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The standardized mean difference is a widely used effect size measure. In this article, we develop a
general theory for estimating the population standardized mean difference by minimizing both the mean
square error of the estimator and the total sampling cost. Fixed sample size methods, when sample size
is planned before the start of a study, cannot simultaneously minimize both the mean square error of the
estimator and the total sampling cost. To overcome this limitation of the current state of affairs, this
article develops a purely sequential sampling procedure, which provides an estimate of the sample size
required to achieve a sufficiently accurate estimate with minimum expected sampling cost. Performance
of the purely sequential procedure is examined via a simulation study to show that our analytic
developments are highly accurate. Additionally, we provide freely available functions in R to implement
the algorithm of the purely sequential procedure.
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One of the most commonly used effect sizes in psychology and
related disciplines is the standardized mean difference. In the
PsycINFO database from the beginning of 2000 until the end of
2015 there have been 1,687 peer-reviewed and scholarly articles
that have included the terms standardized mean difference (or
equivalent) in the abstract.1 We searched only in the abstract
because if a specific effect size is mentioned in the abstract, it
would seem to be a highly important outcome of a study. Of
course, many more articles mention the term somewhere in the
body of the text, such as in the Results section. Our point in
performing this search is simply to show the relevance of the
standardized mean difference and its growing importance. As can
be seen in Figure 1, there has been a steady increase in usage of the
standardized mean difference as a primary discussion point of
articles, in that the term is included in the abstract. We surmise that
the rapid increase since the year 2000 is likely due, at least in part,
to the recommendations of Wilkinson and the American Psycho-
logical Association (APA) Task Force on Statistical Inference,
who stated that researchers should “always present effect sizes for

primary outcomes” (emphasis in original), and the subsequent
changes to the publishing guidelines of journals in psychology,
education, and related fields (e.g., American Psychological Asso-
ciation, 2001), and especially its successor (American Psycholog-
ical Association, 2010; see also American Educational Research
Association, 2006; Association for Psychological Science, 2014),
and based on the recommendation of methodologists.

Recommendations long made by methodologists within psy-
chology and related disciplines, among others, about an overreli-
ance on null hypothesis significance tests and the corresponding
p value, the need to focus on effect sizes, and the importance of
confidence intervals for population effect sizes, among other sug-
gestions, has now been echoed by the American Statistical Asso-
ciation (ASA) in what is “the first time the ASA has spoken so
publicly about a fundamental part of statistical theory and prac-
tice” ( American Statistical Association, 2016). In an editorial by
Ron Wasserstein, the ASA’s Executive Director, on behalf of the
ASA Board of Directors (Wasserstein & Lazar, 2016), six princi-
ples are addressed that could “improve the conduct or interpreta-
tion of quantitative science” (p. 131). The editorial goes on to say
that “in view of the prevalent misuses of and misconceptions
concerning p-values, some statisticians prefer to supplement or
even replace p-values with other approaches” (p. 132). The sug-
gestions for supplementing or replacing p-values are “methods that
emphasize estimation over testing, such as confidence, credibility,
or prediction intervals; Bayesian methods; alternative measures of
evidence, such as likelihood ratios or Bayes Factors; and other
approaches such as decision-theoretic modeling and false discov-

1 We searched specifically for “standardized mean difference,” “Co-
hen’s d,” “Cohens d,” “Hedges’ g,” “Hedges g,” or “standardized differ-
ence between means” in the abstract of peer-reviewed and scholarly
articles. This search was performed on March 7, 2016 using PsycINFO.
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ery rates. All these measures and approaches rely on further
assumptions, but they may more directly address the size of an
effect (and its associated uncertainty) or whether the hypothesis is
correct” (p. 132). Our work directly addresses the size of the effect,
here for the standardized mean difference, and does so with accu-
racy, as well as cost, in mind. Thus, we believe that our work is
both timely and important for helping to advance psychology and
related disciplines by focusing so explicitly on estimation of an
important quantity.

The reason the standardized mean difference, and standardized
effect sizes in general, are of such interest and widely used in
psychology and related disciplines is that the metrics used in these
disciplines are often arbitrary. Thus, when examining the differ-
ence between two groups with an arbitrary scale, the raw differ-
ence itself is often times not easily interpretable. For example, a
5-unit difference between estimated means on a survey that is on
a 1–7 scale may mean one thing, whereas a 5-unit difference might
mean something else on a 0–100 scale. Thus, by dividing the raw
mean difference by the (usually) pooled standard deviation, the
raw difference is rescaled by the within group variability leading to
an effect size that is standardized (see Kelley & Preacher, 2012, for
a discussion of effect sizes).

Methods of designing studies that consider the standardized
mean difference as the primary outcome are numerous. For exam-
ple, Cohen (1988) details how to plan sample size for statistical
power when interest concerns the standardized mean difference.
Raudenbush (1997) focuses on cost-effective sampling for cluster
randomized designs. Kelley and Rausch (2006) detail how to plan
sample size for accurate estimates when interest concerns the
standardized mean difference accompanied by a narrow confi-
dence interval. Pornprasertmanit and Schneider (2014) extend the
accuracy approach to cluster randomized designs and also consider
the sampling cost of data collection, which is something most
articles on sample size planning in psychology fail to do. In
practice, of course, the cost of collecting data is a major issue and

is arguably the biggest obstacle researchers face when collecting
an appropriate sample size. Unfortunately, many sample size plan-
ning developments have overlooked this important issue. Although
in many cases it may be reasonable to focus on the literal sample
size needed to satisfy a particular goal, it is certainly also reason-
able to consider the cost as well and not overlook this important
factor of a research project.

Our approach simultaneously considers sampling cost and esti-
mation accuracy of the standardized mean difference. It is well
known that as sample size increases, more information is obtained
about the parameter of interest. As the sample size increases,
E[(�̂ � �)2], which is the mean square error, decreases, where � is
an arbitrary parameter and �̂ is an estimator of �. When the mean
of the squared distances between the estimator and the parameter
it estimates is small (i.e., a small mean square error), it implies the
estimator is producing accurate estimates. It is highly desirable to
obtain accurate parameter estimates (e.g., Kelley, Maxwell, &
Scott, 2003). Of course, increasing sample size also increases the
sampling cost. Thus, researchers find themselves in a conundrum
in which there is a necessity to keep both the mean square error
small (i.e., a high degree of accuracy) and the sampling cost at a
minimum. These are opposing goals: Increasing sample size leads
to higher accuracy but also higher sampling cost, yet reducing
sample size reduces sampling cost but leads to lower accuracy.

In the power analytic framework, a fixed sample size procedure
is often used. A fixed sample size procedure is one in which
sample size is planned a priori (i.e., before sampling begins) based
on one or more specified values. Such “specified values” might be
for a known, hypothesized, previously obtained value (e.g., from
another study), or theoretically interesting parameter value (such
as the minimum effect size of substantive interest). For example,
the methods discussed in sample size planning books that are
popular in psychology and related disciplines are “fixed” sample
size procedures (e.g., Cohen, 1988; Davey & Savla, 2010; Krae-
mer & Thiemann, 1987; Murphy & Myors, 2004). However, a
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Figure 1. Number of times “standardized mean difference” (or equivalent) appeared in the abstract of
peer-reviewed scholarly journal articles from 2000 to 2015 (obtained using PsycINFO).
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fixed sample size procedure cannot achieve a compromise between
sampling cost and mean square error (e.g., see Chattopadhyay &
Kelley, in press; Ghosh & Sen, 1991; Sen, 1981). This is the case
because once the sample size is selected, based on the particular
scenario, sample size is, by definition, a fixed value without any
consideration of sampling cost. Of course, if the specified input
values used in a fixed sample size planning procedure is inappro-
priate, the procedure implied sample size may yield too many
participants or too few. With a fixed sample size procedure, no
data collected as part of the study can help inform any sort of
“stopping rule” (i.e., a rule that states when the data collection will
end), as the sample size is necessarily set a priori and any data
collected is not, by definition, able to provide information on
stopping the data collection. Although one could collect data until
the financial resources run out, such a strategy is a poor substitute
for a study planned by considering goals and sampling cost simul-
taneously and arguably has ethical implications (e.g., see Maxwell
& Kelley, 2011).

To be clear, our method does not address statistical power or
null hypothesis significance testing in any way. Our method sup-
ports the move toward an estimation based literature instead of a
literature based on null hypothesis significance testing. Our work
goes further than the Task Force on Statistical Inference suggested
by not simply presenting a primary effect size, but rather by
obtaining a sufficiently accurate estimate of the effect size, while
considering study cost. Importantly, our method answers the call
by professional organizations to focus research on the size of
effects rather than a dichotomous outcome from a null hypothesis
significance test (e.g., reject or fail-to-reject). For example, the
executive committee of the Society for Personality and Social
Psychology recently convened a Presidential Task Force on
Publication and Research Practices (Funder et al., 2014) to
make recommendations on how to “improve the dependability
and replicability of research findings in personality and social
psychology” (p. 3). The guidelines from the Society for Per-
sonality and Social Psychology Task Force on Publication and
Research Practices states that “the problems with focusing
exclusively on the observed p level are exacerbated when
researchers overrely on the dichotomous distinction between
‘significant’ and ‘non-significant’ results” (p. 5). They go on to
state, with regards to treating results as dichotomous based on
a p value being less than the Type I error rate (e.g., .05) that this
common practice risks treating nearly equivalent findings as if
they were importantly different, especially if one finding barely
attains the p-value � 0.05 threshold whereas the other barely
misses it. Our sequential method that we develop here avoids
the “significant” and “nonsignificant” verbiage of the null hy-
pothesis testing framework and approaches research from a
purely estimation perspective. Although our approach does not
preclude one from also testing a null hypothesis or forming a
confidence interval, these inferential procedures should only be
done after the stopping rule has been met. Correspondingly,
even though the procedure is evaluated again and again, only
one confidence interval and only one null hypothesis signifi-
cance test should be calculated, and these calculations should
only be done after the stopping rule has been satisfied (and thus
sampling has stopped).

