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ABSTRACT: Malicious software, commonly termed “malware,” continuously presents
one of the top security concerns, and causes tremendous worldwide financial losses
for organizations. In this paper, we propose a structural risk model to analyze
malware propagation dynamics measured by a four-parameter (asymptote, point of
inflection, rate, and infection proportion at inflection) growth curve. Using both
social network data and technological network infrastructure from a large organiza-
tion, we estimate the proposed structural risk model based on incident-specific
nonlinear growth curves. This paper provides empirical evidence for the explanatory
power of the structural characteristics of the underlying networks on malware
propagation dynamics. This research provides useful findings for security managers
in designing their malware defense strategies. We also simulate three common
malware defense strategies (preselected immunization strategies, countermeasure
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dissemination strategies, and security awareness programs) based on the proposed
structural risk model and show that they outperform existing strategies in terms of
reducing the size of malware infection.

KEY WORDS AND PHRASES: information systems security, malware defense, malware
propagation, malware propagation trajectory, network analysis, social networks,
technological networks.

Malicious software, commonly termed “malware,” continuously presents one of the
top security concerns for organizations [18]. Worldwide financial losses due to
malware averaged $12.18 billion per year from 1997 to 2006 [17] and increased
to $110 billion between July 2011 and the end of July 2012 [56]. Typical malware
includes viruses, worms, Trojan horses, spyware, adware, and others. Since the first
computer virus surfaced in the early 1980s, malware has developed into thousands
of variants that differ in infection mechanism, propagation mechanism, destructive
payload, and other features [22]. Among them, viruses and worms, the two most
commonly seen types of malware, have drawn more industry and research attention
than other types of malware due to their self-replicating nature, dramatic propagation
speed, and potentially severe destructive consequences. For these reasons, in this
paper we study the propagation process of viruses and worms within organizational
networks.
Viruses and worms may propagate through different organizational networks,

which can be divided into two categories—technological networks (TN) and
social networks (SN). As the computational foundation of organizational business
processes, technological networks (e.g., LANs and WANs) consisting of inter-
connected computers, routers, and other network devices, enable data transmis-
sions to perform required tasks. Some malware may propagate through
technological networks. For example, the Blaster starts from a local machine’s
IP address or a completely random address and attempts to infect sequential IP
addresses. In addition to technological networks, there are social networks (e.g.,
e-mails, instant messaging systems, P2P networks, and social networking sites)
inherently embedded within an organization. For example, business communica-
tions as well as personal contacts among employees inside and outside their
departments constitute an information distribution network. Recently, social-net-
work-based malware has become a great threat because of the popularity of social
media in organizations [15, 42]. Users expose more personal information in a
social networking environment and are more of a target for social-network-based
malware [19]. In addition, social networking tools connect individuals who have a
certain level of mutual trust, which enables malware to disguise and propagate
easily over social networks [39]. For example, MyDoom is transmitted primarily
via e-mail and P2P network. Koobface is another representative and revolutionary
social-network-based malware considered the first to successfully propagate
through social networking sites [1].
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In this paper, we view the propagation process of self-replicating malware as a
special type of network flow—that is, computer viruses and worms start from certain
nodes and propagate through the edges within organizational networks. This paper
aims to address several important questions regarding malware propagation and
defense: how does malware propagate within organizational networks, that is, TNs
and SNs? What are the appropriate measures of network structures in the context of
self-replicating malware propagation? How can network structural characteristics be
used to explain the dynamics of the malware propagation process? What are the
implications of network structure for malware defense?
This paper adopts theoretical concepts and methods from the field of social

network analysis, namely, centrality measures and subgroup analysis, to capture
the structural characteristics of both social network and technological network. In
particular, based on the unique properties of the malware propagation process, we
identify random-walk betweenness as the appropriate centrality measure to evaluate
the structural position of individual nodes. Modularity-maximizing decomposition is
then applied to analyze the embedded subgroup structure. Based on the derived
centrality measures and the discovered subgroup structure, we formulate our struc-
tural risk model to examine the impact of individual-, group-, and network-level
characteristics on malware propagation dynamics. Details of the structural risk
model are provided in the research model section.
In order to estimate and evaluate the proposed structural risk model, we construct

real organizational networks and simulate the self-replicating malware propagation
processes. We consider a real social network structure constructed from a large
social networking site and then map nodes in the social network to nodes in the
technological network within the organization. Details of the network construction
process are provided in the research sample section.
Based on the constructed networks, we further compute random-walk betweenness

(Betweenness) and size of the modularity-maximizing subgroups (GroupSize), both of
which serve as independent variables in the proposed structural risk model. We then
simulate the malware propagation process through the constructed networks. Absent
real infection data, which are infeasible to obtain, studying these sample networks and
using their structural measures to explain the spread patterns provide insights into the
real malware propagation process.1 We record the environment variables of the malware
propagation simulations—Virus, StartNum, InfRate, RecRate, VirusActRate. These
simulation environment variables serve as control variables in the proposed structural
risk model. In this study, we use a generalized logistic growth curve with four para-
meters—asymptote (A), point of inflection (I), rate (R), and infection proportion at
inflection (P), to capture the complex process of malware propagation. This four-
parameter generalized logistic growth curve is used chiefly for growth of organisms
(e.g., trees) in the literature, but we have adapted its use to model the cumulative growth
of infected computers in a malware propagation process. These four parameters serve as
dependent variables in the proposed structural risk model. Next, we use hierarchical
regressions to estimate the structural risk model and show that random-walk between-
ness of individual nodes, their local subgroup structures, and the type of network have
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both statistically and practically significant collective inference on self-replicating
malware propagation dynamics. Details of network analysis and model estimation are
provided in the analysis and results section. Our simulation experiments further demon-
strate that the proposed structural risk model can be integrated into existing malware
defense strategies (preselected immunization strategies, countermeasure dissemination
strategies, and security awareness programs), which outperform the existing defense
strategies in terms of reducing the size of malware infection.
There are four major findings in this paper. First, the four-parameter generalized

logistic growth curve provides a remarkably accurate approach to modeling the cumu-
lative number of infected computers in a malware incident, as evidenced by the median
R2 (coefficient of determination) of 0.998. Second, random-walk betweenness captures
the structural characteristics of individual nodes in the context of malware propagation
and explains the propagation dynamics. Third, the subgroup structure of both social
network and technological network and the corresponding subgroup characteristics (i.e.,
the size of the subgroup) have a significant impact on the malware propagation process.
In a malware incident, more computers get infected if the malware starts from larger
subgroups. Fourth, when a virus or worm propagates through a social network, it
spreads more slowly but eventually infects a larger number of computers, compared
to propagating through a technological network. These findings have important manage-
rial implications, which are discussed in the conclusions section.

