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 Analyzing Change in Nephrological Research:
A Primer on Multilevel Models 

 Analysis of change is central to the study of kidney 
disease. For many reasons, obtaining repeated measure-
ments on a single individual can be valuable. Decline of 
glomerular filtration rate (GFR), increase in proteinuria, 
circadian variation in blood pressure (BP), progression of 
fibrosis are some examples of change. Older and less so-
phisticated models for addressing questions of change 
over time sacrifice information; modern methods allow 
a richer set of research questions to be addressed. This 
primer on multilevel models for analyzing change is in-
tended for researchers interested in studying phenomena 
that change over time, with examples provided from re-
nal research.

  Change may not be linear. In other words, it is impor-
tant not to conceptualize change as only monotonically 
increasing or decreasing. The trajectory over time may 
show growth until a particular time point is reached, and 
then begin to atrophy. Two different types of questions 
can be asked regarding the analysis of change. Change in 
some attribute of the patient (e.g. BP, GFR) is  intraindi-
vidual  change. Examination of intraindividual change 
allows questions to be answered such as: (a) Is there a 
change? (b) What is the pattern of change: linear, qua-
dratic, asymptotic? or (c) Are there factors which corre-
late (observationally) or influence (experimentally) how 
individuals change over time?
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 Abstract 
 The analysis of change is central to the study of kidney re-
search. In the past 25 years, newer and more sophisticated 
methods for the analysis of change have been developed; 
however, as of yet these newer methods are underutilized in 
the field of kidney research. Repeated measures ANOVA is 
the traditional model that is easy to understand and simpler 
to interpret, but it may not be valid in complex real-world 
situations. Problems with the assumption of sphericity, unit 
of analysis, lack of consideration for different types of change, 
and missing data, in the repeated measures ANOVA context 
are often encountered. Multilevel modeling, a newer and 
more sophisticated method for the analysis of change, over-
comes these limitations and provides a better framework for 
understanding the true nature of change.  The present arti-
cle provides a primer on the use of multilevel modeling to 
study change. An example from a clinical study is detailed 
and the method for implementation in SAS is provided. 
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  Intraindividual change is distinct from  intraindividu-
al variability . Whereas intraindividual change typically 
reflects a process that is relatively stable (e.g. trait), intra-
individual variability refers to fluctuations and are gen-
erally reversible (e.g. state). It is important to consider in-
traindividual variability when studying intraindividual 
change because intraindividual variability can be a con-
founding factor in understanding intraindividual change. 
Minor  f luctuations  in  the outcome variable should not 
be mistaken for or mask the true nature of change over 
time  [1] .

  How change differs between individuals is often 
 referred to as  interindividual  change. Interindividual 
change can provide information about the similarity (or 
lack thereof) of change within a group of individuals, or 
between groups of individuals. Examination of interindi-
vidual change includes such questions as: (a) Do all indi-
viduals in a group change in the same manner or at the 
same rate? (b) Is there a difference in the rate of trajecto-
ries for groups? (c) Is there a difference in the type of 
change groups follow?

  Both intraindividual change and interindividual 
change provide different but important information 
about the nature of change. Traditional statistical proce-
dures (e.g. those in the general linear model framework) 
used to assess change have only been able to study one 
type of change at a time: either intraindividual or inter-
individual. Multilevel modeling (MLM) is a more power-
ful statistical tool because both types of change can be 
assessed simultaneously in a single model  [2] .

  Inadequacies of the Traditional Methods for 
Assessing Change 

 Traditionally, the most common ways to address 
change involve special cases of the general linear model. 
In particular, the most common method for analyzing 
change is the use of repeated measures ANOVA, for it al-
lows for the testing of mean differences across time and 
trends over multiple time points. Repeated measures 
ANOVA, however, is not ideal for analyzing change in 
many situations. Repeated measures ANOVA makes the 
assumption of sphericity. For the assumption of spheric-
ity to hold, there must be equal variance at each measure-
ment occasion and an equal covariance between all pairs 
of time points [3]. This is a very restrictive assumption, 
because there may be many situations where there is great-
er individual variability as time passes, or the contrary, 
where there is less individual variability as time passes.