We realize that our approach is not the only way that a study
could be designed and conducted and that null hypothesis testing

may be important in a particular application. However, we want to
make clear that our method addresses estimation, which has taken
on an increasingly important role in psychological research in
recent years. As the APA publication manual states: “It is almost
always necessary to include some measure of effect size in the
Results section” (American Psychological Association, 2010, p.
34). For our purposes, we are working toward the accurate esti-
mation of the standardized mean difference while considering cost.
Similarly, the Association for Psychological Science (APS) imple-
mented a change effective beginning in 2014: “Psychological
Science recommends the use of the ‘new statistics’—effect sizes,
confidence intervals, and meta-analysis—to avoid problems asso-
ciated with null-hypothesis significance testing (NHST)” (Associ-
ation for Psychological Science, 2014). In an editorial for Psycho-
logical Science, the flagship journal of the Association for
Psychological Science (2014), Eich (2014) states strong support
for the use of estimation and basing interpretation of results on
point and interval estimates, which he notes harkens back to the
APA publication manual: “Psychologists should, whenever pos-
sible, use estimation and base their interpretation of research
results on point and interval estimates” (p. 5). We believe that
there is a shift in the field and there is a clear need for
methodologists to focus on better ways of estimating effect
sizes, which is our aim.

We are certainly not the first to suggest sequential methods as a
way to improve estimation. In fact, the idea of sequential sampling
methods comes from Mahalanobis (1940) for estimating acreage
of jute crop in the whole state of Bengal. In 1943 Wald used
sequential methods in military applications and the methods were
thought to be so valuable there were classified “restricted” until
1945 (Statistical Research Group, 1945; see also Wald, 1945). A
modern example is from Petrie, Bulman, and Osborn (2002), who
proposed the application of sequential methods in dentistry. Ler-
oux, Mancl, and DeRouen (2005) used such sequential methods
for longitudinal clinical trials within dentistry and developed a
sequential testing procedure for multiple endpoint trials and ap-
plied the sequential methods for studying the safety of dental
amalgam fillings. In pharmacology, Todd, Whitehead, Stallard,
and Whitehead (2001) advocated the use of sequential methods for
stopping additional data collection as soon as there is sufficient
evidence to reach a firm conclusion in phase III clinical trials over
fixed sample size procedures citing economic and ethical reasons.
Donaire et al. (2009) conducted sequential analysis of the fMRI
(functional MRI) data obtained during epileptic seizures in order to
study the temporal development of BOLD (blood oxygenation
level dependent) signal changes in patients. For other examples
and applications, we refer interested readers to Armitage (1969),
Jennison and Turnbull (2010), and Miladinovic et al. (2013),
among others.

In this article, we propose a solution to choosing an appropriate
sample size for the standardized mean difference. In particular, we
develop a procedure which simultaneously reduces both the mean
square error for the standardized mean difference and sampling
cost associated with collecting data. We are able to do this with a
novel application of sequential analysis. Our specific proposal is a
purely sequential procedure that yields an estimate of the popula-
tion standardized mean difference using a sample size that opti-
mizes the mean square error (i.e., accuracy) of estimating the
unknown population standardized mean difference and the sam-
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pling cost. In a purely sequential procedure, preliminary infor-
mation about the parameter of interest is obtained by first
collecting a small sample (called the pilot sample). Then, in
successive stages, the same number of additional observations
(e.g., 1, 2, 5, 10) are collected and used to simultaneously
update the estimate of the parameter. This is done repeatedly
until a prespecified condition (i.e., a stopping rule) has been
satisfied.

We believe that our work has the potential to fundamentally
shift the manner in which studies are designed in psychology and
related disciplines, as the ideas we discuss extend beyond the
standardized mean difference. Although most sample size planning
methods are developed under the fixed sample size perspective,
sequential methods are arguably more appropriate in many in-
stances. A priori sample size planning methods, that is, “fixed n”
designs, generally do not acknowledge that the value(s) of the
parameter(s) used for the sample size planning procedure may be
different from the actual value of the parameters in the population
of interest. When there is a nontrivial difference between the input
and the actual values of the population parameters, the sample size
used in a study can be severely under or overestimated. Our
proposal here for the standardized mean difference, a very impor-
tant and commonly used effect size in psychology and related
fields, seeks to obtain an accurate estimate while also considering
the sampling cost; ignoring the sampling cost is an unrealistic
constraint of practical research.

Estimation of the Standardized Mean Difference

We now begin to formalize our ideas, beginning with estimating
the population standardized mean difference for two independent
groups. The population standardized mean difference is defined as

� �
�1 � �2

�
, (1)

where �1 and �2 are the population means from Groups 1 and 2,
respectively, and � is the population standard deviation of scores
within the two groups under the homogeneity of variance as-
sumption (�1

2 � �2
2 � �2). Thus, if the population standardized

mean difference is 0.50, then the population mean for Group 1
is 0.50 standard deviations larger than the population mean for
Group 2.

In practice, the population values of the means, �1 and �2, and
common standard deviation, �, are unknown. As a result, � itself
is unknown. However, this population value is of primary interest
in many studies. Because the value of the population standardized
mean difference is often a primary outcome in studies (recalling
Figure 1), it is important to estimate the population standardized
mean difference using sample estimates. We use X� 1n1

and X� 2n2
to

denote the sample mean of scores on an outcome of interest from
Groups 1 and 2, respectively. Groups 1 and 2 have n1 and n2

individuals, respectively, in the group. We use s1n1

2 and s2n2

2 to
represent the usual unbiased estimator of the common variance
from Group 1 and Group 2, respectively. Notice that our sample
means and sample variances have an nj (j � 1, 2) subscript. We
note the sample size in the subscript of the estimators explicitly to
denote the sample sizes on which these estimators are based. This
notation is useful when we discuss properties of estimators at
different sample sizes. With this notation, the commonly used

estimator of the population standardized mean difference defined
in Equation 1 is

dñ �
X� 1n1

� X� 2n2

s , (2)

where s is the pooled sample standard deviation defined as

s ��(n1 � 1)s1n1

2 � (n2 � 1)s2n2

2

n1 � n2 � 2 . (3)

Here, the total sample size from both groups is ñ � n1 	 n2.
Now, let us assume that the scores of n1 individuals belonging to
Group 1 are sampled from a normal distribution with population
mean �1 and population variance �2. Further, assume that scores
of n2 individuals belonging to Group 2 are sampled from a normal
distribution with population mean �2 and population variance �2.
Using notation, we write the normal distribution assumption for
Groups 1 and 2 as

Xi1 � N(�1, �2) (4)

and

Xi2 � N(�2, �2), (5)

respectively. We use N(�j, �2) to denote that the jth group follows
a normal distribution with population mean �j (j � 1, 2) and
variance �2. We will assume a normal distribution within each of
the two groups for the remainder of the article.

Suppose we want to not only estimate �, but also to accurately
estimate �, such that the estimated standardized mean difference,
dñ, is sufficiently close to �. Further suppose that dñ� is an estimator
of � based on a total sample of size ñ�, such that ñ� � ñ. Following
Rao (1973, p. 315), dñ is preferred over dñ� as an estimator of �
because the probability that dñ lies between [� � 
, � 	 
] is higher
than the probability that dñ� lies between [� � 
, � 	 
] for all 
 �
0 and �, with ε representing the maximum probable error. Holding
everything else constant, statistically an estimate that is based on
a larger sample size is preferred to an estimate based on a smaller
sample size. This can be proven using Chebyshev’s inequality for
any type of distribution (see, e.g., Lord, 1953, or Lim & Leek,
2012).2 By application of Chebyshev’s inequality, the probability
that the estimate of dñ will lie outside the interval [� � 
, � 	 
]
will be bounded above by (i.e., no larger than)

P(|dñ � �| 	 
) �
E[(dñ � �)2]


2 . (6)

Thus at most, E[(dñ � �)2]/
2 � 100% of the values of dñ lie
outside the interval [� � 
, � 	 
] and 
 is known as the maximum
probable error.

Suppose that the experimenter is willing to pay $1,000 so that
the maximum probable error in estimating the true standardized
mean difference, �, using the sample standardized mean differ-
ence, dñ is 
. In other words, the researcher is willing to pay $1,000
so that the squared maximum probable error will be 
2, that is, the
squared difference between the point estimate dñ and � will be at

2 For unbiased estimators, no more than 1/k2 � 100% of the values of the
distribution can be more than k standard deviations away from the param-
eter.
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most 
2. But holding everything else constant, due to the sampling
error the amount will be, AE[(dñ � �)2], where, A � $1,000/
2.
Thus, A has a unit “dollar per square unit of 
”. The value of A
depends not only on the amount of money (e.g., U.S. dollars,
Euros, British pounds) the researcher is willing to pay for a
sufficiently small deviation from the parameter (i.e., the maximum
absolute difference desired between the population value and its
estimate), but also on the value of 
. Hence, holding everything
else constant, the experimenter will pay less for a larger value of

, and pay more for a smaller value of 
. One may note that the
value of 
 specified by the researcher is based on the study’s goals
and for the specified maximum probable error, 
, the amount that
the experimenter will be paying is context specific. In exploratory
studies, for example, one may allow 
 to be larger than, for
example, a confirmatory study in which important decisions will
follow based on the size of the effect. Further details of the
interpretation of A and the method more generally in the context of
the coefficient of variation, are considered in Chattopadhyay and
Kelley (in press). Another interpretation of A from a decision
theoretic perspective, yet one that is conceptually similar, is given
in Mukhopadhyay and De Silva (2009).

General statistical theory shows that, holding everything else
fixed, an estimate of a parameter based on a larger sample size is
preferable to an estimate of the same population parameter that is
based on a smaller sample size. This is the case because the
probability is higher that an estimate is closer to the population
value when the sample size is larger as compared with the estimate
being based on a smaller sample size. In our case, an estimate of
� based on a larger sample size is preferable to an estimate based
on a smaller sample size, holding everything else constant, because
the sampling distribution of dñ has a higher concentration (density)
around � and a lower concentration in the tails of the sampling
distribution of dñ as compared with the sampling distribution of dñ�

(ñ� � ñ). As a result, holding everything else constant, the mean
square error of dñ, E[(dñ � �)2] is smaller than the mean square
error of dñ�.