Literature Review

Malware propagation and defense has long been studied by researchers in informa-
tion systems security [43]. Intrusion detection systems [10] and intrusion prevention
systems [67] are used for reactive detection and proactive prevention of malware
attacks. At the managerial level, different frameworks and techniques are proposed
to evaluate the impact of malware [51]. Security patch management designs optimal
security patching strategies by balancing the interaction between vendors’ patch-
release policies and firms’ patch-update policies [9]. Firms may also resort to
economic mechanisms, such as cyberinsurance, risk pooling arrangements, and
managed security services, to manage information security risks [70, 71].
Analyzing and evaluating security risk [55, 68], leveraging system modularity
[64], implementing and increasing user awareness of security countermeasures [20,
36], and optimizing security investment [8, 29, 58] are critical procedures for
effective information systems security management.
Prior research on network analysis and malware propagation shows that network

topology is a crucial factor for malware propagation. In a malware incident, the
topology of the victim network has been shown to be one of the key determinant
factors of the propagation speed and destructive consequences in various contexts such
as e-mail networks [50, 51], mobile phone networks [23], supply distribution networks
[69], and so on. Extant work in this area takes two distinct approaches in studying the
malware propagation process [6]. Computer scientists analyze the spread of malware in
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complex networks using epidemiological models from disease propagation [34] and
interactive Markov chains [26]. In their work, complex networks usually display two
distinct properties: a scale-free connectivity distribution in which nodes follow a power
law distribution [21, 32, 37, 62], and small-world property with small average path
lengths between any two nodes [31, 33, 44, 72]. In contrast, social scientists distinguish
among different kinds of dyadic links, emphasizing variation in network structure
across different individual nodes and using these variations to explain nodes’ different
outcomes [3, 7]. Our work follows the perspective of social science and examines how
the variations in network properties of individual nodes account for differences in their
role in the malware propagation process.
This paper contributes to both the literature of information systems security and the

literature of network analysis. We study the impact of network structure on the malware
propagation dynamics at the micro level. At the individual level, this study identifies an
appropriate structural measure, that is, random-walk betweenness of individual nodes,
and analyzes the impact of the random-walk betweenness of the starting nodes on self-
replicating malware propagation dynamics. At the group level, this paper investigates
the subgroup structure of the networks and demonstrates that characteristics of the local
groups of the starting nodes significantly influence the malware propagation process. At
the network level, there are intrinsic structural differences between social networks and
technological networks. This paper proposes a holistic view of an organization’s
computing environment to examine malware propagation patterns within both social
networks and technological networks. Our findings suggest that these different levels of
structural characteristics should be incorporated in malware defense mechanisms to
better secure organizational computing environments. Prior research on network topol-
ogy and malware propagation relies on simulated networks with certain properties such
as scale-free and small-world networks. This paper takes an alternative approach with
real social and technological networks within an organization. This approach allows us
to empirically estimate and evaluate the proposed structural risk model without making
strict assumptions about the network structure.
In addition, this paper makes a methodological contribution by introducing growth

curves, which are specific to individual malware incidents, for modeling the propagation
process. We used a generalized logistic growth curve with four key parameters to capture
the dynamics of malware propagation. This four-parameter generalized logistic function
demonstrated an exceptionally good fit to the malware propagation data. Knowledge of
these variables helps organizations to greatly improve security risk assessment prior to
malware incidents and to take timely actions during malware incidents.

Research Model

Modeling the Malware Propagation Process and Dependent Variables

In this subsection, we discuss modeling the malware propagation process with an
emphasis on parameter interpretation in the context of malware propagation. We
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model the process of malware propagation within an organizational network as a
growth curve of the cumulative number of infected computers as a function of time
for each malware incident. We use a generalized logistic function, a type of growth
curve, that offers a flexible sigmoidal form and is widely used in modeling growth in
organisms [52, 53]. Because similar sigmoidal forms of growth to an asymptote have
been observed in prior studies in malware propagation [23, 61, 62], we adapt the use
of the generalized logistic function to model the cumulative growth of infected
computers. Several parameterizations of the generalized logistic function exist and
we use the following parameterization [41, 45, 57] to model the malware propaga-
tion process:

InfNumt ¼
A

½1þ Se$Rðt$1Þ'1=S
; (1)

where t is the value of time since the process started at time zero and InfNumt

represents the cumulative infection number at time t. At time zero, that is, t = 0
(baseline), multiple nodes within an organizational network may get infected. These
nodes represent the starting nodes of a malware incident and the corresponding
InfNum0 represents the number of starting nodes.
As shown in Equation (1), there are four parameters in this generalized logistic

function. The asymptote parameter, denoted by A, represents the upper limit of the
cumulative number of infected computers, which measures the size of malware
infection. The point of inflection parameter, denoted by I, represents the time point
when the maximum slope of growth in the infection number occurs. The point of
inflection also indicates the time point when the curve turns from convex to concave.
The rate parameter, denoted by R, indicates the propagation speed. The shape
parameter, denoted by S, determines the shape of the growth curve. More explicitly,
the shape parameter determines the propagation proportion of the asymptote at the
point of inflection. We introduce the infection proportion at inflection parameter,
denoted by P, to represent the proportion of total number of infected computers at
the point of inflection. Because the cumulative number of infected computers is
InfNumI ¼ A

ð1þSÞ1=S
at the point of inflection, the proportion is given by Equation (2):

p ¼ 1

ð1þ SÞ1=S
: (2)

There is a one-to-one mapping between P and S. The domain for S is [–1, ∞] while
the domain for P is [0, 1]. The infection proportion at inflection parameter (P)
increases in the shape parameter (S), that is, when S increases, there is a higher
proportion of infected computers at the point of inflection. For example, when S = 1,
half of the total number of infected computers are reached at the point of inflection,
that is, P = 0.5; when S increases to 10, P increases to 0.79. Figure 1 depicts this
four-parameter generalized logistic function and its parameters.
This general growth function contains several other growth curves as special cases.

Specifically, the four-parameter generalized logistic function, defined in Equation (1),
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reduces to the logistic function when S = 1, the Mitscherlich function when S = –1, and
the Gompertz function when S approaches zero. This four-parameter generalized
logistic function is highly flexible in capturing growth dynamics [38]. First, the point
of inflection may occur anywhere in the process. Second, the process before the point of
inflection may be either symmetric or nonsymmetric to the process after the point of
inflection. Third, the proportion of the asymptote obtained at the point of inflection may
be anywhere between 0 and 1.
The four parameters asymptote (A), point of inflection (I), rate (R), and infection

proportion at inflection (P) for each instance serve as dependent variables in our
model. These parameters are fundamental characteristics of a malware propagation
process providing crucial knowledge about the spread of malware for security
managers to make informed decisions and take timely actions in a malware incident.

