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Classification using standard statistical methods such as linear discriminant analysis
(LDA) or logistic regression (LR) presume knowledge of group membership prior to the
development of an algorithm for prediction. However, in many real world applications
members of the same nominal group, might in fact come from different subpopulations
on the underlying construct. For example, individuals diagnosed with depression will not
all have the same levels of this disorder, though for the purposes of LDA or LR they will
be treated in the same manner. The goal of this simulation study was to examine the
performance of several methods for group classification in the case where within group
membership was not homogeneous. For example, suppose there are 3 known groups but
within each group two unknown classes. Several approaches were compared, including
LDA, LR, classification and regression trees (CART), generalized additive models (GAM),
and mixture discriminant analysis (MIXDA). Results of the study indicated that CART and
mixture discriminant analysis were the most effective tools for situations in which known
groups were not homogeneous, whereas LDA, LR, and GAM had the highest rates of
misclassification. Implications of these results for theory and practice are discussed.
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INTRODUCTION
The practice of classification of individuals or cases into groups
is very common across nearly all branches of science. For exam-
ple, classification procedures can be used to characterize psy-
chiatric diagnoses (Zigler and Phillips, 1991), identify new or
different species of animals (Britzke et al., 2011), identify indi-
viduals with learning disabilities (Keogh, 2005), or even classify
stars (Bidelman, 1957), to name but a few relevant exemplars.
Statistical methods for classification are often used to aid in deter-
mining if there exist clear categories, how many such categories,
and to characterize the nature of these categories (i.e., classifi-
cations). Therefore, research into optimal methods of statistical
classification is important due to its widespread use in a variety of
disciplines in the natural and social sciences.

An important question in both methodological and applied
research is the treatment and analysis of categories that are them-
selves composed of subcategories, sometimes but not always
known. In the behavioral and social sciences, such subgroups
within groups, or taxons (e.g., Meehl, 1992), are a very com-
mon occurrence, particularly when looking at diagnoses of men-
tal disorders and cognitive functioning. For example, depressive
episodes can be divided into monopolar depression and bipolar
depression and then further subdivided into psychotic and non-
psychotic episodes (e.g., Wedekind et al., 2007). Often severity
of psychiatric disorders is studied in terms of (a) severity levels,
(b) severity subgroups or (c) symptom-severity ratings (Helzer
et al., 2006a,b). Such examples might include psychiatric diagno-
sis categorized from (a) low, to (b) moderate, to (c) high, or from

“not present, mild, severe” (Helzer et al., 2006b; Kamphuis and
Noordhof, 2009) or drug and alcohol abuse characterized cate-
gorized from (a) “abstinent from alcohol and other drugs,” (b)
“used alcohol only,” (c) “used other drugs only,” and (d) “used
alcohol and other drugs” (Schaefer et al., 2011). Another example
is learning disabilities. A commonly diagnosed learning disabil-
ity is attention deficit hyperactivity disorder (ADHD) which can
be viewed in terms of levels of severity (Graziano et al., 2011a,b).
Some children might be identified as suffering from mild ADHD,
while others are classified as having moderate ADHD, and still
others are identified with severe ADHD.

In each of these situations, the known group (i.e., depressed
or non-depressed, ADHD or not ADHD) actually consists of
subgroups based on an unmeasured level of severity. These sub-
groups, while all being classified under a common title such as
depressed, in fact represent differing levels of the latent construct,
such that they are truly qualitatively different from one another.
Such mixtures of groups, while theoretically common, have not
been heavily studied in the classification literature, particularly
with respect to the performance of group prediction algorithms.
Thus, the primary goal of this study was to extend previous
work comparing the effectiveness of various group classification
methods by examining the case where known groups consist of
unknown subgroups.

This idea of combining continuous and categorical infor-
mation to better express the degree to which the construct of
interest is present within well-defined categories (i.e., measur-
ing the severity of depression of individuals within the depressive
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population) is sometimes referred to as dimensional categories
or the dimensional-categorical spectrum (Maysn et al., 2009).
There is currently much debate in the area of psychiatric diagno-
sis on the proper way to categorize diagnoses in the new edition
of the Diagnostic and Statistical Manual of Mental Disorders-
IV (DSM-IV; American Psychiatric Association, 2000). Of the
suggestions proposed, symptom-severity ratings, which combine
diagnostic categories with a severity continuum, are being pro-
posed as a promising direction to take. It is being argued that
use of symptom-severity ratings provide a less arbitrary alterna-
tive to creation of diagnostic categories than the use of cut-points.
Correspondingly, examination of methods that can help untangle
these issues are important and needed to help test and understand
existing and proposed frameworks of diagnosis.

In terms of analysis of data with dimensional categories, a few
studies have suggested strategies or optimal statistical approaches.
Widiger (1992) provides a review of techniques for identify-
ing categories, dimensions, or dimensions within categories.
Specifically, he discussed a variety of taxometric techniques
including factor analysis, cluster analysis, maximum covariation
analysis, and admixture analysis. Though strengths and weak-
nesses of each approach were discussed, empirical results were
not presented. More recent research presents results for classifica-
tion of dimensional categories by use of Bayes’ theorem and base
rate classification techniques (Ruscio, 2009), maximum covari-
ance, and k-means cluster analysis (Beauchaine and Beauchaine,
2002).

The current research takes a different approach. Instead of
considering dimensional categories as known, they are concep-
tualized as latent classes within known groups. For example, indi-
viduals can be diagnosed into “depressed” and “not depressed”
groups based upon clinical judgment. Within these fairly broad
categories, a symptom severity dimension can be thought of as a
latent variable consisting of varying levels of severity. For exam-
ple, an individual who has not been diagnosed with depression
might in reality suffer from slight depression that is simply too
weak to be identified by a clinician using standard tools for such
diagnosis. In the same way, two individuals who have been diag-
nosed as depressed might differ in terms of their level of severity
so that one suffers from relatively more severe depression while
the other has a more mild case. When these latent categories exist
within larger known groups, the process of classification of the
known groups becomes more complicated because the known
groups no longer represent homogeneous categories. Muthen
(2006) presents an analysis of dimensional categories, advocating
a latent variable mixture approach as a promising direction for
analysis. Within the context of educational measurement and psy-
chometrics, cognitive diagnostic models have proven to be useful
for identifying latent classes within the population, while allowing
for differential skill patterns within each of these classes. Within
the data mining and clustering literature, there have also been
advancements involving the use of k-means clustering to iden-
tify subgroups having commons sets of skills (e.g., Nugent et al.,
2010), fuzzy clustering allowing for subgroup overlap (Ahmed
et al., 2002), and copula based clustering algorithms for identi-
fying clusters using mixtures of canonical variate structures (Rey
and Roth, 2012). However, the existing literature has a dearth

of research in the classification of known groups in the pres-
ence of latent subgroups. However, there is a real need for the
investigation of appropriate methods for addressing unknown
heterogeneity in known groups.