Statistically, the accuracy of an estimator is defined as the MSE,
which is equal to the sum of its variance and the square of its bias
(e.g., Rozeboom, 1966; see also Kelley et al., 2003). For an
unbiased estimator, the precision, which is the reciprocal of vari-
ance, and accuracy are equivalent concepts. As has been discussed
in the literature (e.g., Hedges, 1981; Hedges & Olkin, 1985), dñ is
a biased estimator of �. Correspondingly, E[dñ � �] 
 0 and
E[(dñ � �)2] is the MSE of dñ. By applying Taylor’s theorem in
the approximate expression of MSE as deduced in Hedges
(1981) and proved here in Lemma 1, the expression of the MSE
of dn is given by

E[(dñ � �)2] � � 1
n1

� 1
n2� � �2

2(n1 � n2)
. (7)

It can be seen from the first component of the right-hand-side of
Equation 7 that the MSE is inversely related to the sample size.
Therefore, an increase in total sample size will decrease the MSE
and thus increase the probability that dñ will be between [� � 
,
� 	 
], holding everything else constant. However, in practice,
increasing sample size increases the cost of collecting data (i.e.,
sampling cost), holding everything else constant. Thus, a larger
sample size will increase the accuracy of the estimator but will
require a higher sampling cost. This is an important issue and at the

heart of our work here. The specific problem we solve is finding
the minimum sample size required to estimate � to a specified level
of accuracy while taking into consideration the sampling cost.

Minimum Risk Point Estimation Problem

As discussed, the MSE of dn (i.e., E[(dn � �)2]) becomes
smaller as the sample size grows larger; that is, as we get more and
more information about the unknown population standardized
mean difference, the accuracy improves. However, improving
accuracy (i.e., reducing the MSE) leads to a larger sampling cost.
If smaller sampling cost is desired, then a smaller sample size can
be taken, but this in turn will increase the MSE. Our goal is to find
an optimization procedure to ensure maximum accuracy while
minimizing sampling cost. By sampling cost we mean the actual
cost, such as dollars, associated with collecting each additional
observation.

To account for (a) A (i.e., the price one is willing to pay so that
the maximum probable error in estimating the true standardized
mean difference is 
); (b) accuracy of an estimator (i.e., MSE); and
(c) the sampling cost, we define a function, often called a risk
function, that simultaneously considers these three factors. The
risk function is defined as

Rñ(�) � AE[(dñ � �)2] � c(n1 � n2), (8)

where c is the cost of sampling a participant, c(n1 	 n2) is the cost
of sampling n1 observations from Group 1 and n2 observations
from Group 2, and A depends on 
2. The risk function gives, on
average, what can be called the total expected cost of estimating
the population standardized mean difference using n1 observations
from Group 1 and n2 observations from Group 2 with a maximum
probable error 
. Note that this “total expected cost” is an “ex-
pected cost” due to the expectation in Equation 8. Further, note
that the “total expected cost” is a “total” because it considers the
price one is willing to pay for a sufficiently accurate estimate, not
just the sampling cost (i.e., c(n1 	 n2)). It is this risk function of
Equation 8 that we seek to minimize, as minimization of this
function is what leads to a research design framework that con-
siders the three important factors: A, the mean square error, and
sampling cost. For more details regarding this risk function, we
refer readers to Sen (1981).

For example, if an interviewer spends 1 hr with a participant at
a rate of $15 per hr and a proprietary exam is used that costs $5 per
participant, the cost, c, is $20 (assuming no other costs for sam-
pling). In this scenario, if the researcher is willing to pay $1,000 to
have the maximum probable error between the unknown popula-
tion standardized mean difference and its estimate be 
 � .10, then
A � $1,000/0.12 � $100,000. Consider the funding for a grant in
which the effectiveness of a treatment is to be evaluated. One
could conceptualize the cost of obtaining (a) the point estimate; (b)
hypothesis test; and (c) confidence interval (which are usually
regarded as the primary outcomes of a study) as being worth the
total cost of the study. In particular, to obtain these three values, it
costs some amount, which is the total amount funded by the grant
agency.

To put into perspective the idea of the cost associated with the
outcomes that relate directly to the effectiveness of a treatment,
consider the 13 grants funded by the Institute of Education Sci-
ences (IES; the research arm of the U.S. Department of Education)
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in 2013 that are classified as “Efficacy and Replication” (using
http://ies.ed.gov/funding/grantsearch with the
appropriate options selected). These 13 grants totaled $42,751,921
in funds granted by IES. The total sample size of the primary unit
of interest (e.g., students, teachers, families) was 20,781, for a cost
of $2,057.26 per research participant. Our point here is to say that
it is not unreasonable to consider a price one is willing to pay, in
the literal sense, for an accurate measurement of the primary
outcome of interest. Note that if the researcher wants an estimate
with expectation closer to the true value �, 
 needs to be smaller.
Thus, a higher cost would be necessary because it will lead to a
larger sample size, holding everything else constant.

In some ways, we might have conceptualized the goals of the
studies too broadly, as the main outcome of interest for some
researchers is a dichotomous variable, namely, “was the null
hypothesis of no effect rejected?” Our work is consistent with
recommendations from professional organizations, methodolo-
gists, editors, et cetera, which is to go beyond the results of a null
hypothesis and consider estimation and accuracy of the effect sizes
that drive research questions (see, e.g., Kelley & Preacher, 2012
for a review and references).

Using the approximate expression of MSE of dñ from Equation
7, the approximate risk function defined in Equation 8 becomes

Rñ(�) � A�� 1
n1

� 1
n2� � �2

2(n1 � n2)
� � c(n1 � n2). (9)

This gives the approximate total expected cost to estimate the
unknown population standardized mean difference using estimator
dñ from n1 observations from Group 1 and n2 observations from
Group 2 with a maximum probable error 
 (i.e., it is the approx-
imate risk). Our specific objective in this article is to find the
sample size for which the approximate risk function defined in
Equation 9 is minimized. This problem is known as the minimum
risk point estimation problem (e.g., see Chattopadhyay & Kelley,
in press; Ghosh & Sen, 1991; Sen, 1981).

For not too small sample sizes, provided �2 is known, the
approximate risk function in Equation 9 is minimized if

nc �	 A
2c� (10)

individuals are selected from Groups 1 and 2, where,

�2 � �2 � �2

4 �. (11)

(this is proved in Lemma 2 in Appendix A).3 That is, nc is the
theoretically optimal (true) sample size that should be collected
from each of the two groups in order to minimize the total
expected cost to estimate � if, in fact, the true value of � was used.
By “theoretically optimal” we mean that, if the true parameter(s)
were known and all assumptions met, nc is the sample size that
satisfies the goal.

Using Equation 9, the approximate total expected cost of esti-
mating the population standardized mean difference (�) using a
total sample of size 2nc, is denoted as,

Rnc
(�) � A

nc
�2 � 2cnc � 4cnc, (12)

where, �2 is as defined in Equation 11. Thus, nc is the theoretically
optimal sample size from each group that is required to achieve a
minimum risk if � were known. See Figure 2, which shows how
risk is a function of sample size for a specified situation.

Here, nc � 	 A
2c� is a nearly exact analytic solution and would

be the required sample size from both groups if � was known.
However, we note that we are talking about estimating �; if one
knew the value of � it would not need to be estimated from a
sample. Hence, for estimating the unknown population standard-
ized mean difference, �, it will not be a reasonable choice to use
for planning sample size, as it will almost always be unknown. Our
method minimizes the total expected cost with the use of a purely
sequential procedure in which the required sample size will not be

3 By “not too small sample sizes” here and elsewhere we mean a sample
size that is large enough so that the noted properties hold. The exact value
of “not too small” is context specific.
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Figure 2. Risk (Equation 8) as a function of sample size for � � 0.5, A � 1,125/
2, 
 � 0.15, and c � 5.
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fixed in advance. The theoretically optimal sample size will nec-
essarily be unknown because we assume that a researcher does not
know � before the start of the study. We prove statistically and
demonstrate with a Monte Carlo simulation study in a later section
that our method yields a sample size that closely approximates nc

in applied situations (i.e., when � is unknown) and also that the
cost of estimating the population standardized mean difference
using sequential procedure is close to the theoretical total expected
cost given in Equation 12.

Sequential Optimization Procedure

As opposed to fixed-sample procedures, in sequential proce-
dures, the sample size is not fixed in advance. No fixed sample-
size procedure can provide a solution to the minimum risk point
estimation problem (e.g., see Chattopadhyay & Kelley, in press;
Dantzig, 1940; De & Chattopadhyay, 2015). Here, we propose a
purely sequential procedure to estimate the population standard-
ized mean difference.

In a sequential procedure, the estimation of parameter(s) con-
tinues in stages. In the first stage, a small sample called a pilot
sample is observed, and then the parameters are estimated to check
a predefined condition in a predefined rule, which is known as the
stopping rule. Further sampling of observations is carried out if the
predefined condition is not met, with further sampling stopped
once the predefined condition is satisfied. At a particular stage, if
the predefined condition is not met, the researcher collects one or
more additional observations and then estimates the parameter of
interest. This process is repeated until the predefined condition is
met. For details about the general theory of sequential estimation
procedures, we refer interested readers to Sen (1981), Ghosh and
Sen (1991), Mukhopadhyay and Chattopadhyay (2012), and Chat-
topadhyay and Mukhopadhyay (2013).

As discussed, the theoretically optimal sample size, nc, required
to minimize the function that considers the approximate mean
square error and the sampling cost is unknown because it depends
on �, which is itself unknown in practice. Thus, in order to estimate
nc, an estimator of � is desired. For the ease of notation, we will
henceforth denote dn as the estimator of the population standard-
ized mean difference and sn as the pooled sample standard devi-
ation when n1 � n2 � n observations are drawn from each of the
two groups.

Recall from Equation 11 that �2 depends on �. Because � is
unknown, to get an estimator of � based on n observations drawn
from both groups, we replace � with the estimator dn � �X� 1n �

X� 2n� ⁄sn, rewritten Equation 2. We define an estimator of �2 as

Vn
2 � 
2 �

dn
2

4
�. (13)

We now develop an algorithm to find an estimate of the optimal
sample size via the purely sequential estimation procedure.

Stages of Implementing the Methods

Stage I. First, scores of m randomly selected individuals are
collected from each of the two groups. Thus there are m observations
collected from Group 1 and m observations collected from indi-
viduals belonging to Group 2. Following Chattopadhyay and Kelley
(in press) we recommend using the pilot sample size m given as

m � max{m0, >(A ⁄ (2c))1 ⁄ (2�2
)?}, (14)

where m0(	4) is the least possible sample size required to estimate
�2 and >·? is the ceiling function of the term—the ceiling being the
smallest integer not less than (A/(2c))1/(2	2�). Based on this pilot
sample of size m, an estimate of �2 is obtained by computing Vm

2 .

If m � >	 A
2c�Vm � m�
�?, then proceed to the next step.

Otherwise, if m 	 >	 A
2c�Vm � m�
�?, stop sampling and set the

final sample size equal to 2m. We will discuss the use of the term
m�� and choice of � momentarily.