Random-Walk Betweenness as Individual-Level Independent
Variables

In this subsection, we propose a structural measure for the starting nodes in a
malware propagation process and use it as an explanatory variable to describe the
dynamics of malware propagation. Centrality reveals how influential and powerful a
node is in a network. As one of the most fundamental network concepts, centrality
has been examined extensively in social network analysis and many centrality
measures have been proposed, such as degree, shortest-path betweenness,2 closeness
[25], flow betweenness [24], random-walk betweenness [46], and eigenvector [4]
centralities. These centrality measures are developed with specific assumptions and
restrictions. To correctly capture the central position of individual nodes and obtain
meaningful results, appropriate centrality measures should be chosen based on the
characteristics of network flows [7, 24, 54].

Cumulative Number of Infected Computers

TimeI

A

Figure 1. Modeling the Malware Propagation Process
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We next determine the appropriate centrality measure for malware propaga-
tion processes based on their network flow characteristics. First, malware
propagation processes follow unconstrained walks, as opposed to trails, paths,
or geodesics. Second, malware propagation processes allow parallel duplication,
as opposed to serial duplication or transfer. Third, previously infected nodes
may get reinfected before security patches have been applied. Fourth, infected
nodes attempt to spread to their neighbors simultaneously. Based on these
characteristics, random-walk betweenness [46] is appropriate for malware pro-
pagation processes.
Random-walk betweenness of a node equals the number of times that a random

walk passes through the node along the way, averaged over all starting points and
ending points [46]. Random-walk betweenness assumes that a network flow wanders
at random until it finds its target, and counts all paths without any assumption of
optimality such as geodesic paths. Nodes with high random-walk betweenness are
powerful in influencing the dynamics of malware propagation across the network. In
our structural risk model, random-walk betweenness is an individual-level indepen-
dent variable.

Subgroup Analysis and Group-Level Independent Variables

Cohesive subgroups embedded in networks are important for the study of malware
propagation. Nodes within a subgroup have more connections among each other and
therefore are more likely to infect each other, whereas nodes between the subgroups
have fewer connections and therefore are less likely to infect each other.3 Traditional
subgroup analysis techniques include graph partitioning, component analysis, clique
analysis, core analysis, and so on. More recently, the concept of modularity, which
measures the degree of variation from random network partition, has been proposed
for subgroup analysis [27, 48].
Modularity has been shown to be a good indicator of the quality of network

partition. New algorithms based on modularity have been developed to improve
the performance of subgroup analysis [16, 27, 47, 48]. The fast algorithm
proposed in [47] has become a widely used subgroup analysis that generates
excellent results within a reasonable amount of time. This fast algorithm is a
greedy agglomerative heuristic technique that joins pairs of communities itera-
tively in order to find the network partition that maximizes modularity. At the
beginning, each node is considered a community. In each iteration, community
pairs that would result in greatest increase or smallest decrease in modularity are
joined and modularity values for the remaining communities are recalculated
after each join.
In this study, we apply the fast algorithm proposed in [47] to the network to divide

the nodes into subgroups. For each malware incident, we define a group-level
independent variable—the average size of the subgroups containing starting nodes
(GroupSize).
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A Structural Risk Model of Self-Replicating Malware Propagation

Based on the previous three subsections, we propose a structural risk model for
analyzing the propagation process of self-replicating malware. As shown in
Figure 2, four critical parameters (asymptote, point of inflection, rate, and
infection proportion at inflection) constitute the dependent variables in our
research model. Key independent variables consist of one individual-level
structural characteristic (random-walk betweenness), one group characteristic
(group size), and one network characteristic (network type).

Research Sample

Social Network

In this study, we first collect social network data from a large social networking
site—MySpace. Our research sample is a large-scale organizational social network
on MySpace. The sample organization is one of the largest research universities in
the United States with a total enrollment of approximately 50,000 students. We
gathered data for all members on MySpace who were current students at this
university. Among the 27,608 MySpace users affiliated with this university, there
were 12,101 private users and 15,507 public users. Since the web pages of the
private users were not available, this study analyzes only the public users. After
removing 231 public users with invalid user IDs,4 the number of users in our
sample is 15,276 as of March 2008. Following prior studies in measuring user
behavior on social networking sites [11, 30, 40, 63, 66], the relationship from one
student member to another on MySpace is uncovered by mining the detailed social
networking data on friend listing and communications published on each member’s
profile. Both friend listings and profile comments are directed. For example, a user
may list another user as a friend while the other user does not return the gesture;
one user may view and comment on another user’s profile without any reciproca-
tion from the other user. Figure 3a illustrates the resulting social network, repre-
sented by a directed graph. Note that there are other students who are not MySpace

Malware Propagation Dynamics 
• Asymptote (A) 
• Point of inflection (I) 
• Rate (R) 
• Infection proportion at inflection (P) 

Individual Characteristics 
• Average random-walk betweenness of 

starting nodes (Betweenness) 

Network Characteristics 
• Social or technological network (SN)

Group Characteristics 
• Average size of subgroups containing 

starting nodes (GroupSize) 

Figure 2. Structural Risk Model
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members and there are other social interaction tools that are not reflected on
MySpace. In this paper, the constructed social network serves as a proxy of the
social network of the sample organization.

Technological Network

Organizations adopt heterogeneous computing environments that involve different
technological networks, the most popular being local area networks (LANs). These
technological networks use different types of topologies. The three most common
topologies are the star, ring, and bus. Ethernets with bus topology dominate the LAN
technology application. The sample university’s technological network has a typical
bus topology for its local area networks which are then linked to the core network
forming a tree topology. Figure 3b illustrates the resulting technological network,
represented by an undirected graph. We then mapped nodes in the social network to
the technological network according to the physical location of the department that
hosts a given major-of-study on the technological network. Because 5,168 students
out of the total 15,276 students do not reveal their major online, we remove these
5,168 nodes from our analysis. The resulting social network consists of 10,108
individual nodes. These individual nodes, combined with 15 core nodes of the
campus network and 168 major-of-study nodes, constitute the technological network
with a total of 10,291 nodes. A square in Figure 3b represents a major-of-study node
in a building connected to the core network where the local networks in each
building naturally follow the bus topology. The 168 LANs are completely connected
networks that represent a worst case scenario for the exploration of malware
epidemics.
The sample social and technological networks are also visualized in Figures 4a and

4b. The circles represent subgroups in social and technological networks. The size of
the circles indicates the size of the subgroups. The edges represent intergroup

a. Social Network b. Technological Network 

Figure 3. Topologies of an Illustrative Social Network and Technological Network
Notes: Dots represent individual nodes; triangles represent core nodes in the technological
network; and squares represent major-of-study nodes in the technological network.
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connections, with the weight of the edges indicating the relative frequency of
connections between subgroups. Figures 5a and 5b are drawn using NetDraw [5].
The layouts of the figures demonstrate the subgroup structure of the networks.
Compared to the social network, the technological network has much fewer inter-
group connections and the sizes of its subgroups are more balanced.