  The assumption of sphericity can be avoided, however, 
by use of other general linear modeling (GLM) tech-
niques such as multivariate analysis of variance (MANO-
VA) (or the paired samples t test if only two measurement 
occasions exist). Unfortunately, there can be problems 
when using MANOVA approaches for measuring change. 
MANOVA techniques provide some evidence about 
whether or not change is present and can test various 
polynomial trends. However, in general we learn little 
about individual or group growth trajectories and little 
about what influences the trajectories. Use of MANOVA 
can be particularly problematic in situations where there 
is a great amount of fluctuation in scores over time. In 
these situations, change can be masked: the mean change 
over time (which MANOVA detects) may in fact be zero 
even though there is large variability from time point to 
time point. Although MANOVA and MLMs would both 
show a mean change of zero, the MLM would also yield 
parameter estimates for the variability in individual 
change and potentially the correlates of change.

  Difficulties also arise when nested levels are used in 
MANOVA. It can become difficult to determine whether 
data should be analyzed at the individual level or at the 
group level. For example, if individuals are nested within 
different treatment clinics, is it appropriate to analyze the 
change across the individuals? Or to analyze whether 
there was change across clinics? Such issues are referred 
to as the unit of analysis problem – in this situation nei-
ther level is optimal: individuals nested within clinic are 
not independent and thus violate the independence as-
sumption, whereas aggregated scores across individuals 
for mean clinic scores reduce statistical power and preci-
sion and potentially lead to aggregation bias 1 . This type 
of question can be addressed by use of a nested MANO-
VA model; however, models of this type can quickly be-
come complex and can be difficult to interpret. Such 
nested structures (individuals nested within clinic) are 
easy to deal with in the MLM framework.

  Finally, MANOVA, ANOVA, t test, and repeated mea-
sures ANOVA techniques all encounter problems with 
missing data. Use of these techniques requires that each 

  1     In some situations the level at which to nest is not clear – that is, how 
far should the nesting go? On the extreme, one could nest within individu-
als over time, within clinics, within physician, within examination room, 
within day of the week, etc. Obviously, such a complex nesting structure 
is not necessary or advised. When the nesting structure has theoretical or 
empirical support, it should be considered. As with many models in statis-
tics, the effect of including an additional level of nesting is a model modifi-
cation and those models are nested, which implies they can be empirically 
evaluated. In our experience, two- or three-level models are adequate for 
typical medical applications. 
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individual included in the sample have data for each mea-
surement occasion. The general recommendation is for 
any individual or case missing data on one or more ob-
servations to be deleted from analysis in a listwise/case-
wise manner. In many studies, especially longitudinal 
studies, there are problems with subject attrition, which 
would, then, necessitate the deleting of all cases with 
missing data if such an analysis were approached from a 
general linear model perspective. Such a strategy can be 
detrimental to the sample size of a study and wastes in-
formation that is collected in the study. There are ad-
vanced statistical ways to deal with missing data in the 
general linear model framework; however, these ad-
vanced techniques are many times difficult to deal with 
and are unnecessary due to the benefits provided by the 
MLM. In situations with missing data, MLMs can be very 
useful because they use all available information and 
weight estimates based on the amount of data available 
 [4, 5] .

  Moving outside of GLM techniques, another tradi-
tional approach to the analysis of change is time series 
analysis. One potential benefit of time series analysis is 
that unlike the GLM techniques previously discussed, al-
though the residual variances at each time point are as-
sumed uncorrelated after the model has been fit, the ef-
fect of correlations between scores at each time point is 
included as a parameter in the model. Thus nonindepen-
dence of observations is less of an issue. However, tradi-
tional time series analysis generally requires a data struc-
ture where relatively few individuals have many measure-
ment occasions. In traditional longitudinal situations, 
which can be considered time series in and of themselves, 
the structure of the data is generally relatively few mea-
surement occasions for a large numbers of individuals. 
Long time series can themselves be nested, where the unit 
of analysis issues noted for GLM techniques can be an is-
sue. The convergence of many time series models and 
nested structures can often be addressed in an MLM con-
text, where many individuals each have many measure-
ment occasions, further illustrating the generality of the 
MLM. MLMs can use any number of time points (al-
though three or more is preferred), and as was previously 
discussed, can easily deal with missing data and nested 
structure.