Stage II. Obtain m= additional scores from each group, where
we set m= � 1 in general (and here specifically) randomly selected
individuals (different from those who were selected during Stage I)
belonging to a particular group. Thus, there are m 	 m= observa-
tions from each group (i.e., the pilot sample size and an additional
m= observations per group, for a total sample size of 2[m 	 m=]).
If m � m� 	 >	 A

2c�Vm�m� � �m � m���
�? stop further sampling
and set the final sample size equal to 2(m 	 m=). If m � m� �

>	 A
2c�Vm�m� � �m � m���
�?, then continue the sampling pro-

cess by sampling m= more individuals per group.
This process of collecting the same number of observations in

each stage after Stage I continues until there are Nc observations

from each group such that Nc 	 >	 A
2c�VNc

� Nc
�
�?. At this

stage, we stop further sampling and report that the final sample
size is 2Nc. In other words, the final sample size for each group
is Nc.

At each stage of the algorithm, we check whether the sample
size collected up to that stage is at least as large as the estimated
value of nc using observations collected until that stage. We
recommend researchers use software, such as that we provide
using the R language, to implement our procedure.

Based on the algorithm just outlined, a sampling stopping rule
can be defined as follows:

Nc is the smallest integer n( 	 m) such that

n 		 A
2c�Vn � n�
�, (15)

where � � (0, 1/2) and the term n�� is a correction term which
ensures that the sampling process does not stop too early for the
optimal sample size because of the use of the approximate expres-
sion. For details about the correction term, refer to De and Chat-
topadhyay (2015), Sen and Ghosh (1981), or Chattopadhyay and
Kelley (in press). Note that for not too small sample sizes, (Vn 	
n��) converges to �. We suggest, for practical purposes, � � 0.49.
However, we note that � can take on other values.4 Figure 3
presents a flowchart which describes the sequential procedure that
we developed.

Characteristics of Our Sequential Procedure:
A Summary

If observations are collected using Equation 15, sampling is
guaranteed to be eventually terminated, which is proved in Lemma

4

For not too small sample size, 	2 �
dn

2

4 � n�
 converges to

	2 � �2

4 . Thus, the convergence rate increases as � increases. So a higher
value of �, for example � � 1, is a choice. Now, if one uses a value of �
higher than 0.5, Theorem 2 will not be satisfied.
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3 in Appendix A. For a given cost c per observation, the risk
function for using the estimator of the population standardized
mean difference as defined in Equation 2, based on the final
sample size Nc, is given by

RNc
(�) � AE[(dNc

� �)2] � 2cE[Nc]. (16)

Theorems 1 and 2 proved in Appendix A are very important.
Theorem 1 indicates that, under appropriate conditions, our purely

sequential procedure samples on an average nc observations
from each group. Theorem 2 ensures that, on average, the cost
of estimating population standardized mean difference using a
total of 2Nc observations is close to the theoretically minimum
cost, Rnc

� ���, defined in Equation 12. What this means from a
practical perspective is that we were able to show that the proce-
dure we developed will, on average, produce the (a) theoretically
optimal sample size and (b) cost almost the same as the theoreti-
cally minimum total expected cost.

Figure 3. Flowchart that describes the sequential procedure developed.
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Characteristics of the Final Sample Size:
A Simulation Study

We now demonstrate the properties of our method using a
Monte Carlo simulation study. The method, as discussed above,
with important proofs and lemmas in Appendix A, produces
what is statistically a nearly exact procedure. However, as our
aim here is to illustrate the properties of the final sample and the
distribution of final sample sizes, we provide the demonstration
that follows.

To implement the sequential procedure in this Monte Carlo
demonstration, we fix the cost of sampling each unit (e.g., person)
in both populations to be c � $1. Suppose that the researcher is
willing to pay $1,125 so that the absolute difference between the
point estimate of the standardized mean difference, dñ and the true
value, �, will be at most 
 � 0.15, and correspondingly A �
$50,000(� 1,125/0.152). Here, we use � � 0.49 as suggested in
the previous section. We compute the pilot sample size by using
the pilot sample size formula given in the algorithm mentioned in the
previous section: m � max{4, >(50,000/(2 � 1))1/(2	2�0.49)?} � 30
(the pilot sample size is 30). In the other scenario, we used the values
of A � $40,000/0.202 and c � $500 for 
 � 0.20 and then similarly
computed the pilot sample size, m for both the combinations of A and
c. We use several combinations of A, c and 
.

We then implement the purely sequential procedure and, for the
sample size (N), we estimate the mean sample size (N

�
), the

standard error (s(N
�

)) of N, the standardized mean difference (d�N),
the proportion of times |dN � �| � 
 (p), the risk efficiency (r�N) and
its standard error (s(r�N)) based on 5,000 replications via Monte
Carlo simulations by drawing random samples from several nor-
mal distributions. We summarize our findings in Tables 1–4. The
eighth column gives OSR, which represents the oversampling rate
computed by �N � nc� � 100%⁄nc. In each replication, we first
draw m observations from the normal populations and then follow
the algorithm of the purely sequential procedure by drawing m=
observations from each group at each stage after the pilot stage.

We summarize our findings in Tables 1–4. Please note that Table
1 and Table 3 describe scenarios in which after the pilot stage,
scores from m= � 1 individual belonging to each group added.
Table 2 and Table 4 describe, respectively, scenarios in which,
after the pilot stage, scores from 20 and 10 individuals belonging
to each group are added at each stage.

From the fifth column of Tables 1–4, we find that the ratio of
the average final sample size and the optimal sample size, nc, is
close to 1, which is the true value for an exact procedure. The last
column suggests that the ratio of the risk of estimating the stan-
dardized mean difference, �, using the purely sequential procedure
is close to the optimal sample size risk, Rnc

. Thus, we find that our
purely sequential procedure works remarkably well in small to
large sample size scenarios. In fact, for Table 1, none of the
scenarios yielded more than 5% average on the sample size.

For small sample size scenarios, for Tables 3–4, the largest
oversampling rate occurs in the situation in which the mean of the
sample size from our procedure is 56.3680, whereas the theoreti-
cally optimal value is 47 (and thus the relative discrepancy is
(56.3680 � 47)/47 � 0.1993, implying that there is an average of
19.93% oversampling in this small sample size condition). Thus, in
the worst relative case, the average sample size from the procedure
was about nine more (per group) compared with what was theo-
retically ideal.

Using our sequential method, as discussed, we found the sample
size required to obtain an estimate that simultaneously considered
accuracy and cost (both structural and sampling). We note that the
quality of estimation was not an issue and was not affected by the
sequential procedure, due to the consistency property of the esti-
mator used for the standardized mean difference (i.e., Equation 2).
Regarding the effectiveness of the procedure in terms of accuracy,
which was only one of the two dimensions we use for the optimi-
zation, cost being the other, our procedure was quite effective. In
the larger sample size scenarios (Table 1 and Table 2), around 90%
of the replications in each of the conditions had the absolute
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Figure 4. Bias in estimating � using the estimator dn for equal sample sizes.
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difference between the estimated standardized mean difference and the
population standardized mean difference less than the specified
value of 
. For the smaller sample size scenarios (Table 3 and
Table 4), the percentage of replications in each of the conditions
had the absolute difference between the estimated standardized
mean difference and the population standardized mean difference
less than the specified value of 
 was around the 60–70 percent
mark. In fact, across Tables 1–4 in the document and Tables
S1–S6 in the supplemental materials, the condition in which de-
sired accuracy was smallest was for very large delta (� � 1.60),
which had the theoretically optimal sample size of 52. In this
scenario 64.10% of the replications were smaller than desired.
However, to be clear, we did not optimize estimation based on
accuracy alone, as our procedure optimized estimation based on
accuracy and cost.

Application

Here we provide an example for illustrative purposes based on
a recent study on the effect of same language subtitling (SLS) on
reading ability (see Kothari, 2008; Kothari & Bandyopadhyay,
2014). SLS is a concept of subtitling the dialogue in movies or TV
programs to the same language. This is literally “closed caption-
ing,” but with a different purposes. Whereas closed captioning
displays the spoken language as text, such as for those that have
hearing impairments or when the sound cannot be heard in a
particular environment, SLS is meant to facilitate learning the
written representation of a language that is already known ver-
bally. That is, consider the case in which someone understands
spoken English but understands little written English. SLS is
meant to increase knowledge of the written representation of

Table 1
Estimated Average Final Sample Size With m= � 1, A � $50,000, c � $1

Distribution �
N
�

nc N
�

/nc

d�N r�N
r�N

Rnc OSRs(N
�

) p s�r�N�

Group 1: N(5, 4) 0 235.0418 224 1.0493 �.0018 895.9990 1.0000 4.93%
Group 2: N(5, 4) .0029 .8918 .0098
Group 1: N(5.2, 4) 0.1 235.1774 224 1.0499 .1022 896.5703 1.0006 4.99%
Group 2: N(5, 4) .0056 .8930 .0172
Group 1: N(5.4, 4) 0.2 235.6276 225 1.0472 .1975 898.2326 .9980 4.73%
Group 2: N(5, 4) .0093 .8846 .0311
Group 1: N(5.8, 4) 0.4 237.3000 226 1.0500 .4002 904.8876 1.0010 5.00%
Group 2: N(5, 4) .0150 .8928 .0590
Group 1: N(6.6, 4) 0.8 243.7522 233 1.0461 .8015 931.1255 .9991 4.61%
Group 2: N(5, 4) .0287 .8832 .1158
Group 1: N(8.2, 4) 1.6 267.8542 257 1.0422 1.6025 1,029.2360 1.0012 4.23%
Group 2: N(5, 4) .0535 .8750 .2168

Note. N(·, ·) represents a normal distribution with the first parenthetical value the population mean and the second the population variance; � is the
population standardized mean difference; N

�
is the mean final sample size; nc is the theoretically optimal sample size is the population parameters were

known; d�N is the mean standardized mean difference; p represents proportion of times |dN � �| � 
; r�N is the mean risk; OSR is the oversampling rate (i.e.,
(N � nc)/nc � 100).