Analysis and Results

The research methodology used in this study is outlined in Figure 5. After con-
structing the social and technological networks, we simulate the process of self-
replicating malware propagation. We then conduct network analysis to compute our
key structural measures as independent variables and estimate the four parameters in
the generalized logistic growth curve as dependent variables. Finally, our proposed
structural risk model is estimated using hierarchical regression. Details of these steps
are discussed in the following subsections.

Simulation of Self-Replicating Malware Propagation

Viruses and worms are two of the most common self-replicating malwares. The key
difference in their propagation mechanisms is that viruses need to be activated by the
users to propagate, whereas worms can propagate without the need for users’
initiation. In this study, we simulate the two different propagation processes of
worms and viruses in both the social network and the technological network con-
structed from empirical data.

a. Social Network b. Technological Network 

Figure 4. Sample Social Network and Technological Network
Notes: The circles in represent subgroups in social network and technological network. The
size of the circles indicates the size of the subgroups. The edges represent intergroup
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Malware propagation has been widely studied using epidemiology models.
Among these epidemiology models, the SIR (susceptible–infected–recovered)
model is most commonly used. Researchers conduct computer simulations to
analyze the malware propagation process [23, 35, 60]. Following this tradition,
we start our analysis with simulating the worm propagation process. Based on
the SIR model, there are three states for each node in the network. The node can
be susceptible, infected, or recovered. A susceptible node is not infected but
susceptible to malware and can be infected by its neighbors. An infected node i
can infect its neighbor j according to j’s infection probability α. After trying to

Malware 
Propagation 
Simulation 

Network 
Analysis 

Network 
Construction 

Crawl MySpace

Extract social links

User 
friend 
pages

User 
profile 
pages

Construct SN

Extract student major 
information

Campus core network

Match student nodes in SN 
to nodes in TN based on 
their major information

Construct TN

Organizational networks 
(SN and TN)

Compute random-walk 
betweenness

Subgroup analysis

Modularity-maximizing 
groups

Individual characteristics 
(Betweenness)

Group characteristics 
(GroupSize)

Malware propagation 
simulation

Malware characteristics 
(Virus, StartNum, InfRate,

RecRate, VirusActRate)

Malware propagation 
outcome 
(InfNum)

Estimate four parameters 
of the generalized logistic 

growth curve

Malware propagation 
dynamics 

(A, I, R, P)

Use hierarchical regression to estimate structural risk model

Use simulation to demonstrate the performance of malware defense strategies based on structural risk model

Model Estimation 
and Evaluation 

Figure 5. Overview of Research Methodology
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infect its neighbors, the infected node i may be recovered according to its
recovery probability γ. If the infected node i is recovered, then it becomes
immune to future infections. In practice, we consider an infected node as
recovered when the malware is eliminated from the computer by the user through
patching. Every infected node can try to infect its neighbors at all times before it
is recovered. Viruses, on the other hand, need users’ interaction to spread. We
introduce a new simulation parameter, activation rate φ, to account for the
probability that a particular user activates a received virus. Only when a node
activates a received virus, will the node be infected and the virus propagate to its
neighbors.
We employed the discrete-time simulation method to model the malware propa-

gation process. Beginning at time 0, a set of randomly chosen nodes become
infected and these nodes start the malware propagation process. The number of
starting nodes is modeled as a random variable that follows a power-law distribu-
tion. We consider a general form of the probability density distribution of power
function: f xð Þ ¼ k x$að Þk$1

b$að Þk
, where a and b are boundary parameters with a < b, and k

is the exponent. The parameters of the power-law distribution are estimated using
empirical data from the Wild List.5 The Wild List is a monthly report of malware
in the wild. There were 5,787 malware reported on the Wild List between January
1996 and June 2011. The Wild List data show diversified patterns of malware
incidents. We use the number of reporting organizations as a proxy of the popu-
larity of the malware. The numbers of initial reporting organizations for all
reported malware are then used to estimate the distribution of the percentage of
starting nodes. Finally, we convert the percentages to the numbers of starting nodes
in the sample. The general form of power function fits this empirical data well,
yielding estimated parameter values of k = 0.036, a = 2, and b = 60 for the
distribution of the number of starting nodes.
The propagation process stops either when the malware stops spreading, that is,

when the number of currently infectious nodes reduces to 0, or when the process
runs long enough and reaches the maximum time epoch, which we regard as T =
100.6 We assume that the three rates in the malware simulation—infection rate (α),
recovery rate (γ), and activation rate (φ), follow the power-law distribution with the
lower bound a = 0 and the upper bound b = 1. The power-law distribution captures
the asymmetric nature of user behaviors. Most of the users have high infection rate
and recovery rate while only a few of them have low infection rate and recovery rate.
Thus the probability density distribution of the power function can be simplified to f
(x) = k xk–1 and the corresponding expected value is k /(k + 1). In order to explore the
impact of different malware characteristics, we examine three different levels of the
infection rate, recovery rate, and activation rate values. By setting the expected value
to .2 (low), .5 (medium), and .8 (high), we get the exponents for infection rate,
recovery rate, and activation rate, which are .25, 1, and 4, respectively. For each
simulation, we randomly assign (with equal probability) malware type (Virus = 1 for
virus and 0 for worm) and network type (SN = 1 for social network and 0 for
technological network). Within each simulation, we also randomly assign (with

308 GUO, CHENG, AND KELLEY



equal probability) different levels of infection rate, recovery rate, and activation rate
(InfRate, RecRate, VirusActRate = .2 for low, .5 for medium, and .8 for high rates)
for each node in the network. As a result, the nodes in the simulations are hetero-
geneous in terms of tgheir InfRate, RecRate, and VirusActRate. We ran 200,000
malware propagation simulations on clusters hosted by the high performance com-
puting facility at a research university. In other words, 200,000 sets of conditions
were randomly selected based on the above parameters; within each of these
200,000 sets of conditions a simulation is run. A summary of the simulation
parameters is provided in Table 1. As shown in Table 1, the frequencies of different
values for these control variables are approximately the same.