In this study we compared methods for classifying individuals
into known groups when latent subgroups existed within those
groups, making the known groups heterogeneous. Traditional
methods for classification were included [logistic regression (LR),
and linear discriminant analysis (LDA)] as were newer and
more sophisticated methods [classification and regression trees
(CART), generalized additive models (GAM)]. Additionally, we
included a mixture approach to discriminant analysis (MIXDA).
Next, we present descriptions of each method we investigate and
go on to describe the study itself, present the results of our Monte
Carlo simulation study, and then provide a discussion of the
results of the study. We hope this study helps to push the field
toward a deeper understanding of the nature of within group het-
erogeneity when known groups themselves consist of unknown
subgroups.

SUMMARY OF METHODS CONSIDERED
In this section we provide a brief summary of each of the methods
we evaluate. References are provided for the interest reader who
would like a more detailed description of one or more of these
techniques.

LINEAR DISCRMINANT ANALYSIS (LDA)
Linear discriminant analysis (e.g., Mardia et al., 1979; Huberty
and Olejnik, 2006) is a statistical technique that identifies the
linear combination of predictor variables that maximizes the mul-
tivariate distance between groups. Based on this combination of
predictors, and using a prior probability for group membership
or estimating it from the data, the posterior probability of group
membership is then computed for each individual in the sample
and they are in turn placed in the group for which their posterior
probability is highest. LDA assumes equal group variances and
uses ordinary least squares for estimation.

LOGISTIC REGRESSION (LR)
As with LDA, LR (e.g., Hosmer and Lemeshow, 2000; Agresti,
2002) uses a linear equation involving a set of predictor vari-
ables, in this case with the log of the odds (i.e., logit) of being
in one group vs. the other as the outcome. Unlike LDA, LR does
not assume equal group variances and estimates parameter values
using maximum likelihood.

CLASSIFICATION AND REGRESSION TREES (CART)
The overall goal of CART is to group subjects into maximally
homogeneous terminal nodes based on the outcome variable
(e.g., Williams et al., 1999). The actual method involves the iter-
ative partitioning of individuals in the sample into increasingly
homogeneous groups organized around the outcome variable,
based upon the set of predictors (Breiman et al., 1984). This
division of individuals continues until a predefined level of homo-
geneity based on group membership of the outcome variable has
been attained. It should be noted that, while not included in the
current work due to a desire to keep the dimensions of this study
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manageable, there exist variations to CART that have proven to be
effective classifiers as well, including the RIPPER rule learner JRIP
(Witten and Frank, 2000) and the J48/C4.5 recursive partition-
ing model (Quinlan, 1993; Kohavi, 1995). Future research should
examine the performance of these methods under conditions
similar to those included in this study.

While CART has proven to be a very effective classification tool
(e.g., Holden et al., 2011), it does have some weaknesses that must
be considered in its use. For example, CART has a tendency to
base the prediction tree on predictor variables with more distinct
values over variables with fewer values, regardless of the actual
differences among subjects on these (Hothorn et al., 2006). In
addition, although all of the methods studied here are prone to
overfitting the training data for small samples, there is evidence
that this is particularly a problem for CART, making the tree less
generalizable than might be desired (Berk, 2008).

GENERALIZED ADDITIVE MODELS (GAM)
GAM is based on combinations of smoothing functions, such as
cubic splines and kernel smoothers, to predict a response vari-
able, which can be either continuous or categorical in nature. In
the case of a dichotomous outcome variable, the actual response
is the logit, as with LR. The smoothing functions to be used are
selected individually for each predictor so as to minimize a penal-
ized sum of squares function, with the most common one being
the cubic spline (Simonoff, 1996), which was used in the cur-
rent study. As with CART, GAM also suffers from the potential
problem of overfitting the model to the training data. Therefore,
it is recommended that the number of smoothing parameters be
kept relatively small, and that cross-validation be used to ensure
that the resulting model is generalizable to other samples from
the target population (Hastie and Tibshirani, 1990; Wood, 2006).
Indeed, assessing the performance of all of the methods included
in this study using a cross-validation sample would certainly be
warranted. Prior literature has shown that CART and GAM are
particularly prone to overfitting so that the use of cross-validation
sample is especially important for them.

MIXTURE DISCRIMINANT ANALYSIS (MIXDA)
MIXDA is a variant of discriminant analysis, in which mem-
bership in each group is modeled as a mixture of Gaussian
distributions, rather than a single homogeneous distribution as
is the case with LDA (e.g., Hastie and Tibshirani, 1996). The
MIXDA model represents each observed group by its centroid
(like LDA), but also allows latent classes to exist within each
known group. In other words, existing groups (e.g., diagnosed
depressives and non-clinicals) can themselves contain unobserved
groups of individuals. Thus, unlike LDA, MIXDA models predict
group membership as a function of a mixture rather than a homo-
geneous distribution of the predictors. MIXDA typically relies
upon the expectation maximization (EM) algorithm (Dempster
et al., 1977) to estimate the model parameters including subgroup
means, common or group specific variance, the within group
mixing proportions, and the between group mixing proportions,
all of which are obtained from the training data.

Although currently less well known in the social and behav-
ioral sciences, MIXDA is being used with success in other fields,

particularly biology (Schmid, 2009), wildlife studies (Britzke
et al., 2011), and computer science (Kleinsmith et al., 2006). For
example, Britzke et al. (2011) did a comparison of classification
techniques for the acoustic identification of bats. Of the tech-
niques Britzke et al. (2011) studied, MIXDA was found to produce
the highest classification accuracy. Similarly, Schmid (2009) com-
pared classification techniques for single-cell differentiation and
found MIXDA to exhibit high prediction accuracy as well as pro-
vide useful procedures for visualization of the data. MIXDA has
also been found to be of particular use when predictors used are
non-normal (Rausch and Kelley, 2009), and when attempting to
classify relatively small groups when other groups in the sample
are much larger (Rausch and Kelley, 2009; Holden et al., 2011).