Table 2
Estimated Average Final Sample Size With m= � 20, A � $50,000, c � $1

Distribution �
N
�

nc N
�

/nc

d�N r�N
r�N

Rnc OSRs(N
�

) p s�r�N�

Group 1: N(5, 4) 0 250 224 1.1161 .0020 900.4087 1.0049 11.61%
Group 2: N(5, 4) .0000 .9038 .0082
Group 1: N(5.2, 4) 0.1 250 224 1.1161 .1001 900.8966 1.0055 11.61%
Group 2: N(5, 4) .0000 .9058 .0148
Group 1: N(5.4, 4) 0.2 250 225 1.1111 .1971 902.3313 1.0026 11.11%
Group 2: N(5, 4) .0000 .9124 .0258
Group 1: N(5.8, 4) 0.4 250 226 1.1062 .3999 908.3985 1.0049 10.62%
Group 2: N(5, 4) .0043 .9016 .0135
Group 1: N(6.6, 4) 0.8 250.0280 233 1.0731 .8026 932.6694 1.0007 7.31%
Group 2: N(5, 4) .0080 .8868 .0274
Group 1: N(8.2, 4) 1.6 274.6400 257 1.0686 1.599 1,030.3503 1.0023 6.86%
Group 2: N(5, 4) .1194 .8806 .2247

Note. N(·, ·) represents a normal distribution with the first parenthetical value the population mean and the second the population variance; � is the
population standardized mean difference; N

�
is the mean final sample size; nc is the theoretically optimal sample size is the population parameters were

known; d�N is the mean standardized mean difference; p represents proportion of times |dN � �| � 
; s(·) is the standard deviation of the parenthetical value;
r�N is the mean risk; OSR is the oversampling rate (i.e., (N � nc)/nc � 100).
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English, ultimately to improve reading ability. The studies on the
impact of SLS showed that continuous exposure to SLS results in
improved reading skills (e.g., see Kothari, 2008). The title of
Kothari (2008) helps to illustrate the potential impact: Let a Billion
Readers Bloom: Same Language Subtitling (SLS) on Television for
Mass Literacy.

In a study on SLS effectiveness, Kothari and Bandyopadhyay
(2014) divided schoolchildren in India who were between 6 and
14 years of age into two groups: High-SLS and Low-SLS. The
students were exposed to their assigned SLS program either
regularly for the High-SLS group, or rarely for the Low-SLS
group. In each case the children knew spoken Hindi but may not
have known much written Hindi. For details of the SLS imple-
mentation, see Kothari and Bandyopadhyay (2014). For pur-
poses of our example, we focus only on a single reading
measure, which is decoding 22 simple two-syllable words. Each
student is measured on a scale between 0 to 22 based on their

performance, with 0 indicating all words missed and 22 indi-
cating a perfect score. The standardized mean difference is most
useful here, as compared with the (unstandardized) mean dif-
ference, because the researchers wish to obtain a measure not
specifically tied to the 22 word scale. That is, the mean differ-
ence scaled in terms of the common standard deviation is the
outcome of interest (i.e., d).

Suppose that the research goal is to obtain an accurate estima-
tion of the impact of SLS on reading ability. Understanding and
communicating the magnitude of the effect is thought to be im-
portant because tax revenue is being spent on implementing SLS to
increase literacy and also to increase reading skills in Hindi in
India. The study was facilitated by national TV broadcaster Door-
darshan (e.g., see Kothari et al., 2002, 2004). As is typical when
dealing with policy issues, there are competing priorities and thus
funded projects generally need to demonstrate the size of their
effect in order to continue funding priorities.

Table 3
Estimated Average Final Sample Size With m= � 1, A � $1,000,000, c � $500

Distribution �
N
�

nc N
�

/nc

d�N r�N
r�N

Rnc OSRs(N
�

) p s�r�N�

Group 1: N(5, 4) 0 50.0210 45 1.1116 .0010 90,204.8500 1.0023 11.16%
Group 2: N(5, 4) .0020 .6818 4.2475
Group 1: N(5.2, 4) 0.1 50.0392 45 1.1119 .1072 90,268.4700 1.0030 11.19%
Group 2: N(5, 4) .0028 .6822 5.5749
Group 1: N(5.4, 4) 0.2 50.0964 45 1.1133 .2026 90,425.9100 1.0047 11.33%
Group 2: N(5, 4) .0043 .6918 7.9303
Group 1: N(5.8, 4) 0.4 50.3882 46 1.0954 .4027 91,074.5500 .9899 9.54%
Group 2: N(5, 4) .0078 .6906 13.1353
Group 1: N(6.6, 4) 0.8 51.6882 47 1.0997 .8004 93,670.5200 .9965 9.97%
Group 2: N(5, 4) .0129 .6766 25.1307
Group 1: N(8.2, 4) 1.6 56.4876 52 1.0863 1.6121 103,555.9000 .9957 8.63%
Group 2: N(5, 4) .0239 .6410 48.0637

Note. N(·, ·) represents a normal distribution with the first parenthetical value the population mean and the second the population variance; � is the
population standardized mean difference; N

�
is the mean final sample size; nc is the theoretically optimal sample size is the population parameters were

known; d�N is the mean standardized mean difference; p represents proportion of times |dN � �| � 
; r�N is the mean risk; OSR is the oversampling rate (i.e.,
(N � nc)/nc � 100).

Table 4
Estimated Average Final Sample Size With m= � 10, A � $1,000,000, c � $500

Distribution �
N
�

nc N
�

/nc

d�N r�N
r�N

Rnc OSRs(N
�

) p s�r�N�

Group 1: N(5, 4) 0 51 45 1.1333 �.0010 90,408.4326 1.0045 13.33%
Group 2: N(5, 4) .0000 .6878 3.7785
Group 1: N(5.2, 4) 0.1 51.0020 45 1.1334 .1052 90,470.3474 1.0052 13.34%
Group 2: N(5, 4) .0020 .6838 5.0445
Group 1: N(5.4, 4) 0.2 51.0280 45 1.1340 .2007 90,607.7000 1.0067 13.40%
Group 2: N(5, 4) .0075 .6980 7.5948
Group 1: N(5.8, 4) 0.4 51.3180 46 1.1156 .3956 91,271.1800 .9921 11.56%
Group 2: N(5, 4) .0248 .6882 16.2145
Group 1: N(6.6, 4) 0.8 56.3680 47 1.1993 .7905 95,000.9000 1.0106 19.93%
Group 2: N(5, 4) .0071 .6934 38.5825
Group 1: N(8.2, 4) 1.6 61.0520 52 1.1741 1.61513 104,676.5000 1.0065 17.41%
Group 2: N(5, 4) .0102 .6530 41.0473

Note. N(·, ·) represents a normal distribution with the first parenthetical value the population mean and the second the population variance; � is the
population standardized mean difference; N

�
is the mean final sample size; nc is the theoretically optimal sample size is the population parameters were

known; d�N is the mean standardized mean difference; p represents proportion of times |dN � �| � 
; s(·) is the standard deviation of the parenthetical
value; r�N is the mean risk; OSR is the oversampling rate (i.e., (N � nc)/nc � 100).
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Although the size of the effect is important for such studies,
there are only limited resources available for the data collection
and thus consideration of the sample size is important. Collecting
more data than necessary could be argued to be a waste of
resources (e.g., obtained from taxes). However, a sample that is not
large enough to produce an estimate with as much accuracy as is
needed is also a waste of resources if the study is found to be
“inconclusive.” Thus, the research team seeks a balance between
the estimation accuracy (i.e., small mean square error) of the
standardized mean difference and the study cost by considering
sampling cost (i.e., the total amount of money spent on data
collection).

First, we need to consider the sampling cost. The assessment of
the decoding of the 22 words is performed by a surveyor on
in-school visits. Suppose on any school day, the surveyor is
allowed to interview students for two hours. In two hours suppose
it is possible to interview 10 students individually who are between
6 and 14 years of age. For each day, the surveyor will be given $24
including travel cost and an hourly wage (that is, $24 total for the
2 hr of work and travel costs). Thus, the sampling cost per student
is estimated to be $2.40 (i.e., c � $2.40).

Second, we need to consider the maximum probable error (
) in
estimating the population standardized mean difference. Because
accurate estimation of the population standardized mean difference
is desired, suppose that the researcher team selects a value of
epsilon of .50, as they do not wish the estimated standardized mean
difference to be more than 0.50 units from the population value.
Thus, 
 � 0.5.

Third, the research team needs to consider the price they are
willing to pay in order for the estimate to be sufficiently accurate.
This is an important consideration because, along with 
, the
amount of investment in the study’s success determines A. The
cost the research team is willing to pay in order to have a suffi-
ciently narrow estimate (i.e., in order for 
 to not exceed 0.5) is
$2,500. The value of $2,500 is based on the amount of funds that
they are willing to invest in the success of the study. Thus, the
value of A is the price they are willing to pay for a sufficiently
small 
 and 
 itself: A � $10,000(� $2,500/0.52). In words, A can
be described as the price willing to pay per squared unit of the
maximum probable difference (i.e., 
).

Using the values of c(� 2.40) and A(� 10,000), we first obtain a
pilot sample size, m, to be drawn from both groups. Here, the pilot
sample size from each group will be m � max{4,>(10,000/(2 �
2.4))1/(2	2�0.49)?} � 13. Using the MBESS R package, the mr.smd()
function can be used to obtain the pilot sample as follows:

require(MBESS)
mr.smd(pilot=TRUE, A = 10000, sampling
.cost=2.4, gamma=.49)

where R code is represented in typewriter font to distinguish it
from regular text and punctuation has been removed so as to not
confuse it with code. Note that the code shown is submitted
directly into the R console at the prompt, which is “�” by default.
Further, the code requires that the MBESS R package (Kelley,
2007a; 2007b; 2016) be installed, which can be done with the
following code on most systems: install.packages("M-
BESS"). To be clear here, the pilot sample size of 13 implies that
there are 26 observations total, 13 per group.