Calculation of Independent Variables

As discussed in the previous subsection, there are four key simulation parameters—
number of starting nodes, infection rate, recovery rate, and activation rate for
viruses. These four simulation parameters along with the malware type (virus or
worm) constitute the control variables in our malware propagation model. We further
compute the individual-level structural measure—random-walk betweenness. For
each malware incident, the individual-level independent variable is the average
random-walk betweenness of the starting nodes (Betweenness).
Next we perform subgroup analysis using the fast algorithm proposed in Newman

[47]. Our subgroup analysis gives a modularity of 0.402 for SN and 0.948 for TN,
indicating significant subgroup structure for both SN and TN.7 There are 211 SN
subgroups and 172 TN subgroups. For each malware incident, we compute the average
size of the subgroups that contain the starting nodes (GroupSize). The descriptive
statistics and correlations for all quantitative variables are reported in Table 2.

Table 1. Summary of Simulation Parameters

Simulation parameter Parameter value Number of simulations Total

Virus 1 (virus) 100,422 200,000
0 (worm) 99,578

InfRate .2 (low) 66,682 200,000
.5 (medium) 67,010
.8 (high) 66,308

RecRate .2 (low) 66,670 200,000
.5 (medium) 66,468
.8 (high) 66,862

VirusActRate .2 (low) 33,706 100,422
.5 (medium) 33,148
.8 (high) 33,568

SN 1 (SN) 100,000 200,000
0 (TN) 100,000
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Estimation Results of the Generalized Logistic Growth Curve

The estimation procedure of the four-parameter generalized logistic growth curve is
implemented in statistical computing software R. We use five methods to estimate
the generalized logistic curve parameters for each of the 200,000 incidents: nonlinear
least squares (via the nls function) and optimization routines (via the optim function
with the BFGS, Nelder-Mead, CG, and SANN methods). We used the estimated
values from the procedure that yielded the minimum value of the standard deviation
of the residuals between the model implied and the simulated observations. In order
to quantify the fit of the generalized logistic change curve, we compare the observed
and model implied (i.e., based on the estimated parameters) values. In particular, we
compute a squared multiple correlation coefficient (i.e., coefficient of determina-
tion), in which the correlation between y and y-hat, where y is the observed value
and y-hat is the estimated value, is squared. We calculate the R2 values for all
200,000 incidents. Doing so yields a median R2 of 0.998 and the values that
bracketed the middle 98 percent of the distribution are 0.926 and 0.9999998 (i.e.,
these are the 1st and 99th percentiles).
As shown in Figure 6, the three incidents correspond to the 1st percentile R2, the

median percentile R2, and the 99th percentile R2. Considering the 1st percentile of R2

is as high as .926, it is clear that the four-parameter generalized logistic growth
function models the malware propagation process extremely well. We note, however,
that these R2 values exclude 7,272 values (3.64 percent) due to estimated parameter
values that were inadmissible such as negative point of inflection. Given that only
3.64 percent of the sample has any issues, we are confident in the validity of our
findings based on the 192,728 instances.

Cumulative Number of Infected Computers

0
0

2,000

4,000

6,000

8,000

10,000

20 40 60 80 100
Time 

Incident 1

Incident 3

Incident 2

Figure 6. Examples of Fitting Growth Curves to Malware Propagation Processes
Notes: The R2 of the fitted curve for incident 1 is 0.926, which corresponds to the 1st
percentile; the R2 of the fitted curve for incident 2 is 0.998, which corresponds to the median;
and the R2 of the fitted curve for incident 3 is 0.9999998, which corresponds to the 99th
percentile.

IMPACT OF NETWORK STRUCTURE ON MALWARE PROPAGATION 311



Estimation Results of the Structural Risk Model

Based on the empirical network data (SN and TN) of the sample organization and
the simulated propagation data of worm and virus, we estimate the proposed
structural risk model using hierarchical regression analysis. Specifically, the follow-
ing four models are estimated:

Model 1: A (or I, R, P) = b0 + b1 X + ε;
Model 2: A (or I, R, P) = b0 + b1 X + b2 Betweenness + ε;
Model 3: A (or I, R, P) = b0 + b1 X + b2 Betweenness + b3 GroupSize + ε;
Model 4: A (or I, R, P) = b0 + b1 X + b2 Betweenness + b3 GroupSize + b4 SN + ε,

where control variables X = Virus, StartNum, InfRate, RecRate, and VirusActRate.

In the first step of the analysis (Model 1), the control variables (Virus, StartNum,
InfRate, RecRate, and VirusActRate) are entered into the regression equation. In the
second step (Model 2), the individual-level independent variable (Betweenness) is
entered into the regression equation, which already contains the Model 1 variables.
In the third step (Model 3), we introduce the group-level independent variable
(GroupSize) into the regression model, which already contains Models 1 and 2
variables. Finally, in the fourth step (Model 4), the network-level independent
variable (SN) is entered into the regression model that already contains Models 1,
2, and 3 variables. We conduct hierarchical regression analysis on four dependent
variables (A, I, R, and P) separately. The unit of analysis in our study is malware
incident. Tables 3–6 present the estimation results for the four dependent variables,
respectively.
Table 3 presents the step-by-step regression results for the first dependent variable—

asymptote (A). The overall model, that is, Model 4, explains 78.4 percent of the
variability in A. All independent variables are assessed simultaneously so that their
effects can be shown in the context of overall model. The effects of all control variables
(Virus, StartNum, InfRate, RecRate, and VirusActRate) on A are statistically significant.
Independent variables result in a .103 increase in R2 (F-statistic = 30,615.922, p < .001).
Random-walk betweenness (b = 322,867.027, p < .001) as the individual structural
characteristic of starting nodes has a statistically significant impact on A with an
incremental R2 of 0.047 (F-statistic = 33,682.462, p < .001). Group size, which indicates
the average size of groups in which starting nodes are embedded, is significantly related
to A (b = .167, p < .001). The type of network is also significantly related to A (b =
2,250.361, p < .001). These results suggest that the cumulative number of infected
computers in a malware incident is positively related to random-walk betweenness of
starting nodes and the average size of groups to which starting nodes belong. In addition,
malware incidents in a social network results in a higher number of infected computers
than in a technological network.
Table 4 presents the step-by-step regression results of control variables and indepen-

