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Abstract

Classification procedures are common and useful in behavioral, educational, social,
and managerial research. Supervised classification techniques such as discriminant
function analysis assume training data are perfectly classified when estimating param-
eters or classifying. In contrast, unsupervised classification techniques such as finite
mixture models (FMM) do not require, or even use if available, knowledge of group
status to estimate parameters or classifying. This study investigates the impact of two
types of misclassification errors on the classification accuracy of discriminant function
analysis (both linear [LDA] and quadratic [QDA]) and FMM for two groups with a sin-
gle predictor. Analytic and Monte Carlo results are provided for a variety of misclas-
sification scenarios to investigate the performance of the two methods. Discriminant
function techniques recovered the highest overall percentages of correctly classified
data, whereas FMM captured higher percentages of the smaller group when group
sizes are unequal. LDA marginally outperformed QDA under misclassified conditions.
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Classification of individuals into nonoverlapping groups is regularly used in the
behavioral, educational, social, and managerial research and practice, as well as in
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many other fields. Classification is a fundamental part of organization in most fields
(Keogh, 2005). Zigler and Phillips (1961) argue that there are three criteria important
when determining the appropriateness of a classification scheme: homogeneity (the
similarity of individuals in categories), reliability (consistency or agreement among
who should be included in a category), and validity (how well category membership
informs us about their characteristics). All three of these criteria will be at risk when
errors in statistical classification are made.

Classification can be observed (e.g., gender, grade level, employment status) or
latent (e.g., learning disabled, depressed, or alcoholic). The term group is most appro-
priate when referring to a variable that is directly observable or otherwise known. The
term class is most appropriate when referring to a latent or unobservable variable.
When class is latent, or unobservable, misclassification errors are almost unavoidable
because it is generally not possible to know an individual’s true class with certainty.
Even when class is directly observable, classification mistakes can be made. Misclas-
sification errors can arise from use of crude or imprecise classification methods due to
budgetary, time, or personnel constraints, or to practical constraints on data collection
procedures (Bross, 1954; Katz & McSweeney, 1979).

Misclassification can also arise from the nature of statistical classification methods.
Apart from external problems with untrustworthy data collection, statistical classifica-
tion itself is essentially never 100% accurate in practice. Statistical classification meth-
ods can only be as good as the predictors used. Further, evidence from simulation
studies reveals statistical classification methods have varying degrees of classification
accuracy under a variety of different situations. For example, it has been found that
the ratio of group sizes makes a large difference in the ability of classification analyses
to correctly classify cases (Finch& Schneider, 2006). A large degree of overlap between
samples (Blashfield, 1976; Harrell & Lee, 1985) and lack of sphericity have also been
found to lead to inaccurate classification (Blashfield, 1976; deCraen, Commandeur,
Frank, & Heiser, 2006). Inaccuracy of classification due to lack of sphericity may be
somewhat alleviated if groups or classes to be recovered are more unequal in size
(deCraen et al., 2006). Different forms of error perturbation (Baker, 1979; Breckenridge,
2000) have been shown to reduce classification accuracy for cluster analytic techniques.
Furthermore, it has been found that for discriminant function analysis (DFA) both
outliers and inliers in the training data set can pose problems not only for classification
accuracy (Kuiper & Fisher, 1975; Van Ness & Yang, 1998) but can also lead to serious
underestimates of the accuracy of the analysis (Edelbrock, 1979).

Interestingly, some have shown that greater numbers of true clusters existing in the
data can lower the misclassification rate (Kuiper & Fisher, 1975; Milligan, Soon, &
Sokol, 1983), whereas others have found that greater numbers of clusters lead to
higher rates of misclassification (Breckenridge, 2000). Increased number of variables
used in prediction (Breckenridge, 2000; Lubke & Muthen, 2007), goodness of model
fit (Breckenridge, 2000), accuracy of prior probabilities (Lei & Koehly, 2003), and
standardization of data (Edelbrock, 1979) have also been shown to lead to less error
in classification.
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The discussion thus far of misclassification errors was restricted to situations where
initial knowledge of correct classification is either not necessary (e.g., in the context of
cluster analysis and mixture models) or in the case of models which require initial
knowledge to be perfect (e.g., in the context of DFA). However, what happens
when the data classification method best suited to the research purpose relies on initial
knowledge of correct classification, but the available data have misclassification
errors? How much does initial misclassification of training data affect the ability of
classification analysis schemes to accurately recover groups?