Consider the hypothetical data collected as part of the pilot
sample, which can be entered into R as a vector for analysis
purposes as follows:

High.SLS <- c(11, 7, 22, 13, 6, 9, 11, 16,
12, 17, 14, 8, 16)

Low.SLS <- c(3, 6, 10, 8, 14, 5, 12, 10, 6,
8, 13, 5, 9)

Note that one can apply the standardized mean difference function,
smd(), in order to obtain the estimated value of the standardized
mean difference as follows,

smd(Group.1=High.SLS, Group.2=Low.SLS)

which returns a d of 1.021484.
The function mr.smd() implements a check to determine if

the criterion specified by the method (i.e., the stopping rule) we
proposed has been satisfied (i.e., Equation 15), which requires the
user to specify d, the sample size upon which d was calculated
(i.e., n, which is assumed equal across group), A, c, and �
(which, recall, we suggest be .49). Thus, for our situation, in
which we have d � 1.021484, n1 � n2 � n � 13, A � $10,000,
c � sampling.cost � $2.40, and � � .49, the code can be
implemented as:

mr.smd(d=1.021484, n=13, A=10000,
sampling.cost=2.40)

which in this case returns FALSE, indicating that the stopping rule
of Equation 15 was not satisfied. An alternative approach is to use
the smd() function within the mr.smd() function as:

mr.smd(d=smd(Group.1=High.SLS, Group.2=
Low.SLS), n=13, A=10000, sampling.cost=
2.40)

At this point we have not said anything about m=, which is the
number of observations added at each stage of the sequential
procedure. For now, suppose that m= � 1, which means that we
will add a single observation and then check the stopping rule
again.5 Because the stopping rule is not satisfied, another obser-
vation per-group is collected yielding n � 14, and the stopping rule
is evaluated again. For example, if a new observation from the
High.SLS was collected as 10 and a new observation from
the Low.SLS group was collected as eight, these values would be
included in the data vector for each group:

High.SLS <- c(11, 7, 22, 13, 6, 9, 11, 16,
12, 17, 14, 8, 16, 10)

Low.SLS <- c(3, 6, 10, 8, 14, 5, 12, 10, 6,
8, 13, 5, 9, 8)

The stopping rule could then be applied again with the new data:

mr.smd(d=smd(Group.1=High.SLS, Group.2=
Low.SLS), n=14, A=10000, sampling.cost=
2.40)

5 We realize that in some situations it is as easy to collect multiple
observations as it is a single observation, such as might be the case in a
classroom. In other situations, however, such as in online data collection
sites, each observations is done separately. We illustrate here using m= �
1 but discuss the implications if, for example, m= � 5 or some other value.
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which is also FALSE (again, meaning that the stopping rule is not
satisfied). This process continues until the stopping rule is satisfied.

Suppose that data are continued to be collected and the stopping
rule evaluated after each observation per group is collected. Further
suppose that n � 75 (implying the total sample size is 150) and
calculate d � 1.00. Then, when we implement the function we get

mr.smd(d=1.00, n=75, A=10000,
sampling.cost=2.40)

TRUE, which was FALSE for all smaller sample sizes. Thus, our
sampling stops at this point and we have obtained our sequential
estimate of the standardized mean difference based on both its
accuracy as well as cost considerations.

At the conclusion of the study we also suggest, as is widely
recommended in the literature, that the confidence interval for the
population standardized mean difference be given, which can be
obtained using MBESS as

ci.smd(smd=1.00, n.1=75, n.2=75,
conf.int = .95),

which returns a confidence interval with limits of 95%: CI .95 �
[.6588, 1.338].

Suppose, however, that instead of using m= � 1 as above, the
sample size at each stage of sampling is five (i.e., m= � 5),
meaning that at each stage of sampling an additional five obser-
vations are taken. In so doing, the pilot sample remains the same
(as m and m= are two separate entities and there is no requirement
that one is larger than the other. Other than the sample size
changing by 5 each time, the method proceeds in exactly the same
way as before. One may wonder which m= to choose. We are
noncommittal on this, as it is researcher specific; from a statistical
perspective m= is arbitrary. If sampling is being done in group
context, there would be no reason to set m= � 1. However, in
studies where the sampling can easily be with a single observation
at each state, it may pose little additional effort for a researcher to
input the datum value into a file and run the mr.smd() each time
data is input. In cases where the data collection procedure is
automated (e.g., online surveying tools), once data has been col-
lected, as part of the data storage process an R script can be run to
evaluate if sampling should continue.

Note that the study that served as our motivating example was
conducted in India. The cost of sampling and overall study cost
may seem quite different than study costs for studies conducted
elsewhere. Imagine that the sampling cost per student (i.e., c) were
10 times larger; A would also be 10 times larger. The final sample
size is the same because the multiplier cancels. Thus, the methods
we have developed are general and the researcher supplied values
(i.e., A, c, and 
) can be specified as needed for the particular
context and goals.

A General Scenario

There are situations in which the cost of collecting data or the
sampling cost per participant is different for two different groups
and due to this, the number of observations to be sampled from
each group is also different.

In a situation of unequal cost per participant across the groups,
we extend the methods from above to a general scenario. More
specifically, we now develop a method to find optimal sample
sizes for two groups such that the total expected cost of estimating

� (by using dñ) with a maximum probable error 
 is minimized, as
before, but now when the cost of sampling one observation from
both groups is different. By following the same technique, we
present an outline of the procedure to estimate the optimal sample
sizes for two groups without proof.

In this case, the total expected cost of estimating � (by using dñ)
using n1 observations from Group 1 and n2 observations from Group
2 with a maximum probable error 
 or the risk function is given as,

Rñ(�) � AE[(dñ � �)2] � (c1n1 � c2n2)

� A�� 1
n1

� 1
n2� � �2

2(n1 � n2)
� � (c1n1 � c2n2),

(17)

where c1 and c2(	c1) are the cost of sampling each observation
belonging to Groups 1 and 2, respectively. Here, without loss of
generality, we assume that the cost of sampling one observation in
Group 2 is more in Group 1.

The approximate total expected cost or the risk function in
Equation 17 can be minimized if n1

� individuals are selected from
Group 1 and n2

� individuals are selected from Group 2, where
n1

� and n2
� can be found by solving

n1
� ��A

c1
1 � �2

2
1 �� A
(c2 � c1)�n1

��2 � A��
1 ⁄ 2

(18)

and

n2
� � n1

�
1 �
(c2 � c1)�n1

��2

A
��1 ⁄ 2

, (19)

respectively. The above is proved in Lemma 6 in Appendix B.
Because � is unknown, we cannot use Equations 18 and 19 to find
the optimal sample sizes n1

� and n2
�. So, as before, we use a purely

sequential procedure to find an estimate of optimal sample sizes n1
�

and n2
�. Here we present an algorithm to find an estimate of the

optimal sample sizes. First, we define mij as the number of obser-
vations to be sampled for the ith group at the jth stage and we also
define m̃j as the total number of observations sampled until jth
stage.

Stage I

First, scores of m11 randomly selected individuals are collected
from Group 1 and m21 observations from Group 2, such that,

m11 � max�m0, >(A ⁄ (c1))
1 ⁄ (2�2
)?
 (20)

and

m21 � max�m0, ⎡m11
1 �
(c2 � c1)(m11)

2

A
��1⁄2⎤�, (21)

where � � 0.49 and m0(	4) is the least possible sample size
required to estimate �, where > ? is the ceiling function of the term
defined before. Based on this pilot sample of sizes m11 of Group
1 and m21 of Group 2, an estimate of � is obtained from m̃1 �

m11 	 m21 observations by computing dm̃1
. If m11 � >	 A

c1

�1 �
dm̃1

2

2 �1 � 	 A

�c2 � c1��m11�2 � A��1�1 ⁄ 2
� 	 A

c1
m11

�
?, then go to

the next step. Otherwise, if m11 	 >	 A
c1�1 �

dm̃1

2

2 �1 �
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	 A

�c2 � c1��m11�2 � A��1�1⁄2
� 	 A

c1
m11

�
?, then stop sampling and set
the final sample size equal to m̃1 � m11 	 m21.

Stage II

Obtain scores from m= randomly selected individuals (different
from those who were selected during Stage I) belonging to Group
1. Thus, there are m12 � m1 	 m= observations from Group 1.

Now, the sample size for Group 2 will be m22 � max�m21,>m1

�1 �
�c2 � c1��m12�2

A ��1 ⁄ 2

?
. So, obtain scores from m22 � m21 ran-
domly selected individuals from Group 2 in Stage II. Thus,
at the second stage, there is a total of m̃2 � m12 	 m22

observations in the study. If m12 	 >	 A
c1�1 �

dm̃2

2

2 �1 �

	 A

�c2 � c1��m12�2 � A��1�1 ⁄ 2
� 	 A

c1
m12

�
? stop, further sampling
and set the final sample size equal to m̃2 � m12 	 m22. If

m12 � >	 A
c1�1 �

dm̃2

2

2 �1 � 	 A

�c2�c1��m12�2�A��1�1 ⁄ 2
�

	 A
c1

m12
�
?, then continue the sampling process by sampling m=

more individuals for Group 1 and then compute sample size
needed for Group 2.

This process of collecting the same number of observations in
each stage after Stage I continues until there are N1 observations
from Groups 1 and N2 observations from Group 2 such that

N1 	 >	 A
c1�1 �

dN1�N2

2

2 �1 � 	 A

�c2 � c1��N1�2 � A��1�1 ⁄ 2
�

	 A
c1

N1
�
? and N2 computed using the value of N1. At this stage,

we stop further sampling and report that the final sample size is
N1 	 N2.

Thus N1 and N2 are the final estimated sample sizes that should
be drawn from Groups 1 and 2, respectively. This will minimize
the total expected cost of estimating � within a maximum probable
error, 
, in cases when the sample sizes and the sampling cost per
unit observation differs in both groups. If observations are col-
lected using the sequential procedure described in this section,
sampling from both groups is guaranteed to be eventually termi-
nated. This is proved in Lemma 7 in Appendix B.

Bounds on Necessary Sample Size

Upon careful examination of our tables, one may notice that as �
gets larger, nc increases, but it does not increase by much. Kelley and
Rausch (2006) discussed how, from the accuracy in parameter esti-
mation approach, the width of the confidence was affected by the size
of �, but only to a small extent. This characteristic has a useful
implication when considering sample size before a study is under-
taken.

We note that the larger the true population standardized mean
difference, the larger the mean square error. Suppose a researcher is
interested in using our approach but is uncertain what the necessary
sample size from this sequential procedure might be, especially to
consider if a sample size that large might be obtainable. By plugging
in a hypothetical value for �, A, and c, one can estimate the final
sample size, momentarily treating that the hypothetical value of � as
if it were the obtained sample estimate. This hypothetical value should
be the maximum absolute effect size that theory, practice, or the
literature would support. In so doing, this hypothetically “maximum
effect size” serves as an upper bound on the theoretically optimal
sample size. That is, if the true value of � is smaller than the

hypothetically “maximum” absolute effect size, then the optimal sam-
ple size will be smaller. Correspondingly, although the necessary
sample size might be smaller, one can obtain an upper bound on
sample size when, along with A, and c, a maximum absolute effect
size is plugged into the procedure.