  Generalized estimating equations (GEE) also provide 
an alternative to MLM. Similar to time series analysis, 
GEE can model correlations between the individual time 
points, thus again nonindependence of time points is less 
of an issue. GEE are also well suited to handle missing 
data as encountered by longitudinal studies. One poten-

tial drawback to GEE, however, is that the variance-co-
variance matrix is practically ignored. Thus, all informa-
tion about the variability between scores, individuals or 
groups is lost. MLMs not only model longitudinal data 
over time but allow for analysis of the variance-covari-
ance matrix providing the researcher with more informa-
tion. Also, like the GLM and time series analyses, issues 
of nested structure may arise which the MLM can deal 
with easily  [6] .

  As can be seen, traditional methods for detecting 
change are largely inferior to modern methods for many 
research purposes. As an alternative to the procedures 
mentioned above, MLMs provide a method for modeling 
change, which explicitly accounts for interindividual and 
intraindividual change simultaneously in a single model. 
MLMs, also known in different contexts as hierarchical 
(non)linear models, mixed effects models, random ef-
fects models, random coefficient models, covariance 
components models, or value added models offer a meth-
od which can fit individual change equations for each 
subject or case in the study, and then model those indi-
vidual change coefficients at another level of the model 
in an attempt to explain interindividual differences in 
change.

  MLM is so called because it analyzes variables at sev-
eral different levels of analysis using nested models. By 
nested models, we refer to situations where individuals, 
or cases more generally, are contained within groups, and 
those groups may be further contained in other groups. 
For example, BP readings are obtained from each arm. 
These readings are nested within patients. These patients 
might be nested within a treatment group versus a control 
group. In addition to the analysis of both inter- and in-
traindividual change, MLMs can also include informa-
tion on factors that affect the change.

  The Model 

 The simplest model of change follows a straight line. The over-
all model is often decomposed into two parts: level 1 and level 2.

  Level 1 
 Level 1 of the longitudinal MLM measures intraindividual 

change  [7] . Level 1 of each MLM generally consists of  N  prediction 
equations, where  N  represents the number of participants. The 
straight line change model can be described mathematically as:

   y  it  =  !  0  i  +  !  1  i  (Time  it  )  +  e  it  ,                                                           (1)

  where  y  it    is the criterion variable for the  i -th individual ( i  = 1, …, 
 N )   at the  t -th time point ( t  = 1, …, T),  !  0  i  is the intercept for the 
 i -th individual,  !  1  i  is the slope for the  i -th individual, and  e  it  is the 
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error in predicting the  i -th individual at the  t -th time point. In 
this model,  Time  it  is the only explanatory variable. When time is 
used as an explanatory variable in the level 1 model, the model 
can be conceptualized as a longitudinal model  [8] . 

 More specifically, in longitudinal models, the criterion vari-
able  y  it    is the variable in which we are looking for change. The 
regression intercept for the  i -th individual,  !  0  i , is the predicted 
value of  y  i  when  Time  it  is zero for the  i -th individual.   Similarly, the 
regression slope  !  1  i  is the expected change in the criterion with a 
unit increase in  Time  for the  i -th individual. In the case of the 
straight line change model described in equation 1,  !  1  i  refers to 
the rate of change in  y  i  for a 1 unit change in  Time . The final com-
ponent of the regression equation, the error denoted  e  it , refers to 
the regression error left unexplained by the level 1 regression 
model.

  Many times researchers will want to rescale or recenter the 
time variable in order to make results more interpretable. At 
times, this constant is the sample mean of the time variable, 
though the constant can change from situation to situation de-
pending on the nature and metric of the data collected  [6] . For 
example, if we are studying change in BP after dialysis, time zero 
should be the end of dialysis, instead of midnight or clock time. 
Rescaling of the time variable is important to consider, because it 
can make interpretation of the level 2 parameters more intuitive 
and clear.

  The level 1 longitudinal model need not be limited to using 
 Time  as the only explanatory variable. Sometimes, as in multiple 
regression models, we want to explain some criterion by a combi-
nation of several variables. Models of this type typically take the 
form of:

   y  it  =  !  0  i  +  !  1  i  (Time  it  )  +  !  2  i ( X  1t ) + … +  !  ji  (X  jt  )  +  e  it ,                 (2)

  where  !  2  i  …  !  ji    are the regression weights for explanatory vari-
ables  X  1t  …  X  jt . As can be seen, this model is identical to the mod-
el discussed above except it has multiple slope parameters for the 
covariates included in the model. These slope coefficients can be 
interpreted in exactly the same way as the simple example 
above. 