For chi-square analyses it has been found that misclassification of data catego-
ries does not affect the validity of the test of significance, although it may reduce
the power of the test (Bross, 1954; Assakul & Proctor, 1967; Katz & McSweeney,
1979). For DFA, however, initial misclassification of training data does have an im-
pact on classification accuracy (Lachenbruch, 1966, 1974, 1979; McLachlan, 1972;
Chhikara & McKeon, 1984; Grayson, 1987). The distinction between random and
nonrandom misclassification has been demonstrated to be an important distinction
in terms of classification accuracy. Several studies have demonstrated that when
discriminant function training data are misclassified at random, they have a larger
impact on classification accuracy than misclassification occurring in a nonrandom
fashion (Lachenbruch, 1966, 1974, 1979; McLachlan, 1972; Chhikara & McKeon,
1984). In particular, when misclassified training data are incorporated into a DFA,
the percentage of correctly classified cases is systematically underestimated
(Lachenbruch, 1966, 1974, 1979; McLachlan, 1972).

When comparing techniques under misclassified data conditions, it has been found
that linear discriminant function analysis (LDA) is less affected than quadratic
discriminant function analysis (QDA). In particular, as the rate of misclassified cases
increases, the sample covariance matrices increasingly differ systematically from the
population parameters (Lachenbruch, 1979).

These studies provide substantial evidence for the negative effects of misclassified
training data on LDA and QDA. However, these studies were limited in the scope of
variables investigated. For each of these studies, the ratio of group sizes was assumed
equal, thus ignoring the question of whether the ratio of group sizes changes the
impact of misclassification.

The purpose of the present research is to discern the effect initially misclassifying
data has on the effectiveness of the two group case of LDA, QDA, and finite mixture
modeling (FMM) under various data and distributional characteristics and to provide
comparisons between the methods. The rationale for choosing these comparison
methods is twofold: Comparing accuracy between the linear and quadratic forms
of DFA under misclassified conditions provides a replication under different condi-
tions of Lachenbruch’s (1979) findings. Also, because QDA and the FMM used in
this study both assume unequal variances, a fair comparison can be made between
supervised classification and unsupervised classification techniques. Because
LDA and QDA are based on more information than FMM, we make the following
hypotheses:
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Hypothesis 1: When training data is perfectly classified, the discriminant func-
tion models will provide more accurate classifications than finite mixture
models.

Hypothesis 2: As misclassified data is increasingly introduced into the samples,
the ability of discriminant function models to provide accurate classifications
will continue to decrease while the finite mixture model accuracy will remain
unchanged.

Based on results from the existing literature, a third hypothesis can be made:

Hypothesis 3: Manipulation of data and distribution characteristics, such as
sample size, effect size, and sample size ratio will lead to differences in clas-
sification accuracy. In the case of discriminant function models these char-
acteristics may interact with initially misclassified data proportions to
produce poorer misclassification.

Conceptual Examination of Discriminant Function Analysis

An examination of the mathematics involved in LDA, QDA, and FMM also dictates
when effects of misclassification should be observed. Recall that the procedure for
DFA involves choosing the combination (linear or quadratic depending on whether
equal variances are assumed) of variables that maximizes the multivariate distance be-
tween groups, termed the discriminant function, and then based on this discriminant
function a decision rule is constructed that classifies each individual in the group to
which their specific discriminant function score is most similar. Let a be a vector
of coefficients, S be the unbiased pooled estimate of the population covariance matrix
(which in the case of LDA assumes homogeneity of population covariance matrices:
Σ1 ¼Σ2 ¼Σ, where Σ is the common population covariance matrix), xj be the mean
vector of length p, where p is the number of variables for the cases in group j, and
Dðx1; x2Þ be the multivariate distance between x1 and x2, which is defined as

