied to any par-
ticular assumed distribution). Tables 3 and 4 show the

 To help understand why the results, such as the variability of the final sam-
ple size, depend on the distribution in a distribution-free environment, we
developed an analogy based on a question raised by Will Beasley, who pro-
vided an open review of our manuscript. Consider a highway in which there
is no speed limit. Some cars are able to go extremely fast, whereas other cars
are not. Safety is also a concern. A driver then has to balance his or her safety
with an open speed limit. Two drivers starting on the same route would not
be expected to complete the drive in the same amount of time (e.g., due to
properties of the car, such as top speed, as well as concern for safety). This
example has an analog to our distribution free method, in that the proper-
ties of our method will depend, even though it is distribution free, on the
properties of the population from which observations are sampled.

distribution of the final sample size under various sce-
narios. For some of the log-normal distributions it is
apparent that the variability in the final sample size is
very large. The stopping rule depends on the estimator
of the asymptotic MSE, V 2

n (i.e., Equation [22]), which
further depends on the estimators of coefficient of vari-
ation (= Sn/X̄n), skewness (= µ3n/X̄n), and kurtosis (=
µ4n/X̄n). For highly skewed distributions, large variabil-
ity in estimates happens with other statistics too, such as
with skewness and kurtosis, whose sampling distributions
are affected greatly by distributional form. An andAhmed
(2008) studied several kurtosis measures that are widely
used in different statistical software (e.g., R, SAS, Stata).
They found that for highly skewed or heavily tailed distri-
butions, all widely used estimators of the population kur-
tosis were substantially underestimated. This is not to say
that skewness or kurtosis measures do not generally work
well, but rather that they are susceptible to the underly-
ing distribution fromwhich data are sampled. To be clear,
our method does not assume any underlying distribution
of the data, and thus we do not know whether the distri-
bution is normal or log-normal or gamma or any other
distribution. Under that scenario, information about the
population coefficient of variation can only be made from
data and not based on any presumed distribution char-
acteristics. Correspondingly, the distribution of the final
sample size will have different properties under different
situations, with some distributions offering a smaller vari-
ability in the final sample size than others.

To summarize the performance of our method, for
every replication of the simulation for all distributions
but the log-normal distribution, the absolute difference
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Table . Properties of the distribution of the final sample size when A= $(, /.) and c= $.

N rN
Distribution κ s(N) nc N/nc s(rN)

rN
R∗

nc

Gamma . .  . ,. .
(shape= , scale= .) . .

Gamma . .  . ,. .
(shape= ., scale= .) . .

Gamma . .  . ,. .
(shape= ., scale= .) . .

Gamma . .  . ,. .
(shape= ., scale= .) . .

Log-normal . .  . ,. .
(log-scale= , shape= .) . .

Log-normal . .  . ,. .
(log-scale= , shape= .) . .

Log-normal . .  . ,. .
(log-scale= , shape= .) . .

Log-normal . .  . ,. .
(log-scale= , shape= .) . .

Folded-normal . .  . ,. .
(location= , scale= ) . .

Folded-normal . .  . ,. .
(location= , scale= .) . .

Folded-normal . .  . ,. .
(location= , scale= .) . .

Normal . .  . ,. .
(Mean= , SD= ) . .

Normal . .  . ,. .
(Mean= , SD= ) . .

Normal . .  . ,. .
(Mean= , SD= ) . .

Normal . .  . ,. .
(Mean= , SD= ) . .

Weibull . .  . ,. .
(shape= ., scale= ) . .

Weibull . .  . ,. .
(shape= ., scale= ) . .

Weibull . .  . ,. .
(shape= ., scale= ) . .

Weibull . .  . ,. .
(shape= ., scale= ) . .