GOALS OF THE CURRENT STUDY
The purpose of the current simulation study was to examine
the performance of the previously described methods of classi-
fication when the known groups were comprised of unknown
latent classes. There is ample evidence in the social science lit-
erature cited previously that such situations are fairly common
in practice. Yet, very little research has been published in the
methodological literature to examine how well (or poorly) these
prediction algorithms might work in such situations. Based upon
prior research, and the ways in which these algorithms work, we
hypothesize that MIXDA should perform relatively well when
subgroups exist within the larger known groups. In addition,
CART and GAM have consistently demonstrated high levels of
prediction accuracy across a number of simulated conditions
(Grassi et al., 2001; Holden et al., 2011), leading us to believe that
these methods should perform relatively well in the subgroup case
as well.

METHODS
A Monte Carlo simulation study using R (version 2.13.0) soft-
ware was conducted to assess the ability of the group prediction
methods to correctly classify observations from known groups
into the correct group from which they originated. The outcomes
of interest used to judge the effectiveness of the models were
the proportion of incorrectly classified individuals (i.e., misclas-
sified) both overall, and for each group for both training data
and a cross-validation (CV) sample of the same size and from the
same population as the training data. The overall misclassifica-
tion rate was calculated as the number of individuals predicted
to be in an incorrect group divided by the total sample size.
The by-group misclassification rate was the number of individ-
uals for a given group incorrectly classified into another group,
divided by the total number of individuals in the group. Five
multivariate normal predictor variables were simulated for each
condition, with population correlations among them drawn from
the correlation matrix of the first 5 subscales of the Wechsler
Adult Intelligence Scale-III (WAIS-III) reported in Waller and
Jones (2009). This population level correlation matrix appears in
Table 1. This correlation structure was selected because it repre-
sents what has been seen in practice in an area in which prediction
methods are frequently used, the social sciences. In addition,
the correlations represent a range of values seen in the liter-
ature. Several factors were manipulated in the study to assess

www.frontiersin.org May 2014 | Volume 5 | Article 337 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Finch et al. MIXDA and latent subgroups within groups

Table 1 | Correlation matrix used in simulating predictor variable

values.

Correlation matrix for simulated predictor variables

X1 X2 X3 X4 X5

X1 1 0.76 0.58 0.43 0.39

X2 0.76 1 0.57 0.36 0.49

X3 0.58 0.57 1 0.45 0.74

X4 0.43 0.36 0.45 1 0.69

X5 0.39 0.49 0.74 0.69 1

their impact on the performance of these methods. Each of the
conditions in the simulation were replicated 1000 times for the
results.

NUMBER OF KNOWN GROUPS
Data were simulated for two and three groups. This allowed for
an examination of the simplest case of multiple groups, as well as
for a more complicated scenario.

GROUP DIFFERENCES
Groups were simulated to differ on the observed variables using
population standardized mean differences of 0.2, 0.5, and 0.8
(population standard deviations were 1 in all cases), correspond-
ing to Cohen’s widely used characterization of “small,” “medium,”
and “large” differences for the standardize mean difference effect
size measure (Cohen, 1988). In the population, the standardized
mean difference is defined as

δ = μ1 − μ2

σ
,

where μj is the population mean from the jth group and σ is
the population standard deviation assumed equal across groups,
whereas the estimated standardized mean difference is

d = X1 − X2

spooled

in a sample, with the sample estimates used for their population
analogs in the previous equation. This approach was employed
for two reasons. First, whereas multivariate mean difference effect
sizes do exist, there is not agreement on which is most appropriate
nor are there guidelines for interpreting their magnitudes (Kim
and Olejnik, 2005). Second, the manipulation of degree of overlap
among subgroups was best controlled using univariate effect sizes,
as values for each variable could be changed to create a known
degree of difference in group means. The actual method to do so
will be described below.

SAMPLE SIZE AND SAMPLE SIZE RATIO
For the three groups case, whose results are featured in the Results
section below, total sample size was 150, 300, or 750 to represent
what some might consider small, medium, and large datasets that
might be used in practice. (In the two groups case, the total sam-
ple sizes were 100, 200, and 500). Justification for this statement

is provided via a review of the applied literature using group pre-
diction methods cited in the Educational Resources Information
Center database (ERIC) (July 13, 2011) revealing that these sam-
ple sizes were typical of those reported in practice. Group size
ratios were simulated to be either equal, or unequal. In the
unequal scenario for two groups, the ratio was 75/25, while with
three groups the unequal ratio was 60/20/20. Previous research
(e.g., Holden and Kelley, 2010; Holden et al., 2011) found that
unequal group sizes had an impact on performance of group
prediction methods, and therefore was included in the current
study.

SUBGROUP SEPARATION
Within each of the known groups, two subgroups were simulated
to diverge from one another in terms of their population stan-
dardized means. This represents the situation in which known
groups consist of unknown subgroups that the researcher might
believe exists, but for which they are unsure, thus addressing a
primary research question of this study. These population sub-
group mean differences were set at each of 5 conditions: 0, 0.05,
0.10, 0.15, and 0.20, with the within-group population standard
deviation being 1 for all groups. The subgroup mean difference
of 0 corresponds to a control condition in which no subgroups
are present in the data. All of the subgroups were separated to the
same degree in the population within each of the known groups,
and within each known group the same subgroup structure was
simulated to be present.

As an example of how the data were simulated, consider the
two-group situation in which the known group difference is δ =
0.8 and the subgroup separation is δ = 0.05. The first known
group consisted of two subgroups, one with a population mean
of 0 and population standard deviation of 1, and the other with
a population mean of 0.05 and population standard deviation of
1. The second known group included two subgroups with pop-
ulation mean of 0.8 and population standard deviation of 1, and
population mean of 0.75 and population standard deviation of
1, respectively. Note that when the known groups were separated
by the smallest population mean difference (0.2), the population
subgroup separation condition of 0.2 represents complete over-
lap of the two known groups. This scenario was included in the
study purposefully in order to investigate the performance of the
methods when the two known groups actually consist of com-
pletely overlapping subgroups. This condition was included in
order that we address perhaps the most extreme case of group
overlap. Finally, 0 subgroup separation represents the situation
where no subgroups are present within the known groups, and as
such serves as a control condition in this simulation study.