 It should be noted that explanatory variables in a MLM can be 
either time varying or time invariant. Covariates such as gender, 
ethnicity, or group status (treatment/control) are  time-invariant 
explanatory variables  because they need only be measured one 
time and do not change as time passes. Covariates such as age or 
weight can be regarded as  time-varying covariates , because they 
potentially change over time and thus could be measured at each 
measurement occasion in order to be used in the model  [7] . In 
equation 2, each  X  jt  is a time-varying covariate because it appears 
in the level 1 equation. Furthermore, quadratic, cubic, or other 
polynomial trends can be modeled simply by adding a slope coef-
ficient for the term, for example  y  it  =  !  0  i  +  !  1  i  (Time  it  )  +  !  2  i (   Time  2  it ) 
+  e  it . Models nonlinear in their parameters, for example inclusion 
of asymptotes or inflection points, can also be very useful  [9, 
10] .

  Level 2 
 The multilevel part of a MLMs comes in at the level 2 (and 

higher) parts of the model, for it is these higher levels that allow 
us to explain differences in the initial status and growth rates ob-
tained in level 1 of the model. Until now, we have been modeling 

a dependent variable with time and possibly time-varying covari-
ates. At level 2, the individual change coefficients are modeled as 
the dependent variable with time-invariant predictors. For ex-
ample, the intercept and slope of the  N  individuals might be mod-
eled by gender or treatment group.

  Consider the straight line change model from the first exam-
ple. In that example, recall that there are two level 1 parameters, 
 !  0  i  (intercept) and  !  1  i  (slope) as well as an error term. This means 
that the level 2 model will consist of 2 equations: one for each of 
the level 1 change coefficients. Below is one possible level 2 mod-
el for this situation, which is termed an unconditional model be-
cause the individual change coefficients are not conditional on a 
time-invariant predictor:

  Level 2:  !  0  i  =  "  00  +  r  0  i                                                                   (3)

  !  1  i  =  "  10  +  r  1  i ,                                                                  (4)

  where  "  00  and  "  01  are the intercepts (fixed effects) for the inter-
cept and slope, respectively, and  r  0  i  and  r  1  i  are the unique effects 
for the  i -th individual on the intercept and slope, respectively. 
 Notice that the unique effects are simply the difference between 
the fixed effect (the estimate of the population value) and the 
unique (random) effect associated with the individual. As can be 
seen, we are now using regression equations to model the change 
coefficients from level 1. In the level 2 equations shown above, we 
are only attempting to model the slope and intercept with a hori-
zontal line: an intercept + error term ( fig. 1 b). However, many 
times it is desirable to model the level 1 coefficients with time-in-
variant predictors. For example, theory might suggest that the 
initial status and trajectory over time of some variable is in part a 
function of gender. In other words, we want to test the hypothesis 
that there are group differences in initial status and growth be-
tween men and women. A suitable level 2 model to test this hy-
pothesis is given below: 

   Level 1:   y  it   =  !  0  i  +  !  1  i  (Time  it  )  +  e  it                                            (5)

  Level 2:  !  0  i  =  "  00  +  "  01  (Gender  i  )  +  r  0  i                                        (6)

   !  1  i   =  "  10  +  "  11  (Gender  i  )  +  r  1  i                                         (7)

  In this model, the intercept and slope from the level 1 model are 
each being predicted by regression lines with their own intercept 
and slope representing the influence of gender on each of these 
level 1 parameters ( fig. 1 d), where  "  11  represents the difference 
between males and females in the rate of change over time. The 
influence of gender does not, however, need to be tested for all 
parameters. If prior research supports the notion that gender has 
no effect on the rate of change, but might impact the initial status, 
a model could be constructed where the intercept is predicted by 
gender, but the slope is simply predicted by a means only model 
(i.e. a horizontal line). That is to say, each of the level 1 coefficients 
could potentially have their own unique prediction equation. 

 As in multiple regression, use of a dichotomous explanatory 
variable, such as gender in our example, is theoretically testing 
whether the change coefficients for different groups are signifi-
cantly different. For example, if our data are coded 0 = male and 
1 = female, equation 6 is theoretically equivalent to testing the 
difference between the following two equations:

  Male:      !  0  i  =  "  00  +  "  01 (0) +  r  0  i                                                   (8)

  Female:  !  0  i  =  "  00  +  "  01 (1) +  r  0  i                                                    (9)
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  Because the equations are both predicting the intercept of the lev-
el 1 model, it follows that  "  01  is testing for a difference in the lev-
el one intercept between males and females. A similar construc-
tion can be obtained from equation 7 where  "  11  is the difference 
in the level one slopes between males and females. 