Dðx1;x2Þ ¼
a0ðx1 $ x2Þj j
ða0SaÞ1=2

: ð1Þ

When Dðx1; x2Þ is maximized by a particular vector a, the resulting a vector becomes
the vector of discriminant function coefficients. Conceptually, the multivariate dis-
tance between x1 and x2 is the maximum of the univariate distances between x1
and x2 (Flury, 1997). The discriminant function equation used in classification is
dependent on the means of the scores in each group, the group centroids, and the com-
mon covariance matrix. The group centroids are calculated from the raw data as

xj ¼
1

nj

Xni

i¼1

xij, ð2Þ

where j ¼ 1, 2 for the group in which the case is classified and nj is the number of
entities in group j. Thus, theoretically speaking, accuracy in classification is
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contingent on Equation 2 yielding accurate estimates of the mean vectors for each
group. When group status (j) is incorrect for certain individuals, the centroids from
Equation 2 are less likely to represent the true population values. Thus, any classifi-
cations made from these biased centroids will tend to contain some degree of classi-
fication error. Based on the DFA equations, the accuracy of discriminant function
solutions should decrease as the amount of misclassified data is increased, because
misclassification will tend to bias the mean vectors.

Conceptual Examination of Finite Mixture Modeling

Unlike DFA, the definitional equations for FMM show that initial misclassification of
group status will have no effect on the results. Finite mixture models are unsupervised
classification models that can be used whether or not the true group status is initially
known. In the present study, the FMM was used to recover the two groups known to
exist in the data. However, FMM are highly customizable and can be implemented for
any number of groups, or can be used to recover the number of groups which best fits
the data. Thus FMM can be customized for use with either homogeneous or heteroge-
neous variances, different distributional shapes, and so on. The sample composite dis-
tribution function based on the finite mixture model has the form

f ðxÞ ¼
XM

m¼1

p̂mjðx; xm,SmÞ ð3Þ

where p̂m are thesamplemixingproportions (
PM

m¼1 p̂m ¼ 1),and represents thenormaldis-
tribution function with sample mean xm and covariance matrix Sm, also called component
distributions because they are the distributions that comprise the finite mixture distribu-
tion (i.e., the composite). The basis for classification in FMM is the posterior probabilities.
The posterior probability is the probability that an entity belongs to Distribution A or Dis-
tribution B of the fitted model. To estimate the posterior probabilities of group member-
ship, the following equation is used:

r̂im ¼ p̂mjðxi; xm,SmÞPM
m¼1 p̂mjðxi; xm,SmÞ

, ð4Þ

where r̂im is the estimated posterior probability of xi belonging to component distribution
m, and p̂m, xm, and Sm are the estimated mixing proportions, mean vectors, and covari-
ance matrices (for FMM it is not necessary to assume equal covariance matrices) for the
component distributions, respectively (Hastie, Tibshirani, & Friedman, 2001). In FMM,
cases are classified as belonging to the distribution to which they have the highest pos-
terior probability.

Thus, finite mixture models are based only on information in the data and by the
number of groups specified. All other parameters are estimated by the model under
the particular assumptions. The finite mixture model used for the present study
assumes normal distributions with their own variance for each component density.
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Note that in the case of the FMM, no initial group status is needed. The accuracy of
initial classification, if any, is not an issue. Thus, from a conceptual and mathematical
perspective, our hypotheses are justified. Based on the research results summarized
earlier, it is also reasonable to hypothesize that different characteristics of the data
may interact with the ability of LDA, QDA, and FMM to classify accurately when
training data is misclassified above and beyond any previously reported ‘‘main
effects’’ that may exist. Such characteristics include sample size, group size ratio, dis-
tance between group means, and variance of distributions. Based on these results, our
third hypothesis is also justified.

Because misclassification problems can take different forms, we investigate the
effects of two different types of misclassification. The two types of misclassification
examined were random and nonrandom. Random misclassification refers to the situ-
ation where any individual or case has the same probability of being misclassified as
any other data point, regardless of relative position in the distribution. Nonrandom
misclassification refers to the situation where, depending on the relative position in
the distribution, data points have differing probabilities of being misclassified. In par-
ticular, points closer to the overlap of the distributions would be more likely to be mis-
classified than points lying on the outer tails of the distributions. This situation is
thought to be most analogous to classification in diagnostic categories such as learning
disabilities, depression, or alcoholism. For such scenarios, misclassification will not
tend to be random, but rather borderline cases will be misclassified at a higher rate.