SUBGROUP RATIO
The subgroups were simulated to be of equal size or with ratio of
75/25. Prior research (e.g., Holden et al., 2011) has demonstrated
that the unequal group ratios have an impact on the performance
of group classification methods such as those examined in this
study. In the 75/25 condition, the larger subgroup was the one fur-
thest from the other known group. For example, consider known
group 1 consisting of subgroups A and B, with means of 0 and 0.1,
and known group 2 consisting of subgroups C and D, with means
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of 0.7 and 0.8. In the unequal subgroups condition, subgroup A
would be the larger in known group 1, and subgroup D would be
the largest in known group 2.

PREDICTION METHODS
Prediction of group membership was done using the methods dis-
cussed: (a) LDA, (b) LR, (c) MIXDA, (d) CART, and (e) GAM.
LDA and LR were included because they are the most popular
group prediction methods, based on the ERIC database search
mentioned above. For LDA, the model prior probabilities were
taken from the data, which is recommended in general practice
(Huberty and Olejnik, 2006). CART and GAM were included
because they have been shown in previous research (e.g., Holden
et al., 2011) to provide very accurate group predictions under
a variety of conditions. For CART the deviance criterion was
used as the splitting rule, with a minimum deviance to split
value of 0.01, and a minimum terminal node size of 10 observa-
tions. In other words, CART would stop splitting if the reduction
in deviance was not at least 0.01, or if a resulting node would
include fewer than 10 observations. Both of these conditions are
recommended by Williams et al. (1999). For GAM, the value
of epsilon was set at 0.0000007, with a maximum of 30 itera-
tions for the estimation algorithm. As with CART, these settings
are recommended in the literature (Wood, 2006). MIXDA was
included because it was explicitly designed to find subgroups
within broader known groups and to use that information to
yield more accurate predictions of the primary groups of inter-
est (Hastie et al., 2001). However, although developed with this
purpose in mind, it has not, to our knowledge, been extensively
studied in a Monte Carlo simulation in order to determine if it
is in fact more accurate when known groups contain subgroups.
With respect to the settings for MIXDA, the convergence toler-
ance for the EM algorithm was set to 0.00005, and the maximum
number of iterations was 100.

RESULTS
The results of the simulation study are presented in the follow-
ing sections. Because results for the two and three groups cases
were very comparable, only the three groups results are pre-
sented here, in order to keep the scope of results manageable.
Two groups results are available upon request from the authors.
First, overall rates of misclassification are examined, followed
by individual group misclassification. The results are presented
for the cross-validation sample in all cases. The misclassification
rates for the training sample followed an identical pattern to the
cross-validation results presented below, with the only difference
being that they were 0.04 lower, on average; i.e., the results for
the training sample were somewhat more accurate than for the
cross-validation sample. Finally, given the focus of the study on
the impact of the presence of unknown subgroups within known
groups, the results will be framed in the context of the overlap
among the subgroups.

OVERALL MISCLASSIFICATION
Focusing first on prediction method differences across all con-
ditions, Table 2 contains misclassification rates for each method
by the degree of overlap among the subgroups. Across the study

Table 2 | Overall misclassification rates by method and subgroup

overlap.

Overlap LDA LR MIXDA CART GAM

0.00 0.510 0.446 0.412 0.321 0.498

0.05 0.522 0.460 0.408 0.328 0.512

0.10 0.529 0.466 0.425 0.349 0.521

0.15 0.542 0.472 0.440 0.363 0.529

0.20 0.559 0.480 0.481 0.382 0.538

conditions CART exhibited the lowest misclassification rates,
while LDA had the highest. MIXDA had the second lowest rates of
overall misclassification, while GAM performed similarly to LDA,
and LR had rates that fell in the middle. All of the methods expe-
rienced an increase in overall misclassification as the degree of
overlap increased (i.e., group separation decreased). In the con-
trol condition (overlap = 0), each method yielded the lowest rates
of misclassification, except MIXDA, for which the overlap = 0.05
actually had slightly lower misclassification than in the no over-
lap case. In other words, MIXDA was slightly more accurate at
classification when there were subgroups within the main groups,
which is not surprising given that it was designed to model the
presence of such subgroups. All of the methods had the highest
overall misclassification rates for an overlap of 0.20 (the smallest
group separation studied).

Table 3 includes the overall misclassification rates for each pre-
diction method by the degree of subgroup overlap (overlap), total
sample size (N), known group sample size ratio (Nratio), sub-
group ratio (Sratio), and distance between known group means
(D). The focus here is on the extent to which the impact of overlap
on overall misclassification rates was affected by the other manip-
ulated variables in the study. With respect to sample size, LDA
uniformly yielded lower overall misclassification rates with larger
samples, regardless of the degree of overlap. On the other hand,
both LR and GAM yielded the highest misclassification rates for
N = 300, and the lowest misclassification rates for total sample
size of 750. Finally, both CART and MIXDA had increasing error
rates with increasing overall sample size values, for each level of
subgroup overlap. In terms of the known group sample size ratio
(Nratio), all of the prediction methods except MIXDA yielded
lower values in the 75/25 case, as opposed to the equal group size
condition. However, just the opposite result was seen for MIXDA,
in which known group size inequality resulted in lower overall
misclassification.

In contrast to the impact of known group sample size ratio, the
presence of unequal subgroup sizes (Sratio) yielded inflated mis-
classification rates for all methods, when compared to the equal
subgroup size case. The impact of subgroup inequality was par-
ticularly notable for MIXDA, as can be seen in Figure 1. This
figure presents the increase in overall misclassification rate from
the equal subgroup to 75/25 subgroup ratio conditions by degree
of subgroup overlap and method of classification. Thus, in the
0.0, 0.05, 0.10, and 0.15 overlap conditions MIXDA yielded the
greatest increases in overall misclassification when going from
equal to unequal subgroup sizes. CART had the second great-
est increase in misclassification for overlap of 0 and 0.05, while
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Table 3 | Overall misclassification rates by method, degree of

subgroup overlap (overlap), sample size (N), known group sample

size ratio (Nratio), subgroup sample size ratio (Sratio), and difference

in known group means (D).