Note. κ is the population coefficient of variation; N̄ is the mean final sample size; r̄N is the mean risk; RNc
(κ ) is the true risk using population parameters; s(N̄) is

the standard deviation of themean final sample size (i.e., standard error of the final sample size); nc is the theoretical sample size if the procedure is used with the
population parameters; r̄N estimates RNc

(κ ); s(r̄N) is the standard deviation of the mean estimated risk (i.e., standard error of the risk at the final sample size);

tabled values are based on , replications of a Monte Carlo simulation study.

between the estimated coefficient of variation and the
population coefficient of variation was within the fixed
value of the specified ϵ. In the case of the log-normal
distributions that we considered in Tables 3 and 4, we
found that in over 99% of the replications of the simula-
tion, the absolute difference between the estimated coef-
ficient of variation and the population value was within
the fixed value of epsilon. We have provided simulation
results for illustration purposes only as the method is
based onmathematical justification rather than empirical
simulation.Nevertheless it is useful to see the effectiveness
of our procedure and the properties of various outcomes

(e.g., standard deviation of final sample size) in a variety
of situations.

Discussion

The coefficient of variation is a standardized measure
of variability defined as the standard deviation divided
by the mean. For any given population, the accuracy of
the estimated coefficient of variation increases as sam-
pling error decreases. Holding everything else constant,
sampling error decreases as the sample size increases. Of
course, increasing sample size, in turn, increases the study
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Table . Properties of the distribution of the final sample size when A= $(, /.) and c= $.

N rN
Distribution κ s(N) nc N/nc s(rN)

rN
R∗

nc

Gamma . .  . ,. .
(shape= , scale= .) . .

Gamma . .  . ,. .
(shape= ., scale= .) . .

Gamma . .  . ,. .
(shape= ., scale= .) . .

Gamma . .  . ,. .
(shape= ., scale= .) . .

Log-normal . .  . ,. .
(log-scale= , shape= .) . .

Log-normal . .  . ,. .
(log-scale= , shape= .) . .

Log-normal . .  . ,. .
(log-scale= , shape= .) . .

Log-normal . .  . ,. .
(log-scale= , shape= .) . .

Folded-normal . .  . ,. .
(location= , scale= ) . .

Folded-normal . .  . ,. .
(location= , scale= .) . .

Folded-normal . .  . ,. .
(location= , scale= .) . .

Normal . .  . ,. .
(Mean= , SD= ) . .

Normal . .  . ,. .
(Mean= , SD= ) . .

Normal . .  . ,. .
(Mean= , SD= ) . .

Normal . .  . ,. .
(Mean= , SD= ) . .

Weibull . .  . ,. .
(shape= ., scale= ) . .

Weibull . .  . ,. .
(shape= ., scale= ) . .

Weibull . .  . ,. .
(shape= ., scale= ) . .

Weibull . .  . ,. .
(shape= ., scale= ) . .

Note. κ is the population coefficient of variation; N̄ is the mean final sample size; r̄N is the mean risk; RNc
(κ ) is the true risk using population parameters; s(N̄) is

the standard deviation of themean final sample size (i.e., standard error of the final sample size); nc is the theoretical sample size if the procedure is used with the
population parameters; r̄N estimates RNc

(κ ); s(r̄N) is the standard deviation of the mean estimated risk (i.e., standard error of the risk at the final sample size);

tabled values are based on , replications of a Monte Carlo simulation study.

cost due to the cost of sampling additional observations
(i.e., sampling cost). A fixed-sample-size procedure can-
not minimize a function that simultaneously considers
both the sampling error and study cost. We have worked
in this article to solve this problem for the coefficient of
variation.

Unlike “fixed n” procedures, with sequential meth-
ods it is not clear at the beginning of a study what the
final sample size will be. This limitation is the conse-
quence of not having to specify one or more generally
unknowable population parameters ahead of time. Of
course, conducting a study using sequential methods is
fundamentally different from saying in a proposal that

“the sample size to be used will be 500.” However, such
definitive statements about sample size are based on their
own assumptions, such as the distribution shape (usu-
ally normality is assumed) and supposed or known pop-
ulation parameters. In general, if the population param-
eters are not known, they must be supposed in order to
obtain the theoretical fixed sample size so that the goals
of sample-size planning be met exactly. The problem is
that if the supposed values are wrong, then the procedure
implied (based on the supposed values) and the theoreti-
cally optimal sample size could be very different.