Study 1

In Study 1, data were generated to simulate the situation where data are initially mis-
classified at random to varying degrees. Once generated, data were analyzed with
LDA, QDA, and FMM in an attempt to recover the true groups and determine the
effectiveness of each method.

Methods

Data generation. Generation and analysis of misclassified data was accomplished
using the R statistical software program (R Development Core Team, 2007). Data
were generated to meet the specific data and distribution criteria described in Table 1.
Each condition is completely crossed with all other conditions for a total of 480
(3 × 4 × 2 × 5 × 4) conditions. The standardized mean difference was used as
a measure of effect size. The particular values of effect size were chosen to coincide
with Cohen’s (1988) guidelines for a small (0.2), medium (0.5), and large (0.8) effect,
as well as ‘‘very large,’’ which we operationalized as 1.6, twice the size of large (see
Kelley & Rausch, 2006, for a review of the standardized mean difference and some of
its properties). To test for the effects due to having a larger or smaller mean, five dif-
ferent sample size ratios were tested: 50:50 (where both groups are of equal size); two
ratios where the smaller group has the smaller mean (25:75 and 10:90), and two ratios
where the smaller group has the larger mean (75:25 and 90:10).
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Data generation was limited to symmetric misclassification. In other words, equal
percentages from each distribution will be misclassified. For example, 10% misclas-
sification implies 10% of Group A misclassified as B and 10% of B misclassified as
A. Data were also limited to one predictor variable to better discern the effects of
each factor. A raw percentage (number of cases correctly classified divided by the
total number of cases) is used as a measure of the amount of cases correctly
classified.

To achieve data misclassified randomly, the following procedure was used: First,
two classes of data with specified means and standard deviations were generated (see
Table 1). In Study 1, misclassification was at random, making every individual just as
likely to be misclassified as every other individual. For each individual’s score, a ran-
dom number between 0 and 1 was generated. If the number was smaller than the
desired misclassification percentage (e.g., 0.1) the point would be relabeled as belonging
to the other distribution. In other words, for 90% of the data to be correctly classified,
individuals with random numbers <0.10 would be misclassified thus ensuring approxi-
mately 10% of the cases would be misclassified on every iteration and the average mis-
classification across all iterations would be 10%. For more detailed information on data
generation, see Appendix B.

Analyses. After data were misclassified, a FMM assuming unequal variances, LDA
and QDA were performed on the misclassified data. For FMM separate variance
parameters and prior probabilities were estimated for each group. At the completion
of each analysis, the classification results were compared to known classes and a per-
centage of correctly classified cases was recorded. Also calculated are the smaller
group misclassification rate and the larger group misclassification rate. Analysis of
these percents allows investigation into whether, and under what conditions, the meth-
ods may be biased toward misclassification in one direction. A total of 10,000 repli-
cations of this procedure were executed for each of the 480 simulation conditions.
R code is available from authors on request.

Table 1. Data Population Parameters

Data conditions
True groups 2
Population variance (within each group) 1

Manipulated variables
Statistical analysis LDA, QDA, FMM
Percentage misclassified 0%, 10%, 20%, 30%
Sample size 100, 1000
Sample size ratio 10:90, 25:75, 50:50, 75:25, 90:10
Standardized mean difference (d) 0.20, 0.50, 0.80, 1.6

Note: For each condition, the population mean of Group A was always 0. The population variance was
held constant at 1 for both groups in all conditions. LDA ¼ linear discriminant function analysis; QDA ¼
quadratic discriminant function analysis; FMM ¼ finite mixture model.
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Results

The percentages of correctly classified cases for each classification method are dis-
played in graph form in Figure 1. Although two sample sizes were tested, N ¼ 100
and N ¼ 1,000, for space considerations results are only displayed for the smallest
sample. Relationships between variables were essentially the same for both sample
size conditions. Readers can request full set of results from the authors. No biasing
effect was found for groups having a larger or smaller mean: Percentage correct
was exactly the same for the 10:90 condition as for the 90:10 condition. The same
larger and smaller group classification rates were also found (Table 2). Thus, results
for sample size ratio will only be displayed for 10:90, 25:75, and 50:50 to avoid
redundant information.