Overlap LDA LR MIXDA CART GAM

N

150 0.00 0.548 0.469 0.369 0.268 0.511

0.05 0.563 0.477 0.323 0.248 0.513

0.10 0.571 0.482 0.327 0.266 0.523

0.15 0.588 0.490 0.366 0.276 0.534

0.20 0.595 0.498 0.408 0.306 0.546

300 0.00 0.514 0.453 0.386 0.294 0.511

0.05 0.546 0.484 0.419 0.333 0.548

0.10 0.554 0.492 0.454 0.365 0.559

0.15 0.568 0.499 0.446 0.384 0.569

0.20 0.585 0.505 0.506 0.403 0.576

750 0.00 0.469 0.416 0.481 0.401 0.471

0.05 0.458 0.418 0.483 0.403 0.475

0.10 0.463 0.424 0.495 0.417 0.481

0.15 0.470 0.429 0.508 0.429 0.485

0.20 0.498 0.436 0.528 0.438 0.490

NRATIO

Equal 0.00 0.583 0.501 0.403 0.350 0.529

0.05 0.589 0.512 0.395 0.355 0.539

0.10 0.600 0.519 0.416 0.384 0.547

0.15 0.619 0.527 0.426 0.404 0.556

0.20 0.644 0.537 0.476 0.431 0.565

75/25 0.00 0.365 0.335 0.430 0.262 0.434

0.05 0.388 0.356 0.435 0.275 0.458

0.10 0.388 0.360 0.444 0.281 0.469

0.15 0.389 0.363 0.468 0.282 0.476

0.20 0.391 0.366 0.490 0.285 0.483

SRATIO

Equal 0.00 0.478 0.421 0.371 0.287 0.480

0.05 0.489 0.434 0.357 0.290 0.492

0.10 0.494 0.439 0.379 0.317 0.501

0.15 0.504 0.444 0.396 0.335 0.510

0.20 0.517 0.451 0.454 0.360 0.518

75/25 0.00 0.574 0.495 0.494 0.389 0.533

0.05 0.588 0.512 0.511 0.404 0.553

0.10 0.599 0.520 0.518 0.413 0.560

0.15 0.619 0.529 0.527 0.420 0.568

0.20 0.644 0.538 0.534 0.427 0.576

D

0.2 0.00 0.607 0.537 0.494 0.392 0.606

0.05 0.597 0.541 0.506 0.408 0.615

0.10 0.607 0.545 0.528 0.445 0.620

0.15 0.636 0.551 0.540 0.466 0.623

0.20 0.674 0.557 0.625 0.499 0.624

0.5 0.00 0.499 0.445 0.432 0.328 0.505

0.05 0.518 0.459 0.401 0.318 0.515

(Continued)

Table 3 | Continued

Overlap LDA LR MIXDA CART GAM

0.10 0.524 0.467 0.412 0.332 0.526

0.15 0.530 0.475 0.433 0.342 0.539

0.20 0.536 0.481 0.449 0.358 0.550

0.8 0.00 0.426 0.355 0.311 0.244 0.381

0.05 0.451 0.380 0.319 0.258 0.406

0.10 0.457 0.386 0.335 0.272 0.416

0.15 0.461 0.391 0.347 0.281 0.427

0.20 0.469 0.401 0.369 0.291 0.439

Min 0.23 0.20 0.01 0.15 0.26

Max 0.83 0.63 0.71 0.67 0.71

Median 0.52 0.46 0.44 0.32 0.54

Mean 0.53 0.46 0.43 0.35 0.52

IQR 0.15 0.12 0.16 0.19 0.23

FIGURE 1 | Increase in overall misclassification rate from equal

subgroup ratio to 75/25 ratio, by method and degree of subgroup

overlap.

LDA had the second highest rates of misclassification increase for
overlap of 0.10 and 0.15, and the highest such rates for overlap
of 0.20. On the other hand, GAM consistently had the small-
est increase in the misclassification rates from the equal to 75/25
condition. In other words, it was least sensitive to differences in
subgroup sizes. Finally, an examination of results in Table 2 show
that as the difference in means for the known groups increased,
the misclassification rates for all methods decreased, across levels
of subgroup overlap.

At the bottom of Table 3 are included marginal descriptive
statistics for each method, including the overall mean propor-
tion of misclassified cases, as well as the median, minimum,
maximum, and interquartile range (IQR). These values help to
shed further light on the relative performance of the classification
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methods considered here. For example, across all conditions, the
mean and median of CART were the lowest, further reinforcing
the finding that it is the most accurate method considered here,
while GAM and LDA demonstrated themselves to be the least
accurate, with the misclassification rates of LR and MIXDA lying
in between. However, the single lowest rate belonged to MIXDA,
while the single highest was for LDA. Finally, with regard to the
IQR, which is a reflection of variation in misclassification rates,
LR had the lowest value, while GAM had the highest.

INDIVIDUAL GROUP MISCLASSIFICATION
In addition to the overall misclassification rates, we also exam-
ined the individual group misclassification rates. As a reminder,
these were calculated as the number of individuals in a group who
were misclassified divided by the total number in the group. In the
equal known group size condition, results for the first and third
groups were very similar, while results for the second and third
(the two smaller) groups were very similar for the unequal group
size case. Therefore, in order to simplify presentation of results
as much as possible, only results for groups 1 and 2 are included
here.

Table 4 includes the group misclassification rates by method
and degree of overlap. For all methods except GAM, rates for
group 1 were lower than those for group 2. In other words, mis-
classification was more likely to occur for the middle group than
either of the end groups (remembering that group 3 showed very
similar patterns to group 1). In addition, from this table it is
clear that misclassification for the middle group (2) under LDA
increased as the degree of subgroup overlap increased. For the
other methods, while there were some differences in misclassifi-
cation for different levels of overlap, there was no clear pattern
associating changes in degree of overlap with misclassification
rates. The differential in misclassification rates for groups 1 and
2 was smallest for MIXDA, and greatest for GAM, although as
noted previously, rates for group 1 were higher for group 2 with
GAM, contrary to the results for the other methods.

In order to investigate further the impact of overlap in con-
junction with other factors manipulated in this study, we refer to
Table 5. Several results presented in this table simply mirror those
that were in evidence for the overall misclassification rates, and
will therefore not be described in detail here. Namely, the indi-
vidual group rates generally declined concomitantly with greater
difference in the known group means, and were generally higher
when the subgroups were of unequal sizes. Of particular inter-
est with respect to group specific misclassification rates was the
impact of unequal group sizes (Nratio). When interpreting these

results, it is important to remember that in the unequal group
size condition, group 1 was the larger, and groups 2 and 3 were
smaller, and of equal size. For LDA, LR, and CART the presence
of unequal known group sizes resulted in lower misclassifica-
tion rates for all groups, regardless of the degree of overlap. For
MIXDA the misclassification rates switched in a sense, with group
1 having lower rates in the equal group size condition, and group
2 having lower rates in the unequal group size condition. Finally,
contrary to what was in evidence for the other methods, GAM
exhibited higher misclassification rates for both groups in the
unequal known group condition.