 At each level, multiple explanatory variables may be used. 
With the use of multiple explanatory variables, the possibility ex-
ists to also include the interaction of explanatory variables as an 
explanatory variable. For example, a second explanatory variable 
to the level 2 model:

  Level 1:    y  it    =  !  0  i  +  !  1  i  (Time  it  )  +  e  it                                           (10)

  Level 2:  !  0  i  =  "  00  +  "  01  (Gender  i  )  +  "  02  (Age) 
+  "  03  (Gender  i    !  Age)  +  r  0  i                                (11)

                   !  1  i   =  "  10  +  "  11  (Gender  i  )  +  "  12  (Age) 
+  "  13  (Gender  i    !  Age)  +  r  1  i                                 (12)

  This model uses two explanatory variables (gender and age) as 
well as the interaction of the two variables to model the level 1 
parameters. 

 As can be seen, there are many possible level 2 models that ex-
ist for any level 1 model. Similar to level 1, we can also introduce 
linear models with polynomial trends, use models nonlinear in 
their parameters, or add multiple explanatory variables at level 2. 
Also, if the situation warrants it, we can add higher levels to the 
model in order to explain the level 2 parameters (i.e. a level 3 or 
potentially a level 4 model, etc.).

  Estimation of Model Parameters 
 After the model is specified, the levels are combined into the 

full model so that model parameters can be estimated. The full 
model is formed by substituting the highest level (i.e. level 2 in this 
case) regression equations into the lower level regression equa-

tions. In the case of our example, this involves substituting the 
level 2 model equations (6 and 7) into the level 1 model (5). (In the 
case of a 3 level model, we would substitute the level 3 equations 
into the level 2 equations, then substitute the level 2 equations into 
the level 1 model, etc.). The resulting full model would look as fol-
lows:

   y  it  = [ "  00  +  "  01  (Gender  i  )  +  r  0  i ] + [ "  10  +  "  11  (Gender  i  ) 
+  r  1  i ] (Time  it  )  +  e  it                                                                              (13)

  Maximum likelihood estimation (full or restricted) is generally 
used to estimate the model’s parameter estimates, which have the 
advantage of dealing with missing data in arguably the most op-
timal way. Estimation of the model generally assumes that errors 
are normally distributed and independent. 

 Parameter Interpretation 
 Once the model has been specified and fit parameter esti-

mates, their corresponding confidence intervals, and significance 
levels need to be interpreted ( table 1 ).
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  Fig. 1.  Four different models for the same 
hypothetical data.  a  Unconditional: inter-
cept.  b  Unconditional: intercept +.  c  Con-
ditional: intercept only.  d  Conditional: in-
tercept +. 

Table 1. Example of MLM parameters

Population
fixed effects

Variance of
unique effects

Correlation of
unique effects

Population
error variance

"00    #   2   r  0 $01 #  2   e  
"01    #   2   r  01 
"10
"11
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  Statistical Significance 
 In general, the statistical significance of a test evaluating a 

model parameter can be interpreted in much the same way as in 
other statistical tests. Significance tests of parameters test if the 
parameter is significantly different from zero (or some other 
specified value). These parameters are the fixed effects of the full 
model. When interpreting the meaning of significant parameters, 
it is important to remember that we are estimating intercepts and 
slopes, not scores. Thus when we want to interpret  "  00 , it is help-
ful to go back to our original equations (5, 6 and 7). Looking at 
these equations, we remind ourselves that  "  00  is the intercept of 
the equation predicting  !  0i , the intercept of our level 1 equation. 
Thus in this model,  "  00  provides information about initial status 
on our variable of interest. Similarly,  "  01  provides information 
about gender differences in the intercept.

  Error Variance Interpretation 
 Significance of error terms does not have exactly the same 

meaning as significance of parameters. In fact, the meaning of 
significant error variance changes depending on the level at which 
the error term is located.