Consistent with previous research it was found that as effect size and sample size
increase, the ability of all three classification analyses to correctly classify data in-
creases. LDA and QDA outperformed FMM in the majority of conditions overall.
However, FMM showed marginally higher levels of classification accuracy in the
50:50 condition at the lower effect sizes. Consistent with Lachenbruch (1979),

Figure 1. Percentage correct for Study 1 (N ¼ 100)
Note: The Yaxis presents the percentage of misclassified data. The X axis is the overall percentage correct
achieved by the models. LDA ¼ linear discriminant function analysis (dashed line); QDA ¼ quadratic
discriminant function analysis (thin solid line); FMM ¼ finite mixture model (thick solid line).
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LDA slightly outperformed QDA under misclassified data conditions. When group
sizes were equal, the difference between LDA and QDA was larger, with the results
becoming more similar as sample size ratio increased. The difference between LDA
and QDA also increased as the percentage of misclassified data increased. Differences
between LDA and QDA reduce as sample size increases. However, in comparison with
FMM, the difference between LDA and QDA is onlymarginal. Consistent with the find-
ings of Breckenridge (2000), deCraen et al. (2006), and Finch and Schneider (2006),
sample size ratio has a substantial impact on the effectiveness of both FMM and
DFA. In particular, as group size becomes more and more discrepant, the ability of
LDA and QDA to classify correctly increases dramatically. For FMM, there is an in-
crease in classification accuracy due to sample size ratio at the lower effect sizes. As
effect size increases the classification between the sample size ratios becomes more sim-
ilar, and then reverses direction. That is, at the higher effect sizes there is a decrease in
classification accuracy as sample size ratio increases. Introduction of misclassified cases
did not affect the overall finite mixture model classification in any way as initial clas-
sification is not part of the model.

As expected, no effect of misclassified data on the misclassification direction of
FMM was observed. However, for misclassification for LDA and QDA there are mar-
ginal effects of misclassified data. As the percentage of misclassified data increases,
the percentage of the smaller group misclassified as the larger group decreases, and
the percentage of the larger group misclassified as the smaller group increases. Inter-
estingly, although QDA generally has a lower overall classification rate, it misclassi-
fies less of the small group than LDA. Although the difference is very small, it is
consistent and an important finding. Besides the fact that QDA misclassifies less of
the small group, LDA and QDA show the same pattern of bias toward the larger group.

Of particular importance is that FMM and LDA/QDA tend to misclassify in differ-
ent directions. When group sizes are equal, approximately equal numbers of cases are
misclassified in either direction for FMM and LDA/QDA. However, when group sizes
are unequal, FMM misclassifies in favor of the smaller group whereas LDA and QDA
misclassify in favor of the larger group. In other words, as sample size ratio becomes
more discrepant, FMM misclassify fewer cases from the smaller group, and LDA/
QDA misclassify fewer cases from the larger group. As sample size and effect size
are increased, these numbers are decreased even further.

Study 2

Study 2 followed the same procedure as Study 1 except data were generated to sim-
ulate nonrandom misclassification errors. In many cases, especially in contexts where
a cut-point is used to place individuals or cases into different categories, misclassifi-
cations occur with a higher probability for certain individuals than for others. Very
few instruments can reliably distinguish between cases with adjacent scores (Dwyer,
1996). Thus, in these contexts, cases nearer the cut-point are more likely to be misclas-
sified than cases lying further away (Lathrop, 1986; Dwyer, 1996). To serve as an
analog to these situations, Study 2 simulated data such that cases with a low
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probability of belonging to their parent distribution were more likely to be misclassi-
fied than cases with a high probability of belonging to their parent distribution.

Methods

Data generation. Data were generated to the same conditions as in Study 1 (see
Table 1) except data misclassification was generated in a nonrandom fashion. To
achieve this type of misclassification, a random number was generated for each
case and compared the cumulative probability of the point multiplied by a scalar
that changed based on the desired proportion of misclassified cases. The cumulative
probability was chosen because this quantity will be small when points are on the
low end of the distribution (far from the overlap) and will be large when points are
on the high end of the distribution (closer to the overlap) thus giving each point a num-
ber representing its relative standing in the distribution. The cumulative probability
was used to calculate the percentage misclassified for the distribution with the smaller
mean and the reverse cumulative probability was used to calculate the percentage mis-
classified for the distribution with the larger mean. In doing so, data far from its mean
will receive low misclassification weights and data nearer the overlap of the distribu-
tions will receive higher misclassification weights. If the randomly generated number
is less than the scaled cumulative probability, the point is misclassified to the other
distribution. When this procedure is used without a scalar (or in other words, a scalar
of 1 is used) approximately 50% of the cases will be misclassified on every iteration.
Multiplying by an appropriate scalar, k, changes all of the probabilities by the same
amount, thus making data either more or less likely for data to be misclassified.
The values of k necessary to produce 100%, 90%, 80%, and 70% correctly classified
data were determined through a proof using an application of single variable calculus.
The formula for determining k by this method is as follows: percentage misclassified
cases ¼ k/2 (see Appendix A for proof).