In order to mirror results presented above for the overall mis-
classification rate, and further investigate the impact of subgroup
size ratio on misclassification by group, we refer to Figure 2.
Similar to Figure 1, along the y-axis is the difference between
group misclassification rates for the equal and unequal subgroup
conditions, calculated as misclassification rate for unequal sub-
group ratio–misclassification rate for equal subgroup ratio. On
the x-axis is the degree of subgroup overlap, and groups 1 and
2 each have their own panels. Based on the results in this figure,
it appears that the impact of going from equal to unequal sub-
group sizes was greatest on MIXDA for the second group. In that
case, the increase in misclassification for the unequal subgroup
condition compared to equal, ranged from 0.3 to 0.43. While
not such a marked difference, for most of the methods studied
here, the misclassification rates for both groups was higher in the
unequal subgroup condition. In addition to MIXDA, this impact
was greater in group 2 for LR and CART. For LDA, the differ-
ence in group 1 misclassification rates between the unequal and
equal subgroup conditions increased with greater subgroup over-
lap. In other words, the more the subgroups overlapped with one
another, the larger disparity in classification accuracy between the
equal and unequal subgroup size conditions. Conversely, GAM
displayed a very different pattern than the other methods for
group 1 in that the misclassification in the equal subgroup size
condition was actually greater than in the unequal, as evidenced
by the negative values associated with the bars. Furthermore, this
difference in misclassification declined with greater subgroup sep-
aration; i.e., the bars got closer to 0. With regard to group 2, there
was very little difference in GAM’s misclassification rates between
the equal and unequal subgroup size conditions. Table 6 includes
a summary of the simulation results.

DISCUSSION
The goal of this study was to compare the performance of five
methods for classification when known groups consist of multiple

Table 4 | By group misclassification rates by method and subgroup overlap (overlap).

Overlap LDA1 LDA2 LR1 LR2 MIXDA1 MIXDA2 CART1 CART2 GAM1 GAM2

0.00 0.382 0.579 0.330 0.603 0.420 0.531 0.299 0.409 0.754 0.206

0.05 0.353 0.615 0.310 0.646 0.428 0.477 0.274 0.413 0.748 0.208

0.10 0.361 0.665 0.308 0.638 0.447 0.505 0.288 0.440 0.727 0.245

0.15 0.392 0.701 0.325 0.668 0.440 0.538 0.312 0.444 0.709 0.264

0.20 0.417 0.689 0.348 0.602 0.437 0.500 0.314 0.410 0.732 0.254
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Table 5 | By group misclassification rates by method, degree of subgroup overlap (overlap), sample size (N), known group sample size ratio

(Nratio), subgroup sample size ratio (Sratio), and difference in known group means (D).