There are five limitations of our method because the
methoddoes not directly consider (a) the analysis cost, (b)
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Table . Summary of locations of the final sample size and standard deviation with A= $(/.) and c= $.

. First Second Mean Third .
Distribution κ Percentile quartile quartile SD quartile Percentile

Gamma .    .  
(shape= , scale= .) .

Gamma .    .  
(shape= ., scale= .) .

Gamma .    .  
(shape= ., scale= .) .

Gamma .      
(shape= ., scale= .) .

Log-normal .    .  
(log-scale= , shape= .) .

Log-normal .    .  
(log-scale= , shape= .) .

Log-normal .      
(log-scale= , shape= .) .

Log-normal .    .  ,
(log-scale= , shape= .) .

Folded-normal .    .  
(location= , scale= ) .

Folded-normal .    .  
(location= , scale= .) .

Folded-normal .    .  
(location= , scale= .) .

Normal .    .  
(Mean= , SD= ) .

Normal .    .  
(Mean= , SD= ) .

Normal .    .  
(Mean= , SD= ) .

Normal .    .  .
(Mean= , SD= ) .

Weibull .    .  
(shape= ., scale= ) .

Weibull .      
(shape= ., scale= ) .

Weibull .    .  
(shape= ., scale= ) .

Weibull . .   .  
(shape= ., scale= ) .

Note. κ is the population coefficient of variation and SD is the standard deviation; tabled values are based on , replications of a Monte Carlo simulation study.

economies of scale, (c) the potentially difficult nature of
specifying A (or the structural cost and desired ϵ), (d) not
knowing the final sample size at the start of the study, and
(e) large variability in final sample size for highly skewed
distributions. By the analysis cost we literally mean the
cost incurred for actually performing the analysis at each
step of the sequential procedure. However, if one needed
to pay for an analysis at each step, our method could be
generalized slightly by incorporating analysis cost into c
because the cost of collecting an additional observation
plus the cost of performing the analysis could be repre-
sented in our equations by replacing cwith c∗, where c∗ is
sampling cost plus analysis cost at each step. Therefore, if it
costs c = $10 to collect additional data but one is charged
$50 for running the analysis (e.g., by the analyst), then the
functional cost of adding a single observation is c∗ = 10

+ 50 = 60 because this is the cost incurred for adding
additional data. Thus, this first limitation has a simple
solution.

The second limitation we have identified is that there
is a fixed cost for sampling regardless of the number of
participants. That is, there is no economies-of-scale con-
sideration in our method. By economies of scale we mean
that we have used a constant c throughout for each par-
ticipant and thus that there is no reduction (or increase)
in cost for sampling larger numbers of participants. Sup-
pose that in some situations the larger the sample size col-
lected the cheaper each observation collected becomes.
For example, while partnering with a data collection firm,
the first 20 participants might cost c1 = $25, but there-
after cost c2 = $15. Or consider that use of a particular
assessment cost c1 = $25 for the first 20 participants and
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Table . Summary of locations of the final sample size and standard deviation with A= $(/.) and c= $.

. First Second Mean Third .
Distribution κ Percentile quartile quartile SD quartile Percentile

Gamma .    .  
(shape= , scale= .) .

Gamma .    .  
(shape= ., scale= .) .

Gamma .    .  
(shape= ., scale= .) .

Gamma .      
(shape= ., scale= .) .

Log-normal .    .  
(log-scale= , shape= .) .

Log-normal .    .  
(log-scale= , shape= .) .

Log-normal .    .  
(log-scale= , shape= .) .

Log-normal .    .  
(log-scale= , shape= .) .

Folded-normal .    .  
(location= , scale= ) .

Folded-normal .    .  
(location= , scale= .) .

Folded-normal .    .  
(location= , scale= .) .