dent variables on the second dependent variable: point of inflection (I). All the control
variables (Virus, StartNum, InfRate, RecRate, and VirusActRate) are statistically sig-
nificantly associated with I. Independent variables result in a .007 increase in R2 (F-
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statistic = 491.501, p < .001) and 8.2 percent of the variability in I can be explained by
the overall model. Random-walk betweenness (b = –2,460.546, p < .001) has a
statistically significant effect on I. Both group size (b = –.001, p < .001) and network
type (b = –1.448, p < .001) are related statistically significantly to I. These results
suggest that the time point when the maximum slope of growth in the infection number
occurs in a malware incident is negatively influenced by random-walk betweenness of
starting nodes and the size of their local groups. The maximum slope of growth occurs
earlier in a social network than in a technological network.
Regression results for rate (R) are presented in Table 5. The effects of all control

variables (Virus, StartNum, InfRate, RecRate, and VirusActRate) on R are statistically
significant. Random-walk betweenness (b = 3,912.403, p < .001) has a positive sig-
nificant effect on R. Group size (b = .000, p > .05) is not significantly related to
R. Network type (b = –8.643, p < .001) is negatively related to R at a significant level.
Independent variables result in a .02 increase in R2 (F-statistic = 1,422.642, p < .001)
and 9.1 percent of the variability in R can be explained by the overall model. These
results suggest that the propagation speed in a malware incident is affected positively by
random-walk betweenness of starting nodes, but the effect of group size was not found
to be statistically significant. Malware propagates faster through a technological net-
work than through a social network.

Table 3. Regression Results for Asymptote (A)

Variables Model 1 Model 2 Model 3 Model 4

Virus –6,200.976*** –6,095.638*** –6,099.645*** –6,067.006***
StartNum 38.121*** 36.827*** 36.868*** 36.476***
InfRate 8,268.107*** 8,187.241*** 8,191.119*** 8,162.31***
RecRate –4,634.266*** –4,560.890*** –4,566.146*** –4,535.366***
VirusActRate 7,337.548*** 7,203.103*** 7,201.941*** 7,163.161***
Betweenness –6,973,895.645*** –6,533,115.808*** 322,867.027***
GroupSize 1.552*** .167***
SN 2,250.361***
Adjusted R2 .681 .728 .735 .784
F Change

compared to
Model 1

33,682.462*** 1,9626.697*** 30,615.922***

F Change
compared to
Model 2

4,742.283*** 24,756.121***

F Change
compared to
Model 3

43,694.782***

*p < .05; **p < .01; ***p < .001.
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Table 6 presents the step-by-step regression results for infection proportion at
inflection (P). As shown in Table 6, the effects of all control variables (Virus,
StartNum, InfRate, RecRate, and VirusActRate) on P are significant. Random-walk
betweenness (b = –70.856, p < .001) has positive significant effects on P. Group size
(b = –.00001251, p < .001) and network type (b = –.138, p < .001) are negatively
associated with P at a significant level. Independent variables result in a .124
increase in R2 (F-statistic = 11,434.002 p < .001) and 30.3 percent of the variability

Table 4. Regression Results for Point of Inflection (I)

Variables Model 1 Model 2 Model 3 Model 4

Virus 3.800*** 3.761*** 3.766*** 3.745***
StartNum –.075*** –.075*** –.075*** –.075***
InfRate –.4.391*** –4.361*** –4.366*** –4.348***
RecRate –6.524*** –.6.551*** –6.543*** –6.563***
VirusActRate –4.415*** –4.365*** –4.364*** –4.339***
Betweenness 2,581.185*** 1,951.583*** –2,460.546***
GroupSize –.002*** –.001***
SN –1.448***
Adjusted R2 .075 .077 .079 .082
F Change compared to Model 1 237.580*** 362.818*** 491.501***
F Change compared to Model 2 487.456*** 617.701***
F Change compared to Model 3 746.062***

*p < .05; **p < .01; ***p < .001.

Table 5. Regression Results for Rate (R)

Variables Model 1 Model 2 Model 3 Model 4

Virus –6.107*** –6.585*** –6.572*** –6.697***
StartNum 1.075*** 1.081*** 1.081*** 1.082***
InfRate 9.753*** 10.120*** 10.107*** 10.218***
RecRate 3.124*** 2.791*** 2.808*** 2.690***
VirusActRate 3.495*** 4.106*** 4.109*** 4.258***
Betweenness 31,652.900*** 30,244.203*** 3,912.403***
GroupSize –.005*** .000
SN –8.643***
Adjusted R2 .071 .082 .083 .091
F Change compared to Model 1 2,338.550*** 1,249.966*** 1,422.642***
F Change compared to Model 2 159.459*** 953.135***
F Change compared to Model 3 1,745.368***

*p < .05; **p < .01; ***p < .001.
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in P can be explained by the overall model. These results suggest that the infection
proportion at point of inflection in a malware incident is negatively related to
random-walk betweenness of starting nodes and the average group size. A lower
proportion of computers is infected at the point of inflection if a malware propagates
through a social network rather than through a technological network.
In summary, our regression results show that in amalware incident, higher random-walk

betweenness of starting nodes is associated with a larger cumulative number of infected
computers (A), earlier occurrence of themaximum slope of growth in the infection number
(I), faster malware propagation speed (R), and higher infection proportion at point of
inflection (P). When malware starts from nodes in different groups, malware propagation
dynamics vary significantly. Starting nodes from larger groups result in larger cumulative
number of infected computers (A), earlier time point when the maximum slope of growth
in the infection number occurs (I), and lower infection proportion at point of inflection (P).
Network type has significant explanatory power for all four measures of malware
propagation dynamics. Network type explained 4.9 percent of the variability in A, 0.3
percent of the variability in I, 0.8 percent of the variability in R, and 6.9 percent of the
variability in P. Everything else being equal, a malware incident through a social network
results in 13.8 percent fewer infected computers at the point of inflection and 2,250 more
total infected computers than through a technological network. In addition, malware
propagates more slowly and the maximum propagation speed occurs earlier in a social
network than in a technological network.