Overlap LDA1 LDA2 LR1 LR2 MIXDA1 MIXDA2 CART1 CART2 GAM1 GAM2

N

150 0.00 0.338 0.582 0.290 0.616 0.542 0.538 0.285 0.322 0.768 0.204

0.05 0.388 0.651 0.314 0.660 0.416 0.364 0.249 0.259 0.728 0.191

0.10 0.407 0.703 0.314 0.669 0.480 0.426 0.286 0.319 0.763 0.207

0.15 0.414 0.721 0.318 0.670 0.511 0.408 0.279 0.270 0.756 0.225

0.20 0.413 0.726 0.338 0.631 0.565 0.378 0.287 0.273 0.705 0.258

300 0.00 0.333 0.577 0.301 0.624 0.421 0.474 0.239 0.375 0.783 0.189

0.05 0.354 0.634 0.317 0.677 0.464 0.505 0.257 0.417 0.756 0.210

0.10 0.370 0.676 0.325 0.687 0.509 0.555 0.285 0.471 0.754 0.229

0.15 0.399 0.683 0.327 0.696 0.434 0.580 0.302 0.488 0.732 0.256

0.20 0.464 0.702 0.385 0.655 0.427 0.597 0.341 0.474 0.752 0.253

750 0.00 0.470 0.578 0.394 0.572 0.313 0.581 0.373 0.520 0.713 0.226

0.05 0.317 0.561 0.299 0.600 0.403 0.562 0.315 0.562 0.760 0.224

0.10 0.303 0.615 0.284 0.551 0.344 0.530 0.293 0.525 0.661 0.302

0.15 0.363 0.700 0.330 0.635 0.378 0.621 0.356 0.569 0.635 0.311

0.20 0.359 0.631 0.313 0.501 0.303 0.514 0.312 0.484 0.736 0.252

NRATIO

Equal 0.00 0.485 0.715 0.417 0.740 0.341 0.685 0.328 0.511 0.693 0.195

0.05 0.440 0.726 0.386 0.774 0.304 0.583 0.278 0.503 0.706 0.166

0.10 0.480 0.754 0.405 0.792 0.352 0.647 0.323 0.555 0.716 0.179

0.15 0.509 0.763 0.414 0.798 0.358 0.665 0.345 0.538 0.705 0.198

0.20 0.586 0.783 0.482 0.743 0.327 0.657 0.367 0.516 0.736 0.166

75/25 0.00 0.189 0.324 0.168 0.347 0.569 0.241 0.246 0.219 0.868 0.227

0.05 0.181 0.394 0.158 0.388 0.674 0.264 0.266 0.232 0.831 0.294

0.10 0.149 0.507 0.137 0.363 0.617 0.254 0.225 0.235 0.747 0.364

0.15 0.145 0.567 0.136 0.391 0.615 0.267 0.242 0.243 0.716 0.402

0.20 0.134 0.532 0.126 0.367 0.620 0.238 0.227 0.234 0.724 0.402

SRATIO

Equal 0.00 0.322 0.493 0.280 0.521 0.431 0.408 0.277 0.336 0.832 0.178

0.05 0.310 0.561 0.271 0.583 0.447 0.333 0.252 0.332 0.784 0.201

0.10 0.298 0.619 0.256 0.557 0.473 0.353 0.252 0.371 0.764 0.245

0.15 0.321 0.666 0.277 0.597 0.458 0.398 0.284 0.386 0.757 0.247

0.20 0.341 0.644 0.290 0.543 0.423 0.408 0.303 0.372 0.750 0.261

75/25 0.00 0.476 0.714 0.407 0.731 0.403 0.722 0.334 0.523 0.632 0.251

0.05 0.440 0.725 0.388 0.771 0.388 0.766 0.317 0.574 0.674 0.224

0.10 0.471 0.747 0.402 0.782 0.402 0.776 0.351 0.561 0.662 0.247

0.15 0.519 0.763 0.411 0.794 0.410 0.788 0.363 0.548 0.622 0.294

0.20 0.599 0.798 0.490 0.745 0.471 0.723 0.342 0.503 0.688 0.237

D

0.2 0.00 0.548 0.746 0.423 0.728 0.533 0.670 0.386 0.482 0.759 0.308

0.05 0.401 0.744 0.328 0.765 0.563 0.607 0.316 0.534 0.762 0.309

0.10 0.418 0.856 0.323 0.737 0.542 0.620 0.321 0.583 0.632 0.404

0.15 0.463 0.870 0.327 0.738 0.465 0.605 0.344 0.502 0.549 0.472

0.20 0.575 0.903 0.420 0.572 0.478 0.575 0.386 0.461 0.489 0.535

0.5 0.00 0.333 0.557 0.311 0.614 0.413 0.514 0.280 0.408 0.838 0.137

0.05 0.356 0.592 0.323 0.636 0.406 0.461 0.283 0.382 0.877 0.110

0.10 0.353 0.607 0.317 0.628 0.412 0.443 0.282 0.358 0.908 0.110

(Continued)

Frontiers in Psychology | Quantitative Psychology and Measurement May 2014 | Volume 5 | Article 337 | 8

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Finch et al. MIXDA and latent subgroups within groups

Table 5 | Continued

Overlap LDA1 LDA2 LR1 LR2 MIXDA1 MIXDA2 CART1 CART2 GAM1 GAM2

0.15 0.402 0.694 0.364 0.716 0.462 0.552 0.320 0.450 0.925 0.092

0.20 0.378 0.659 0.340 0.663 0.460 0.525 0.310 0.441 0.948 0.103

0.8 0.00 0.278 0.441 0.261 0.464 0.316 0.414 0.237 0.338 0.642 0.194

0.05 0.302 0.509 0.279 0.536 0.313 0.363 0.223 0.322 0.604 0.206

0.10 0.304 0.509 0.283 0.535 0.375 0.439 0.256 0.359 0.654 0.202

0.15 0.303 0.517 0.283 0.542 0.391 0.448 0.268 0.373 0.672 0.201

0.20 0.321 0.535 0.295 0.560 0.375 0.406 0.256 0.330 0.700 0.180

FIGURE 2 | Increase in misclassification rate from equal subgroup ratio

to 75/25 ratio, by method, group and degree of subgroup overlap.

latent subgroups. Such a situation arises, for example, when indi-
viduals who have been diagnosed with depression are compared
to those who are non-clinical, but within each group there exist
differentiated levels of actual depression severity. While such sit-
uations are common in the applied literature (e.g., Meehl, 1992),
very little methodological research has examined the performance
of statistical classification tools when such subgroups within
known groups are present. We hope that the current study will
serve as a first step in this direction, providing both applied and
methodological researchers with information on the performance
of these methods for addressing known group classification when
subgroups are present. The methods included in this study were
selected either because they are popular in practice (LDA and LR),
have been shown in prior research to be optimal in many classi-
fication situations (CART and GAM), or theoretically should be
optimal for situations in which known groups consist of mixtures
(MIXDA).

These results show that two of the most popular methods for
classification, LDA and LR, do not perform well in the presence

of known group mixtures. Indeed, LDA consistently displayed
the worst results of all methods across virtually all of the con-
ditions in our Monte Carlo simulation study. These results are
not completely surprising in that prior simulation studies have
shown these methods to be less accurate when no subgroups are
present in the data (Holden et al., 2011), but to our knowledge it
has not been demonstrated when subgroups exist within known
groups. Given that LDA and LR rely on linear combinations of the
predictors in order to develop a prediction equation, there is no
reason to expect that their relative performance would improve
when the classification is complicated by the presence of latent
subgroups within the larger known groups. Indeed, it is reason-
able to expect that any non-linearities introduced into the data
as a result of subgroups being present in the data will not be ade-
quately dealt with by these linear modeling methods. Nonetheless,
it is important to note that they continue to perform relatively less
well than alternative methods in this more complex case.

Also in keeping with prior research (e.g., Holden et al., 2011),
under most of the simulated conditions CART provided the most
accurate predictions, regardless of the degree of subgroup separa-
tion within the known groups. While CART has previously been
demonstrated to be among the most accurate classification tools
when known groups do not consist of mixtures, it was not known
how well this method would work in the presence of subgroups.
A potential strength of CART in many classification situations is
that it is non-parametric in nature (Breiman et al., 1984). Thus,
unlike the other methods studied here, which assume a specific
model structure relating the predictors to the grouping variable,
CART develops its prediction tree using a partitioning algorithm
that, at each step in the process, identifies the division of the
data that provides the most accurate classification possible. Thus,
while this study was designed primarily to be an exploration of
the subgroups’ impact on classification accuracy, it is possible to
assert a hypothesis that CART’s partitioning algorithm was better
able to ignore the noise created by the subgroups and more accu-
rately identify differentiations between the known groups, than
were the model based approaches, all of which rely on some lin-
ear or non-linear combination of the variables in developing a
prediction equation. When the groups to be classified contain a
great deal of statistical variation due to the existence of the sub-
groups, the resulting parameter estimates for the model based
coefficients would themselves contain added noise, making them
less accurate. In other words, it appears that CART’s partition-
ing algorithm was better able to identify the differences among
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Table 6 | Summary of simulation study results.

Manipulated Result

variable

Method CART had lowest misclassification rates; MIXDA had
second lowest misclassification rates; LDA, GAM, and
LR had highest misclassification rates

Overlap More overlap led to higher misclassification

N Larger N generally led to lower misclassification rates
for LDA, GAM, and LR. Larger N led to higher misclas-
sification rates for CART and MIXDA

Nratio Known group size inequality led to lower misclassifi-
cation rates for all methods except MIXDA

Subgroup ratio Subgroup size inequality led to higher misclassification
rates for all methods

Group separation Greater known group separation led to lower misclas-
sification rates for all methods

the broader known groups than were the models underlying the
other methods.