   Random Effects.  The error variance from the level 1 model cor-
responds to true error, or amount of variance not accounted for 
by the full model. This error term is implicitly involved in the sig-
nificance tests of the model parameters because its variance is 
important for the computation of the standard errors of the fixed 
effects.

   Unique Effects.  Error terms at higher levels, however, have to 
do with individual and group differences.  In general , the unique 
effects at level 2 (sometimes referred to as random effects) refer to 
individual differences, and are not literally error in the tradition-
al sense, as they represent the deviation from the individuals’ es-
timate (or parameter) and the estimated (or population) fixed ef-
fect. In our model (equations 6 and 7)  r  0  i  and  r  1  i  thus refer to the 
deviation between the fixed effect (either intercept or slope) for 
the appropriate condition and the individuals’ estimated change 
coefficient. Significant unique effects at level 2 indicate whether 
or not the parameter of interest differs significantly  among indi-
viduals  (i.e. if there is variability in the unique effects).   For ex-
ample, if  r  0  i  is the random effect in the prediction of  !  0  i , the in-
tercept, if  r  0  i  is statistically significant, it would indicate that the 
intercept for each individual included in our model is best mod-
eled with their own unique intercept instead of just using a single 
intercept to model all individuals. In other words, there are sig-
nificant differences among individuals on the intercept. Interpre-
tation of the random effect for the slope,  r  1  i , is conducted in a 
similar manner.   At higher levels, the unique effects often describe 
differences among groups instead of differences among individu-
als. For example, this type of situation might arise when partici-
pants are nested within different research sites or have different 
initial values of BP after dialysis.

  As can be seen by  table 1 , the actual error terms are not re-
ported in output, but rather the variance of the error terms. Many 
times another parameter,  $  (tau), is reported which corresponds 
to the correlation between the random effect for the intercept and 
the random effect for the slope (or other correlations for the 
unique effects when more level 1 variables are included). Thus,  $  
can be interpreted as the relationship between initial status and 
rate of change.

  Notation 
 Before an example is provided, it is important to discuss the 

customization of models. Looking at the equations written above, 
we see the subscript  i  on each parameter, which as mentioned be-
fore, stands for  individual . When this subscript is placed on the 
parameter, the model will estimate parameters for each separate 
individual. However, in some cases there may be reason to believe 
that all individuals will change in the same way, thus individual 
parameters for each person would not be necessary, which is the 
way general linear model approaches deal with such issues for 
change parameters other than the intercept. This should be an 
empirical question, not an a priori limitation of the model. For 
example, research might suggest that individuals start at different 
places (i.e. have different intercepts) but all grow at the same rate 
(have the same slope, which is the repeated measures approach 
under the sphericity assumption). So a model could be created: 

    y  it  =  !  0  i  +  !  1  (Time)  +  e  it  ,                                                           (14)

  corresponding to the sphericity assumption discussed previously. 
Or if it is believed that men and women change differently, but 
within groups, all women show the same trajectory and all men 
show the same trajectory, we reduce the model as shown in equa-
tions 15, 16 and 17. Notice here that all the  i  subscripts have been 
removed indicating that the parameters no longer vary for each 
individual, but rather the group parameters are assumed repre-
sentative for all individuals in the group: 

      y  it  =  !  0  +  !  1  (Timeit)  +  e  it                                                            (15)

   !  0  =  "  00  +  "  01  (Gender)                                                               (16)

     !  1  =  "  10  +  "  11  (Gender)                                                                (17)

  Model Comparisons 
 As demonstrated by the previous discussion, many different 

models of the same data can be postulated. To determine which 
model provides the best fit to the data, we can use model com-
parison techniques. When models are nested within one another 
(i.e. when one model can be written as a special case of another 
model) and use identical data, model comparisons can be execut-
ed through use of the  deviance statistic . The deviance statistic is 
a statistic which most multilevel model programs will include in 
the output or that can be obtained indirectly from the output. The 
deviance statistic quantifies the fit of a model compared to the 
saturated model (i.e. a model that fits perfectly). Provided sam-
ple size is not small and normality of the errors hold, the differ-
ence in deviance statistics between nested models is distributed 
 asymptotically as a  %  2  statistic with the degrees of freedom equal 
to the difference in the number of model parameters estimated 
 [7] .