Similarly, one could find a lower bound on the sample size by
plugging into the procedure for a minimum absolute effect size,
likely zero. Thus, by using minimum and maximum hypothetical
absolute effect sizes in the procedure, one can obtain bounds on the
sample size. Such a procedure can be used to help approximate or
choose sample size in research proposals, such as grant applica-
tions. Our experience is such that the sample size that is to be used
is included in the proposal. From a sequential perspective the final
sample size is unknown and thus cannot be specified because the
population parameters are not known. Nevertheless, by using the
procedure we outline above, in which the maximum and minimum
absolute effect sizes that the theory, practice, or the literature
would support, one can find what can be considered as a functional
lower and upper bounds on the study sample size. It should be
clear, however, that the proposal given for the lower and upper
bounds will likely not be the same sample size that is obtained in
a study in which the sample effect size is used to perform a check
to evaluate if optimization has occurred.

Discussion

The population standardized mean difference is a very popular
measure of difference between means in a standardized metric,
which quantifies the number of standard deviations the population
mean of Group 1 is away from the population mean of Group 2.
The accuracy of the estimator of the population standardized mean
difference increases as the mean square error (MSE) decreases.
Also, MSE decreases as the sample size increases holding every-
thing else constant, but increasing sample size from each group
will increase the total sampling cost. A cost function for estimating
the population standardized mean difference is defined, which
depends on both the MSE and the total cost of sampling. This cost
function needs to be minimized.

If the true value of � is known or hypothesized, our procedure
can be used as a fixed-n a priori sample size planning method, in
that if the population value of � is known, then so too is nc, which
can be the sample size a researcher uses, as would be done with an
a priori sample size planning method. That is, one could plan, in a
priori fashion, a sample size based on the known or, more likely,
hypothesized value of �. The planned sample size would be what
we have referred to as the theoretically optimal sample size. Of
course, in any given situation an obtained d, estimate of �, will be
smaller or larger than �, and thus the procedure may stop earlier or
later than would application of the sequential method as intended.

One nuance that we did not discuss is how to assign the 2
(groups) � m= (participants sampled at each step) to the two groups.
Sometimes, such as when groups are naturally formed (male/female;
republican/democrat; third grader/fourth grader), the participants are
simply placed into the appropriate group. However, in a randomized
design scenario, it is not obvious how the 2 � m= participants should
be assigned to a group. The most straightforward approach is by
(simple) randomization to group. Alternatively, the participants can be
matched, and then the matched pairs randomly assigned. Depending
on the context, one of these or other approaches may be appropriate,
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whereas other might be infeasible. For example, a matched pairs
approach may be impractical in a classroom environment in which a
researcher has only a limited time to collect data and no time to assess
the variable that would typically be used for matching. We leave the
nuance of assignment of the 2 � m= participants to researchers based
on their circumstance and methodologists who might more fully
explore assignment to group in sequential stages of a study. However,
one suggestion is to group the 2 � m= participants in a manner
analogous to how it would be done in a nonsequential procedure.

A potential limitation is that we regard the cost of data collection
per participant as a fixed value. There are some scenarios in which the
cost of sampling changes over time. We have ignored such a possi-
bility to focus on known and fixed cost. That being said, one could
modify our procedures so as to make the way in which cost is
considered more flexible. Additionally, our procedure only considers
the “cost of sampling,” rather than “cost to conduct the study.” That
is, there are cost factors that are beyond “cost of sampling.”

One question that some researchers may pose is “What value
should be chosen for 
?” There is not a simple answer to this
question, as it is based on the goals of the researcher. One value we
suggest researchers consider is 
 � .10, which, for example, would
allow dn to not likely differ by more than .10 units from �.
Consider a supposed value of � � .50. Having an estimate that is
between .40 and .60 is, likely, informative and useful in many
situations. This yields a sample estimate that is not unreasonably
far from the population value. Of course, 
 � .05 is better from an
accuracy perspective (though more expensive due to extra sam-
pling cost), and 
 � .01 better still. One could consider a percent-
age of a supposed true value of �. For example, once again
supposing that � � .50, obtaining an estimate within 10% of this
(supposed) value would suggest 
 � .05 as a reasonable value. Of
course, one may want to be within 5% of the true value, supposed
to be � � .50, which would then suggest that 
 � .025. None of
these values are wrong. We suspect that different research areas
will tend to develop their own norms for ideal or at least typically
chosen values of 
 � .05.

A fixed sample size procedure, which is widely recommended in
psychology and related disciplines, cannot be implemented to
minimize the total expected cost (4cnc), because it depends on the
population standardized mean difference, which is the same pa-
rameter that needs to be estimated. In this article, we develop a
purely sequential procedure which provides an estimate of the
sample size required to achieve sufficient accuracy with minimum
total expected cost. The purely sequential procedure developed
here ensures that the sampling procedure stops at an average
sample size that is very close to the theoretically optimal sample
size for each group. The theoretically optimal sample size, recall,
is the sample size that satisfied the procedure had the population
standardized mean difference been known. Our findings from the
Monte Carlo simulation study showed that our developments of
the purely sequential procedure led to a method that is very
effective. Further, we implement the methods in the freely avail-
able MBESS R package so that researchers can easily implement
the methods we have discussed. Thus, our sequential procedure
overcomes the biggest obstacle in sample size planning, which is
specifying the population value of the effect size. The idea of
choosing the population parameter before a study in a power
analysis has been referred to as the “problematic parameter”

(Lipsey, 1990, Chapter 3), because of the difficulty of choosing an
appropriate value upon which to base sample size.

As a reminder, even though our approach does not prevent one
from also testing a null hypothesis or forming a confidence inter-
val, these inferential procedures should only be done after the
stopping rule has been satisfied and more data is not being col-
lected. The “sample-evaluate-sample-evaluate” method poses no
problems for a sequential estimation procedure when a stopping
rule based on the accuracy of the estimate is being used. However,
if one were to approach hypothesis testing from a “sample-
evaluate-sample-evaluate” method, where the researcher’s stop-
ping rule was “stop when statistical significance is obtained” the
p-value would not be correct as there would be capitalization on
chance and there would be more Type I errors than the nominal
value of the Type I error rate (e.g., 5%) would suggest. Thus, our
stopping rule is fundamentally different than one that seeks the
obtainment of p-values less than the designated Type I error rate.
Using a sequential approach in which a hypothesis test is per-
formed at each step would yield p-values that capitalize on chance
and are therefore biased, making the results of such a hypothesis
test unusable for valid inference. For more details, we refer to
Brannath, Gutjahr, and Bauer (2012), Graf and Bauer (2011), and
Timmesfeld, Schäfer, and Müller (2007), among others. We note,
however, that although these methods can be used to mitigate the
inflation of the Type I error rate, to our knowledge, no such
methods exist for sequential stopping rules in a hypothesis testing
framework that simultaneously considers sampling costs.

Our work on sequential estimation for the standardized mean
differences does not consider the population parameter in isolation,
but rather it simultaneously considers cost. From a very practical
perspective, all studies should be concerned with the financial cost
of sampling. Without considering the actual cost, the sample size
planning procedure used may require a sample size that exhausts
the resources available to the researchers. One workaround that has
been used is to forgo conducting a study in which the sample size
planning procedure calls for a sample that is too large for the
available financial resources. This approach implies that cost is
given 100% of the weight. However, we believe that it is more
informative to consider both cost and accuracy simultaneously due
to their necessarily intertwined relationship. We believe that our
work has the potential to shift the way some studies are designed
and grants written, as cost considerations are often a major part of
the way in which empirical grants are evaluated.
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Appendix A

Lemmas and Proofs Justifying Developments

Lemma 1

The approximate expression of the mean square error (MSE) of
dn is

E[(dñ � �)2] � � 1
n1

� 1
n2� � �2

2(n1 � n2)
. (22)

Proof

Let n12 � � 1
n1

� 1
n2
�. Suppose, Tñ �

�X� 1n�X� 2n�

	n12s ��
dñ

	n12
� � t�,�,

where, t�,� represents a t distribution with � � n1 	 n2 � 2 degrees

of freedom (d.f.) and noncentrality parameter � �
��1 � �2�

	n12� �� �

	n12
�.

Using Equation (6d) in Theorem 1 in Hedges (1981), we have,

E[(dñ � �)2] � n12(Tñ � �)2 � n12�E�Tñ
2� � 2�E[Tñ] � �2�

� n12
�(1 � �2)
� � 2 � 2�2	�

2

��� � 1
2 �

���
2�

� �2�.

(23)

We note that � � n1 	 n2 � 2 (same as mi in Hedges, 1981) and
n12 � � 1

n1
� 1

n2
� (same as ñi in Hedges, 1981). As per Equation 6e

of Hedges (1981), c��� �
���

2�
	�

2

����1
2 � and as per our notation,

�2 � �2

n12
. Hedges (1981, p. 114) gave an approximation of

c��� � 1 � 3
4� � 1. Our derivations lead to a rewrite of Hedges’

expression but they also include the quantity of the remainder term

in order to derive what follows. In particular, using Taylor’s
theorem, we get,

1
c(�) � �1 � 3

4� � 1��1
� 1 � 3

4�
� O(��2) (24)

Plugging the value of 1/c(�) of Equation 24 in Equation 23 leads
to

E[(dñ� �)2] � n12� �
� � 2(1 � �2) � �2�1 � 2�1 � 3

4���� � O(��2)

�n12� �
� � 2(1 � �2) � 2�1 � 3

4���2 � �2� � O(��2)

(25)

For not too small sample size, the O(��2) is negligible and hence
can be ignored. □

If sample sizes for both groups are same, that is, n1 � n2 � n,
then,

E[(dn � �)2] �
�2 � �2

4 �
n . (26)

and the approximate expression of the MSE of dn will be

E��dn � ��2� � �2

n . Figure 4 shows the bias in estimating the � using
the estimator dn. B represents Bias. For example, B(�:1.6) repre-
sents the bias of estimating � using dn when true value of � is 1.6.
Thus, we find that as the sample size increases, the bias is negli-
gible and this decreases as the sample size increases.6

6 Our sequential methodology works well as shown in Tables 1–4 in
which the required theoretical sample size was between 45 to 52.

(Appendices continue)
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Lemma 2

The approximate risk function given in Equation 9 is minimized

if nc��	A
c �� individuals are selected from groups 1 and 2, where,

�2 � �2 � �2

4 �.

Proof

For proof, please refer to Lemma 6. □

Lemma 3

Under the assumption that � � �, for any c � 0, the stopping
time Nc is finite, that is, P(Nc � �) � 1.