Typically, the second best performer in this study was MIXDA,
which explicitly allows for the presence of subgroups, and
attempts to identify them in the development of a prediction
algorithm for the known groups (Hastie and Tibshirani, 1996).
Correspondingly, it was hypothesized that MIXDA would per-
form well in comparison to the other methods. However, results
of this study revealed that CART provided more accurate group
classification than MIXDA, even when the degree of separation
between subgroups was relatively high. This is a new finding in
the literature and shows the flexibility and robustness of CART,
along with its stability across a wide variety of realistic situations
encountered in practice. However, these results do indicate that
MIXDA is preferable to the other model based approaches stud-
ied here when there are subgroups within the broader known
groups. In addition, though not a focus of this study, it should
be noted that one feature of MIXDA that is not associated with
the other approaches, including CART, is the explicit identifica-
tion of subgroup membership. Therefore, when using MIXDA
it is possible not only to predict an individual’s membership
in the larger known group, but also to obtain their member-
ship in the subgroups as well. Such information could prove to
be quite important to researchers interested in learning about
such subgroups, making MIXDA potentially useful in such cases.
Indeed, given that in many instances MIXDA performed only
slightly worse than CART, this additional information regarding
subgroup membership may make the MIXDA approach prefer-
able when researchers are interested in understanding not only
known group membership, but also membership among the
within group mixtures.

Finally, GAM, which had been shown to be accurate in prior
studies of group classification when no subgroups were present
(e.g., Holden et al., 2011), did not perform particularly well when
the known groups consisted of mixtures. Indeed, in many cases
it was no better than LDA, which is quite a different result from
the prior work where GAM was typically among the most accu-
rate performers. Thus, it seems clear that the noise created by the

presence of subgroups in the data could lead to coefficient esti-
mation problems in GAM that are similar to those witnessed in
LDA. Furthermore, in earlier studies GAM was particularly effec-
tive when the relationship between group membership and the
predictors was non-linear, which was not the case here. It remains
to be seen whether the relative performance of GAM to the other
methods would improve in such a case. Nevertheless, it does not
seem likely that it would outperform the recursive partitioning
algorithm underlying CART, given the latter’s clear dominance in
this study and good performance in the non-linear case with no
subgroups (Holden et al., 2011).

Another consistent finding of this study was that misclassifica-
tion rates for the middle group of three was nearly always higher
than for either of the end groups. This result matches earlier work
(Finch and Schneider, 2007), and highlights a potential problem
for researchers who are particularly interested in classification for
a group whose means reside in the middle of several other groups.
In their work, Finch and Schneider noted that a potential prob-
lem for classifying such a middle group is that misclassification
can occur in two possible ways, with individuals being misclas-
sified into either adjacent group. However, for the more extreme
groups on the ends, misclassification into the other extreme group
is much less likely than misclassification into the adjacent cate-
gory. And indeed, analysis of some individual simulation results
demonstrated this to be the case.

In applying these results to practice, researchers must clearly
be cognizant of the possibility that the known groups of inter-
est may in turn consist of latent subgroups. The presence of
such subgroups will cause difficulty in the development of an
accurate classification algorithm, and the subsequent proper clas-
sification of individuals in a cross-validation sample. Indeed,
the more pronounced the subgroup separation, the more prob-
lems will occur for the classification algorithms. Model based
methods of classification, which rely on estimation of coeffi-
cients for the predictors, seem particularly susceptible to the
noise created by these subgroups. This result has very real impli-
cations for researchers interested in using these classification
methods, as they must consider the extent to which such sub-
groups might be present in the data. An investigation into this
issue would seem to imply that the careful use of descriptive
statistics and graphing techniques are recommended so as to
identify the potential presence of such subgroups, in addition to
being guided by theory and the literature. Furthermore, when
the researcher suspects that latent subgroups may be present,
he or she should consider not using the more familiar, but in
this case less accurate, classification tools such as LDA and LR,
but rather should select more robust methods such as CART
or MIXDA. Indeed, given CART’s stellar performance in prior
research where known groups consisted of homogeneous sets of
individuals rather than mixtures, one could argue that in con-
ditions similar to those included in simulation studies, CART
may be an optimal method for group classification in general.
One exception to this recommendation, however, would be the
case where the researcher is interested in the subgroups them-
selves, and does not view them as merely a nuisance. In such
cases, MIXDA is probably preferable to CART, given its relative
accuracy for group prediction and the ability to explicitly model
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the subgroups existing within the known groups, which CART
cannot do.

LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH
The goal of this study was to compare classification accuracy of
group memberships when the groups contain latent subgroups
for five methods that have proven popular and/or been strong
performers in previous studies. Nevertheless, not all possible clas-
sification methods were included, primarily because they have not
proven optimal previously and the added complexity of what we
studied did not seem conducive to their performance. Among
these are neural networks and multivariate adaptive regression
splines (MARS). While they were not found to be top perform-
ers in studies when known groups were homogeneous, it is not
known how they would compare in the situations like those sim-
ulated here. Thus, future work should compare these methods
with some of the current strong performers, such as CART and
MIXDA.

In addition, the current study used three univariate effect
sizes to simulate known group, and subgroup separation. These
were selected because they have been used in prior research and
provide a stable and well understood metric for defining group
differences. At the same time, there are obviously other levels of
group differences that could have been explored, and other meth-
ods for describing such difference. While we are comfortable with
the methodology chosen here, we also recognize the possibility for
other approaches to be used. One problem with using a multivari-
ate measure of group separation such as the Mahalanobis distance
is that there are not generally agreed upon notions of what con-
stitutes a small or large difference. Thus, using this approach to
simulating group separation would raise the difficulty of deciding
on appropriate magnitudes. Future work should investigate these
problems from a multivariate perspective.

Finally, future research should investigate a different set of
conditions, expanding on those included here. As the study was
mainly exploratory due to the lack of research on this topic, the
number of conditions was kept to a reasonable number for ease
of interpretation. However, now that the groundwork has been
laid, there are many interesting directions that can be investi-
gated to further our understanding of these and related topics.
For example, while both 2 and 3 groups were studied here, future
research could examine, perhaps, 5 groups, which lies at the upper
boundary of most applied classification studies with which we are
familiar. The impact of different covariance structures for both
the predictor variables and the subgroups would also be of inter-
est. In addition, future work should also include a wider range of
predictor variables, and different distributions of the predictors,
as well as different numbers of mixtures within the known groups.
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