  If models are not nested, however, the deviance statistic is not 
an appropriate method for comparison. In these cases, the Akaike 
Information Criterion (AIC) or the Bayesian Information Crite-
rion (BIC) statistics can be used. The AIC and BIC can be used to 
compare any two models, regardless of whether they are nested, 
as long as the data used is identical. The smaller the AIC/BIC, the 
better fit the model provides. The AIC and BIC simultaneously 
consider error and parsimony, so a model that has a smaller error 
term might not be considered ‘better’ because additional param-
eters were necessary to achieve that level of fit. We add a caution-
ary note that the use of the AIC or BIC statistics for model com-
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parison tends to be very subjective. An added complication arises 
when the AIC and BIC statistics provide conflicting evidence. 
Thus, the AIC and BIC should generally only be used when mod-
els are not nested, given that exact procedures are available in 
such situations  [7] .

  Another statistic that may be reported is the Pseudo R 2 . When 
fitting models, it is the hope that the addition of additional ex-
planatory variables will add to the explanation of the outcome 
variable. As a measure of this, a Pseudo R 2  can be calculated 
which represents  the proportional reduction in residual variance 
between two nested models . This Pseudo R 2  statistic should not be 
confused with the Pseudo R 2  statistic used most often in the GLM 
(especially multiple regression), which has well known properties 
and provides a measure of the total variability explained.

  The most simple model tested (in our case, this will be model 
1 of our example, the no slope means only model) provides the 
baseline variance for comparison. Pseudo R 2  can then be calcu-
lated by 

2 2
2 0 M

2
0

Pseudo R ,# #

#

!= & &

&

                                                         (18)

 where    #   2   !  0  is the population error variance for the baseline model 
(e.g. intercept only) and    #   2   !  M  is the population error variance for 
the more rich (e.g. straight line change) model  [6] . It should be 
noted that in some circumstances, it is possible for Pseudo R 2  sta-
tistic to be negative because it is possible the inclusion of an ad-
ditional predictor can increase the magnitude of the variance 
component  [6, 7] . When a negative Pseudo R 2  statistic occurs, the 
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  Fig. 2.  Individual trajectory plots of SBP as a function of time after dialysis for the first 9 patients for five ran-
domly selected awake measurement occasions. 
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Pseudo R 2  is largely uninterpretable and should not generally be 
used  [7, 8] . Similar logic can be applied in each of the level 2 (or 
beyond) equations, which we do not discuss here. 

 Empirical Example 

 Kelley et al.  [11]  fit a series of complicated change mod-
els to ambulatory BP data. Ambulatory BP monitoring 
was performed after the mid-week hemodialysis session 
for 44 h. Ambulatory BPs were recorded every 20 min 
during the day (6 a.m. to 10 p.m.) and every 30 min dur-
ing the night (10 p.m. to 6 a.m.). For illustrative purposes, 
we randomly sampled five measurement occasions from 
each of the individuals when they were awake. An appen-
dix has been provided that includes the SAS syntax nec-
essary to reproduce the results given momentarily (R 
code is available directly from the authors). The SAS (and 
R) code as well as data will be available on the Internet at 
the following location: www.karger.com/doi/10.1159/
000131102.

   Figure 2  shows the SBP values for the first 9 patients 
as a function of time after dialysis. Close examination of 
the plots within  figure 2  suggests that there may be a 
slight positive linear trend (the full data reported in Kel-
ley et al.  [11]  clearly show a positive linear and oscillating 
trajectory). We decided to further examine SBP changes 
over time by comparing the results of four different 
MLMs. The formal equations for these models are dis-
played in  table 2 . Model 1 is the baseline intercept only 

model, which does not include explanatory variables (i.e. 
it is unconditional). Model 2 is the basic longitudinal 
model that includes an intercept and linear slope of hours 
after dialysis as an explanatory variable in the level 1 
model. Thus model 2 explicitly considers time after di-
alysis not including any explanatory variables of the level 
1 parameters. Models 3 and 4 each include an explana-
tory variable (whether or not BP medicine was taken) in 
the level 2 model (thus making it a conditional model). 
Model 3 uses the presence of BP medicine to explain the 
intercept alone, while in model 4 it is used to explain both 
the intercept and the slope.