Analyses. As in Study 1, FMM, LDA, and QDA were performed and the result was
compared to the known classes. Again, the smaller group and larger group misclassi-
fication rates were calculated.

Results

Overall percentage correct for Study 2 is presented graphically in Figure 2. Again to
save space, only results from the smallest sample size are shown (full set of results are
available from the authors on request because the results are consistent with the small
sample results.). In general, the results using nonrandom misclassified data mirrored
the results from the randomly misclassified data in Study 1. As in the random condi-
tion, classification accuracy increased slightly with the increase in sample size, and
increased dramatically with increase in effect size (Table 3). As before, the initial mis-
classification does not affect the FMM solutions. Also, as expected, there is a decrease
in LDA and QDA classification accuracy as the percentage of misclassified training
data in the sample is increased.
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Again mirroring the results from Study 1, we find LDA slightly outperforms QDA
in all conditions. The difference between LDA and QDA is increased as the percent-
age of misclassified data is increased. The difference between LDA and QDA is vastly
reduced, however, when sample size is increased. Again, similar to Study 1, although
a difference between LDA and QDA exists, it is only marginal when comparing LDA
and QDA to FMM.

Overall, LDA and QDA resulted in higher percentages of correctly classified data
than did FMM. However, for the 50:50 condition at the lower effect sizes, FMM pro-
vided marginally higher percentage correct classification than did LDA and QDA.
Again replicating the results of Study 1, the same pattern regarding the increase
in classification due to sample size ratio emerges. As can be seen in Figure 2, for
LDA and QDA, the increase in accuracy due to sample size ratio is quite large.
For FMM, however, we see an increase in classification accuracy due to sample
size ratio at the smaller effect sizes. As effect size increases the classification accu-
racy becomes more even across sample size ratios, and at the high effect sizes we see
a decrease in classification accuracy due to sample size ratio. It should be noted that,
we see exactly the same patterns for FMM in Study 1 and in Study 2 because FMM

Figure 2. Percentage correct for Study 2 (N ¼ 100)
Note: The Yaxis presents the percentage of misclassified data. The X axis is the overall percentage correct
achieved by the models. LDA ¼ linear discriminant function analysis (dashed line); QDA ¼ quadratic
discriminant function analysis (thin solid line); FMM ¼ finite mixture model (thick solid line).
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does not take training data into account. It does not matter how the data were mis-
classified, the results will be identical. Thus, the FMM results of Study 1 and Study 2
are exact replications of each other. It should also be noted that, although the pattern
exists, the classification differences between sample size ratios are still quite small,
and only seem to make much of a negative impact at very large effect sizes (e.g.,
a standardized mean difference of 1.6). Thus, these results may not show cause
for concern.

When looking at the direction of misclassification (shown in Table 3) a pattern sim-
ilar to that in Study 1 emerges. Recall that in Study 1, when data were misclassified at
random it was observed that FMM and LDA/QDA misclassify cases in opposite direc-
tions: FMM tends to misclassify in favor of the smaller group whereas LDA and QDA
tend to misclassify in favor of the larger group. When data were misclassified system-
atically, in general we see the same pattern. However, in the 30% incorrect training
data condition and the highest effect sizes of the 20% incorrect condition the pattern
changes. The FMM pattern stays the same, but for LDA and QDA, the direction of
misclassification reverses: LDA and QDA begin to misclassify in favor of the larger
group instead of the smaller group. This effect is more extreme as effect size and dis-
crepancy in group size are increased.