Malware Defense Strategies Based on Structural Risk Model

In this section, we investigate how our proposed structural risk model can be
integrated into different malware defense strategies and evaluate the effectiveness

Table 6. Regression Results for Infection Proportion at Inflection (P)

Variables Model 1 Model 2 Model 3 Model 4

Virus –.124*** –.130*** –.129*** –.131***
StartNum .002*** .002*** .002*** .002***
InfRate .213*** .218*** .217*** .219***
RecRate .156*** .152*** .152*** .151***
VirusActRate .129*** .136*** .136*** .138***
Betweenness 369.466*** 348.929*** –70.856***
GroupSize –.0000723*** –.00001251***
SN –.138***
Adjusted R2 .179 .229 .234 .303
F Change compared to Model 1 12,477.281*** 6,949.497*** 11,434.002***
F Change compared to Model 2 1,335.325*** 10,248.886***
F Change compared to Model 3 19,030.594***

*p < .05; **p < .01; ***p < .001.
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of these augmented strategies through simulations. Specifically, we conduct experi-
ments to simulate three common defense strategies: preselected immunization stra-
tegies, countermeasure dissemination strategies, and security awareness programs
based on structural risk model.

Preselected Immunization Strategies Based on Structural Risk Model

In this subsection, we simulate the malware propagation processes with preselected
immunization strategies. Under a preselected immunization strategy, a certain percen-
tage of preselected nodes adopt countermeasures (such as system updates and security
patches), but these nodes do not further spread countermeasures. We compare the
targeted immunization strategy based on structural risk identified using our research
model to two common existing immunization strategies [14, 61]: the random immuni-
zation strategy and the targeted immunization strategy based on degree centrality. The
simulation results of these three different immunization strategies are plotted in Figure 7,
with the percentage of immunization varying from 0.1 percent to 100 percent. In
general, structural-risk-based targeted immunization outperforms random immunization
and degree-based targeted immunization in both social and technological networks, in
terms of reducing the percentage of infected computers. In social networks as shown in
Figures 7a and 7b, at the same immunization percentage, the size of infection under
structural-risk-based targeted immunization is lower than that under random immuniza-
tion and degree-based targeted immunization. To protect almost all the computers, only
55 percent of computers need to be immunized based on structural risks, whereas 90
percent of computers need to be immunized under random immunization and 80 percent
for degree-based targeted immunization. In technological networks as shown in Figures
7c and 7d, when computers are randomly immunized at a very small percentage (for
example, .1 percent of total computers are immunized), around 35 percent of the total
computers will be infected in a virus incident, and 60 percent will be infected in a worm
incident. In contrast, when the same immunization percentage is applied to computers
that have high structural risks, the percentage of infected computers will drop below 10
percent.

Countermeasure Dissemination Strategies Based on Structural Risk
Model

In contrast to a preselected immunization strategy, under a countermeasure dissemina-
tion strategy, only a small percentage of preselected nodes are immunized and these
nodes are able to further spread countermeasures. Among common countermeasure
dissemination strategies, the countermeasure competing strategy has been shown to be
more realistic and more effective than other strategies [13, 14, 28]. Under the counter-
measure competing strategy, countermeasures and malware propagate through separate
but interlinked networks, countermeasures spread to both infected and susceptible
nodes, and the receiving nodes probabilistically adopt countermeasures.
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Following prior studies in the countermeasure competing strategy [13, 14, 28], we
allow malware and countermeasures to spread through different networks: malware
spread through SN only and countermeasures spread through both SN and TN. We
use κ to represent countermeasure adoption rate, meaning that when a node receives
the countermeasure, the probability of adopting the countermeasure is κ. We denote
the infection probability for countermeasures as λ and the recovery probability for
countermeasures as δ. We define ρc = λ/δ as the countermeasure-spreading rate.
Similarly, we define ρv = α/γ as the malware-spreading rate. Recall that α and γ are
the infection and recovery probabilities for malware. We simulate three different
countermeasure competing strategies based on different methods of selecting starting
nodes: countermeasure competing strategies with random, degree-based, and struc-
tural-risk-based starts. As shown in Figure 8, we investigate how these strategies
perform with the ratio of countermeasure-spreading rate to malware-spreading rate
(ρc/ρv) varying from 1 to 100 and countermeasure adoption rate κ fixed at 0.1. The
simulation experiments show that starting the spread of countermeasures based on
structural risk identified in this study helps to mitigate the size of infection and this
mitigation effect is more salient for a higher ratio of countermeasure-spreading rate
to malware-spreading rate. This result demonstrates the importance of integrating
structural characteristics into the dissemination strategies of countermeasures.

Figure 7. Preselected Immunization Strategies
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Security Awareness Programs Based on Structural Risk Model

Security awareness programs inform users about proper use of information technology
(IT) systems and information within an organization and provide them guidance about
malware incident prevention. Organizations often offer general security awareness
programs to all users. In this subsection, in order to examine the impact of offering
security awareness programs on the size of malware infection, we simulate virus
propagation processes through a social network and consider that security awareness
programs help to reduce individual users’ probability of activating the virus (i.e.,
activation rate φ) because of their acquired knowledge and vigilance. For example,
after the deployment of a security awareness program, users are less likely to click the
malicious attachment in an e-mail.
We use the case of offering a general security awareness program only to all users as a

benchmark. We then investigate the impact of offering an additional security awareness
program to selected users based on their structural risks with varying percentages of
selected users.We assume that the general security awareness program reduces all users’
activation rate φ by 10 percent and the additional security awareness program reduces
the selected users’ activation rate φ by 20 percent. As shown in Figure 9, when the
additional security awareness program is offered to a small group of selected users based
on their structural risks, the size of infection is significantly reduced.

Conclusions

Discussion

This paper takes a social network analysis perspective to examine the malware
propagation problem within organizations consisting of both a social network and

Figure 8. Countermeasure Dissemination Strategies
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technological network. Organizations’ computing environment is viewed as net-
works where users and their computers are nodes in the networks. Edges in an
organizational social network correspond to social communications such as e-mails
and profile comments among users, whereas edges in an organizational technologi-
cal network correspond to physical communications such as transmission of data
packets among computers. Malware starts from certain nodes and propagates
through the edges in a process that can be considered a dynamic network flow
built on the underlying social network and technological network. We propose a
novel structural risk model to explain the dynamics of malware propagation. Further,
we simulate the malware propagation process using a susceptible–infected–recov-
ered epidemic process and run hierarchical regression models to statistically test and
quantify the impact of the network structures on malware propagation dynamics.
Although malware propagation exhibits an S-shaped growth pattern similar to other

diffusion processes such as product diffusion, our proposed structural risk model
establishes the important connection between network structural characteristics and
the observed malware propagation pattern. Our findings suggest that nodes with larger
random-walk betweenness that are embedded in larger groups are the ones with higher
structural risk in terms of higher cumulative number of infected computers, earlier time
point when the maximum slope of growth in the infection number occurs, and faster
malware propagation speed. However, whenmalware starts from nodes in larger groups,
we find that the proportion of total number of infected computers at the point of
inflection is lower. A potential reason is that when a malware incident occurs within
larger groups, due to the rapid initial spread, the occurrence of maximum growth is so
early that a smaller portion of total infected computers is reached.
This study finds that the dynamics of malware propagation differ between social

network and technological network. Prior studies [49] found empirical evidence of
the structural differences between social networks and technological networks. For
example, social networks usually demonstrate positive degree correlation (also