   Table 3  compares the results of the 4 different models. 
Analysis of the fit statistics, namely the AIC, BIC and  %  2  
test of deviances, are all in agreement that model 3 pro-
vides the best fit to the data. Thus, the addition of time 
after dialysis and BP medicine as an explanatory variable 
for the intercept significantly added to the model. Use of 
BP medicine to explain the slope, however, did not yield 
a significant effect. The average BP for individuals not 
using BP medication immediately following dialysis was 
110.7 ( "  00 , p  !  0.001). For individuals using BP medica-
tion, average BP immediately following dialysis was 
128.1 (i.e. 110.66 + 17.47;  "  01 , p  !  0.001). The effect of time 
following dialysis was significant ( "  10 , p  !  0.001) indicat-
ing for every 1 h change in time, BP increases by 0.24 
units. There is a relatively small negative correlation es-
timated between initial status and rate of change ( $  =
–0.17), indicating that individuals who begin with a 
higher BP tend to experience less change over time due 
to BP medication than do individuals who begin with a 
lower BP.

  Discussion 

 Some researchers have already realized the benefit of 
MLM in nephrological research and have addressed re-
search questions with success  [12, 13] . Perhaps a more 
tangible reason why MLMs should be considered is be-
cause funding agencies want to ensure researchers are us-
ing appropriate research methods. All other things being 
equal, we believe a researcher proposing an MLM ap-
proach to analyzing change would be much more likely 
to obtain funding than a researcher proposing a simple 
change model that may well violate the models’ assump-
tions (e.g. independence of errors and/or sphericity) and 
not adequately address the research questions of interest. 
As demonstrated, not only do MLMs provide a flexible 
framework which can be molded to the situation at hand, 

Table 2. Equations of the four blood pressure models tested

Model 1
Level 1 yit = !0i + eit
Level 2 !0i = "00 + r0i

Model 2
Level 1 yit = !0i + !1i(Hoursit) + eit
Level 2 !0i = "00 + r0i

!1i = "10 + r1i

Model 3
Level 1 yit = !0i + !1i(Hoursit) + eit
Level 2 !0i = "00 + "01(BPMedi) + r0i

!1i = "10 + r1i

Model 4
Level 1 yit = !0i + !1i(Hoursit) + eit
Level 2 !0i = "00 + "01(BPMedi) + r0i

!1i = "10 + "11(BPMedi) + r1i
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they also provide more information about change which 
simpler models cannot provide.

  MLMing is becoming more and more common in the 
research community and several statistical software 
packages are available for this purpose. Widely used 
packages include HLM, Mplus, Mx, MLwiN, SAS (spe-
cifically the MIXED and NLMIXED procedures), STA-
TA (specifically the xt set of commands), SPSS (the 
MIXED command), and R and Splus (specifically the 
lme4 and nlme packages). We have provided SAS code 
and the example data as a supplement to this article   (www.
karger.com/doi/10.1159/000131102). 

  In summary, although there are statistical models of 
change such as repeated measures ANOVA that are easi-
er to implement and simpler to interpret, they may not be 
valid in complex real-world situations. Multilevel models 
may be needed to understand the true nature of change, 
whether it be interindividual, intraindividual or both.
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Table 3. Results of multilevel model

Parameter Model

1 2 3 4

Fixed effects
!0i "00 129.96*** (2.02) 125.20*** (2.23) 110.66*** (4.82) 109.96*** (5.32)

"01 17.47*** (5.17) 18.31*** (5.82)
!1i "10 0.24*** (0.07) 0.24*** (0.07) 0.29 (0.16)

"11 –0.06 (0.18)

Random effects
#  2   e  229.25 191.60 191.60 191.55
#  2   r  0 467.34 463.97 464.14 419.35
#  2   r  1 0.19 0.19 0.19
$01 –0.17 –0.17 –0.19

Fit statistics
deviance 5,516.12 5,479.37 5,468.39 5,468.23
AIC 5,522.12 5,491.38 5,482.39 5,484.29
BIC 5,535.44 5,518.05 5,513.51 5,519.85

Model comparisons %2
12 = 36.75** %2

13 = 47.73*** %2
14 = 47.89***

%2
23 = 10.98*** %2

24 = 11.14***
%2

34 = 0.16

Pseudo R2 (level 1) R2
12 = 0.16 R2

13 = 0.16 R14 = 0.16

* p < 0.05, ** p < 0.01, *** p < 0.001, standard error appears in parentheses.
The subscripts on the %2 and Pseudo R2 statistics denote the two models being compared.
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