Comparing the random and nonrandom conditions, we can see that the random
condition had a larger impact on classification accuracy of the LDA and QDA
50:50 sample size ratio than did the nonrandom condition. However, overall the
50:50 condition appears to be affected the least by misclassified data. The nonran-
dom condition had a stronger effect on classification Sample size ratio also did not
seem to make as strong an impact in the nonrandom condition, though this is likely
due to the stronger effect of the misclassified data lowering the accuracy of LDA and
QDA.

Conclusion

The results of these studies indicate that misclassification of training samples does
have an impact on classification accuracy to a degree not previously understood or
documented. Consistent with previous results increased sample size and effect size
lead to increases in overall classification accuracy. Increased discrepancy in group
sizes leads to increases in classification accuracy for LDA and QDA, but can actually
decrease classification accuracy for large effect sizes for FMM. It is interesting that
the two procedures assuming unequal variances appeared to be at a disadvantage
when population variances were held equal. Furthermore, this study shows that the as-
sumption of unequal variances may actually be a hindrance when variances are equal
in the population.

This study shows that, consistent with Lachenbruch (1979), initial misclassification
of groups done at random makes less of an impact on discriminant function methods
than misclassification done in a nonrandom fashion when group sizes are equal. How-
ever, the impact of group size was not previously studied. Although Lachenbruch’s
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(1979) findings hold for equal group sizes, as group size becomes unequal, the impact of
non-random misclassification becomes more important. Our study showed that for the
extreme cases of misclassification (especially for large effect sizes) in sample size dis-
crepant conditions, nonrandom misclassified data causes the direction of misclassifica-
tion to reverse. It seems as though misclassified data does not actually cause LDA and
QDA to reverse its direction of misclassification, but rather, the extreme amount of mis-
classified data causes so many classification errors that the proportions classified do not
accurately represent how the data are being classified by the model. Neither type of mis-
classification affected the accuracy of FMM since initial classification is not part of the
FMM.

In comparing accuracy between FMM, LDA, and QDA, LDA and QDA display
higher classification accuracy in the majority of cases, whereas FMM displayed
higher classification accuracy mainly in the 50:50 condition at the lower effect sizes.
LDA showed slightly higher classification accuracy than QDA, especially as mis-
classified data was increased, replicating the previous findings of Lachenbruch
(1979).

One of the most important findings of the study is the direction of misclassifi-
cation for finite mixture modeling and DFA. Even though LDA and QDA achieve
overall higher levels of classification accuracy in the majority of conditions and
misclassify very little of the larger group, when group sizes are discrepant FMM
better captures the smaller group. These results (found in Study 1) were largely
replicated in Study 2 with nonrandom misclassified data (with the exception of
LDA and QDA reversing direction at the extreme cases of misclassification). As
will be discussed in the next section, these findings have important practical im-
plications for determining when the use of each technique is appropriate. Although
some have documented the direction of misclassification bias for DFA (Brecken-
ridge, 2000; Lei & Koehly, 2003), the comparison with FMM and implications for
practical use are new.

Discussion

This article shows that the relationship between initial misclassification of groups and
classification accuracy differs depending on misclassification type, data and distribu-
tional characteristics, and analysis used. For finite mixture modeling, the relationship
is clear: Initial misclassification of groups has no effect on classification accuracy, as
FMM does not use in any way initial knowledge of group status. For DFA techniques,
it is clear that there is a small effect when data are symmetrically misclassified at ran-
dom and a larger effect when the data are symmetrically misclassified in a nonrandom
fashion.

These results have practical implications for the decision of when to use each tech-
nique. Because of its demonstrated high levels of accuracy, DFA may be the method
of choice when the researcher is most interested in recovering the highest percentage
correct (see Rausch & Kelley, 2009, in situations where DFA is appropriate but non-
normality may be present). However, as the results of both Study 1 and Study 2
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indicate, there are times when FMM may provide a better alternative. In situations
where the group sizes are approximately equal and expected effect size is low,
FMM has demonstrated higher levels of classification accuracy. In situations where
group sizes are unequal, although it demonstrates lower classification accuracy over-
all, FMM captures higher percentages of the smaller group when sample size ratio is
discrepant. It is easy to think of situations where identifying as many cases from
a smaller target group is the most important goal of the analysis. For example, learning
disabled students typically comprise approximately 3% to 10% of the overall student
population (Hallahan, Keller, Martinez, Gelman, & Fan, 2007), and thus (when sam-
ples are representative of the population) we would see a sample size ratio of likely, at
most, 10:90. An argument could be made that it is more desirable to err in the direction
of initially misclassifying more students for screening purposes as having learning dif-
ficulties who do not, than to overlook students who truly have learning difficulties.
This is a situation where FMM might provide a more desirable approach. Although
the mixture model is likely to misclassify more nondisabled individuals as learning
disabled than the DFA, the majority of truly disabled individuals would be identified.