Proof

Note that dn
2 is a consistent estimator of �2. Hence, the result can be

obtained from the fact that dn
2
¡ �2 almost surely as n ¡ �. □

Theoretical Results

In our notation c 2 0 means “c converges to a small positive
number greater than 0” that is c is always positive and cannot take
the value of exactly 0.

We formally state the results in the following theorems, with the
proofs of the two theorems being similar to the proof given in
Chattopadhyay and Kelley (in press) and De and Chattopadhyay
(2015).

Theorem 1

For the minimum sample size m0 	 4, the stopping rule in
Equation 15 yields that on average, the final sample size of our
procedure is asymptotically the same as the optimal sample size.
Mathematically, E(Nc/nc) ¡ 1 as c 2 0.

Proof

First, we introduce notation. Note from Equation 15 That

Nc 	 m�� �A ⁄ �2c��
1

2�1�
�� 	 m0 with probability 1.
For fixed 
,� � 0, note the following definitions:

n1c � � A
2c�

1
2(1�
) , (27)

n2c � nc(1 � 
), (28)

and

n3c � nc(1 � 
) (29)

where nc � 	 A
2c�. the definition of stopping rule Nc in (15)

yields

	 A
2c VNc

� Nc � mI(Nc � m)

�	 A
2c�VNc�1 � (Nc � 1)�
�. (30)

Because Nc ¡ � almost surely as c 2 0 and Vn ¡ � almost
surely as n ¡ �, by Theorem 2.1 of Gut (2009), VNc

¡ � almost
surely. Hence, dividing all sides of (30) by nc and letting c 2 0,
Nc/nc ¡ 1 almost surely as c 2 0.

Now, Nc 	 m almost surely and nc 	 1, dividing (30) by nc

yields

Nc ⁄ nc �
mI(Nc � m)

nc
� 1

�
sup
c�0

� VNc�1 � (Nc � 1)�
� almost surely.

(31)

Here, P(Nc 	 m) � 0 and Nc 	 m 	 m0 with probability 1.
Consider the inequality in Equation 31. Note that, VNc�1 �

sup
c�0

VNc�1 and E�sup
c�0

VNc�1� � � ⇔ E� sup
n�m0

Vn� � �, withN mean-

ing “implies and is implied by.” Thus, to prove, E�sup
c�0

VNc�1� �

� it is enough to show E� sup
n�m0

Vn� � � or E� sup
n�m0

Vn
2� � �. We know

that sample mean and sample variance are both U-statistics (e.g.,
see Mukhopadhyay & Chattopadhyay, 2013, 2014). Using
Cauchy-Schwartz inequality and Cedilnik et al. (2006), we can say
that for t � 1 and m0 � 4

E� sup
n�m0

Vn
2� � 2 � � 1

(t � 1)E[(X� m0
� Y� m0

)4]E[(Sm0
)�4t]
1 ⁄ 2

(� �),

(32)

Because Nc/nc ¡ 1 almost surely as c 2 0, by the dominated
convergence theorem, we conclude that limc¡0E�Nc� ⁄nc � 1.
Hence, the proof of Theorem 1 is complete. □

Theorem 2

For the minimum sample size m0 	 4, the stopping rule in
Equation 15 yields that the ratio regret is asymptotically 1. Math-
ematically, if 
 � �0, 1

2�, RNc
��� ⁄Rnc

��� ¡ 1 as c ↓ 0.
We need to show lim

c↓0
RNc

��� ⁄Rnc

� ��� � lim
c↓0

�A ⁄ �4cnc��E�dNc
�

��2 � 1
2 lim

c↓0
E�Nc ⁄nc� � 1. Thus, it is enough to show that lim

c¡0
�A ⁄

�2cnc��E�dNc
� ��2 � 1, i.e., lim

c↓0
nc E�dNc

� ��2 � �2. Because we

know that ncE�dnc
� ��2 � �2, it is sufficient to show that

lim
c↓0

nc{E[(dNc
� �)2 � �dnc

� ��2]} � 0. (33)

Using lemmas and arguments in Chattopadhyay and Kelley (in
press) and De and Chattopadhyay (2015) as needed, Theorem 2
can be proved. Here we will just prove required important lemmas.

(Appendices continue)

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

111MAXIMIZING ACCURACY AND MINIMIZING COST



Lemma 4

If nonnegative i.i.d. random variables X1, . . . , Xn are from the
distribution F such that E(X1

max(2r,p)) � � for some positive integers
r and p, then for any k � 0,

P� max
n1c�n�n2c

��X� 1n � X� 2n�2
� ��1n � �2n�2� 	 k�

� O�n1c
�r ⁄ 2� � O�n1c

�p ⁄ 2� as c ↓ 0.

Proof

Define, �̂n � X� 1n � X� 2n and � � �1 � �2. Then the proof will
be similar to the proof of Lemma 7.1 in De and Chattopadhyay
(2015). □

Lemma 5

Suppose that nonnegative i.i.d. random variables X1, . . . , Xn are
observed from the distribution F such that E(X1)max{4p, 2p(r�1)} exist
for some positive integers r and p. Then, for any k � 0,

P
 max
n1c�n�n2c

� 1
sn

2r � 1
�2r�	 k�� O�n1c

�p ⁄ 2� as c ↓ 0. (34)

Proof

By Taylor expansion of sn
�2r � 1

�2r�1 � �sn
2 � �2� ⁄�2��r, we

have

�
 1
sn

2r � 1
�2r�I
 1

sn
2 � 1

�2��� 1
�2r��� r

�2�sn
2 � �2�

� r(r � 1)
2�4

�sn
2 � �2�2

zr�2 � I
 1
sn

2 � 1
�2��, (35)

where z � [1, sn
2/�2]. Because z�r	2I(sn

�2 � ��2) � 1, we get

� 1
sn

2r � 1
�2r�� �
 1

sn
2r � 1

�2r�I
 1
sn

2 	 1
�2�� 
 1

sn
2r � 1

�2r�I
 1
sn

2 � 1
�2��

� 
 1
sn

2r � 1
�2r��

� r
�2r�2�sn

2 � �2� � r(r � 1)
2�2r�4 �sn

2 � �2�2.

(36)

Let U1n � 
 1
sn

2r � 1
�2r��

, U2n � r
�2r�2|sn

2 � �2|, and U3n �

r�r � 1�
2�2r�4 �sn

2 � �2�2. Using (36), we can write

P
 max
n1c�n�n2c

� 1
sn

2r � 1
�2r�	 k�� P� max

n1c�n�n2c
U1n 	 k

3�
� P� max

n1c�n�n2c
U2n 	 k

3��P� max
n1c�n�n2c

U3n 	 k
3�. (37)

Because 
 1
sn

2r � 1
�2r� is a reverse submartingale and f(x)� x	 is

a non-decreasing convex function of x, U1n is a reverse submart-
ingale. Therefore, using maximal inequality for reverse submart-
ingales

P� max
n1c�n�n2c

U1n 	 k
3� � �3

k�p
E�
 1

sn1c

2r � 1
�2r���p

� �3
k�p

E�
 1
sn1c

2 � 1
�2�
 1

sn1c

2(r�1) � 1
�2sn1c

2(r�2) � . . . � 1
�2(r�1)�I�sn1c

2 � �2��p

� �3
k�p

rpE�
 1
sn1c

2 � 1
�2�p

sn1c

�2p(r�1)�
� �3r

k �p�E��sn1c

2 � �2�4p�E�
 1
�2sn1c

2 �4p��1
4�E
 1

sn1c

2p(r�1)��1
2 � O(n1c

�p ⁄ 2).

(38)

The last two inequalities are obtained by using Cauchy–Schwarz
inequality and Lemma 2.2 of Sen and Ghosh (1981) and also due

to the existence of E�� 1
sn1c

�4p� and E�� 1
sn1c

�2p�r�1��. Because |sn
2 � �2|

and (sn
2 � �2) are reverse submartingales, we can write

P� max
n1c�n�n2c

U2n 	 k
3� � � 3r

k�2r�2�2p
E�sn1c

2 � �2�2p � O�n1c
�p�,

(39)

P� max
n1c�n�n2c

U3n 	 k
3� � �3r(r � 1)

2k�2r�4 �p
E�sn1c

2 � �2�2p � O�n1c
�p�.

(40)

Applying Equations (38), (39), and (40) in (37) completes the
Proof. □

(Appendices continue)T
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Appendix B

Lemmas and Proofs for General Scenario

This appendix supports our discussion in the text with the
technical underpinnings of the equations presented.

Lemma 6

The approximate risk function given in Equation 17 is mini-

mized if nc� � 	 A
2c�� individuals are selected from Groups 1 and

2, where, �2 � �2 � �2

4 �.

Proof

Let us start with an approximate risk function in which cost of
sampling per observation in both groups are different. Suppose c1

and c2 be the sampling cost of observing each participant in
Groups 1 and 2, respectively. So, the approximate risk function
given in Equation 9 is

Rñ(�) � A�� 1
n1

� 1
n2� � �2

2(n1 � n2)
� � (c1n1 � c2n2)

Minimizing Rñ��� with respect to n1 and n2, we get,

� A
n1

2 � A�2

2(n1 � n2)
2 � c1 � 0

� A
n2

2 � A�2

2(n1 � n2)
2 � c2 � 0

(41)

Solving the above, we can get the optimal sample sizes n1
� for

Group 2 and n2
� for Group 2 by using,

n1
� ��A

c1
1 � �2

2
1 �� A
(c2 � c1)�n1

��2 � A��
1 ⁄ 2

(42)

and

n2
� � n1

�
1 �
(c2 � c1)�n1

��2

A
��1 ⁄ 2

. (43)

Differentiating both in Equation 41 and consequently finding the
Hessian matrix by plugging in optimal sample sizes that can be
found in Equations 42 and, it can be shown that these optimal
sample sizes minimizes the approximate risk function.

Now, in Equation 9, the sampling cost per unit observation for
both groups are same, so, c1 � c2 � c, say. Using, that we get

n1
� � n2

�, let it be nc. Plugging in nc, we get nc��	 A
2c��, where,

�2 � �2 � �2

4 �. □

Lemma 7

Under the assumption that � � �, for any c1 � 0, c2 � 0, the
sample sizes N1 and N2 are both finite.

Proof

Note that dn
2 is a consistent estimator of �2. Hence, the result for

the sample size N1 can be obtained from the fact that dn
2
¡ �2

almost surely as n ¡ �. Because N2 depends on N1, so, N2 is also
finite. □
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