Normal .    .  
(Mean= , SD= ) .

Normal .    .  
(Mean= , SD= ) .

Normal .    .  
(Mean= , SD= ) .

Normal .    .  
(Mean= , SD= ) .

Weibull .    .  
(shape= ., scale= ) .

Weibull .    .  
(shape= ., scale= ) .

Weibull .    .  
(shape= ., scale= ) .

Weibull .      
(shape= ., scale= ) .

Note. κ is the population coefficient of variation and SD is the standard deviation; tabled values are based on , replications of a Monte Carlo simulation study.

c2 = $15 for any additional participants. Our method is
not equipped at this time to incorporate fluctuating sam-
pling cost as we have regarded c as a fixed value through-
out. One possibility is to approach the problem from the
perspective of an expected or average cost per participant,
but in so doing one is essentially assuming thefinal sample
size is known. For example, with the current example of c1
= $25 and c2 = $15, if we knew that the sample size would
be, say, 50, then we could find the average sampling cost,
c̄ = (20 × $25 + 30 × $15)/50 = $19. Thus, in such a
situation the mean sampling cost, c̄, could replace c in our
method. We emphasize, however, that this is likely not a
feasible approach because in the sequential framework the
final sample size will generally not be known.

The third limitation of specifying A is that there is
not much guidance in the literature on how to specify

the structural cost of a research study or the price one is
willing to pay for the desired accuracy, that is, achieving
the maximum probable error, ϵ. Our approach requires
that a researcher specify the structural cost and ϵ (so as
to yield A) or specify A directly. Because the idea of A
will be new to many researchers, more work on the eco-
nomics of study design would be useful. The difficulty
in determining A is in contrast to ignoring cost, which
many studies that consider sample size planning do with-
out an explicit consideration of cost. Because cost is an
issue that researchers usually have to contend with, we
designed our method with cost as a core part. When one
is able to specify the total cost, less sampling, that they
are willing to invest in a study, or what can be interpreted
as “the price one is willing to pay,” in order to have an
estimate with the desired degree of accuracy, then use of
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our method (e.g., via the MBESS R package) is straight-
forward. Not considering the sampling cost, all of the
other costs that are needed to implement the study are
the structural costs. Although difficult, when budgeting
for grants, these costs are considered, as a certain amount
of funding will be specified in order to conduct the pro-
posed research. Thus, in this respect, we believe that spec-
ifying the structural costs may not be as difficult as it
might initially seem, but certainly more discussion of cost
considerations in the research design literature would be
beneficial.

The fourth limitation of not knowing the final sam-
ple size at the start of the study can be mitigated to some
extent by using a sensitivity analysis in the sequential
framework with supposed distributions and parameters
to obtain information about the necessary final sample
size the procedure implies. The idea is to use a variety of
input parameters and study the distribution of the final
sample size. For example, one could suppose that the dis-
tribution of scores is normal with a particular value for
the population mean and a particular value for the popu-
lation standard deviation. Then, the mr.cv() function
could be embedded in a sensitivity analysis in order to
obtain a distribution of the final sample size under a vari-
ety of plausible scenarios. One would then have low, high,
and typical values for what might be an appropriate final
sample size (under the variety of conditions specified).
One may perform a sensitivity analysis by specifying one
or more plausible values for the population coefficient of
variation for one or more parent distributions and carry
out a large number of replications (e.g., 10,000) to find the
typical (or specified percentile) sample size at which the
convergence criterion is met. The general framework of
sensitivity analyses offers users a great deal of flexibility
and provides a great deal of information about how sen-
sitive final sample sizes are in a variety of conditions.