Furthermore, if the researcher expects sample sizes to be approximately equal with
a low effect size, a finite mixture model can provide a more accurate solution than
a DFA. The choice of linear discriminant analysis versus quadratic discriminant analysis
is also pertinent. Our results and the work of Lachenbruch (1979) suggest that when mis-
classified data is introduced into training data, the QDA classifies less effectively than
the LDA. However, it is important to point out that this study was limited to holding pop-
ulation variances equal. It is unknown how unequal variances would affect LDA and
QDA when misclassified data is introduced.

The robustness of DFA to random misclassification in training data comes as wel-
come news. However, it is somewhat worrisome that nonrandom misclassified data
poses such a threat to classification accuracy in DFA, especially because it is more
realistic in many situations. Although random misclassifications can happen, nonran-
dommisclassification because of implementation of cut score schemes seems far more
likely to occur in practice. Even more worrisome, perhaps, is that researchers usually
do not know the degree of misclassification. Thus, it is important to take possible
effects of misclassification into account when interpreting results of a DFA.
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Appendix A

Decision Rule for Nonrandom Misclassification

Misclassify point x if a uniform random variable between 0 and 1 is less than k times the cu-
mulative probability of the point x. Or, more formally

Given x;misclassify x if U < kFðxÞ

where U is a uniform random variable on the interval from 0 to 1, F(x) is the cumulative dis-
tribution function, and k (0 ≤ k ≤ 1) is the scalar we are looking for to control the percentage
of misclassified cases.

Thus defined, the total proportion of misclassified points can be defined as

Z ∞

$∞
1ðU<kFðxÞÞ f ðxÞdx;

where f(x) is the density function corresponding to the cumulative distribution function F(x). To
find the expected total probability of misclassification (with respect to the random variable
U[0,1]) we use the rule

E½gðxÞ& ¼
Z ∞

$∞
gðxÞ f ðxÞdx

to get

Eu

Z ∞

$∞
1 U<kFðxÞð Þ f ðxÞdx

! "
¼

Z 1

0

Z ∞

$∞
1 U<kFðxÞð Þ f ðxÞdx

! "
1

du ¼
Z ∞

$∞

Z 1

0

1ðu<kFðxÞÞdu

! "
f ðxÞdx ¼

Z ∞

$∞
kFðxÞ f ðxÞdx:

Now, to evaluate the integral, we use the following result:
Z

kFðxÞ f ðxÞdx ¼ k

Z
FðxÞ f ðxÞdx ¼ k

Z
vdv ¼ k

2
v2 ¼ k

2
FðxÞ2

Thus,
Z ∞

$∞
kFðxÞ f ðxÞdx ¼ k

2
FðxÞ2j∞$∞ ¼ k

2
:
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Appendix B

R Code Details

Data generation in R was achieved by using the R function rnorm() to create two classes of
data with specified means and standard deviations (see Table 1). The distribution with the
smaller mean was labeled ‘‘Distribution A,’’ and the distribution with the larger mean
was labeled ‘‘Distribution B.’’ After data generation, the LDA, QDA, and FMM were per-
formed on the misclassified data. The discriminant function analyses were performed using
the lda() function for the LDA and qda() for the QDA, both located in the MASS (Venables
& Ripley, 2002) R package. For LDA and QDA, the default settings for the analysis were
used (prior probabilities estimated from the data, LDA assumed equal variances, QDA as-
sumed unequal variances). The FMM was performed using the Mclust (data, G¼ 2, mod-
elnames ¼ c(‘‘V’’)) function located in the mclust R package (Fraley & Raftery, 2002), with
unequal variances (modelnames ¼ c(‘‘V’’)) and two groups (G¼ 2) specified. For each it-
eration, the FMM classes were labeled such that the labeling scheme, which achieved the
highest percentage correct for each group was chosen.
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