= Security awareness programs with elected users based on structural risk

Figure 9. Security Awareness Programs
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called assortative mixing) while most technological networks reveal negative degree
correlation. Other studies [65] have identified unique activity patterns of users in
online social networks. In this study, we are unable to verify what differences in
network structure and/or user behavior patterns between social and technological
networks account for their distinct impacts on malware propagation dynamics.
Although we are unable to directly address the reasons for the differences, we do
observe that there are many more total technological links than total social links, but
many fewer intergroup technological links than intergroup social links within the
sample organization. As a result, the mean node-to-node distance in a social network
is shorter. Compared to a technological network, the sparser within-group connec-
tivity in a social network may have led to slower propagation speed and lower
infection proportion at point of inflection, while the larger intergroup connectivity
may have led to a larger total number of infected computers and earlier maximum
growth. One interesting direction for future research is to identify the factors that
differentiate social networks and technological networks, and investigate how these
factors explain the different effects of social networks and technological networks on
malware propagation dynamics.
Our analysis is based on a specific social network and technological network.

Since our sample social network (from a social networking site) is a typical online
social network and our sample technological network (local area networks) is a
widely used computer network, conclusions drawn from this specific social network
and technological network can be applied to other similar networks. We realize there
are many different types of social/technological networks, for example, connections
through removable storage devices, to which our findings may not be directly
generalizable. However, it is worth noting that the methodology proposed in this
work can be generalized to other network-based processes, such as network-based
diffusion of innovations and word-of-mouth information cascades.
In addition, our structural risk model and simulations are based on starting nodes,

which are instrumental in malware propagation dynamics and various malware
defense strategies such as countermeasure dissemination strategies. However, we
acknowledge that structural risks may not necessarily be related to starting nodes.
For example, in a malware incident, containment strategies aim to stop the spread of
the malware and prevent further damage. Since containment actions take place after
a malware incident occurs, containment strategies should focus on disconnecting all
infected hosts from the network instead of just the starting nodes. Hence our
analyses and findings do not apply to these cases.
Another limitation of this study is that we treat the networks (both SN and TN)

as static. However, real-life networks evolve over time; for example, friend
connections change over time. Due to data constraints in this study, we are
unable to examine the impact of the dynamics of evolving networks. In future
research, it would be interesting to study two interrelated processes—the malware
propagation process and the evolving process of the underlying networks—and to
examine the impact of the network dynamics on the malware propagation
process.
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Managerial Implications

Our findings provide useful managerial implications for malware prevention and hand-
ling strategies, as well as other information systems security decisions. In a malware
incident, if the IT manager considers releasing countermeasures to reduce the size of
malware infection to the minimum and ensure timely action before the maximum
epidemic outbreak, the optimal starting nodes to implement the countermeasures are
the ones with high individual-level random-walk betweenness that are embedded in
larger cohesive subgroups. Specifically, social networking data can be used to construct
the organizational social network, which can then be mapped to the technical network
within the same organization. Countermeasures may start from the selected nodes and
spread through both social and technological networks to achieve optimal performance.
As an important malware prevention strategy, security awareness programs can be
deployed. Our results demonstrate the benefit of offering additional security awareness
programs for a small group of selected users with higher structural risks.
One important reason for the prevalence of malware is the highly homogeneous

computing environment in organizations. When the same software is installed on
multiple nodes on the network, correlated failure of these nodes may occur due to
shared vulnerabilities. Software diversification strategies have been proposed [12,
59] to mitigate the risk of such correlated failure. Our findings suggest that indivi-
dual nodes’ structural measures and the subgroups they belong to should be incor-
porated into organizations’ software diversification strategies. It is advisable to
install heterogeneous operating systems and other critical software across nodes
with high random-walk betweenness. It is also beneficial to diversify within large
subgroups such that they are effectively broken into smaller subgroups with nodes
sharing the same software vulnerability.
To guard against malware threats, organizations can adopt multiple layers of

protection such as general-purpose and system-specific protection for internal and
external attacks [68]. The consideration of structurally risky nodes is important in
the installation strategy of both general-purpose and system-specific protection
measures. In order to determine the optimal layered protection, experiments can be
conducted to simulate the impact of multiple layers of protection simultaneously
while taking into account structural risks of individual nodes.
Finally, accurate assessment of security risk is crucial for effective IT security risk

management and IT security investment. As an important component of security risk,
structural risk is tied to the idea of system interdependency and network externality
because of the interconnectivity of assets (e.g., computers, user accounts) within organiza-
tions. Nodes with higher structural risk impose higher negative network externality on
other nodes, meaning that once these nodes are compromised, they put many other nodes
in danger. Our study identifies specific measures (random-walk betweenness and size of
subgroups) to quantify structural risk, which captures such network externality due to
system interdependency. We demonstrated empirically that not all nodes are of equal
importance when attempting to secure a network. Hence, nodes with higher structural risk
should be given priority when making IT security investment decisions.
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NOTES

1. Real malware infection data is infeasible to obtain due to the destructivity of field
experiments of malware propagation [2] and the privacy issues of internal technological and
social network information [15] within real organizations.

2. Freeman’s betweenness is often referred to as simply betweenness. In this paper, we
refer to Freeman’s betweenness as shortest-path betweenness to distinguish it from other
betweenness measures.

3. In social network analysis, subgroups are also referred to as communities, clusters, and
so on. Although there is no consensus on the name, the essential concept is a partition of the
nodes in one network into multiple subsets and connections within the subsets are dense while
connections between the subsets are sparse.

4. Although not directly verified, we believe that these invalid IDs are due to the incon-
sistency in MySpace’s databases. These 231 user IDs have been listed as current students at
the sample university. However, MySpace shows that these 231 user IDs are invalid when the
crawler tries to access these users’ profile/friend/blog pages.

5. See WildList Archive (www.wildlist.org/WildList/t_archive.htm), maintained by The
WildList Organization International.

6. Following prior studies in computer simulations of malware propagation [61], we set the
maximum time epoch to 100, beyond which the malware propagation process generally
stabilizes and the cumulative number of infected computers approaches the upper limit.

7. A modularity value above 0.3 is suggested to be a good indicator for significant
subgroup structure [48].
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