The fifth limitation is that when the distribution from
which observations are sampled is highly skewed, like
some of the log-normal distributions we considered in
the empirical demonstration simulation, the distribution
of the final sample size can have high variability due to
extreme observations. Thus, even for skewed distribu-
tions, in some situations the sequential procedure may
yield a mean final sample size from the simulation that is
considerably smaller than the theoretically optimal sam-
ple size (had parameter values been known), which is
one approach to measuring the success of the method.
However, under a wide variety of scenarios, our meth-
ods produced a mean final sample size that well approx-
imated the theoretically optimal sample size. Although
we work in a distribution free environment for the devel-
opment of the methods, the characteristics of the final
sample size will depend on the characteristics of the

population from which data are sampled. This distribu-
tion of the final sample size was studied in our empirical
investigation, and we found that the distribution can be
highly variable for different distributions. Although there
were a few highly skewed conditions for the log-normal
distribution in which the mean final sample size was con-
siderably smaller than the theoretically optimal sample
size, every condition of the simulation showed that in
more than 99%of the replications kwaswithin ϵ of κ . That
is, the desired degree of accuracy was nearly always satis-
fied, which, along with considering study cost by mini-
mizing sampling cost, was the goal of the method. Thus,
our procedure was shown to work exceptionally well at
finding an appropriate sample size such that the parame-
ter of interest was estimated within the desired maximum
probable error.

The purely sequential procedure developed here
ensures that the ratio of the average final sample size and
the theoretically optimal sample size is approximately 1
(meaning that our method recovers approximately the
average optimal sample size). In addition, the ratio of the
risk function for estimating the coefficient of variation
based on the final sample sizeNc and the approximate risk
function for estimating the coefficient of variation based
on the optimal sample size nc is approximately 1.

We have assumed throughout that the observations are
independent and identically distributed (but for arbitrary
distributions). Although analytic methods exist for find-
ing confidence intervals for the population coefficient of
variation, all such analytic methods assume specific dis-
tributions or are approximations. We do not discuss any
of these confidence interval methods. We have worked in
a distribution-free environment, one in which our meth-
ods hold in general and not for a particular type or types
of distributions. In our case, after the sampling stops, we
recommend a confidence interval be formed. The confi-
dence interval could be one that depends on a particular
distribution, or if one wishes to continue in a distribution
free environment, a bootstrap procedure could be used to
form a confidence interval for the population coefficient
of variation.

Ghosh and Sen (1991) argue that sequential proce-
dures are economical in the sense of finding a sample size
that reduces study cost while also considering sampling
error. The basic theory of sequential analysis is based on
the idea of “learn as you go.” Instead of fixing the sample
size in advance, the observations are analyzed as they are
collected. Fixed-sample-size planning procedures gener-
ally depend on values of parameters that are supposed
to be true or that are of “minimal importance” (e.g., see
Maxwell, Kelley, & Rausch, 2008, for a review). Because
of economic consideration and the limitations of many
sample size planning procedures with regard to assumed
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knowledge of population parameters, there is a natural
use and benefit that sequential procedures can have in
psychology and related fields.

In this article, we have developed a purely sequential
procedure that provides an estimate of the theoretically
optimal sample size required to minimize the function
containing both the sampling error and study cost with-
out assuming any specific distribution for the data. We
focused on the sampling cost by developing a method
that, once the structural cost (willingness to pay) and the
desired accuracy (ϵ) are specified, the sampling cost could
be minimized and done so without assuming any popula-
tion values for the coefficient of variation. In addition, we
developed our work in a distribution-free environment.
The lack of any specific distributional assumption is a key
piece of our contribution as there is no reason to believe,
in many situations, that the distribution of the scores
for which the coefficient of variation will be calculated
is normal or some other specified distribution. Further,
via the MBESS R package, we have provided easy-to-use
open source and freely available software to implement
the procedures we developed. Given the increased inter-
est in estimating effect sizes in psychology and related
fields, we believe that planning studies with the goal of
obtaining accurate estimates will continue to increase in
importance, which is why our work here on developing
a procedure that considers both sampling cost and sam-
pling error for the coefficient of variation seems likely
to also grow in importance in psychology and related
fields.We hope this article helps tomove forward research
design in the field by developing a sequential procedure,
specifically for the coefficient of variation, but whereupon
the ideas can be applied more generally to other effect
sizes.
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